A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants

[Display omitted] •The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimi...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 411; p. 127957
Main Authors Kohantorabi, Mona, Moussavi, Gholamreza, Giannakis, Stefanos
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimination.•Oxygen vacancies and defects, as well as metals’ presence determine the degradation mechanisms.•The leaching of metals from the catalysts was evaluated and compared to assess their suitability. The heterogeneous, sulfate radical-based AOPs (SR-AOPs) have emerged over the last decade as a highly potent technology for the removal of various organic contaminants from water. This review aims to summarize the rapid development of the various heterogeneous catalysts developed for peroxymonosulfate (PMS) activation, destined for the degradation of organic contaminants. We cover catalysts such as metal and bi-metallic oxides, supported noble/non-noble metal catalysts, carbonaceous-based materials, layered double hydroxides, metal organic frameworks, zeolite and perovskite-based catalysts, used as effective activators for the activation of PMS. The radical and non-radical pathways, as well as the role of each radical in the reaction mechanism were discussed in detail. In addition, the physicochemical properties of the catalyst influencing the PMS activation mechanisms were summarized. Finally, a critical comparison of the main categories of heterogeneous catalysts is presented, while the opportunities and shortcomings of their conception and application are also discussed.
AbstractList [Display omitted] •The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimination.•Oxygen vacancies and defects, as well as metals’ presence determine the degradation mechanisms.•The leaching of metals from the catalysts was evaluated and compared to assess their suitability. The heterogeneous, sulfate radical-based AOPs (SR-AOPs) have emerged over the last decade as a highly potent technology for the removal of various organic contaminants from water. This review aims to summarize the rapid development of the various heterogeneous catalysts developed for peroxymonosulfate (PMS) activation, destined for the degradation of organic contaminants. We cover catalysts such as metal and bi-metallic oxides, supported noble/non-noble metal catalysts, carbonaceous-based materials, layered double hydroxides, metal organic frameworks, zeolite and perovskite-based catalysts, used as effective activators for the activation of PMS. The radical and non-radical pathways, as well as the role of each radical in the reaction mechanism were discussed in detail. In addition, the physicochemical properties of the catalyst influencing the PMS activation mechanisms were summarized. Finally, a critical comparison of the main categories of heterogeneous catalysts is presented, while the opportunities and shortcomings of their conception and application are also discussed.
ArticleNumber 127957
Author Moussavi, Gholamreza
Kohantorabi, Mona
Giannakis, Stefanos
Author_xml – sequence: 1
  givenname: Mona
  surname: Kohantorabi
  fullname: Kohantorabi, Mona
  organization: Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
– sequence: 2
  givenname: Gholamreza
  surname: Moussavi
  fullname: Moussavi, Gholamreza
  email: moussavi@modares.ac.ir
  organization: Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
– sequence: 3
  givenname: Stefanos
  surname: Giannakis
  fullname: Giannakis, Stefanos
  organization: Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
BookMark eNp9kc9uEzEQxi1UJNrCA3DzESQ2-M_u2itOVVVopSKQ6N2atWcTRxs7st2keU2eCKeBC4ee_H2j-Xlm9F2QsxADEvKeswVnvP-8XlhcLwQT1Qs1dOoVOedayUYKLs6qlrpr9NCqN-Qi5zVjrB_4cE5-X9GEO497GidaVkh9CHEHxceQq6YbLDA3FIKjFtIYQzNCxqOp9UMumeLTdo6plqaY6AoLprjEgPEx023VT4dNDDE_zhMUpB9-fv_1kYIt_jTjE937sqqore0x0ATOW5jpLi9ovbD55x0uq3xG6BbKag-HfNw4piUEb6mNocDGBwglvyWvJ5gzvvv7XpKHrzcP17fN_Y9vd9dX940VgyqN7Pgk3eg6iaJXwnHd6wl5Bxq6tlesldqNqmNatDBoprXmomeiHwYxqlbKS6JO39oUc044GevL84YlgZ8NZ-aYjFmbmow5JmNOyVSS_0duk99AOrzIfDkxWC-qeSWTrcdg0fmEthgX_Qv0H681rNg
CitedBy_id crossref_primary_10_1016_j_cclet_2022_01_008
crossref_primary_10_1016_j_cej_2024_149227
crossref_primary_10_1016_j_seppur_2022_121991
crossref_primary_10_1016_j_watres_2023_119577
crossref_primary_10_2139_ssrn_3991527
crossref_primary_10_1016_j_jhazmat_2021_125308
crossref_primary_10_1016_j_jcis_2025_137262
crossref_primary_10_1007_s11356_024_32059_w
crossref_primary_10_1016_j_apcatb_2024_124966
crossref_primary_10_1016_j_envres_2024_120398
crossref_primary_10_1016_j_jtice_2021_11_025
crossref_primary_10_1016_j_seppur_2022_122728
crossref_primary_10_1016_j_seppur_2022_122849
crossref_primary_10_1007_s12274_023_5517_1
crossref_primary_10_1016_j_scitotenv_2023_166376
crossref_primary_10_1016_j_micromeso_2023_112735
crossref_primary_10_3390_min15030318
crossref_primary_10_1007_s11356_023_29394_9
crossref_primary_10_1016_j_cej_2024_155918
crossref_primary_10_1016_j_apsusc_2023_158864
crossref_primary_10_1016_j_jece_2024_114500
crossref_primary_10_1016_j_watres_2023_120697
crossref_primary_10_1016_j_apsusc_2023_158861
crossref_primary_10_1039_D3EN00988B
crossref_primary_10_1016_j_scitotenv_2022_155063
crossref_primary_10_1016_j_colsurfa_2025_136482
crossref_primary_10_3390_molecules29071525
crossref_primary_10_1021_acsanm_2c02684
crossref_primary_10_1016_j_seppur_2024_127965
crossref_primary_10_1016_j_chemosphere_2022_136360
crossref_primary_10_1016_j_cej_2024_149352
crossref_primary_10_1016_j_jclepro_2023_137650
crossref_primary_10_3390_su17072831
crossref_primary_10_1016_j_jece_2024_112590
crossref_primary_10_1002_slct_202404504
crossref_primary_10_1080_09593330_2023_2218042
crossref_primary_10_3390_app14178075
crossref_primary_10_1016_j_watres_2023_120542
crossref_primary_10_1016_j_jcis_2025_01_203
crossref_primary_10_1016_j_cej_2023_144837
crossref_primary_10_1016_j_jclepro_2022_133926
crossref_primary_10_1016_j_scitotenv_2022_159587
crossref_primary_10_1039_D2NJ05132J
crossref_primary_10_1016_j_apsusc_2024_161177
crossref_primary_10_1016_j_apcatb_2021_120786
crossref_primary_10_1016_j_cej_2022_136616
crossref_primary_10_2139_ssrn_4145442
crossref_primary_10_1016_j_apcatb_2024_124982
crossref_primary_10_1016_j_efmat_2024_07_003
crossref_primary_10_1016_j_jclepro_2023_137762
crossref_primary_10_1002_slct_202404631
crossref_primary_10_1039_D2NJ00778A
crossref_primary_10_1016_j_jwpe_2024_105910
crossref_primary_10_1007_s11356_023_31567_5
crossref_primary_10_1016_j_ecoenv_2023_115435
crossref_primary_10_1016_j_envres_2023_115994
crossref_primary_10_1016_j_ceramint_2023_02_062
crossref_primary_10_1016_j_jece_2024_112466
crossref_primary_10_1016_j_jhazmat_2021_127938
crossref_primary_10_3390_w16010006
crossref_primary_10_1016_j_seppur_2024_126851
crossref_primary_10_1007_s11783_024_1894_2
crossref_primary_10_1016_j_cej_2022_135897
crossref_primary_10_1016_j_jallcom_2023_172184
crossref_primary_10_1016_j_apcatb_2023_123224
crossref_primary_10_1016_j_seppur_2024_126977
crossref_primary_10_1016_j_seppur_2022_121432
crossref_primary_10_1016_j_jenvman_2024_121970
crossref_primary_10_1016_j_jenvman_2022_115851
crossref_primary_10_1016_j_apsusc_2025_162754
crossref_primary_10_1016_j_eti_2024_103932
crossref_primary_10_1016_j_jiec_2024_06_007
crossref_primary_10_1016_j_cej_2024_151981
crossref_primary_10_1016_j_psep_2024_09_120
crossref_primary_10_1016_j_cej_2024_157179
crossref_primary_10_3390_w16131818
crossref_primary_10_1016_j_cej_2022_139901
crossref_primary_10_1016_j_apcatb_2024_123955
crossref_primary_10_1016_j_cej_2022_134695
crossref_primary_10_1016_j_cej_2023_148050
crossref_primary_10_1016_j_cej_2022_135788
crossref_primary_10_1016_j_scitotenv_2022_158799
crossref_primary_10_1016_j_cej_2022_136759
crossref_primary_10_1016_j_seppur_2024_126968
crossref_primary_10_1016_j_seppur_2022_120576
crossref_primary_10_1016_j_cej_2024_151878
crossref_primary_10_2139_ssrn_4046914
crossref_primary_10_1016_j_watres_2023_120378
crossref_primary_10_1016_j_ccr_2024_215693
crossref_primary_10_1016_j_jallcom_2022_165189
crossref_primary_10_1007_s11356_025_35950_2
crossref_primary_10_1016_j_apcatb_2024_123818
crossref_primary_10_1016_j_apsusc_2024_161158
crossref_primary_10_1016_j_dwt_2025_101024
crossref_primary_10_1016_j_cej_2024_158259
crossref_primary_10_1016_j_jcis_2024_06_224
crossref_primary_10_1016_j_cej_2024_148585
crossref_primary_10_1016_j_seppur_2022_121428
crossref_primary_10_2139_ssrn_4145277
crossref_primary_10_1016_j_cclet_2024_110244
crossref_primary_10_1016_j_cej_2024_150636
crossref_primary_10_1016_j_jcis_2023_05_023
crossref_primary_10_1016_j_scitotenv_2024_177326
crossref_primary_10_2139_ssrn_4172985
crossref_primary_10_3390_c9040107
crossref_primary_10_1016_j_cclet_2022_01_029
crossref_primary_10_1016_j_cej_2023_141885
crossref_primary_10_1016_j_envpol_2023_122059
crossref_primary_10_3390_w16243667
crossref_primary_10_1016_j_envres_2025_120779
crossref_primary_10_1016_j_jece_2024_113403
crossref_primary_10_1016_j_seppur_2025_132317
crossref_primary_10_1007_s11356_022_24983_6
crossref_primary_10_1016_j_chemosphere_2022_137346
crossref_primary_10_1016_j_carbpol_2022_119969
crossref_primary_10_1016_j_seppur_2024_131056
crossref_primary_10_1016_j_envpol_2022_118836
crossref_primary_10_3390_w15203679
crossref_primary_10_1016_j_jece_2022_107966
crossref_primary_10_1016_j_seppur_2022_121459
crossref_primary_10_1039_D3TA06102G
crossref_primary_10_1002_adsu_202500108
crossref_primary_10_1016_j_seppur_2022_122773
crossref_primary_10_1016_j_efmat_2022_11_001
crossref_primary_10_1016_j_jece_2024_112424
crossref_primary_10_1039_D4MH00696H
crossref_primary_10_1016_j_jece_2021_107093
crossref_primary_10_1016_j_apcatb_2022_122034
crossref_primary_10_3390_w15101849
crossref_primary_10_1016_j_jcis_2024_02_149
crossref_primary_10_2139_ssrn_4056722
crossref_primary_10_1016_j_apcatb_2022_121184
crossref_primary_10_1007_s11696_025_04006_7
crossref_primary_10_1016_j_apsusc_2023_156616
crossref_primary_10_1021_acsnano_4c18558
crossref_primary_10_1016_j_apsusc_2023_157945
crossref_primary_10_1016_j_envres_2023_115365
crossref_primary_10_3390_catal15030244
crossref_primary_10_1016_j_cej_2023_146636
crossref_primary_10_1016_j_jwpe_2024_106616
crossref_primary_10_1016_j_jece_2022_108231
crossref_primary_10_1016_j_cej_2021_131134
crossref_primary_10_1016_j_apsusc_2023_157120
crossref_primary_10_1016_j_jece_2022_108590
crossref_primary_10_1016_j_jtice_2024_105533
crossref_primary_10_1039_D3EN00911D
crossref_primary_10_3390_w16162355
crossref_primary_10_1016_j_jece_2022_109204
crossref_primary_10_1016_j_seppur_2024_128424
crossref_primary_10_1016_j_apcatb_2023_122429
crossref_primary_10_1016_j_cej_2024_154668
crossref_primary_10_1016_j_cej_2024_154667
crossref_primary_10_1016_j_scitotenv_2022_158752
crossref_primary_10_1016_j_seppur_2023_124221
crossref_primary_10_1016_j_ces_2023_118979
crossref_primary_10_1016_j_envres_2024_118919
crossref_primary_10_1007_s11356_022_18929_1
crossref_primary_10_3390_w17050744
crossref_primary_10_1016_j_watres_2024_122066
crossref_primary_10_1016_j_cej_2022_141220
crossref_primary_10_3390_molecules29174120
crossref_primary_10_1016_j_seppur_2021_119441
crossref_primary_10_2166_wst_2022_371
crossref_primary_10_1016_j_watres_2022_119444
crossref_primary_10_1016_j_seppur_2021_119687
crossref_primary_10_1016_j_jece_2024_113010
crossref_primary_10_1007_s11356_022_24551_y
crossref_primary_10_1016_j_jwpe_2023_104029
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1016_j_jece_2022_107251
crossref_primary_10_1016_j_jece_2024_112048
crossref_primary_10_1016_j_apcatb_2023_123401
crossref_primary_10_1016_j_cclet_2023_108623
crossref_primary_10_1016_j_seppur_2022_121909
crossref_primary_10_1016_j_coche_2023_100940
crossref_primary_10_1016_j_jiec_2023_07_002
crossref_primary_10_1016_j_jallcom_2025_179798
crossref_primary_10_1016_j_jece_2024_112280
crossref_primary_10_1016_j_seppur_2021_120313
crossref_primary_10_1016_j_jclepro_2022_132781
crossref_primary_10_1016_j_jece_2025_115742
crossref_primary_10_1016_j_jwpe_2024_106711
crossref_primary_10_1039_D2NJ01458K
crossref_primary_10_1007_s10924_024_03466_4
crossref_primary_10_1016_j_colsurfa_2022_129612
crossref_primary_10_2166_wst_2023_069
crossref_primary_10_1016_j_envres_2025_121149
crossref_primary_10_1039_D3EW00636K
crossref_primary_10_1080_00150193_2024_2320564
crossref_primary_10_1016_j_jece_2025_115749
crossref_primary_10_3390_catal15010051
crossref_primary_10_1016_j_chphi_2024_100505
crossref_primary_10_1016_j_seppur_2024_130961
crossref_primary_10_1039_D3NJ02953K
crossref_primary_10_1016_j_mex_2025_103252
crossref_primary_10_1016_j_jwpe_2024_105737
crossref_primary_10_1016_j_jhazmat_2021_128077
crossref_primary_10_1016_j_seppur_2023_125455
crossref_primary_10_1016_j_watres_2023_119957
crossref_primary_10_2139_ssrn_3987645
crossref_primary_10_1016_j_chemosphere_2021_133069
crossref_primary_10_3390_w14223754
crossref_primary_10_1016_j_molliq_2024_125607
crossref_primary_10_1016_j_jenvman_2022_117022
crossref_primary_10_1016_j_scitotenv_2024_173211
crossref_primary_10_1016_j_jece_2024_114241
crossref_primary_10_1016_j_apsusc_2023_158202
crossref_primary_10_1016_j_seppur_2021_119783
crossref_primary_10_2298_SOS230427037S
crossref_primary_10_1016_j_cej_2023_143339
crossref_primary_10_1016_j_jhazmat_2024_135002
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_memsci_2023_121785
crossref_primary_10_1016_j_jece_2021_106003
crossref_primary_10_1016_j_jhazmat_2025_137606
crossref_primary_10_1021_acsami_4c14775
crossref_primary_10_1016_j_seppur_2023_124257
crossref_primary_10_1016_j_cej_2022_140282
crossref_primary_10_1016_j_colsurfa_2021_127152
crossref_primary_10_1016_j_seppur_2024_126339
crossref_primary_10_3390_catal14020127
crossref_primary_10_3390_molecules28083622
crossref_primary_10_1016_j_colsurfa_2023_130984
crossref_primary_10_1016_j_cej_2023_144774
crossref_primary_10_1016_j_chemosphere_2024_141587
crossref_primary_10_2139_ssrn_4150458
crossref_primary_10_1016_j_ica_2024_122070
crossref_primary_10_1016_j_jwpe_2024_106779
crossref_primary_10_1016_j_seppur_2025_132174
crossref_primary_10_1016_j_materresbull_2022_111924
crossref_primary_10_1021_acsomega_1c01597
crossref_primary_10_1016_j_cej_2021_131292
crossref_primary_10_1016_j_jclepro_2022_134514
crossref_primary_10_2139_ssrn_4134099
crossref_primary_10_1007_s11270_023_06202_1
crossref_primary_10_1016_j_ijbiomac_2024_136525
crossref_primary_10_1016_j_seppur_2024_126320
crossref_primary_10_1016_j_cej_2024_152568
crossref_primary_10_1016_j_cej_2025_161675
crossref_primary_10_1016_j_cej_2022_134614
crossref_primary_10_1016_j_seppur_2024_128502
crossref_primary_10_1007_s11356_022_20277_z
crossref_primary_10_1007_s44297_024_00031_2
crossref_primary_10_1016_j_seppur_2023_124029
crossref_primary_10_1016_j_jclepro_2022_133420
crossref_primary_10_1039_D4EN00892H
crossref_primary_10_1016_j_cej_2023_142340
crossref_primary_10_1016_j_colsurfa_2022_128674
crossref_primary_10_1021_acsestwater_2c00448
crossref_primary_10_1016_j_seppur_2021_119369
crossref_primary_10_2139_ssrn_4045300
crossref_primary_10_3390_ma15175832
crossref_primary_10_1016_j_ijbiomac_2024_134453
crossref_primary_10_1016_j_jcis_2024_06_183
crossref_primary_10_1016_j_apcatb_2023_122511
crossref_primary_10_1016_j_chemosphere_2022_136205
crossref_primary_10_1016_j_jece_2021_106267
crossref_primary_10_1016_j_jece_2023_110911
crossref_primary_10_1016_j_apt_2022_103802
crossref_primary_10_1016_j_cej_2021_132387
crossref_primary_10_1016_j_ijbiomac_2024_137844
crossref_primary_10_3390_catal13050820
crossref_primary_10_1016_j_cej_2021_132027
crossref_primary_10_1016_j_chemosphere_2024_142318
crossref_primary_10_1016_j_seppur_2024_128616
crossref_primary_10_1016_j_seppur_2021_120358
crossref_primary_10_1007_s11356_024_32416_9
crossref_primary_10_1016_j_jece_2024_113243
crossref_primary_10_1016_j_jenvman_2023_117377
crossref_primary_10_1016_j_jwpe_2023_104295
crossref_primary_10_1016_j_cej_2023_144512
crossref_primary_10_1016_j_envres_2023_116998
crossref_primary_10_1016_j_jcis_2024_11_053
crossref_primary_10_1016_j_cej_2023_145600
crossref_primary_10_1016_j_scitotenv_2024_174456
crossref_primary_10_1016_j_wri_2022_100194
crossref_primary_10_1039_D1NJ05834G
crossref_primary_10_1016_j_jece_2024_112039
crossref_primary_10_1016_j_jece_2024_114699
crossref_primary_10_1007_s11356_024_35204_7
crossref_primary_10_1016_j_chemosphere_2021_130949
crossref_primary_10_1021_acs_est_4c06725
crossref_primary_10_1016_j_colsurfa_2024_135336
crossref_primary_10_1016_j_seppur_2023_124044
crossref_primary_10_1016_j_seppur_2023_125135
crossref_primary_10_1007_s11270_024_07426_5
crossref_primary_10_1016_j_cej_2022_137904
crossref_primary_10_1016_j_cej_2022_141046
crossref_primary_10_1016_j_jclepro_2022_135500
crossref_primary_10_1016_j_desal_2023_116536
crossref_primary_10_1016_j_jece_2023_109905
crossref_primary_10_1016_j_seppur_2021_119580
crossref_primary_10_1016_j_apcatb_2022_121234
crossref_primary_10_3390_w16060875
crossref_primary_10_1016_j_chemosphere_2022_135682
crossref_primary_10_1016_j_seppur_2024_127879
crossref_primary_10_1016_j_apsusc_2023_157676
crossref_primary_10_1016_j_jwpe_2025_106940
crossref_primary_10_1016_j_cej_2025_159580
crossref_primary_10_1039_D3MA00462G
crossref_primary_10_1016_j_jaap_2023_106310
crossref_primary_10_1016_j_jclepro_2024_142517
crossref_primary_10_1016_j_jenvman_2023_119548
crossref_primary_10_1016_j_jwpe_2023_104282
crossref_primary_10_1016_j_colsurfa_2022_130772
crossref_primary_10_1016_j_jtice_2023_105042
crossref_primary_10_1016_j_seppur_2021_119468
crossref_primary_10_1016_j_mcat_2023_113817
crossref_primary_10_1039_D3EW00858D
crossref_primary_10_1016_j_apcatb_2022_121342
crossref_primary_10_1002_smll_202404254
crossref_primary_10_1016_j_seppur_2024_126652
crossref_primary_10_1016_j_jece_2021_107012
crossref_primary_10_1007_s11356_024_35775_5
crossref_primary_10_1007_s11356_024_35642_3
crossref_primary_10_1016_j_apcatb_2022_121589
crossref_primary_10_1016_j_apsusc_2021_149692
crossref_primary_10_1016_j_cej_2024_149379
crossref_primary_10_1016_j_apsusc_2023_157669
crossref_primary_10_1016_j_seppur_2022_121723
crossref_primary_10_1016_j_jallcom_2023_171294
crossref_primary_10_1016_j_ecoenv_2023_115592
crossref_primary_10_1016_j_jwpe_2024_106577
crossref_primary_10_1007_s11164_022_04895_3
crossref_primary_10_1016_j_seppur_2022_122047
crossref_primary_10_1007_s10854_024_13652_8
crossref_primary_10_1016_j_chemosphere_2023_140214
crossref_primary_10_1016_j_cclet_2023_109331
crossref_primary_10_1016_j_pnsc_2023_10_002
crossref_primary_10_1016_j_ijbiomac_2024_132486
crossref_primary_10_3390_catal12111452
crossref_primary_10_1007_s11270_024_07080_x
crossref_primary_10_1039_D4EW00596A
crossref_primary_10_1016_j_jece_2024_115042
crossref_primary_10_1016_j_seppur_2023_125710
crossref_primary_10_1007_s11356_023_29949_w
crossref_primary_10_1021_acsestengg_3c00421
crossref_primary_10_1016_j_jhazmat_2022_128549
crossref_primary_10_1016_j_jcis_2024_05_035
crossref_primary_10_1039_D3EW00801K
crossref_primary_10_1016_j_apsusc_2024_160545
crossref_primary_10_1016_j_cej_2022_138460
crossref_primary_10_1016_j_jwpe_2024_105016
crossref_primary_10_1016_j_jtice_2022_104279
crossref_primary_10_1016_j_seppur_2024_130458
crossref_primary_10_1016_j_seppur_2024_131300
crossref_primary_10_1016_j_seppur_2024_129106
crossref_primary_10_1016_j_scitotenv_2023_164742
crossref_primary_10_1016_j_cej_2022_138469
crossref_primary_10_1016_j_seppur_2023_124990
crossref_primary_10_1016_j_jece_2021_106989
crossref_primary_10_1016_j_seppur_2023_125961
crossref_primary_10_3390_molecules29235696
crossref_primary_10_1016_j_cej_2023_145011
crossref_primary_10_1016_j_seppur_2023_125965
crossref_primary_10_1021_acsestengg_4c00053
crossref_primary_10_1016_j_colsurfa_2022_129694
crossref_primary_10_1016_j_jenvman_2024_120040
crossref_primary_10_1016_j_seppur_2023_125967
crossref_primary_10_3390_w15152856
crossref_primary_10_1016_j_ijbiomac_2022_10_003
crossref_primary_10_1016_j_jallcom_2024_176292
crossref_primary_10_1016_j_jwpe_2023_104096
crossref_primary_10_1007_s11783_024_1769_6
crossref_primary_10_1002_adfm_202301229
crossref_primary_10_1002_apj_3156
crossref_primary_10_1021_acsestengg_1c00330
crossref_primary_10_3390_catal13081150
crossref_primary_10_1021_acs_langmuir_4c01421
crossref_primary_10_1016_j_envres_2023_116271
crossref_primary_10_3390_catal12111310
crossref_primary_10_1016_j_jhazmat_2022_129609
crossref_primary_10_1007_s10562_024_04827_3
crossref_primary_10_1021_acsestengg_4c00282
crossref_primary_10_1016_j_jece_2023_109304
crossref_primary_10_1016_j_apcata_2023_119543
crossref_primary_10_1016_j_jece_2022_108059
crossref_primary_10_1016_j_apcatb_2023_122924
crossref_primary_10_1016_j_seppur_2023_123670
crossref_primary_10_1016_j_seppur_2024_127157
crossref_primary_10_1016_j_seppur_2024_127156
crossref_primary_10_1016_j_jenvman_2024_121165
crossref_primary_10_1016_j_cej_2023_143063
crossref_primary_10_1016_j_cej_2023_146692
crossref_primary_10_1016_j_chemosphere_2023_138034
crossref_primary_10_1016_j_chemosphere_2023_138398
crossref_primary_10_1016_j_apcatb_2024_124291
crossref_primary_10_1016_j_cej_2023_143298
crossref_primary_10_1021_acs_est_2c00464
crossref_primary_10_1016_j_jenvman_2024_123207
crossref_primary_10_1016_j_cej_2023_146565
crossref_primary_10_1016_j_hazadv_2023_100286
crossref_primary_10_1016_j_watres_2022_118730
crossref_primary_10_1016_j_jhazmat_2023_132191
crossref_primary_10_1016_j_jece_2022_108286
crossref_primary_10_1016_j_cej_2022_136061
crossref_primary_10_1016_j_cej_2024_156532
crossref_primary_10_3390_molecules30051005
crossref_primary_10_1016_j_cej_2022_139699
crossref_primary_10_1016_j_jwpe_2022_103403
crossref_primary_10_1016_j_jallcom_2023_171896
crossref_primary_10_1016_j_seppur_2023_125980
crossref_primary_10_2139_ssrn_4067090
crossref_primary_10_1007_s12598_022_02170_3
crossref_primary_10_1016_j_chemosphere_2023_140491
crossref_primary_10_1016_j_cej_2023_147884
crossref_primary_10_1039_D1NR07915H
crossref_primary_10_1016_j_nxnano_2024_100069
crossref_primary_10_1016_j_cej_2021_131457
crossref_primary_10_1016_j_jhazmat_2021_127247
crossref_primary_10_3390_w14142248
crossref_primary_10_1016_j_chemosphere_2023_140376
crossref_primary_10_1016_j_seppur_2021_118665
crossref_primary_10_1016_j_envres_2023_116253
crossref_primary_10_1016_j_jwpe_2024_106012
crossref_primary_10_3390_ma14185284
crossref_primary_10_1016_j_seppur_2024_130545
crossref_primary_10_1016_j_cej_2024_152043
crossref_primary_10_1021_acs_est_3c05153
crossref_primary_10_1063_5_0060141
crossref_primary_10_1016_j_micromeso_2022_111729
crossref_primary_10_1016_j_cej_2024_157976
crossref_primary_10_1016_j_jwpe_2022_102602
crossref_primary_10_1016_j_apcatb_2022_121536
crossref_primary_10_1016_j_cej_2021_132438
crossref_primary_10_1016_j_envpol_2022_119386
crossref_primary_10_1016_j_seppur_2023_124302
crossref_primary_10_1016_j_seppur_2023_125511
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1016_j_jallcom_2023_170370
crossref_primary_10_1016_j_cej_2023_143155
crossref_primary_10_1021_acssuschemeng_1c07605
crossref_primary_10_1016_j_jre_2025_01_006
crossref_primary_10_1021_acs_langmuir_4c00485
crossref_primary_10_1016_j_jclepro_2023_140098
crossref_primary_10_1021_acsestengg_1c00327
crossref_primary_10_1016_j_jece_2023_109417
crossref_primary_10_1016_j_psep_2021_11_056
crossref_primary_10_1016_j_jwpe_2023_103804
crossref_primary_10_1021_acs_cgd_4c01357
crossref_primary_10_1021_acs_est_3c06252
crossref_primary_10_1016_j_chemosphere_2022_135631
crossref_primary_10_1016_j_jallcom_2023_171234
crossref_primary_10_1021_acsestwater_4c00599
crossref_primary_10_1002_jctb_7710
crossref_primary_10_1016_j_apcatb_2024_124594
crossref_primary_10_1002_cctc_202300313
crossref_primary_10_2166_wst_2022_320
crossref_primary_10_1016_j_jclepro_2023_138263
crossref_primary_10_1016_j_cej_2022_138271
crossref_primary_10_1021_acs_est_1c06244
crossref_primary_10_1016_j_envpol_2023_121761
crossref_primary_10_1021_acs_est_3c06229
crossref_primary_10_1016_j_cej_2022_139245
crossref_primary_10_1016_j_jwpe_2022_102751
crossref_primary_10_1016_j_psep_2023_03_003
crossref_primary_10_1016_j_cej_2022_138278
crossref_primary_10_1016_j_cej_2024_150079
crossref_primary_10_1016_j_biortech_2024_130907
crossref_primary_10_1016_j_cej_2024_156981
crossref_primary_10_1016_j_cej_2022_137067
crossref_primary_10_1016_j_jhazmat_2024_135854
crossref_primary_10_1016_j_cej_2024_156501
crossref_primary_10_1039_D2NJ00497F
crossref_primary_10_3390_molecules29174267
crossref_primary_10_1016_j_cej_2024_154687
crossref_primary_10_1016_j_colsurfa_2024_135610
crossref_primary_10_1016_j_jallcom_2023_172898
crossref_primary_10_1016_j_seppur_2022_120806
crossref_primary_10_1016_j_seppur_2023_124322
crossref_primary_10_1039_D3RA04296K
crossref_primary_10_1016_j_chemosphere_2024_143818
crossref_primary_10_1016_j_seppur_2023_125657
crossref_primary_10_1016_j_jiec_2024_03_016
crossref_primary_10_1016_j_watres_2024_122040
crossref_primary_10_1016_j_molliq_2023_123723
crossref_primary_10_1016_j_jece_2025_115557
crossref_primary_10_1039_D2RA02970G
crossref_primary_10_2166_wst_2023_375
crossref_primary_10_1016_j_jece_2023_110863
crossref_primary_10_1016_j_scitotenv_2023_162217
crossref_primary_10_1016_j_jwpe_2024_106486
crossref_primary_10_1016_j_jece_2025_115438
crossref_primary_10_1016_j_seppur_2024_128674
crossref_primary_10_1016_j_jhazmat_2024_133425
crossref_primary_10_1016_j_jclepro_2022_135117
crossref_primary_10_1016_j_cej_2024_154679
crossref_primary_10_1016_j_cjche_2022_07_032
crossref_primary_10_1016_j_chemosphere_2021_132047
crossref_primary_10_1016_j_watres_2023_119926
crossref_primary_10_1016_j_jclepro_2023_139334
crossref_primary_10_1016_j_electacta_2025_145821
crossref_primary_10_1016_j_jwpe_2025_107426
crossref_primary_10_1016_j_psep_2024_01_010
crossref_primary_10_1021_acs_est_1c01531
crossref_primary_10_1016_j_seppur_2022_121595
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_1016_j_mtchem_2025_102581
crossref_primary_10_1016_j_apcata_2022_118679
crossref_primary_10_1016_j_jhazmat_2022_128818
crossref_primary_10_1016_j_jclepro_2021_127584
crossref_primary_10_1016_j_jwpe_2024_106056
crossref_primary_10_1016_j_seppur_2024_129083
crossref_primary_10_1016_j_cej_2024_158349
crossref_primary_10_1016_j_envres_2021_112417
crossref_primary_10_1016_j_jcis_2022_12_072
crossref_primary_10_1016_j_jece_2024_113816
crossref_primary_10_1007_s11270_025_07847_w
crossref_primary_10_1016_j_cej_2022_138976
crossref_primary_10_1016_j_apcatb_2023_123197
crossref_primary_10_1002_jctb_7748
crossref_primary_10_2139_ssrn_4134859
crossref_primary_10_1021_acs_est_2c00522
crossref_primary_10_1016_j_jenvman_2023_118079
crossref_primary_10_1016_j_cej_2024_148789
crossref_primary_10_1016_j_jwpe_2025_107418
crossref_primary_10_1016_j_seppur_2022_122550
crossref_primary_10_2139_ssrn_4105299
crossref_primary_10_1016_j_jece_2024_113814
crossref_primary_10_1016_j_jssc_2023_124332
crossref_primary_10_1021_acsestengg_3c00260
crossref_primary_10_1016_j_cej_2023_143915
crossref_primary_10_1016_j_cej_2022_135474
crossref_primary_10_1039_D3CY00664F
crossref_primary_10_1002_tcr_202300203
crossref_primary_10_1016_j_jece_2024_112838
crossref_primary_10_1016_j_seppur_2024_131143
crossref_primary_10_1016_j_chemosphere_2023_139610
crossref_primary_10_1021_acsestengg_4c00333
crossref_primary_10_1016_j_jece_2021_106904
crossref_primary_10_1007_s10853_022_07683_x
crossref_primary_10_1016_j_inoche_2023_110823
crossref_primary_10_3390_catal12101114
crossref_primary_10_1016_j_jcis_2021_11_097
crossref_primary_10_1016_j_apcatb_2022_121704
crossref_primary_10_1016_j_chemosphere_2021_132646
crossref_primary_10_1016_j_seppur_2025_131663
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_cej_2022_135124
crossref_primary_10_1007_s11356_023_30785_1
crossref_primary_10_1016_j_jwpe_2022_103239
crossref_primary_10_1016_j_jhazmat_2024_133751
crossref_primary_10_1016_j_chemosphere_2022_137022
crossref_primary_10_1016_j_cej_2023_148348
crossref_primary_10_1016_j_jmst_2022_08_003
crossref_primary_10_1016_j_jwpe_2022_103371
crossref_primary_10_1039_D3RA04575G
crossref_primary_10_1016_j_chemosphere_2022_137392
crossref_primary_10_1016_j_psep_2023_01_069
crossref_primary_10_1021_acscatal_1c02031
crossref_primary_10_2139_ssrn_4122750
crossref_primary_10_1016_j_jece_2023_110023
crossref_primary_10_1016_j_compositesb_2024_111424
crossref_primary_10_1016_j_gee_2023_10_005
crossref_primary_10_1016_j_cej_2022_136589
crossref_primary_10_1021_acsestwater_4c01148
crossref_primary_10_1016_j_chemosphere_2023_138788
crossref_primary_10_1016_j_psep_2024_10_099
crossref_primary_10_1002_smll_202308957
crossref_primary_10_1016_j_jclepro_2023_138688
crossref_primary_10_1016_j_mtbio_2024_101288
crossref_primary_10_1016_j_seppur_2023_124811
crossref_primary_10_1016_j_seppur_2023_125900
crossref_primary_10_1016_j_cej_2023_147369
crossref_primary_10_1016_j_envres_2024_119647
crossref_primary_10_1021_acsestengg_3c00210
crossref_primary_10_1016_j_jwpe_2025_107109
crossref_primary_10_1002_jctb_7300
crossref_primary_10_1016_j_cej_2022_135260
crossref_primary_10_1016_j_psep_2024_05_074
crossref_primary_10_1016_j_seppur_2022_121272
crossref_primary_10_1016_j_jclepro_2022_130714
crossref_primary_10_1016_j_chemosphere_2022_134807
crossref_primary_10_1016_j_jece_2022_109084
crossref_primary_10_1016_j_cej_2024_154185
crossref_primary_10_1016_j_jorganchem_2024_123293
crossref_primary_10_1016_j_envres_2025_120912
crossref_primary_10_1016_j_cej_2022_140613
crossref_primary_10_1016_j_matlet_2023_133833
crossref_primary_10_1016_j_cej_2023_144094
crossref_primary_10_1016_j_jhazmat_2021_127640
crossref_primary_10_1016_j_cej_2021_133806
crossref_primary_10_1016_j_cej_2024_150826
crossref_primary_10_1016_j_jece_2022_109190
crossref_primary_10_1039_D2EN00219A
crossref_primary_10_1016_j_seppur_2022_122475
crossref_primary_10_1021_acsestengg_3c00222
crossref_primary_10_1016_j_jece_2023_110120
crossref_primary_10_1016_j_jhazmat_2021_126786
crossref_primary_10_1016_j_rechem_2024_101532
crossref_primary_10_1016_j_cej_2022_136483
crossref_primary_10_1016_j_cej_2022_138428
crossref_primary_10_1016_j_seppur_2024_127088
crossref_primary_10_1016_j_cej_2022_138302
crossref_primary_10_1016_j_jscs_2024_101857
crossref_primary_10_1016_j_chemosphere_2023_139539
crossref_primary_10_1016_j_seppur_2024_130372
crossref_primary_10_1016_j_cej_2024_149831
crossref_primary_10_1016_j_apcatb_2024_124753
crossref_primary_10_1016_j_jhazmat_2021_127988
crossref_primary_10_1016_j_cej_2023_147224
crossref_primary_10_1016_j_jclepro_2023_137571
crossref_primary_10_1007_s11356_024_32729_9
crossref_primary_10_1016_j_seppur_2024_129381
crossref_primary_10_3390_catal12111359
crossref_primary_10_1016_j_jece_2023_110452
crossref_primary_10_1007_s40789_023_00659_5
crossref_primary_10_1016_j_jece_2024_112714
crossref_primary_10_1016_j_chemosphere_2021_130271
crossref_primary_10_1016_j_seppur_2024_127077
crossref_primary_10_1016_j_susmat_2025_e01322
crossref_primary_10_1021_acs_est_2c09122
crossref_primary_10_1016_j_efmat_2024_12_002
crossref_primary_10_1016_j_cej_2021_131525
crossref_primary_10_1021_acsestengg_4c00237
crossref_primary_10_15541_jim20230209
crossref_primary_10_1016_j_jenvman_2022_116895
crossref_primary_10_1016_j_jhazmat_2021_126884
crossref_primary_10_1016_j_cej_2024_148603
crossref_primary_10_3390_w15122243
crossref_primary_10_1016_j_ccr_2024_215993
crossref_primary_10_1016_j_cej_2022_136385
crossref_primary_10_1016_j_ccr_2024_215871
crossref_primary_10_1016_j_jhazmat_2025_137482
crossref_primary_10_1038_s44296_024_00046_4
crossref_primary_10_1016_j_apcatb_2023_123149
crossref_primary_10_1016_j_cej_2022_137237
crossref_primary_10_1016_j_jece_2023_111307
crossref_primary_10_1016_j_chemosphere_2023_138469
crossref_primary_10_1016_j_seppur_2024_129486
crossref_primary_10_1016_j_jece_2023_109355
crossref_primary_10_1016_j_colsurfa_2024_133721
crossref_primary_10_1038_s41545_023_00245_x
crossref_primary_10_1007_s11356_025_36116_w
crossref_primary_10_1016_j_jece_2024_115096
crossref_primary_10_1016_j_jhazmat_2023_132316
crossref_primary_10_1039_D3AY01808C
crossref_primary_10_1016_j_chemosphere_2023_139672
Cites_doi 10.1016/j.cej.2019.123933
10.1016/j.cej.2017.10.040
10.1021/acs.est.7b03007
10.1016/j.chemosphere.2018.01.079
10.1016/j.cej.2019.123726
10.1016/j.cej.2019.123604
10.1016/j.cej.2017.11.164
10.1007/s10570-020-02998-x
10.1016/j.cej.2020.125722
10.1016/j.jhazmat.2020.123039
10.1016/j.cej.2018.04.175
10.1021/es304721g
10.1021/acs.est.9b01449
10.1016/j.cej.2019.122568
10.1021/acs.est.9b05856
10.1007/s11356-017-9168-1
10.1016/j.cej.2012.05.040
10.1016/j.cej.2018.11.184
10.1016/j.cej.2017.07.155
10.1021/acs.iecr.9b00167
10.1038/ncomms2315
10.1111/j.1751-1097.1998.tb05217.x
10.1016/j.seppur.2019.115967
10.1016/j.scitotenv.2018.12.187
10.1016/j.jhazmat.2020.123297
10.1016/S1872-2067(16)62566-4
10.1016/j.apcatb.2019.117763
10.1016/j.apcata.2014.02.024
10.1002/jctb.5153
10.1039/C7TA07942G
10.1016/j.carbon.2016.06.016
10.1071/EN07045
10.1016/j.ibiod.2015.07.008
10.1016/j.seppur.2018.12.044
10.1016/j.cej.2018.09.086
10.1016/j.cej.2017.07.137
10.1021/acs.accounts.7b00535
10.1016/j.apcatb.2015.08.050
10.1021/acs.est.8b05246
10.1021/acs.est.9b07082
10.1016/j.seppur.2019.115886
10.1016/j.cattod.2011.03.005
10.1016/j.jcis.2020.07.100
10.1016/j.apcatb.2016.05.075
10.1016/j.jcis.2017.11.053
10.1016/j.chemosphere.2018.11.105
10.1016/j.chemosphere.2020.127160
10.1021/acsnano.6b02110
10.1016/j.chemosphere.2018.08.065
10.1016/j.cej.2019.05.170
10.1016/j.seppur.2017.04.045
10.1063/1.555965
10.1016/j.jcis.2017.03.004
10.1039/c3cc43401j
10.1007/s11270-017-3648-2
10.1002/smll.201403715
10.1016/j.talanta.2007.08.027
10.1021/cr500032a
10.1016/j.chemosphere.2019.05.291
10.1016/j.scitotenv.2020.140587
10.1016/j.apcatb.2014.09.004
10.1016/j.jhazmat.2019.121995
10.1016/j.cej.2018.02.045
10.1021/acs.est.8b00959
10.1016/j.apcata.2018.05.001
10.1016/j.cej.2019.06.001
10.1016/j.cej.2020.124512
10.1016/j.jes.2019.07.011
10.1016/j.cej.2018.09.064
10.1016/j.cej.2018.07.062
10.1021/ja00443a030
10.1039/C6CY01479H
10.1016/j.cej.2018.11.207
10.1016/j.jhazmat.2020.122808
10.1002/anie.200901826
10.1016/j.seppur.2020.116702
10.1002/anie.201705628
10.1016/j.biortech.2019.121954
10.1016/j.cej.2017.11.059
10.1016/j.cej.2015.05.121
10.1016/j.jpowsour.2015.01.139
10.1016/j.scitotenv.2019.133963
10.1039/C9NJ04379A
10.1016/j.cej.2016.07.027
10.1021/acsomega.9b01883
10.1016/j.cej.2019.123377
10.1016/j.cej.2017.12.069
10.1016/j.apcatb.2019.118302
10.1021/acs.est.6b02079
10.1016/j.apcatb.2019.117765
10.1016/j.cej.2020.126445
10.1016/j.cej.2018.02.125
10.1021/acsami.9b11322
10.1016/j.colsurfa.2020.124568
10.1039/C6RA24101H
10.1021/es5061512
10.1016/j.jhazmat.2016.06.004
10.1016/j.cej.2014.12.014
10.1016/j.cej.2019.123683
10.1016/j.scitotenv.2020.138299
10.1016/j.cej.2014.10.043
10.1016/j.cej.2020.124371
10.1039/C7RA04761D
10.26802/jaots.2017.0075
10.1016/j.carbon.2018.05.039
10.1016/j.apcatb.2019.118056
10.1039/C8CP02080A
10.1016/j.seppur.2017.07.046
10.1016/j.cej.2018.07.105
10.1016/j.cej.2019.123681
10.1016/j.cej.2018.11.165
10.1016/j.jtice.2015.02.027
10.1016/j.apcatb.2017.02.068
10.1016/j.cej.2017.05.168
10.1002/wer.1090
10.1016/j.apcatb.2008.10.013
10.1039/C8RA09841G
10.1021/acs.est.7b05563
10.1021/am505309b
10.1016/j.jcis.2019.03.045
10.1021/ez5002209
10.1016/j.cej.2019.01.129
10.1016/j.jhazmat.2017.01.029
10.1039/C9RA01143A
10.1016/j.cej.2019.04.188
10.1016/S1872-2067(17)62875-4
10.1016/j.chemosphere.2018.01.135
10.1016/j.jhazmat.2010.05.115
10.1016/j.cej.2014.04.104
10.1016/j.apcatb.2018.12.048
10.1016/j.cej.2018.11.120
10.1016/j.apcatb.2016.01.036
10.1016/j.seppur.2016.04.035
10.1016/j.cej.2017.07.042
10.1016/j.cej.2019.123935
10.1021/acs.est.5b03078
10.1016/j.scitotenv.2019.134715
10.1021/acs.est.8b04669
10.1016/j.apcatb.2012.09.001
10.1016/j.apcatb.2014.02.026
10.1016/j.apcatb.2018.03.088
10.1016/j.cej.2018.06.111
10.1016/j.cej.2019.123725
10.1016/j.apcatb.2020.118850
10.1039/C7RA12615H
10.1016/j.carbon.2017.01.060
10.1016/j.apcatb.2018.09.056
10.1016/j.cej.2019.03.127
10.1016/j.apcatb.2020.118601
10.1016/j.cej.2018.05.177
10.1016/j.cej.2017.07.149
10.1016/j.jhazmat.2016.06.058
10.1016/j.chemosphere.2018.04.023
10.1016/j.watres.2018.10.087
10.1021/es506362e
10.1016/j.cej.2013.07.053
10.1016/j.watres.2013.06.023
10.1016/j.cej.2019.123302
10.1016/j.apcatb.2016.01.059
10.1016/j.apcatb.2019.118250
10.1016/j.cej.2019.01.145
10.3390/atmos10120795
10.1016/j.jhazmat.2018.08.028
10.1016/j.cej.2019.123257
10.1016/j.jhazmat.2020.122316
10.1039/C7CC02820B
10.1016/j.jhazmat.2016.01.035
10.1016/j.chemosphere.2018.11.077
10.1016/j.apcatb.2016.04.003
10.1016/j.jhazmat.2020.122884
10.1016/j.cej.2019.123246
10.1016/j.seppur.2020.117246
10.1016/j.scitotenv.2019.01.190
10.1039/C9EN00500E
10.1016/j.apsusc.2017.06.118
10.1016/j.apcatb.2020.118874
10.1016/j.cej.2017.08.115
10.1016/j.cej.2019.03.097
10.1016/j.jhazmat.2019.121447
10.1016/j.cej.2018.09.111
10.1016/j.apsusc.2019.03.034
10.1016/j.jhazmat.2018.05.044
10.1016/j.seppur.2018.12.049
10.1016/j.jenvman.2020.110299
10.1016/j.apcatb.2019.118350
10.1016/j.chemosphere.2017.09.042
10.1016/j.jcis.2018.01.016
10.1016/j.chemosphere.2018.11.197
10.1016/j.cej.2017.03.036
10.1016/j.apcatb.2017.08.088
10.1007/s11164-008-0012-6
10.1016/j.biortech.2017.10.092
10.1016/j.seppur.2020.116617
10.1016/j.apcatb.2018.07.058
10.1007/s11356-017-8811-1
10.1039/C8RA05024D
10.1021/acs.est.9b07245
10.1016/j.apcatb.2017.05.051
10.1016/j.apcatb.2019.118214
10.1021/es062529n
10.1016/j.cej.2018.08.043
10.1016/j.watres.2019.05.008
10.1016/j.cej.2019.04.007
10.1016/j.apcatb.2017.07.016
10.1016/j.cej.2016.09.075
10.1016/j.cej.2017.03.117
10.1016/j.envpol.2016.10.052
10.1016/j.ces.2016.11.017
10.1016/j.jhazmat.2019.121801
10.1016/j.chemosphere.2019.124478
10.1016/j.scitotenv.2020.140388
10.1016/j.cej.2019.122768
10.1016/j.carbon.2017.01.058
10.1021/acs.est.9b04696
10.1039/C6TA09100H
10.1016/j.apcatb.2019.118129
10.1021/acs.est.9b04105
10.1016/j.cej.2019.122041
10.1039/C7TA08472B
10.1016/j.cej.2019.03.235
10.1039/C5CC05101K
10.1088/2053-1591/ab4b98
10.1021/acs.est.6b02841
10.1016/j.jhazmat.2015.04.014
10.1039/C6CY02130A
10.1016/j.catcom.2017.08.016
10.1016/j.jhazmat.2019.121518
10.1021/acscatal.6b02303
10.1016/j.cej.2020.124532
10.1016/j.cej.2016.08.117
10.1016/j.cej.2019.123056
10.1021/acs.est.9b00658
10.1016/j.cej.2018.07.117
10.1016/j.cattod.2017.12.004
10.1002/aoc.3806
10.1016/j.cej.2020.125339
10.1016/j.jhazmat.2014.05.068
10.1016/j.scitotenv.2019.04.098
10.1021/es2017363
10.1016/j.cej.2018.03.169
10.1039/b900144a
10.1016/j.apcatb.2019.02.018
10.1016/j.cej.2020.127083
10.1016/j.cej.2015.05.001
10.1016/j.jssc.2017.08.031
10.1016/j.cattod.2016.04.043
10.1039/C6RA15590A
10.1039/C5TA06563A
10.1016/j.jwpe.2019.101037
10.1016/j.scitotenv.2020.142282
10.1016/j.scitotenv.2020.136728
10.1016/j.cej.2019.122009
10.1016/j.cej.2020.124458
10.1016/j.carbon.2019.09.050
10.1016/j.apcatb.2007.11.009
10.1021/acs.est.5b01059
10.1016/j.cej.2018.04.215
10.1016/j.jhazmat.2018.04.021
10.1021/acs.iecr.9b03814
10.1016/j.cej.2019.123298
10.1016/j.jcis.2015.05.009
10.1016/j.cej.2020.125676
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.127957
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_127957
S1385894720340766
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-351f3dbd53e2672d1868fe15a8a54670438db750824a980888126026992b7433
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:14 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:42:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radical and non-radical pathways
Singlet oxygen
Heterogeneous catalysts
Peroxymonosulfate activation
Electron transfer mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-351f3dbd53e2672d1868fe15a8a54670438db750824a980888126026992b7433
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2020_127957
crossref_primary_10_1016_j_cej_2020_127957
elsevier_sciencedirect_doi_10_1016_j_cej_2020_127957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Chen, Zhu, Li, Hu (b0210) 2020; 54
Cong, Lei, Zhao, Liu, Wang, Lu, Li, Xu, Gao (b0860) 2017; 256
Xu, Quan, Chen (b0360) 2019; 217
Li, Li, Ai, Jia, Zhang (b1150) 2018; 57
Tan, Gao, Deng, Deng, Zhou, Li, Xin (b0260) 2014; 276
Gong, Chen, Yang, Luo, Yao, Wang, Wang, Wu, Li, Wang, Zeng (b0580) 2017; 321
Chen, Chen, Qiao, Wang, Cai (b0295) 2008; 80
Duan, Sun, Ao, Zhou, Wang, Wang (b1205) 2016; 107
Hong, Zhou, Xiong, Liu, Yao, Lai (b0620) 2020; 391
Lashkaryani, Kakavandi, Kalantary, Jafari, Gholami (b0100) 2019
Li, Sun, Huang, Xue, Zhu, Wang, Liu (b0410) 2020; 88
Wu, He, Inthapanya, Yang, Lu, Zeng, Han (b0960) 2017; 24
Ji, Li, Wei, Yu (b0300) 2013; 231
Fang, Liu, Gao, Dionysiou, Zhou (b1090) 2015; 49
Martinez, Sik, Chignell (b1310) 1998; 67
Fanaei, Moussavi, Srivastava, Sillanpää (b0020) 2019; 371
Zhu, Zhu, Zhang, Lu, Qiu (b0640) 2019; 9
Zhou, Li, Zhao, Liu, Yu, Jiang, Jiao (b0645) 2019; 30
Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (b0945) 2016; 50
Lin, Chang (b0855) 2015; 53
Wang, Nie, Ji, Quan, Chen, Wang, Yu, Guo (b1010) 2019; 6
Ma, Wang, Tong, Zhang, Lin, Han, Du (b0920) 2018; 137
Hammouda, Zhao, Safaei, Ramasamy, Doshi, Sillanpää (b0715) 2018; 233
Wu, Lin, Yang, Du, Teng, Ma, Zhang, Nie, Zhong (b0730) 2019; 237
Tian, Dong, Chen, Li, Xie (b1120) 2020; 250
Liang, Zhang, Duan, Sun, Liu, Tade, Wang (b0850) 2017; 4
Lu, Wang, Chen, Yu, Ye, Quan (b0735) 2018; 353
Tian, Gao, Nie, Yang, Zhou, Li, Wang (b0045) 2017; 53
Lu, Min, Qin, Shi, Wu, Fan, Min, Xu (b0970) 2021; 752
Mian, Liu, Fu, Song (b1125) 2019; 255
T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation, Catal. Sci. Technol. 7 (2) (2017) 396-404. https://doi.org/10.1039/C6CY02130A.
Rao, Han, Chen, Wang, Xue, Wang, Pu (b0680) 2019; 218
Su, Duan, Miao, Zhong, Zhou, Wang, Shao (b0700) 2017; 7
Liu, Zhao, Shao, Cui (b0495) 2015; 262
Yang, Jiang, Lu, Ma, Liu (b1320) 2015; 49
Wang, Wang (b1080) 2020; 385
Xiao, Ye, Wei, Luo, Yang, Spinney (b1220) 2015; 49
Wang, Xu, Wang (b1015) 2019; 375
M. Kohantorabi, M. Hosseinifard, A. Kazemzadeh, Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal, New j. Chem. 44 (10) (2020) 4185-4198. https://doi.org/10.1039/C9NJ04379A.
Li, Wang, Zhang, Rykov, Ahmed, Wang (b0820) 2016; 181
Oh, Dong, Lim (b0175) 2017; 280
Yao, Yu, Wang, Zou, Lu, Ai, Alharbi, Alsaedi, Hayat, Wang (b0610) 2017; 307
Su, Acik, Takai, Lu, Hao, Zheng, Wu, Bao, Enoki, Chabal, Loh (b1215) 2012; 3
Zhao, An, Feng, Ren, Ma (b0280) 2019; 53
Yu, Zhang, Zeng, Wang, Sun, Chen, Song, Shi (b0545) 2019; 213
Nguyen, Nguyen, Chen, Hung, Huang, Dong (b1105) 2019; 292
L. Zhang, T. Tong, N. Wang, W. Ma, B. Sun, J. Chu, K. A. Lin, Y. Du, Facile synthesis of yolk-shell Mn3O4 microspheres as a high-performance peroxymonosulfate activator for bisphenol A degradation, Ind. Eng. Chem. Res. 58 (47) (2019) 21304-21311. https://doi.org/10.1021/acs.iecr.9b03814.
Duan, O'Donnell, Sun, Wang, Wang (b0985) 2015; 11
Yang, Qiu, Jin, Dzakpasu, Wang, Zhang, zhang, Yang, Ding, Wang, Wu (b0830) 2018; 353
K. J. Rudzinski, R. Szmigielski, Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context. Atmosphere, 10 (2019) 795. https://doi.org/10.3390/atmos10120795.
Ahn, Bae, Kim, Kim, Kim, Lee, Lee (b0795) 2019; 241
Royer, Duprez, Can, Courtois, Batiot-Dupeyrat, Laassiri, Alamdari (b0765) 2014; 114
Shukla, Sun, Wang, Ang, Tadé (b0485) 2011; 175
Chen, Zhu, Wang, Zhang, Qiu, Yin, Zhao (b0745) 2020; 385
Duan, Ao, Sun, Zhou, Wang, Wang (b0955) 2015; 51
Frank, Zhang, Blume, Schlögl, Su (b0200) 2009; 48
Wang, Wang (b1140) 2018; 334
Wang, Kang, Liang, Zhang, Sun, Tadé, Wang (b1025) 2017; 4
Li, Wu, Chen, Zhang, Xu, Wang, Wang, Sun (b0430) 2020; 256
Zeng, Deng, Zhang, Zhou, Shi (b0655) 2020; 400
Yang, Huang, Wu, Li, Dong, Li, Zhu, Duan, Dionysiou (b0140) 2020; 260
Wu, Zhao, Huang, Zhang (b0935) 2020; 381
Liang, Sun, Patel, Shukla, Zhu, Wang (b0505) 2012; 127
Ren, Zhou, Zhu, Jiang, Wei, Niu, Fu, Qiu (b0040) 2015; 104
X. Zhang, J. Zhang, X. Huang, Q. P. Wu, C. H. Yan, J. F. Lu, Efficient peroxymonosulfate activation by Zn/Fe metal–organic framework‐derived ZnO/Fe3O4@carbon spheres for the degradation of Acid Orange 7, Water. Environ. Res. 91 (2019) 634-641. https://doi.org/10.1002/wer.1090.
Qi, Ge, Zhang, Jiang, Wang, Akram, Xu (b1045) 2020; 399
Chen, Ding, Liu, Cai, Qu, Yang, Gao, Cai (b0015) 2018; 334
Wang, Shao, Gao, Chu, Chen, Lu, Zhu, An (b0055) 2017; 189
Zhu, Li, Kang, Duan, Wang (b0150) 2019; 53
Shao, Zhao, Wang, Mao, Wang, Qiao, Zhao, Zhu (b0110) 2017; 218
Chen, He, Liu, Li, Zeng, Xia, Yang (b0885) 2018; 249
Wang, Gong, Ali, Shen, Cai, Zhou, Liao, Wang, Chen (b1165) 2020; 390
Giannakis, Lin, Ghanbari (b0080) 2021; 406
Luo, Li, Wang, Zhang, Nasir Khan, Sun, Shen, Han, Wang, Li (b0155) 2019; 148
Gu, Sun, Liu, Dong, Yang (b0310) 2014; 4
Rao, Zhang, Han, Guo, Huang, Li, Qi, Ma (b1170) 2018; 352
Tang, Zhang, Guo (b0330) 2015; 454
Hammouda, Zhao, Safaei, Srivastava, Lakshmi Ramasamy, Iftekhar, kalliola, Sillanpää (b0675) 2017; 215
Fu, Zhang, Zhao, Zhang, Nie, Zhang, Lu (b0890) 2020; 230
Gao, Tian, Nie, Yang, Zhou, Wang (b0750) 2019; 359
Wang, Shen, Gong, Wang, Cai, Wang, Chen (b1070) 2020; 714
Guan, Jiang, Pang, Chen, Webster, Lim (b1240) 2020; 387
Fan, Zhao, Ding, Liu (b0320) 2018; 8
Wang, Ma, Ren, Du, Xu, Han (b0195) 2018; 6
Zhou, Zhang, Hu (b0415) 2020; 597
Xu, Jiang, Wang, Wang, Song, Chen, Ma, Zhang (b1035) 2020; 263
Li, Wan, Ma, Wang, Chen, Guan (b0800) 2016; 318
Gan, Hou, Liang, Qiu, Tao, Yang, Yu, Xiao, Liu, Hu, Wang, Yang (b1075) 2020; 725
Chen, Deng, Ye, Xu, Huai, Li, Li (b0435) 2020; 742
Duan, Sun, Wang (b0630) 2018; 51
Xu, Wang, Ma, Zhang, Lu, Chen (b1340) 2018; 238
Rodriguez-Chueca, Giannakis, Marjavonic, Kohantorabi, Gholami, Grandjean, de Alencastro, Pulgarin (b0035) 2019; 248
X. Dong, X. Duan, Z. Sun, X. Zhang, C. Li, S. Yang, B. Ren, S. Zheng, D. D. Dionysiou, Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis, Appl. Catal. B: Environ. 261 (2020) 118214. https://doi.org/j.apcatb.2019.118214.
Hou, Li, Yang, Chen, Wang, Ma, Wu, Zhu, Huang, Wang (b0585) 2019; 663
J. Deng, S. Feng, K. Zhang, J. Li, H. Wang, T. Zhang, X. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J. 308 (2017) 505-515. https://doi.org/10.1016/j.cej.2016.09.075.
Yang, Wang, Shi, Wu, Min, Xu, Guo (b1040) 2020; 384
Wilkinson, Helman, Ross (b1280) 1995; 24
Hu, Tong, Li, Xie, Chen, Wen, Feng, Wang, Li, Wang, Zhang (b1085) 2020; 388
Yao, Cai, Wu, Wei, Li, Chen, Wang (b0365) 2015; 296
Long, Huang, Wu, Shi, Xiao (b1275) 2019; 369
Lin, Wu, Yang, Chen, Li (b0720) 2019; 245
Fan, Qin, Jiang (b1130) 2019; 359
Wang, Ao, Sun, Duan, Wang (b1200) 2016; 198
Zaeni, Lim, Wang, Ding, Chua, Ng, Oh (b1055) 2020; 241
Zhao, An, Dong, Feng, Wei, Ren, Ma (b0270) 2020; 388
Shah, Khan, Sayed, Khan, Rizwan, Muhammad, Boczkaj, Murtaza, Imran, Khan, Zaman (b1305) 2018; 351
Liu, Guo, Zhang, Tang, Cheng, Li (b0425) 2018; 343
Yang, Wu, Liu, Chen, Ahmed, Zhu (b1135) 2018; 350
Khan, He, Shah, Khan, Hapeshi, Fatta-Kassinos, Dionysiou (b1315) 2014; 252
Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (b0965) 2019; 159
Lin, Chen, Lin (b0690) 2017; 160
Guan, Ma, Li, Fang, Chen (b0075) 2011; 45
Zhu, Xu, Zhu, Liu, Wang (b0065) 2020; 384
Huang, Wang, Yang, Guo, Yu (b0340) 2017; 51
Pang, Kong, Chen, Yuvaraja, Mehmood (b1270) 2020; 384
Chu, Tan, Shen, Liu, Han, Kang, Duan, Wang, Liu, Liu (b0685) 2018; 356
Li, Tian, Zhu, Cui, Zhu, Duan, Wang (b1175) 2018; 354
Deng, Feng, Ma, Tan, Wang, Zhou, Zhang, Li (b0335) 2016; 167
Nie, Huang, Hu, Ding, Han, Tang (b0420) 2017; 38
Yang, Choi, Al-Abed, Dionysiou (b1335) 2009; 88
X. Li, A. I. Rykov, B. Zhang, Y. Zhang, J. Wang, Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate, Catal. Sci. Technol. 6 (2016) 7486-7494. https://doi.org/10.1039/C6CY01479H.
Zhu, Zhu, Jiang, Zhang, Wang, Zhu, Zhang (b0225) 2017; 209
Guo, Wang, Yang, Fida, You, Zhou (b1185) 2020; 262
Zhu, Yang, Duan, Zhang, Wang, Yuan, Fu (b0915) 2020; 397
Lee, von Gunten, Kim (b1225) 2020; 54
Zou, Wang, Chen, Yao, Ai, Liu, Hayat, Alsaedi, Alharbi, Wang (b0605) 2016; 219
He, Zhang, Zhou, Yao, Lai (b0060) 2020; 380
Ma, Wang, Fan, Tong, Han, Du (b0190) 2018; 336
Zhang, Li, Lyu, Hu (b0470) 2020; 270
Yu, Zeng, Wang, Zhang, Sun, Chen, Song, Li, Shi (b0560) 2020; 394
Li, Wu, Peng, Fang, Liu (b0105) 2019; 356
Yuan, Hu, Yu, Wang, Wang, Fang (b0525) 2018; 198
T. Zhang, H. B. Zhu, J. P. Croue, Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism, Environ. Sci. Technol. 47 (2013) 2784-2791. https://doi.org/10.1021/es304721g.
Zhang, Ding, Tang (b0740) 2015; 264
Oh, Dong, Lim (b0050) 2016; 194
Chen, Zuo, Yang, Cai, Ding (b0095) 2019; 359
Hu, Zhang, Wang, Sun, Liu, Wang (b0515) 2017; 326
Y. Wang, H. Sun, H. M. Ang, M. O. Tade, S. Wang, Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate, ACS Appl. Mater. Interfaces. 22 (2014) 19914-19923. https://doi.org/10.1021/am505309b.
Guo, Nengzi, Chen, Li, Zhang, Cheng (b0650) 2020; 398
Qin, Fang, Wang, Zhou (b0370) 2018; 348
Fan, Zhou, Feng, Zhou, Wen, Shih (b0070) 2020; 383
Du, Ma, Liu, Zou, Ma (b0475) 2016; 308
Zhu, Wang, Shan, Zhang, Lv, Pan (b1180) 2019; 375
L. Peng, X. Gong, X. Wang, Z. Yang, Y. Liu, In situ growth of ZIF-67 on a nickel foam as a three-dimensional heterogeneous catalyst for peroxymonosulfate activation, RSC Adv. 8 (2018) 26377-26382. https://doi.org/10.1039/C8RA05024D.
Ding, Yang, Chen, Cai (b1230) 2020; 392
Pang, Guo, Zhang, Xu, Qi (b0695) 2016; 304
L. Luo, Y. Wang, M. Zhu, X. Cheng, X. hang, X. Meng, X. Huang, H. Hao, Co–Cu–Al Layered Double Oxides as Heterogeneous Catalyst for Enhanced Degradation of Organic Poll
Rodriguez-Chueca (10.1016/j.cej.2020.127957_b0035) 2019; 248
Liu (10.1016/j.cej.2020.127957_b0980) 2016; 187
Zhou (10.1016/j.cej.2020.127957_b0645) 2019; 30
Qin (10.1016/j.cej.2020.127957_b1155) 2020; 398
Du (10.1016/j.cej.2020.127957_b0975) 2020; 262
Gong (10.1016/j.cej.2020.127957_b0580) 2017; 321
Yao (10.1016/j.cej.2020.127957_b0025) 2017; 330
Gao (10.1016/j.cej.2020.127957_b0750) 2019; 359
Li (10.1016/j.cej.2020.127957_b1150) 2018; 57
Yu (10.1016/j.cej.2020.127957_b0560) 2020; 394
Huang (10.1016/j.cej.2020.127957_b0220) 2018; 560
Li (10.1016/j.cej.2020.127957_b0275) 2019; 233
Shah (10.1016/j.cej.2020.127957_b1305) 2018; 351
Wu (10.1016/j.cej.2020.127957_b0960) 2017; 24
Westerhoff (10.1016/j.cej.2020.127957_b1330) 2007; 41
Yuan (10.1016/j.cej.2020.127957_b0525) 2018; 198
Guo (10.1016/j.cej.2020.127957_b0650) 2020; 398
Wang (10.1016/j.cej.2020.127957_b1210) 2017; 115
Zeng (10.1016/j.cej.2020.127957_b0590) 2018; 515
Royer (10.1016/j.cej.2020.127957_b0765) 2014; 114
Jawad (10.1016/j.cej.2020.127957_b0445) 2020; 54
Yin (10.1016/j.cej.2020.127957_b0780) 2020; 390
Ziajka (10.1016/j.cej.2020.127957_b1245) 2007; 4
Yao (10.1016/j.cej.2020.127957_b0610) 2017; 307
Chen (10.1016/j.cej.2020.127957_b0635) 2019; 695
Zhang (10.1016/j.cej.2020.127957_b0740) 2015; 264
Chen (10.1016/j.cej.2020.127957_b0170) 2018; 345
Yang (10.1016/j.cej.2020.127957_b1335) 2009; 88
Zhang (10.1016/j.cej.2020.127957_b0185) 2020; 156
Neta (10.1016/j.cej.2020.127957_b0600) 1977; 99
Duan (10.1016/j.cej.2020.127957_b0985) 2015; 11
Liu (10.1016/j.cej.2020.127957_b0705) 2019; 545
Shukla (10.1016/j.cej.2020.127957_b0485) 2011; 175
Lin (10.1016/j.cej.2020.127957_b0770) 2018; 229
Wang (10.1016/j.cej.2020.127957_b1200) 2016; 198
Frank (10.1016/j.cej.2020.127957_b0200) 2009; 48
Ouyang (10.1016/j.cej.2020.127957_b1100) 2019; 370
Long (10.1016/j.cej.2020.127957_b1275) 2019; 369
Kappler (10.1016/j.cej.2020.127957_b1095) 2014; 1
Fu (10.1016/j.cej.2020.127957_b0890) 2020; 230
Shao (10.1016/j.cej.2020.127957_b0110) 2017; 218
Lee (10.1016/j.cej.2020.127957_b0945) 2016; 50
Guo (10.1016/j.cej.2020.127957_b1185) 2020; 262
10.1016/j.cej.2020.127957_b0550
Zhu (10.1016/j.cej.2020.127957_b0640) 2019; 9
Saputa (10.1016/j.cej.2020.127957_b0160) 2020; 16
Wang (10.1016/j.cej.2020.127957_b1025) 2017; 4
Liang (10.1016/j.cej.2020.127957_b0505) 2012; 127
Wang (10.1016/j.cej.2020.127957_b0710) 2019; 673
Chen (10.1016/j.cej.2020.127957_b0380) 2016; 6
Musa (10.1016/j.cej.2020.127957_b1285) 2009; 11
10.1016/j.cej.2020.127957_b0315
Wang (10.1016/j.cej.2020.127957_b0290) 2020; 387
Li (10.1016/j.cej.2020.127957_b0930) 2020; 262
Duan (10.1016/j.cej.2020.127957_b0955) 2015; 51
Mahdi Ahmed (10.1016/j.cej.2020.127957_b1290) 2012; 197
Lu (10.1016/j.cej.2020.127957_b0735) 2018; 353
Wang (10.1016/j.cej.2020.127957_b1010) 2019; 6
Hu (10.1016/j.cej.2020.127957_b0350) 2018; 212
Liu (10.1016/j.cej.2020.127957_b0495) 2015; 262
Yun (10.1016/j.cej.2020.127957_b1020) 2018; 52
Li (10.1016/j.cej.2020.127957_b0665) 2020; 398
Ma (10.1016/j.cej.2020.127957_b0190) 2018; 336
Chen (10.1016/j.cej.2020.127957_b0450) 2019; 213
Lin (10.1016/j.cej.2020.127957_b0725) 2017; 497
Guo (10.1016/j.cej.2020.127957_b0240) 2019; 218
Tian (10.1016/j.cej.2020.127957_b0045) 2017; 53
Lin (10.1016/j.cej.2020.127957_b0855) 2015; 53
Rao (10.1016/j.cej.2020.127957_b1170) 2018; 352
Guan (10.1016/j.cej.2020.127957_b0075) 2011; 45
Zaeni (10.1016/j.cej.2020.127957_b1055) 2020; 241
10.1016/j.cej.2020.127957_b0090
Li (10.1016/j.cej.2020.127957_b0510) 2017; 422
Liu (10.1016/j.cej.2020.127957_b0425) 2018; 343
Duan (10.1016/j.cej.2020.127957_b0670) 2018; 220
Duan (10.1016/j.cej.2020.127957_b1205) 2016; 107
Oh (10.1016/j.cej.2020.127957_b0175) 2017; 280
10.1016/j.cej.2020.127957_b0530
Wilkinson (10.1016/j.cej.2020.127957_b1280) 1995; 24
Wu (10.1016/j.cej.2020.127957_b0870) 2018; 514
Huang (10.1016/j.cej.2020.127957_b0340) 2017; 51
Ho (10.1016/j.cej.2020.127957_b0965) 2019; 159
Li (10.1016/j.cej.2020.127957_b0285) 2020; 385
Tan (10.1016/j.cej.2020.127957_b0085) 2019; 363
10.1016/j.cej.2020.127957_b0535
Yang (10.1016/j.cej.2020.127957_b1320) 2015; 49
Tan (10.1016/j.cej.2020.127957_b0260) 2014; 276
Abdul Nasir Khan (10.1016/j.cej.2020.127957_b0905) 2019; 363
Liu (10.1016/j.cej.2020.127957_b1260) 2010; 181
Ma (10.1016/j.cej.2020.127957_b0920) 2018; 137
Zhu (10.1016/j.cej.2020.127957_b0915) 2020; 397
Pang (10.1016/j.cej.2020.127957_b1270) 2020; 384
Gan (10.1016/j.cej.2020.127957_b1075) 2020; 725
Guan (10.1016/j.cej.2020.127957_b1240) 2020; 387
10.1016/j.cej.2020.127957_b0660
Mian (10.1016/j.cej.2020.127957_b1115) 2020; 392
Lee (10.1016/j.cej.2020.127957_b1225) 2020; 54
Duan (10.1016/j.cej.2020.127957_b0630) 2018; 51
Zhou (10.1016/j.cej.2020.127957_b0345) 2018; 197
Lin (10.1016/j.cej.2020.127957_b0720) 2019; 245
Jaafarzadeh (10.1016/j.cej.2020.127957_b0390) 2017; 320
Cong (10.1016/j.cej.2020.127957_b0860) 2017; 256
Deng (10.1016/j.cej.2020.127957_b0520) 2019; 658
Liu (10.1016/j.cej.2020.127957_b1030) 2019; 356
Ren (10.1016/j.cej.2020.127957_b0040) 2015; 104
Li (10.1016/j.cej.2020.127957_b0820) 2016; 181
Yang (10.1016/j.cej.2020.127957_b0140) 2020; 260
Zhan (10.1016/j.cej.2020.127957_b0760) 2020; 54
10.1016/j.cej.2020.127957_b1160
Pang (10.1016/j.cej.2020.127957_b0695) 2016; 304
Li (10.1016/j.cej.2020.127957_b1175) 2018; 354
Stoyanova (10.1016/j.cej.2020.127957_b0460) 2014; 476
Lu (10.1016/j.cej.2020.127957_b0595) 2019; 357
Mian (10.1016/j.cej.2020.127957_b1125) 2019; 255
Deng (10.1016/j.cej.2020.127957_b0440) 2017; 330
Gao (10.1016/j.cej.2020.127957_b0210) 2020; 54
Jiang (10.1016/j.cej.2020.127957_b1190) 2020; 384
Du (10.1016/j.cej.2020.127957_b0475) 2016; 308
Chen (10.1016/j.cej.2020.127957_b0745) 2020; 385
Lashkaryani (10.1016/j.cej.2020.127957_b0100) 2019
Li (10.1016/j.cej.2020.127957_b0815) 2018; 337
Wu (10.1016/j.cej.2020.127957_b0230) 2019; 480
Li (10.1016/j.cej.2020.127957_b0455) 2015; 279
Bao (10.1016/j.cej.2020.127957_b0880) 2018; 353
Oh (10.1016/j.cej.2020.127957_b1050) 2019; 374
Zhou (10.1016/j.cej.2020.127957_b1195) 2019; 374
Duan (10.1016/j.cej.2020.127957_b0180) 2016; 188
Gao (10.1016/j.cej.2020.127957_b0995) 2018; 52
Li (10.1016/j.cej.2020.127957_b0205) 2020; 240
Guan (10.1016/j.cej.2020.127957_b0355) 2013; 47
Ahn (10.1016/j.cej.2020.127957_b0795) 2019; 241
Ye (10.1016/j.cej.2020.127957_b0215) 2020; 269
Huang (10.1016/j.cej.2020.127957_b0010) 2018; 360
Deng (10.1016/j.cej.2020.127957_b0325) 2017; 330
Feng (10.1016/j.cej.2020.127957_b0005) 2015; 280
Chen (10.1016/j.cej.2020.127957_b0885) 2018; 249
Khan (10.1016/j.cej.2020.127957_b0120) 2017; 329
Li (10.1016/j.cej.2020.127957_b0800) 2016; 318
Yuan (10.1016/j.cej.2020.127957_b1300) 2018; 313
Shahzad (10.1016/j.cej.2020.127957_b0625) 2020; 392
Kohantorabi (10.1016/j.cej.2020.127957_b0940) 2017; 31
Tang (10.1016/j.cej.2020.127957_b0330) 2015; 454
Hu (10.1016/j.cej.2020.127957_b0515) 2017; 326
Liu (10.1016/j.cej.2020.127957_b0115) 2020; 399
Wang (10.1016/j.cej.2020.127957_b1165) 2020; 390
Wang (10.1016/j.cej.2020.127957_b1015) 2019; 375
Wang (10.1016/j.cej.2020.127957_b1070) 2020; 714
Peller (10.1016/j.cej.2020.127957_b1295) 2009; 35
Xiao (10.1016/j.cej.2020.127957_b1220) 2015; 49
Chen (10.1016/j.cej.2020.127957_b0400) 2020; 711
Su (10.1016/j.cej.2020.127957_b0700) 2017; 7
Ding (10.1016/j.cej.2020.127957_b1230) 2020; 392
Zhu (10.1016/j.cej.2020.127957_b1180) 2019; 375
Zhang (10.1016/j.cej.2020.127957_b0465) 2019; 372
Liu (10.1016/j.cej.2020.127957_b0925) 2021; 581
Wang (10.1016/j.cej.2020.127957_b1140) 2018; 334
Su (10.1016/j.cej.2020.127957_b1215) 2012; 3
Yang (10.1016/j.cej.2020.127957_b1040) 2020; 384
10.1016/j.cej.2020.127957_b0865
Wu (10.1016/j.cej.2020.127957_b0935) 2020; 381
Liu (10.1016/j.cej.2020.127957_b0950) 2017; 184
Zhang (10.1016/j.cej.2020.127957_b1000) 2008; 74
Wang (10.1016/j.cej.2020.127957_b0195) 2018; 6
Fan (10.1016/j.cej.2020.127957_b1130) 2019; 359
Li (10.1016/j.cej.2020.127957_b0410) 2020; 88
Zhang (10.1016/j.cej.2020.127957_b0470) 2020; 270
Wang (10.1016/j.cej.2020.127957_b0055) 2017; 189
Du (10.1016/j.cej.2020.127957_b0395) 2019; 376
Ahn (10.1016/j.cej.2020.127957_b0790) 2016; 50
Ma (10.1016/j.cej.2020.127957_b1145) 2015; 280
Zheng (10.1016/j.cej.2020.127957_b0540) 2019; 259
Luo (10.1016/j.cej.2020.127957_b0155) 2019; 148
Xu (10.1016/j.cej.2020.127957_b1340) 2018; 238
Hong (10.1016/j.cej.2020.127957_b0620) 2020; 391
10.1016/j.cej.2020.127957_b0835
Wang (10.1016/j.cej.2020.127957_b0900) 2015; 49
Yang (10.1016/j.cej.2020.127957_b0830) 2018; 353
Wu (10.1016/j.cej.2020.127957_b0730) 2019; 237
Oh (10.1016/j.cej.2020.127957_b0050) 2016; 194
Fu (10.1016/j.cej.2020.127957_b0385) 2019; 360
Han (10.1016/j.cej.2020.127957_b0125) 2020; 232
Mandal (10.1016/j.cej.2020.127957_b1250) 2018; 21
Zhu (10.1016/j.cej.2020.127957_b0225) 2017; 209
Chu (10.1016/j.cej.2020.127957_b0685) 2018; 356
10.1016/j.cej.2020.127957_b1255
Chen (10.1016/j.cej.2020.127957_b0015) 2018; 334
Wang (10.1016/j.cej.2020.127957_b0555) 2017; 328
Cheng (10.1016/j.cej.2020.127957_b0755) 2020; 384
Hong (10.1016/j.cej.2020.127957_b0615) 2019; 370
Ding (10.1016/j.cej.2020.127957_b0030) 2016; 317
Martinez (10.1016/j.cej.2020.127957_b1310) 1998; 67
Deng (10.1016/j.cej.2020.127957_b0335) 2016; 167
Wang (10.1016/j.cej.2020.127957_b1080) 2020; 385
Saputra (10.1016/j.cej.2020.127957_b0480) 2014; 154-155
Sun (10.1016/j.cej.2020.127957_b0990) 2013; 49
Fang (10.1016/j.cej.2020.127957_b1090) 2015; 49
Wang (10.1016/j.cej.2020.127957_b0305) 2015; 164
Zhou (10.1016/j.cej.2020.127957_b0415) 2020; 597
Li (10.1016/j.cej.2020.127957_b0430) 2020; 256
Zhu (10.1016/j.cej.2020.127957_b0150) 2019; 53
Yu (10.1016/j.cej.2020.127957_b0545) 2019; 213
10.1016/j.cej.2020.127957_b0490
Tokudome (10.1016/j.cej.2020.127957_b0565) 2016; 10
Fan (10.1016/j.cej.2020.127957_b0320) 2018; 8
10.1016/j.cej.2020.127957_b0375
10.1016/j.cej.2020.127957_b0135
10.1016/j.cej.2020.127957_b0255
10.1016/j.cej.2020.127957_b0250
Li (10.1016/j.cej.2020.127957_b0805) 2019; 9
He (10.1016/j.cej.2020.127957_b0060) 2020; 380
Yao (10.1016/j.cej.2020.127957_b0365) 2015; 296
10.1016/j.cej.2020.127957_b0130
Hu (10.1016/j.cej.2020.127957_b0895) 2017; 38
Tian (10.1016/j.cej.2020.127957_b1120) 2020; 250
Xu (10.1016/j.cej.2020.127957_b0360) 2019; 217
Zhao (10.1016/j.cej.2020.127957_b0270)
References_xml – volume: 53
  start-page: 6589
  year: 2017
  end-page: 6592
  ident: b0045
  article-title: A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water
  publication-title: Chem. Commun.
– reference: J. Lim, J. M. Lee, C. Kim, S. J. Hwang, J. Lee, W. Choi, Two-dimensional RuO2 nanosheets as robust catalysts for peroxymonosulfate activation, Environ. Sci: Nano. 6 (2019) 2084-2093. https://doi.org/10.1039/C9EN00500E.
– volume: 515
  start-page: 92
  year: 2018
  end-page: 100
  ident: b0590
  article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling
  publication-title: J. Colloid Interface Sci.
– volume: 403
  start-page: 126445
  year: 2021
  ident: b1265
  article-title: A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants
  publication-title: Chem. Eng. J.
– volume: 104
  start-page: 384
  year: 2015
  end-page: 390
  ident: b0040
  article-title: Effect of sulfate radical oxidation on disintegration of waste activated sludge
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 752
  start-page: 142282
  year: 2021
  ident: b0970
  article-title: Preparation of nitrogen self-doped hierarchical porous carbon with rapid-freezing support for cooperative pollutant adsorption and catalytic oxidation of persulfate
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 388
  year: 2017
  end-page: 397
  ident: b0700
  article-title: Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study
  publication-title: ACS Catal.
– volume: 41
  start-page: 4640
  year: 2007
  end-page: 4646
  ident: b1330
  article-title: Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Other Dissolved Organic Matter Isolates
  publication-title: Environ. Sci. Technol.
– volume: 695
  start-page: 133963
  year: 2019
  ident: b0635
  article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide
  publication-title: Sci. Total Environ.
– volume: 218
  start-page: 299
  year: 2019
  end-page: 307
  ident: b0680
  article-title: Efficient degradation of diclofenac by LaFeO
  publication-title: Chemosphere
– volume: 10
  start-page: 5550
  year: 2016
  end-page: 5559
  ident: b0565
  article-title: Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry
  publication-title: ACS Nano
– volume: 392
  start-page: 122316
  year: 2020
  ident: b0625
  article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides
  publication-title: J. Hazard. Mater.
– volume: 231
  start-page: 434
  year: 2013
  end-page: 440
  ident: b0300
  article-title: Efficient performance of porous F
  publication-title: Chem. Eng. J.
– volume: 385
  start-page: 123935
  year: 2020
  ident: b0745
  article-title: 3D hollow sphere-like Cu-incorporated LaAlO
  publication-title: Chem. Eng. J.
– volume: 280
  start-page: 514
  year: 2015
  end-page: 524
  ident: b0005
  article-title: Efficient degradation of sulfamethazine with CuCo
  publication-title: Chem. Eng. J.
– volume: 260
  start-page: 118129
  year: 2020
  ident: b0140
  article-title: Rapid removal of tetrabromobisphenol A by α-Fe
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 6913
  year: 2009
  end-page: 6917
  ident: b0200
  article-title: Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons
  publication-title: Angew. Chem. Int. Ed.
– volume: 217
  start-page: 800
  year: 2019
  end-page: 807
  ident: b0360
  article-title: A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe
  publication-title: Chemosphere
– volume: 237
  start-page: 124478
  year: 2019
  ident: b0730
  article-title: Enhanced activation of peroxymonosulfte by LaFeO
  publication-title: Chemosphere
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: b1090
  article-title: Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 355
  year: 2007
  ident: b1245
  article-title: Autoxidation of S
  publication-title: Environ. Chem.
– volume: 148
  start-page: 416
  year: 2019
  end-page: 424
  ident: b0155
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res.
– volume: 383
  year: 2020
  ident: b0070
  article-title: Degradation mechanisms of ofloxacin and cefazolin uing peroxymonosulfate activated by reduced graphene oxide-CoFe
  publication-title: Chem. Eng. J.
– volume: 388
  start-page: 121801
  year: 2020
  ident: b1085
  article-title: Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate
  publication-title: J. Hazard. Mater.
– volume: 390
  start-page: 124512
  year: 2020
  ident: b1165
  article-title: pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process
  publication-title: Chem. Eng. J.
– reference: J. Pu, J. Wan, Y. Wang, Y. Ma, Different Co-based MOFs templated synthesis of Co3O4 nanoparticles to degrade RhB by activation of oxone, RSC Adv. 6 (2016) 91791-91797. https://doi.org/10.1039/C6RA15590A.
– volume: 51
  start-page: 678
  year: 2018
  end-page: 687
  ident: b0630
  article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions
  publication-title: Acc. Chem. Res.
– volume: 215
  start-page: 60
  year: 2017
  end-page: 73
  ident: b0675
  article-title: Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO 3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study
  publication-title: Appl. Catal. B
– volume: 714
  start-page: 136728
  year: 2020
  ident: b1070
  article-title: One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation
  publication-title: Sci. Total Environ.
– volume: 53
  start-page: 40
  year: 2015
  end-page: 45
  ident: b0855
  article-title: Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 4
  start-page: 170
  year: 2017
  end-page: 179
  ident: b1025
  article-title: Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst
  publication-title: Environ. Sci.: Nano
– volume: 54
  start-page: 8333
  year: 2020
  end-page: 8343
  ident: b0760
  article-title: Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides
  publication-title: Environ. Sci. Technol.
– volume: 348
  start-page: 526
  year: 2018
  end-page: 534
  ident: b0370
  article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe
  publication-title: Chem. Eng. J.
– volume: 304
  start-page: 897
  year: 2016
  end-page: 907
  ident: b0695
  article-title: LaCoO
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 122
  year: 2018
  end-page: 138
  ident: b1150
  article-title: Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 17672
  year: 2014
  end-page: 17683
  ident: b0310
  article-title: Solvent effect on the solvothermall synthesis of mesoporous NiO catalysts for activation of peroxymonosulfate to degrade organic dyes
  publication-title: ACS Omega
– volume: 725
  start-page: 138299
  year: 2020
  ident: b1075
  article-title: Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol
  publication-title: Sci. Total Environ.
– volume: 197
  start-page: 440
  year: 2012
  end-page: 447
  ident: b1290
  article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination
  publication-title: Chem. Eng. J.
– volume: 248
  start-page: 62
  year: 2019
  end-page: 72
  ident: b0035
  article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe
  publication-title: Appl. Catal. B: Environ.
– volume: 380
  start-page: 122568
  year: 2020
  ident: b0060
  article-title: Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeO
  publication-title: Chem. Eng. J.
– volume: 406
  start-page: 127083
  year: 2021
  ident: b0080
  article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)
  publication-title: Chem. Eng. J.
– volume: 391
  start-page: 123604
  year: 2020
  ident: b0620
  article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 462
  year: 2009
  end-page: 469
  ident: b1335
  article-title: Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications
  publication-title: Appl. Catal. B
– volume: 369
  start-page: 542
  year: 2019
  end-page: 552
  ident: b1275
  article-title: Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight
  publication-title: Chem. Eng. J.
– volume: 175
  start-page: 380
  year: 2011
  end-page: 385
  ident: b0485
  article-title: Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment
  publication-title: Catal. Today
– reference: X. Zhang, J. Zhang, X. Huang, Q. P. Wu, C. H. Yan, J. F. Lu, Efficient peroxymonosulfate activation by Zn/Fe metal–organic framework‐derived ZnO/Fe3O4@carbon spheres for the degradation of Acid Orange 7, Water. Environ. Res. 91 (2019) 634-641. https://doi.org/10.1002/wer.1090.
– volume: 154-155
  start-page: 246
  year: 2014
  end-page: 251
  ident: b0480
  article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn
  publication-title: Appl. Catal. B
– volume: 256
  start-page: 10
  year: 2017
  end-page: 13
  ident: b0860
  article-title: Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation
  publication-title: J. Solid State Chem.
– volume: 52
  start-page: 14371
  year: 2018
  end-page: 14380
  ident: b0995
  article-title: Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation
  publication-title: Environ. Sci. Technol.
– volume: 229
  year: 2018
  ident: b0770
  article-title: Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite
  publication-title: Water Air Soil Pollut
– volume: 370
  start-page: 614
  year: 2019
  end-page: 624
  ident: b1100
  article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures
  publication-title: Chem. Eng. J.
– volume: 514
  start-page: 262
  year: 2018
  end-page: 271
  ident: b0870
  article-title: ZIF-67 supported on marcoscale resin as an efficient and convenient heterogeneous catalyst for Oxone activation
  publication-title: J. Colloid Interface Sci.
– volume: 49
  start-page: 13394
  year: 2015
  end-page: 13402
  ident: b1220
  article-title: Quantitative Structure–Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical
  publication-title: Environ. Sci. Technol.
– reference: Y. Wang, H. Sun, H. M. Ang, M. O. Tade, S. Wang, Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate, ACS Appl. Mater. Interfaces. 22 (2014) 19914-19923. https://doi.org/10.1021/am505309b.
– reference: H. Li, C. Shan, B. Pan, Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent Iron-Oxo species, Environ. Sci. Technol. 52 (4) (2018) 2197-2205. https://doi.org/10.1021/acs.est.7b05563.
– volume: 354
  start-page: 507
  year: 2018
  end-page: 516
  ident: b1175
  article-title: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application
  publication-title: Chem. Eng. J.
– volume: 218
  start-page: 1071
  year: 2019
  end-page: 1081
  ident: b0240
  article-title: Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals
  publication-title: Chemosphere
– volume: 54
  start-page: 1232
  year: 2020
  end-page: 1241
  ident: b0210
  article-title: New insight into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 9410
  year: 2019
  end-page: 9420
  ident: b0805
  article-title: Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue
  publication-title: RSC Adv.
– volume: 597
  start-page: 124568
  year: 2020
  ident: b0415
  article-title: Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo
  publication-title: Colloids Surf., A
– volume: 218
  start-page: 810
  year: 2017
  end-page: 818
  ident: b0110
  article-title: Synergetic Activation of Peroxymonosulfate by Co
  publication-title: Appl. Catal. B: Environ.
– volume: 24
  start-page: 16560
  year: 2017
  end-page: 16577
  ident: b0960
  article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review
  publication-title: Environ Sci Pollut Res
– volume: 213
  start-page: 264
  year: 2019
  end-page: 275
  ident: b0545
  article-title: Stable incorporation of MnO
  publication-title: Sep. Purif. Technol.
– volume: 9
  start-page: 2284
  year: 2019
  end-page: 2291
  ident: b0640
  article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide
  publication-title: RSC Adv.
– volume: 371
  start-page: 404
  year: 2019
  end-page: 413
  ident: b0020
  article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen
  publication-title: Chem. Eng. J.
– reference: J. Lim, Y. Yang, M. R. Hoffmann, Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants, Environ. Sci. Technol. 53 (12) (2019) 6972-6980. https://doi.org/10.1021/acs.est.9b01449.
– volume: 384
  start-page: 123298
  year: 2020
  ident: b0065
  article-title: Activation of peroxymonosulfate by magnetic Co-Fe/SiO
  publication-title: Chem. Eng. J.
– volume: 359
  start-page: 373
  year: 2019
  end-page: 384
  ident: b0095
  article-title: Rational design and synthesis of hollow Co
  publication-title: Chem. Eng. J.
– volume: 204
  start-page: 11
  year: 2018
  end-page: 21
  ident: b0575
  article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate
  publication-title: Chemosphere
– reference: K. J. Rudzinski, R. Szmigielski, Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context. Atmosphere, 10 (2019) 795. https://doi.org/10.3390/atmos10120795.
– volume: 249
  start-page: 890
  year: 2018
  end-page: 899
  ident: b0885
  article-title: Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors
  publication-title: Bioresour. Technol.
– volume: 740
  start-page: 140388
  year: 2020
  ident: b1065
  article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction
  publication-title: Sci. Total Environ.
– volume: 127
  start-page: 330
  year: 2012
  end-page: 335
  ident: b0505
  article-title: Excellent performance of mesoporous Co
  publication-title: Appl. Catal. B
– volume: 115
  start-page: 649
  year: 2017
  end-page: 658
  ident: b0845
  article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation
  publication-title: Carbon
– volume: 399
  start-page: 125722
  year: 2020
  ident: b0115
  article-title: Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 12611
  year: 2017
  end-page: 12618
  ident: b0340
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn
  publication-title: Environ. Sci. Technol.
– volume: 241
  start-page: 561
  year: 2019
  end-page: 569
  ident: b0795
  article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance
  publication-title: Appl. Catal. B
– volume: 337
  start-page: 101
  year: 2018
  end-page: 109
  ident: b0815
  article-title: Metal organic framework-derived CoMn
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 227
  year: 2017
  end-page: 239
  ident: b0420
  article-title: Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu 0 /Fe 3 O 4 submicron composites
  publication-title: Chin. J. Catal.
– reference: J. Lu, Z. Xiong, Z. Xu, Y. Cai, Q. Wang, Activation of peroxymonosulfate with magnetic and recyclable Fe3O4@C/MnCo2O4 nanocomposites for the decolorization of Acid Orange II, Chem. Technol. Biotechnol. 92 (7) (2017) 1601-1612. https://doi.org/10.1002/jctb.5153.
– volume: 385
  start-page: 121518
  year: 2020
  ident: b0285
  article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity
  publication-title: J. Hazard. Mater.
– volume: 356
  start-page: 904
  year: 2019
  end-page: 914
  ident: b0105
  article-title: Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe
  publication-title: Chem. Eng. J.
– volume: 317
  start-page: 686
  year: 2016
  end-page: 694
  ident: b0030
  article-title: Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO
  publication-title: J. Hazard. Mater.
– volume: 198
  start-page: 204
  year: 2018
  end-page: 215
  ident: b0525
  article-title: Nanostructured Co
  publication-title: Chemosphere
– reference: T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation, Catal. Sci. Technol. 7 (2) (2017) 396-404. https://doi.org/10.1039/C6CY02130A.
– reference: L. Peng, X. Gong, X. Wang, Z. Yang, Y. Liu, In situ growth of ZIF-67 on a nickel foam as a three-dimensional heterogeneous catalyst for peroxymonosulfate activation, RSC Adv. 8 (2018) 26377-26382. https://doi.org/10.1039/C8RA05024D.
– volume: 318
  start-page: 154
  year: 2016
  end-page: 163
  ident: b0800
  article-title: Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability
  publication-title: J. Hazard. Mater.
– volume: 384
  start-page: 123246
  year: 2020
  ident: b1040
  article-title: Recycling of nitrogen-containing waste diapers for catalytic contaminant oxidation: Occurrence of radical and non-radical pathways
  publication-title: Chem. Eng. J.
– volume: 188
  start-page: 98
  year: 2016
  end-page: 105
  ident: b0180
  article-title: Occurrence of radical and nonradical pathways from aqueous and nonaqueous catalytic oxidation
  publication-title: Appl. Catal. B: Environ.
– volume: 245
  start-page: 71
  year: 2019
  end-page: 86
  ident: b0720
  article-title: Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI
  publication-title: Appl. Catal. B
– volume: 742
  start-page: 140587
  year: 2020
  ident: b0435
  article-title: Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe
  publication-title: Sci. Total Environ.
– volume: 394
  start-page: 124458
  year: 2020
  ident: b0560
  article-title: Oxygen-defective MnO
  publication-title: Chem. Eng. J.
– reference: A. Khan, S. Zou, T. Wang, J. Ifthikar, A. Jawad, Z. Liao, A. Shahzad, A. Ngambia, Z. Chen, Facile synthesis of yolk shell Mn2O3@Mn5O8 as an effective catalyst for peroxymonosulfate activation, Phys. Chem. Chem. Phys. 20 (2018) 13909-13919. https://doi.org/10.1039/C8CP02080A.
– volume: 52
  start-page: 7032
  year: 2018
  end-page: 7042
  ident: b1020
  article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 315
  year: 2017
  end-page: 324
  ident: b0850
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci.: Nano
– volume: 375
  start-page: 122041
  year: 2019
  ident: b1015
  article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
– volume: 240
  year: 2020
  ident: b0205
  article-title: Enhanced peroxymonosulfate activation by supported microporous carbón for degradation of tetracycline via non-radical mechanism
  publication-title: Sep. Purif. Technol.
– reference: L. Zhang, T. Tong, N. Wang, W. Ma, B. Sun, J. Chu, K. A. Lin, Y. Du, Facile synthesis of yolk-shell Mn3O4 microspheres as a high-performance peroxymonosulfate activator for bisphenol A degradation, Ind. Eng. Chem. Res. 58 (47) (2019) 21304-21311. https://doi.org/10.1021/acs.iecr.9b03814.
– volume: 266
  start-page: 118601
  year: 2020
  ident: b0405
  article-title: Catalytic activation of peroxymonosulfate using CeVO
  publication-title: Appl. Catal. B
– volume: 54
  start-page: 3064
  year: 2020
  end-page: 3081
  ident: b1225
  article-title: Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 9308
  year: 2011
  end-page: 9314
  ident: b0075
  article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System
  publication-title: Environ. Sci. Technol.
– volume: 321
  start-page: 222
  year: 2017
  end-page: 232
  ident: b0580
  article-title: Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B
  publication-title: Chem. Eng. J.
– volume: 187
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0980
  article-title: Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals
  publication-title: Appl. Catal. B
– volume: 31
  year: 2017
  ident: b0940
  article-title: AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4‐nitrophenol: Studies of kinetics and mechanism
  publication-title: Appl Organometal Chem
– reference: X. Li, A. I. Rykov, B. Zhang, Y. Zhang, J. Wang, Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate, Catal. Sci. Technol. 6 (2016) 7486-7494. https://doi.org/10.1039/C6CY01479H.
– volume: 255
  year: 2019
  ident: b0840
  article-title: Coupling metal–organic frameworks and g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 392
  start-page: 123683
  year: 2020
  ident: b1005
  article-title: High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation
  publication-title: Chem. Eng. J.
– volume: 189
  start-page: 176
  year: 2017
  end-page: 185
  ident: b0055
  article-title: Activation of peroxymonosulfate by Al
  publication-title: Sep. Purif. Technol.
– volume: 328
  start-page: 1112
  year: 2017
  end-page: 1121
  ident: b0555
  article-title: Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoO
  publication-title: Chem. Eng. J.
– volume: 308
  start-page: 58
  year: 2016
  end-page: 66
  ident: b0475
  article-title: Magnetic CoFe
  publication-title: J. Hazard. Mater.
– volume: 320
  start-page: 436
  year: 2017
  end-page: 447
  ident: b0390
  article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 3655
  year: 2017
  end-page: 3666
  ident: b0570
  article-title: A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process
  publication-title: J. Mater. Chem. A
– volume: 213
  start-page: 456
  year: 2019
  end-page: 464
  ident: b0450
  article-title: Novel magnetic MnO
  publication-title: Sep. Purif. Technol.
– volume: 276
  start-page: 452
  year: 2014
  end-page: 460
  ident: b0260
  article-title: Radical induced degradation of acetaminophen with Fe
  publication-title: J. Hazard. Mater.
– reference: T. Zhang, H. B. Zhu, J. P. Croue, Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism, Environ. Sci. Technol. 47 (2013) 2784-2791. https://doi.org/10.1021/es304721g.
– volume: 330
  start-page: 505
  year: 2017
  end-page: 517
  ident: b0440
  article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation
  publication-title: Chem. Eng. J.
– volume: 343
  start-page: 128
  year: 2018
  end-page: 137
  ident: b0425
  article-title: Heterogeneous activation of peroxymonosulfate by sillenite Bi
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 11536
  year: 2017
  end-page: 11548
  ident: b0500
  article-title: Magnetic EDTA functionalized CoFe
  publication-title: Environ Sci Pollut Res
– volume: 476
  start-page: 121
  year: 2014
  end-page: 132
  ident: b0460
  article-title: Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate
  publication-title: Appl. Catal. A
– volume: 454
  start-page: 44
  year: 2015
  end-page: 51
  ident: b0330
  article-title: Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition
  publication-title: J. Colloid Interface Sci.
– volume: 353
  start-page: 401
  year: 2018
  end-page: 409
  ident: b0735
  article-title: Heterogeneous activation of peroxymonosulfate by LaCo
  publication-title: J. Hazard. Mater.
– volume: 400
  start-page: 123297
  year: 2020
  ident: b0655
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
– reference: N. T. Nham, T. M. Al Tahtamouni, T. D. Nguyen, P. T. Huong, K. Jitae, N. M. Viet, N. V. Noi, N. T. M. Phuong, N. T. H. Anh, Synthesis of iron modified rice straw biochar toward arsenic from groundwater, Mater. Res. Express. 6 (2019) 115528. https://doi.org/10.1088/2053-1591/ab4b98.
– volume: 21
  start-page: 178
  year: 2018
  end-page: 195
  ident: b1250
  article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes
  publication-title: J. Adv. Oxidation. Technol
– volume: 256
  start-page: 127160
  year: 2020
  ident: b0430
  article-title: Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions
  publication-title: Chemosphere
– volume: 6
  start-page: 884
  year: 2018
  end-page: 895
  ident: b0195
  article-title: Prussian blue analogues derived porous nitrogen-doped carbón microspheres as high-performance metal-free peroxymonosulfate activation for non-radical-dominated degradation of organic pollutants
  publication-title: J. Mater. Chem. A.
– volume: 353
  start-page: 69
  year: 2018
  end-page: 79
  ident: b0880
  article-title: Surface-nucleated heterogeneous growth of zeolitic imidazolate framework – A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation
  publication-title: Chem. Eng. J.
– volume: 658
  start-page: 343
  year: 2019
  end-page: 356
  ident: b0520
  article-title: Iron-doped ordered mesoporous Co
  publication-title: Sci. Total Environ.
– volume: 398
  start-page: 122884
  year: 2020
  ident: b0665
  article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways
  publication-title: J. Hazard. Mater.
– volume: 398
  start-page: 122808
  year: 2020
  ident: b1155
  article-title: Rational design of efficient metal-free catalysts for peroxymonosulfate activation: Selective degradation of organic contaminants via a dual nonradical reaction pathway
  publication-title: J. Hazard. Mater.
– volume: 252
  start-page: 393
  year: 2014
  end-page: 403
  ident: b1315
  article-title: Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H
  publication-title: Chem. Eng. J.
– volume: 330
  start-page: 1390
  year: 2017
  end-page: 1400
  ident: b0325
  article-title: Degradation of ciprofloxacin using α-MnO
  publication-title: Chem. Eng. J.
– volume: 259
  start-page: 118056
  year: 2019
  ident: b0540
  article-title: Efficient degradation of atrazine with porous sulfurized Fe
  publication-title: Appl. Catal. B
– volume: 67
  start-page: 399
  year: 1998
  end-page: 403
  ident: b1310
  article-title: Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity
  publication-title: Photochem Photobiol
– volume: 3
  start-page: 1298
  year: 2012
  ident: b1215
  article-title: Probing the catalytic activity of porous graphene oxide and the origin of this behavior
  publication-title: Nat. Commun.
– volume: 80
  start-page: 116
  year: 2008
  end-page: 121
  ident: b0295
  article-title: Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound
  publication-title: Appl. Catal. B
– volume: 370
  start-page: 354
  year: 2019
  end-page: 363
  ident: b0615
  article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: Optimization, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
– volume: 398
  start-page: 125676
  year: 2020
  ident: b0650
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
– reference: Y. Fan, W. Ma, J. He, Y. Du, CoMoO4 as a novel heterogeneous catalyst of peroxymonosulfate activation for the degradation of organic dyes, RSC Adv. 7 (2017) 36193-36200. https://doi.org/10.1039/C7RA04761D.
– volume: 374
  start-page: 947
  year: 2019
  end-page: 957
  ident: b1050
  article-title: Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 5431
  year: 2013
  end-page: 5438
  ident: b0355
  article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals
  publication-title: Water Res.
– volume: 353
  start-page: 329
  year: 2018
  end-page: 339
  ident: b0830
  article-title: MOF-templated synthesis of CoFe
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 9914
  year: 2013
  ident: b0990
  article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation
  publication-title: Chem. Commun.
– volume: 54
  start-page: 2476
  year: 2020
  end-page: 2488
  ident: b0445
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environ. Sci. Technol.
– volume: 374
  start-page: 170
  year: 2019
  end-page: 180
  ident: b1195
  article-title: Degradation of organic pollutants by peroxymonosulfate activated by MnO
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 6855
  year: 2015
  end-page: 6864
  ident: b0900
  article-title: Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis
  publication-title: Environ. Sci. Technol.
– volume: 376
  start-page: 119193
  year: 2019
  ident: b0395
  article-title: Facile preparation of porous Mn/Fe
  publication-title: Chem. Eng. J.
– volume: 269
  start-page: 118850
  year: 2020
  ident: b0215
  article-title: Nitrogen-doped biochar fiber with graphitization from
  publication-title: Appl. Catal. B
– volume: 392
  start-page: 123681
  year: 2020
  ident: b1115
  article-title: Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism
  publication-title: Chem. Eng. J.
– volume: 384
  start-page: 123302
  year: 2020
  ident: b1190
  article-title: Enhanced activation of peroxymonosulfate with metal-substituted hollow M
  publication-title: Chem. Eng. J.
– volume: 164
  start-page: 159
  year: 2015
  end-page: 167
  ident: b0305
  article-title: 3D-hierarchically structured MnO
  publication-title: Appl. Catal. B
– volume: 334
  start-page: 273
  year: 2018
  end-page: 284
  ident: b0015
  article-title: Degradation of norfloxacin by CoFe
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 15249
  year: 2015
  end-page: 15252
  ident: b0955
  article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study
  publication-title: Chem. Commun.
– volume: 363
  start-page: 234
  year: 2019
  end-page: 246
  ident: b0905
  article-title: Metal-organic framework-derived hollow Co
  publication-title: Chem. Eng. J.
– volume: 262
  start-page: 110299
  year: 2020
  ident: b0930
  article-title: Yolk-shell ZIFs@SiO
  publication-title: J. Environ. Manage.
– volume: 560
  start-page: 195
  year: 2018
  end-page: 205
  ident: b0220
  article-title: Superior performance of α@β-MnO
  publication-title: Appl. Catal. A.
– volume: 331
  start-page: 144
  year: 2018
  end-page: 151
  ident: b0235
  article-title: Controlled synthesis of dandelion-like NiCo
  publication-title: Chem. Eng. J.
– volume: 184
  start-page: 213
  year: 2017
  end-page: 219
  ident: b0950
  article-title: Nitrogen-doped carbon material as a catalyst for the degradation of direct red23 based on persulfate oxidation
  publication-title: Sep. Purif. Technol.
– volume: 30
  start-page: 19009
  year: 2019
  end-page: 19019
  ident: b0645
  article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol
  publication-title: J Mater Sci: Mater Electron
– volume: 480
  start-page: 717
  year: 2019
  end-page: 726
  ident: b0230
  article-title: A novel magnetic heterogeneous catalyst oxygen-defective CoF
  publication-title: Appl. Surf. Sci.
– volume: 270
  start-page: 118874
  year: 2020
  ident: b0470
  article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification
  publication-title: Appl. Catal. B
– volume: 359
  start-page: 723
  year: 2019
  end-page: 732
  ident: b1130
  article-title: Mn-doped g-C
  publication-title: Chem. Eng. J.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b0100
  article-title: Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe
  publication-title: Tokin Rev.
– volume: 280
  start-page: 526
  year: 2015
  end-page: 532
  ident: b1145
  article-title: Control of MnO
  publication-title: J. Power Sources
– reference: X. Dong, X. Duan, Z. Sun, X. Zhang, C. Li, S. Yang, B. Ren, S. Zheng, D. D. Dionysiou, Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis, Appl. Catal. B: Environ. 261 (2020) 118214. https://doi.org/j.apcatb.2019.118214.
– volume: 399
  start-page: 123039
  year: 2020
  ident: b1045
  article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation
  publication-title: J. Hazard. Mater.
– volume: 198
  start-page: 295
  year: 2016
  end-page: 302
  ident: b1200
  article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations
  publication-title: Appl. Catal. B
– volume: 329
  start-page: 262
  year: 2017
  end-page: 271
  ident: b0120
  article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 307
  year: 2019
  end-page: 315
  ident: b0150
  article-title: Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants
  publication-title: Environ. Sci. Technol.
– volume: 220
  start-page: 626
  year: 2018
  end-page: 634
  ident: b0670
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B
– volume: 352
  start-page: 601
  year: 2018
  end-page: 611
  ident: b1170
  article-title: Heterogeneous activation of peroxymonosulfate by LaFeO
  publication-title: Chem. Eng. J.
– volume: 262
  year: 2020
  ident: b1185
  article-title: Scalable synthesis of Ca-doped ɑ-Fe
  publication-title: Appl. Catal. B: Environ.
– volume: 49
  start-page: 7330
  year: 2015
  end-page: 7339
  ident: b1320
  article-title: Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process
  publication-title: Environ. Sci. Technol.
– volume: 74
  start-page: 1154
  year: 2008
  end-page: 1159
  ident: b1000
  article-title: Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system
  publication-title: Talanta
– volume: 360
  start-page: 157
  year: 2019
  end-page: 170
  ident: b0385
  article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe
  publication-title: Chem. Eng. J.
– volume: 387
  start-page: 121995
  year: 2020
  ident: b0290
  article-title: A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
– volume: 356
  start-page: 53
  year: 2018
  end-page: 60
  ident: b0685
  article-title: Efficient removal of organic and bacterial pollutants by Ag-La
  publication-title: J. Hazard. Mater.
– volume: 313
  start-page: 155
  year: 2018
  end-page: 160
  ident: b1300
  article-title: Rapid oxidation of paracetamol by Cobalt(II) catalyzed sulfite at alkaline pH
  publication-title: Catal. Today
– volume: 359
  start-page: 828
  year: 2019
  end-page: 839
  ident: b0750
  article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration
  publication-title: Chem. Eng. J.
– volume: 330
  start-page: 345
  year: 2017
  end-page: 354
  ident: b0025
  article-title: Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification
  publication-title: Chem. Eng. J.
– volume: 232
  start-page: 115967
  year: 2020
  ident: b0125
  article-title: The oxidative degradation of diclofenac using the activation of peroxymonosulfate by BiFeO
  publication-title: Sep. Purif. Technol.
– volume: 545
  start-page: 311
  year: 2019
  end-page: 316
  ident: b0705
  article-title: Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection
  publication-title: J. Colloid Interface Sci.
– volume: 363
  start-page: 318
  year: 2019
  end-page: 328
  ident: b0085
  article-title: Novel activation of peroxymonosulfate by an easily recyclable VC@Fe
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 4601
  year: 2009
  ident: b1285
  article-title: Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct
  publication-title: Phys. Chem. Chem. Phys.
– volume: 250
  start-page: 117246
  year: 2020
  ident: b1120
  article-title: Amorphous Co
  publication-title: Sep. Purif. Technol.
– volume: 375
  start-page: 122009
  year: 2019
  ident: b1180
  article-title: Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO
  publication-title: Chem. Eng. J.
– volume: 422
  start-page: 754
  year: 2017
  end-page: 762
  ident: b0510
  article-title: Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 7269
  year: 2018
  end-page: 7279
  ident: b0320
  article-title: Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation
  publication-title: RSC Adv.
– volume: 390
  start-page: 124532
  year: 2020
  ident: b0780
  article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C
  publication-title: Chem. Eng. J.
– volume: 334
  start-page: 1502
  year: 2018
  end-page: 1517
  ident: b1140
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
– volume: 181
  start-page: 1010
  year: 2010
  end-page: 1015
  ident: b1260
  article-title: Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis
  publication-title: J. Hazard. Mater.
– volume: 263
  start-page: 118350
  year: 2020
  ident: b1035
  article-title: Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways
  publication-title: Appl. Catal. B
– volume: 497
  start-page: 325
  year: 2017
  end-page: 332
  ident: b0725
  article-title: Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water
  publication-title: J. Colloid Interface Sci.
– volume: 115
  start-page: 730
  year: 2017
  end-page: 739
  ident: b1210
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
– volume: 307
  start-page: 476
  year: 2017
  end-page: 486
  ident: b0610
  article-title: Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 35720
  year: 2019
  end-page: 35728
  ident: b0775
  article-title: Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  start-page: 96
  year: 2017
  end-page: 105
  ident: b0690
  article-title: LaMO 3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water
  publication-title: Chem. Eng. Sci.
– reference: C. Chen, L. Liu, Y. Li, W. Li, L. Zhou, Y. Lan, Y. Li, Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate, Chem. Eng. J. 384 (2020) 123257. https://doi.org/10.106/j.cej.2019.123257.
– volume: 181
  start-page: 788
  year: 2016
  end-page: 799
  ident: b0820
  article-title: Fe
  publication-title: Appl. Catal. B: Environ.
– volume: 350
  start-page: 484
  year: 2018
  end-page: 495
  ident: b1135
  article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 101037
  year: 2020
  ident: b1060
  article-title: Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater
  publication-title: J. Water Process Eng.
– volume: 296
  start-page: 128
  year: 2015
  end-page: 137
  ident: b0365
  article-title: Sulfate radicals iduced from peroxymonosulfate by cobalt manganese oxides (Co
  publication-title: J. Hazard. Mater.
– volume: 336
  start-page: 721
  year: 2018
  end-page: 731
  ident: b0190
  article-title: Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 99
  start-page: 163
  year: 1977
  end-page: 164
  ident: b0600
  article-title: Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds
  publication-title: J. Am. Chem. Soc.
– volume: 663
  start-page: 453
  year: 2019
  end-page: 464
  ident: b0585
  article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation
  publication-title: Sci. Total Environ.
– volume: 137
  start-page: 291
  year: 2018
  end-page: 303
  ident: b0920
  article-title: Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A
  publication-title: Carbon
– volume: 16
  year: 2020
  ident: b0160
  article-title: carbon-supported manganese for heterogeneous activation of peroxymnosulfate for the decomposition of phenol in aqueous solution
  publication-title: Mater. Today. Chem.
– reference: J. Deng, S. Feng, K. Zhang, J. Li, H. Wang, T. Zhang, X. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J. 308 (2017) 505-515. https://doi.org/10.1016/j.cej.2016.09.075.
– volume: 292
  start-page: 121954
  year: 2019
  ident: b1105
  article-title: Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water
  publication-title: Bioresour. Technol.
– volume: 392
  start-page: 123725
  year: 2020
  ident: b1230
  article-title: Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 326
  start-page: 1095
  year: 2017
  end-page: 1104
  ident: b0515
  article-title: Facile synthesis of novel Co
  publication-title: Chem. Eng. J.
– volume: 384
  start-page: 121447
  year: 2020
  ident: b1270
  article-title: Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B
  publication-title: J. Hazard. Mater.
– volume: 156
  start-page: 399
  year: 2020
  end-page: 409
  ident: b0185
  article-title: Glucose and melamine derived nitrogen-doped carbonaceous catalyst for nonradical peroxymonosufate activation
  publication-title: Carbon
– volume: 209
  start-page: 729
  year: 2017
  end-page: 737
  ident: b0225
  article-title: Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination
  publication-title: Appl. Catal. B
– volume: 189
  start-page: 224
  year: 2017
  end-page: 238
  ident: b0165
  article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications
  publication-title: Chemosphere
– volume: 387
  start-page: 123726
  year: 2020
  ident: b1240
  article-title: Facile synthesis of pure g-C
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 21
  year: 2009
  end-page: 34
  ident: b1295
  article-title: Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions
  publication-title: Res Chem Intermed
– volume: 233
  start-page: 549
  year: 2019
  end-page: 558
  ident: b0275
  article-title: Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO
  publication-title: Chemosphere
– volume: 241
  start-page: 116702
  year: 2020
  ident: b1055
  article-title: In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies
  publication-title: Sep. Purif. Technol.
– volume: 279
  start-page: 93
  year: 2015
  end-page: 102
  ident: b0455
  article-title: Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 3287
  year: 2020
  end-page: 3300
  ident: b0875
  article-title: Recyclable ZIF-9@CA-Fe
  publication-title: Cellulose
– volume: 102
  start-page: 85
  year: 2017
  end-page: 88
  ident: b0785
  article-title: Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C
  publication-title: Catal. Commun.
– volume: 385
  start-page: 123933
  year: 2020
  ident: b1080
  article-title: Peroxymonosulfate activation by Co
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 399
  year: 2019
  end-page: 410
  ident: b1010
  article-title: Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N
  publication-title: Environ. Sci.: Nano
– volume: 357
  start-page: 140
  year: 2019
  end-page: 149
  ident: b0595
  article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals
  publication-title: Chem. Eng. J.
– reference: W. D. Oh, Z. Dong, Z. T. Hu, T. T. Lim, A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation, J. Mater. Chem. A. 3 (2015) 22208-22217. https://doi.org/10.1039/C5TA06563A.
– volume: 351
  start-page: 841
  year: 2018
  end-page: 855
  ident: b1305
  article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation
  publication-title: Chem. Eng. J.
– volume: 219
  start-page: 107
  year: 2016
  end-page: 117
  ident: b0605
  article-title: Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides
  publication-title: Environ. Pollut.
– volume: 230
  start-page: 115886
  year: 2020
  ident: b0890
  article-title: Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field
  publication-title: Sep. Purif. Technol.
– volume: 384
  start-page: 123377
  year: 2020
  ident: b0755
  article-title: Enhanced performance of LaFeO
  publication-title: Chem. Eng. J.
– volume: 341
  start-page: 383
  year: 2018
  end-page: 391
  ident: b1235
  article-title: Heterogeneous activation of peroxymonosulfate over monodispersed Co
  publication-title: Chem. Eng. J.
– volume: 238
  start-page: 557
  year: 2018
  end-page: 567
  ident: b1340
  article-title: A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S
  publication-title: Appl. Catal. B
– volume: 38
  start-page: 1360
  year: 2017
  end-page: 1372
  ident: b0895
  article-title: Peroxymonosulfate activation by Mn 3 O 4 /metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B
  publication-title: Chin. J. Catal.
– volume: 397
  start-page: 125339
  year: 2020
  ident: b0915
  article-title: Interfacial CoAl
  publication-title: Chem. Eng. J.
– volume: 212
  start-page: 152
  year: 2018
  end-page: 161
  ident: b0350
  article-title: Optimization of the catalytic activity of a ZnCo
  publication-title: Chemosphere
– volume: 381
  start-page: 122768
  year: 2020
  ident: b0935
  article-title: A mechanistic study of amorphous CoS
  publication-title: Chem. Eng. J.
– volume: 345
  start-page: 364
  year: 2018
  end-page: 374
  ident: b0170
  article-title: Efficient heterogeneous activation of peroxyonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism
  publication-title: Chem. Eng. J.
– volume: 233
  start-page: 99
  year: 2018
  end-page: 111
  ident: b0715
  article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr
  publication-title: Appl. Catal. B
– volume: 255
  start-page: 117765
  year: 2019
  ident: b1125
  article-title: Facile synthesis of sludge-derived MnO
  publication-title: Appl. Catal. B
– volume: 372
  start-page: 796
  year: 2019
  end-page: 808
  ident: b0465
  article-title: Efficient degradation of atrazine by LaCoO
  publication-title: Chem. Eng. J.
– reference: M. Kohantorabi, M. Hosseinifard, A. Kazemzadeh, Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal, New j. Chem. 44 (10) (2020) 4185-4198. https://doi.org/10.1039/C9NJ04379A.
– volume: 264
  start-page: 681
  year: 2015
  end-page: 689
  ident: b0740
  article-title: Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants
  publication-title: Chem. Eng. J.
– volume: 280
  start-page: 2
  year: 2017
  end-page: 7
  ident: b0175
  article-title: Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation
  publication-title: Catal. Today
– volume: 194
  start-page: 169
  year: 2016
  end-page: 201
  ident: b0050
  article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects
  publication-title: Appl. Catal. B
– volume: 1
  start-page: 339
  year: 2014
  end-page: 344
  ident: b1095
  article-title: Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals
  publication-title: Environ. Sci. Technol. Lett.
– volume: 167
  start-page: 181
  year: 2016
  end-page: 189
  ident: b0335
  article-title: Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe
  publication-title: Sep. Purif. Technol.
– volume: 711
  start-page: 134715
  year: 2020
  ident: b0400
  article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 101361
  year: 2016
  end-page: 101364
  ident: b0380
  article-title: Yolk-shell structured CoFe
  publication-title: RSC Adv.
– volume: 53
  start-page: 4500
  year: 2019
  end-page: 4510
  ident: b0280
  article-title: Impact of crystal types of AgFeO
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 10187
  year: 2016
  end-page: 10197
  ident: b0790
  article-title: Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 11783
  year: 2019
  end-page: 11791
  ident: b1325
  article-title: Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical
  publication-title: Environ. Sci. Technol.
– volume: 360
  start-page: 303
  year: 2018
  end-page: 310
  ident: b0010
  article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO
  publication-title: J. Hazard. Mater.
– volume: 114
  start-page: 10292
  year: 2014
  end-page: 10368
  ident: b0765
  article-title: Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality
  publication-title: Chem. Rev.
– reference: A. Khan, H. Wang, Y. Liu, A. Jawad, J. Ifthikar, Z. Liao, T. Wang, Z. Chen, Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: comprehensive investigation of manganese oxides, J. Mater. Chem. A. 6 (2018) 1590-1600. https://doi.org/10.1039/C7TA07942G.
– volume: 197
  start-page: 670
  year: 2018
  end-page: 679
  ident: b0345
  article-title: Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo
  publication-title: Chemosphere
– volume: 356
  start-page: 717
  year: 2019
  end-page: 726
  ident: b1030
  article-title: Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping: Performance, mechanism and degradation pathway
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 10134
  year: 2016
  end-page: 10142
  ident: b0945
  article-title: Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds
  publication-title: Environ. Sci. Technol.
– volume: 581
  start-page: 195
  year: 2021
  end-page: 204
  ident: b0925
  article-title: Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions
  publication-title: J. Colloid Interface Sci.
– volume: 88
  start-page: 46
  year: 2020
  end-page: 58
  ident: b0410
  article-title: Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater
  publication-title: J. Environ. Sci.
– volume: 11
  start-page: 3036
  year: 2015
  end-page: 3044
  ident: b0985
  article-title: Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions
  publication-title: Small
– volume: 159
  start-page: 77
  year: 2019
  end-page: 86
  ident: b0965
  article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation
  publication-title: Water Res.
– volume: 107
  start-page: 371
  year: 2016
  end-page: 378
  ident: b1205
  article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation
  publication-title: Carbon
– volume: 673
  start-page: 565
  year: 2019
  end-page: 575
  ident: b0710
  article-title: Enhanced degradation of atrazine by nanoscale LaFe
  publication-title: Sci. Total Environ.
– volume: 262
  start-page: 118302
  year: 2020
  ident: b0975
  article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation
  publication-title: Appl. Catal. B
– volume: 24
  start-page: 663
  year: 1995
  end-page: 677
  ident: b1280
  article-title: Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation
  publication-title: J. Phys. Chem. Ref. Data
– reference: L. Luo, Y. Wang, M. Zhu, X. Cheng, X. hang, X. Meng, X. Huang, H. Hao, Co–Cu–Al Layered Double Oxides as Heterogeneous Catalyst for Enhanced Degradation of Organic Pollutants in Wastewater by Activating Peroxymonosulfate: Performance and Synergistic Effect, Ind. Eng. Chem. Res. 58 (20) (2019) 8699-8711. https://doi.org/10.1021/acs.iecr.9b00167.
– volume: 388
  start-page: 124371
  year: 2020
  ident: b0270
  article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO
  publication-title: Chem. Eng. J.
– volume: 262
  start-page: 854
  year: 2015
  end-page: 861
  ident: b0495
  article-title: Activation of peroxymonosulfate with magnetic Fe
  publication-title: Chem. Eng. J.
– volume: 385
  start-page: 123933
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1080
  article-title: Peroxymonosulfate activation by Co9S8@ S and N co‐doped biochar for sulfamethoxazole degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123933
– volume: 334
  start-page: 273
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0015
  article-title: Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.040
– volume: 51
  start-page: 12611
  issue: 21
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0340
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8O1.2O4 nanospheres: Synthesis between Mn and Fe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03007
– volume: 197
  start-page: 670
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0345
  article-title: Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.079
– volume: 387
  start-page: 123726
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1240
  article-title: Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123726
– volume: 391
  start-page: 123604
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0620
  article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123604
– volume: 336
  start-page: 721
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0190
  article-title: Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.164
– volume: 27
  start-page: 3287
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0875
  article-title: Recyclable ZIF-9@CA-Fe3O4/RGO/cellulose composite membrane as efficient catalysts for activating peroxymonosulfate to degrade methylene blue
  publication-title: Cellulose
  doi: 10.1007/s10570-020-02998-x
– start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0100
  article-title: Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe2O4@Gr)
  publication-title: Tokin Rev.
– volume: 399
  start-page: 125722
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0115
  article-title: Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125722
– volume: 399
  start-page: 123039
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1045
  article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123039
– volume: 350
  start-page: 484
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1135
  article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.175
– ident: 10.1016/j.cej.2020.127957_b1160
  doi: 10.1021/es304721g
– ident: 10.1016/j.cej.2020.127957_b0530
  doi: 10.1021/acs.est.9b01449
– volume: 380
  start-page: 122568
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0060
  article-title: Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeOx@Fe0
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122568
– volume: 54
  start-page: 1232
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0210
  article-title: New insight into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05856
– volume: 24
  start-page: 16560
  issue: 20
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0960
  article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-9168-1
– volume: 197
  start-page: 440
  year: 2012
  ident: 10.1016/j.cej.2020.127957_b1290
  article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.040
– volume: 359
  start-page: 828
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0750
  article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.184
– volume: 330
  start-page: 345
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0025
  article-title: Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.155
– ident: 10.1016/j.cej.2020.127957_b0660
  doi: 10.1021/acs.iecr.9b00167
– volume: 3
  start-page: 1298
  year: 2012
  ident: 10.1016/j.cej.2020.127957_b1215
  article-title: Probing the catalytic activity of porous graphene oxide and the origin of this behavior
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2315
– volume: 67
  start-page: 399
  issue: 4
  year: 1998
  ident: 10.1016/j.cej.2020.127957_b1310
  article-title: Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1998.tb05217.x
– volume: 232
  start-page: 115967
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0125
  article-title: The oxidative degradation of diclofenac using the activation of peroxymonosulfate by BiFeO3 microspheres—Kinetics, role of visible light and decay pathways
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115967
– volume: 658
  start-page: 343
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0520
  article-title: Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: Performance, mechanism and degradation pathway
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.187
– volume: 400
  start-page: 123297
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0655
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123297
– volume: 38
  start-page: 227
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0420
  article-title: Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu 0 /Fe 3 O 4 submicron composites
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62566-4
– volume: 255
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0840
  article-title: Coupling metal–organic frameworks and g-C3N4 to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: Upgrading framework stability and performance
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117763
– volume: 476
  start-page: 121
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b0460
  article-title: Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2014.02.024
– ident: 10.1016/j.cej.2020.127957_b0250
  doi: 10.1002/jctb.5153
– ident: 10.1016/j.cej.2020.127957_b0135
  doi: 10.1039/C7TA07942G
– volume: 107
  start-page: 371
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b1205
  article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.016
– volume: 4
  start-page: 355
  issue: 5
  year: 2007
  ident: 10.1016/j.cej.2020.127957_b1245
  article-title: Autoxidation of SIV inhibited by chlorophenols reacting with sulfate radicals
  publication-title: Environ. Chem.
  doi: 10.1071/EN07045
– volume: 104
  start-page: 384
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0040
  article-title: Effect of sulfate radical oxidation on disintegration of waste activated sludge
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2015.07.008
– volume: 213
  start-page: 264
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0545
  article-title: Stable incorporation of MnOx quantum dots into N-doped hollow carbon: A synergistic peroxymonosulfate activator for enhanced removal of bisphenol A
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.12.044
– volume: 356
  start-page: 717
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1030
  article-title: Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping: Performance, mechanism and degradation pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.086
– volume: 330
  start-page: 1390
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0325
  article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: Effect of water constituents, degradation intermediates and toxicity evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.137
– volume: 51
  start-page: 678
  issue: 3
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0630
  article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00535
– volume: 181
  start-page: 788
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0820
  article-title: FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.08.050
– volume: 52
  start-page: 14371
  issue: 24
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0995
  article-title: Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05246
– volume: 54
  start-page: 3064
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1225
  article-title: Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07082
– volume: 230
  start-page: 115886
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0890
  article-title: Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115886
– volume: 175
  start-page: 380
  issue: 1
  year: 2011
  ident: 10.1016/j.cej.2020.127957_b0485
  article-title: Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.03.005
– volume: 4
  start-page: 170
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b1025
  article-title: Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst
  publication-title: Environ. Sci.: Nano
– volume: 581
  start-page: 195
  year: 2021
  ident: 10.1016/j.cej.2020.127957_b0925
  article-title: Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.07.100
– volume: 198
  start-page: 295
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b1200
  article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.075
– volume: 514
  start-page: 262
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0870
  article-title: ZIF-67 supported on marcoscale resin as an efficient and convenient heterogeneous catalyst for Oxone activation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.11.053
– volume: 218
  start-page: 299
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0680
  article-title: Efficient degradation of diclofenac by LaFeO3-Catalyzed peroxymonosulfate oxidation---kinetics and toxicity assessment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.105
– volume: 256
  start-page: 127160
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0430
  article-title: Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127160
– volume: 10
  start-page: 5550
  issue: 5
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0565
  article-title: Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02110
– volume: 212
  start-page: 152
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0350
  article-title: Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.065
– volume: 374
  start-page: 170
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1195
  article-title: Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.170
– volume: 184
  start-page: 213
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0950
  article-title: Nitrogen-doped carbon material as a catalyst for the degradation of direct red23 based on persulfate oxidation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.04.045
– volume: 24
  start-page: 663
  issue: 2
  year: 1995
  ident: 10.1016/j.cej.2020.127957_b1280
  article-title: Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555965
– volume: 497
  start-page: 325
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0725
  article-title: Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.03.004
– volume: 49
  start-page: 9914
  issue: 85
  year: 2013
  ident: 10.1016/j.cej.2020.127957_b0990
  article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43401j
– volume: 229
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0770
  article-title: Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-017-3648-2
– volume: 11
  start-page: 3036
  issue: 25
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0985
  article-title: Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions
  publication-title: Small
  doi: 10.1002/smll.201403715
– volume: 74
  start-page: 1154
  issue: 5
  year: 2008
  ident: 10.1016/j.cej.2020.127957_b1000
  article-title: Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.08.027
– volume: 114
  start-page: 10292
  issue: 20
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b0765
  article-title: Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality
  publication-title: Chem. Rev.
  doi: 10.1021/cr500032a
– volume: 233
  start-page: 549
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0275
  article-title: Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.291
– volume: 742
  start-page: 140587
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0435
  article-title: Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140587
– volume: 164
  start-page: 159
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0305
  article-title: 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.09.004
– volume: 387
  start-page: 121995
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0290
  article-title: A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121995
– volume: 341
  start-page: 383
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1235
  article-title: Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.045
– volume: 52
  start-page: 7032
  issue: 12
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1020
  article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
– volume: 560
  start-page: 195
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0220
  article-title: Superior performance of α@β-MnO2 or the toluene oxidation: Active interface and oxygen vacancy
  publication-title: Appl. Catal. A.
  doi: 10.1016/j.apcata.2018.05.001
– volume: 374
  start-page: 947
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1050
  article-title: Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.001
– volume: 390
  start-page: 124512
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1165
  article-title: pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124512
– volume: 88
  start-page: 46
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0410
  article-title: Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.07.011
– volume: 356
  start-page: 904
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0105
  article-title: Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.064
– volume: 352
  start-page: 601
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1170
  article-title: Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.062
– volume: 99
  start-page: 163
  issue: 1
  year: 1977
  ident: 10.1016/j.cej.2020.127957_b0600
  article-title: Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00443a030
– ident: 10.1016/j.cej.2020.127957_b0825
  doi: 10.1039/C6CY01479H
– volume: 360
  start-page: 157
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0385
  article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.207
– volume: 398
  start-page: 122808
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1155
  article-title: Rational design of efficient metal-free catalysts for peroxymonosulfate activation: Selective degradation of organic contaminants via a dual nonradical reaction pathway
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122808
– volume: 48
  start-page: 6913
  issue: 37
  year: 2009
  ident: 10.1016/j.cej.2020.127957_b0200
  article-title: Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200901826
– volume: 241
  start-page: 116702
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1055
  article-title: In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116702
– volume: 57
  start-page: 122
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1150
  article-title: Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705628
– volume: 292
  start-page: 121954
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1105
  article-title: Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121954
– volume: 334
  start-page: 1502
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1140
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.059
– volume: 280
  start-page: 514
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0005
  article-title: Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.121
– volume: 280
  start-page: 526
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b1145
  article-title: Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.139
– volume: 695
  start-page: 133963
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0635
  article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133963
– ident: 10.1016/j.cej.2020.127957_b0550
  doi: 10.1039/C9NJ04379A
– volume: 304
  start-page: 897
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0695
  article-title: LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.027
– volume: 4
  start-page: 17672
  issue: 18
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b0310
  article-title: Solvent effect on the solvothermall synthesis of mesoporous NiO catalysts for activation of peroxymonosulfate to degrade organic dyes
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01883
– volume: 384
  start-page: 123377
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0755
  article-title: Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123377
– volume: 337
  start-page: 101
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0815
  article-title: Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.069
– volume: 262
  start-page: 118302
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0975
  article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118302
– volume: 50
  start-page: 10134
  issue: 18
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0945
  article-title: Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02079
– volume: 255
  start-page: 117765
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1125
  article-title: Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117765
– volume: 403
  start-page: 126445
  year: 2021
  ident: 10.1016/j.cej.2020.127957_b1265
  article-title: A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126445
– volume: 343
  start-page: 128
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0425
  article-title: Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.125
– volume: 11
  start-page: 35720
  issue: 39
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0775
  article-title: Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11322
– volume: 597
  start-page: 124568
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0415
  article-title: Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4−x spinel for 2,4-dichlorophenol removal: Singlet oxygen-dominated nonradical process
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2020.124568
– volume: 6
  start-page: 101361
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0380
  article-title: Yolk-shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfte activation for efficient degradation of butyl paraben
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24101H
– volume: 49
  start-page: 5645
  issue: 9
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b1090
  article-title: Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 16
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0160
  article-title: carbon-supported manganese for heterogeneous activation of peroxymnosulfate for the decomposition of phenol in aqueous solution
  publication-title: Mater. Today. Chem.
– volume: 317
  start-page: 686
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0030
  article-title: Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.06.004
– volume: 264
  start-page: 681
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0740
  article-title: Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.12.014
– volume: 392
  start-page: 123683
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1005
  article-title: High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123683
– volume: 725
  start-page: 138299
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1075
  article-title: Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138299
– volume: 262
  start-page: 854
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0495
  article-title: Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.10.043
– volume: 388
  start-page: 124371
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0270
  article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: Evolution of reactive oxygen species and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124371
– ident: 10.1016/j.cej.2020.127957_b0375
  doi: 10.1039/C7RA04761D
– volume: 21
  start-page: 178
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1250
  article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes
  publication-title: J. Adv. Oxidation. Technol
  doi: 10.26802/jaots.2017.0075
– volume: 137
  start-page: 291
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0920
  article-title: Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.039
– volume: 259
  start-page: 118056
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0540
  article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118056
– ident: 10.1016/j.cej.2020.127957_b0535
  doi: 10.1039/C8CP02080A
– volume: 189
  start-page: 176
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0055
  article-title: Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.07.046
– volume: 353
  start-page: 329
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0830
  article-title: MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.105
– volume: 392
  start-page: 123681
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1115
  article-title: Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123681
– volume: 359
  start-page: 723
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1130
  article-title: Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.165
– volume: 53
  start-page: 40
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0855
  article-title: Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2015.02.027
– volume: 209
  start-page: 729
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0225
  article-title: Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.02.068
– volume: 326
  start-page: 1095
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0515
  article-title: Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.168
– ident: 10.1016/j.cej.2020.127957_b0835
  doi: 10.1002/wer.1090
– volume: 88
  start-page: 462
  issue: 3-4
  year: 2009
  ident: 10.1016/j.cej.2020.127957_b1335
  article-title: Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2008.10.013
– volume: 9
  start-page: 2284
  issue: 4
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0640
  article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide
  publication-title: RSC Adv.
  doi: 10.1039/C8RA09841G
– volume: 6
  start-page: 399
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1010
  article-title: Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N
  publication-title: Environ. Sci.: Nano
– ident: 10.1016/j.cej.2020.127957_b0255
  doi: 10.1021/acs.est.7b05563
– ident: 10.1016/j.cej.2020.127957_b0130
  doi: 10.1021/am505309b
– volume: 545
  start-page: 311
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0705
  article-title: Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.045
– volume: 1
  start-page: 339
  issue: 8
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b1095
  article-title: Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez5002209
– volume: 363
  start-page: 234
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0905
  article-title: Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.129
– volume: 329
  start-page: 262
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0120
  article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.01.029
– volume: 9
  start-page: 9410
  issue: 17
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0805
  article-title: Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue
  publication-title: RSC Adv.
  doi: 10.1039/C9RA01143A
– volume: 372
  start-page: 796
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0465
  article-title: Efficient degradation of atrazine by LaCoO3/Al2O3 catalyzed peroxymonosulfate: Performance, degradation intermediates and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.188
– volume: 38
  start-page: 1360
  issue: 8
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0895
  article-title: Peroxymonosulfate activation by Mn 3 O 4 /metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62875-4
– volume: 198
  start-page: 204
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0525
  article-title: Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.135
– volume: 181
  start-page: 1010
  issue: 1-3
  year: 2010
  ident: 10.1016/j.cej.2020.127957_b1260
  article-title: Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.115
– volume: 252
  start-page: 393
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b1315
  article-title: Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5−
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.104
– volume: 245
  start-page: 71
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0720
  article-title: Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.12.048
– volume: 359
  start-page: 373
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0095
  article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.120
– volume: 187
  start-page: 1
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0980
  article-title: Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.01.036
– volume: 167
  start-page: 181
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0335
  article-title: Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.04.035
– volume: 328
  start-page: 1112
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0555
  article-title: Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.042
– volume: 385
  start-page: 123935
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0745
  article-title: 3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123935
– volume: 49
  start-page: 13394
  issue: 22
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b1220
  article-title: Quantitative Structure–Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03078
– volume: 711
  start-page: 134715
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0400
  article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134715
– volume: 53
  start-page: 307
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0150
  article-title: Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04669
– volume: 127
  start-page: 330
  year: 2012
  ident: 10.1016/j.cej.2020.127957_b0505
  article-title: Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.09.001
– volume: 154-155
  start-page: 246
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b0480
  article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.02.026
– volume: 233
  start-page: 99
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0715
  article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.03.088
– volume: 351
  start-page: 841
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1305
  article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.111
– volume: 392
  start-page: 123725
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1230
  article-title: Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123725
– volume: 269
  start-page: 118850
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0215
  article-title: Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118850
– volume: 8
  start-page: 7269
  issue: 13
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0320
  article-title: Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation
  publication-title: RSC Adv.
  doi: 10.1039/C7RA12615H
– volume: 115
  start-page: 730
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b1210
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.060
– volume: 241
  start-page: 561
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0795
  article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.09.056
– volume: 370
  start-page: 354
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0615
  article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: Optimization, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.127
– volume: 266
  start-page: 118601
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0405
  article-title: Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118601
– volume: 376
  start-page: 119193
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0395
  article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.177
– volume: 330
  start-page: 505
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0440
  article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.149
– volume: 318
  start-page: 154
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0800
  article-title: Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.06.058
– volume: 204
  start-page: 11
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0575
  article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.04.023
– volume: 148
  start-page: 416
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0155
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.087
– volume: 49
  start-page: 7330
  issue: 12
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b1320
  article-title: Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es506362e
– volume: 231
  start-page: 434
  year: 2013
  ident: 10.1016/j.cej.2020.127957_b0300
  article-title: Efficient performance of porous F2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.07.053
– volume: 47
  start-page: 5431
  issue: 14
  year: 2013
  ident: 10.1016/j.cej.2020.127957_b0355
  article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.06.023
– volume: 384
  start-page: 123302
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1190
  article-title: Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons for superfast degradation of sulfamethazine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123302
– volume: 188
  start-page: 98
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0180
  article-title: Occurrence of radical and nonradical pathways from aqueous and nonaqueous catalytic oxidation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.01.059
– volume: 262
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1185
  article-title: Scalable synthesis of Ca-doped ɑ-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118250
– volume: 363
  start-page: 318
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0085
  article-title: Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.145
– ident: 10.1016/j.cej.2020.127957_b1255
  doi: 10.3390/atmos10120795
– volume: 360
  start-page: 303
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0010
  article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.028
– ident: 10.1016/j.cej.2020.127957_b0245
  doi: 10.1016/j.cej.2019.123257
– volume: 392
  start-page: 122316
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0625
  article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122316
– volume: 53
  start-page: 6589
  issue: 49
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0045
  article-title: A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02820B
– volume: 308
  start-page: 58
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0475
  article-title: Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.035
– volume: 217
  start-page: 800
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0360
  article-title: A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe2O4 catalyst regeneration
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.077
– volume: 194
  start-page: 169
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0050
  article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.04.003
– volume: 398
  start-page: 122884
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0665
  article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122884
– volume: 384
  start-page: 123246
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1040
  article-title: Recycling of nitrogen-containing waste diapers for catalytic contaminant oxidation: Occurrence of radical and non-radical pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123246
– volume: 250
  start-page: 117246
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1120
  article-title: Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117246
– volume: 663
  start-page: 453
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0585
  article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.190
– ident: 10.1016/j.cej.2020.127957_b0315
  doi: 10.1039/C9EN00500E
– volume: 422
  start-page: 754
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0510
  article-title: Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.118
– volume: 270
  start-page: 118874
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0470
  article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118874
– volume: 331
  start-page: 144
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0235
  article-title: Controlled synthesis of dandelion-like NiCo2O4 microspheres and their catalytic performance for peroxymonosulfate activation in humic acid degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.115
– volume: 369
  start-page: 542
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1275
  article-title: Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.097
– volume: 384
  start-page: 121447
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1270
  article-title: Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121447
– volume: 357
  start-page: 140
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0595
  article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.111
– volume: 480
  start-page: 717
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0230
  article-title: A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4−x for activating peroxymonosulfate
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.034
– volume: 356
  start-page: 53
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0685
  article-title: Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.05.044
– volume: 213
  start-page: 456
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0450
  article-title: Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.12.049
– volume: 262
  start-page: 110299
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0930
  article-title: Yolk-shell ZIFs@SiO2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.110299
– volume: 263
  start-page: 118350
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1035
  article-title: Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118350
– volume: 189
  start-page: 224
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0165
  article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.042
– volume: 515
  start-page: 92
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0590
  article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.01.016
– volume: 218
  start-page: 1071
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0240
  article-title: Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.11.197
– volume: 320
  start-page: 436
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0390
  article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.036
– volume: 220
  start-page: 626
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0670
  article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.08.088
– volume: 35
  start-page: 21
  issue: 1
  year: 2009
  ident: 10.1016/j.cej.2020.127957_b1295
  article-title: Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions
  publication-title: Res Chem Intermed
  doi: 10.1007/s11164-008-0012-6
– volume: 249
  start-page: 890
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0885
  article-title: Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.092
– volume: 240
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0205
  article-title: Enhanced peroxymonosulfate activation by supported microporous carbón for degradation of tetracycline via non-radical mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116617
– volume: 238
  start-page: 557
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1340
  article-title: A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.07.058
– volume: 24
  start-page: 11536
  issue: 12
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0500
  article-title: Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-8811-1
– ident: 10.1016/j.cej.2020.127957_b0865
  doi: 10.1039/C8RA05024D
– volume: 54
  start-page: 8333
  issue: 13
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0760
  article-title: Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07245
– volume: 215
  start-page: 60
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0675
  article-title: Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO 3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.05.051
– ident: 10.1016/j.cej.2020.127957_b0145
  doi: 10.1016/j.apcatb.2019.118214
– volume: 41
  start-page: 4640
  issue: 13
  year: 2007
  ident: 10.1016/j.cej.2020.127957_b1330
  article-title: Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Other Dissolved Organic Matter Isolates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062529n
– volume: 354
  start-page: 507
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1175
  article-title: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.043
– volume: 159
  start-page: 77
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0965
  article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.008
– volume: 371
  start-page: 404
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0020
  article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.007
– volume: 218
  start-page: 810
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0110
  article-title: Synergetic Activation of Peroxymonosulfate by Co3O4 Modified g-C3N4 for Enhanced Degradation of Diclofenac Sodium under Visible Light Irradiation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.07.016
– ident: 10.1016/j.cej.2020.127957_b0090
  doi: 10.1016/j.cej.2016.09.075
– volume: 321
  start-page: 222
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0580
  article-title: Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.117
– volume: 219
  start-page: 107
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0605
  article-title: Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.052
– volume: 160
  start-page: 96
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0690
  article-title: LaMO 3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.11.017
– volume: 388
  start-page: 121801
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1085
  article-title: Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121801
– volume: 237
  start-page: 124478
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0730
  article-title: Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124478
– volume: 740
  start-page: 140388
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1065
  article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140388
– volume: 381
  start-page: 122768
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0935
  article-title: A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122768
– volume: 115
  start-page: 649
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0845
  article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.058
– volume: 54
  start-page: 2476
  issue: 4
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0445
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04696
– volume: 5
  start-page: 3655
  issue: 7
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0570
  article-title: A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09100H
– volume: 260
  start-page: 118129
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0140
  article-title: Rapid removal of tetrabromobisphenol A by α-Fe2O3-x@Graphene@Montmorillonite catalyst with oxygen vacancies through peroxymonosulfate activation: Role of halogen and α-hydroxyalkyl radicals
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118129
– volume: 53
  start-page: 11783
  issue: 20
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1325
  article-title: Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04105
– volume: 375
  start-page: 122041
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1015
  article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122041
– volume: 6
  start-page: 884
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0195
  article-title: Prussian blue analogues derived porous nitrogen-doped carbón microspheres as high-performance metal-free peroxymonosulfate activation for non-radical-dominated degradation of organic pollutants
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA08472B
– volume: 370
  start-page: 614
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1100
  article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.235
– volume: 51
  start-page: 15249
  issue: 83
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0955
  article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05101K
– ident: 10.1016/j.cej.2020.127957_b1110
  doi: 10.1088/2053-1591/ab4b98
– volume: 50
  start-page: 10187
  issue: 18
  year: 2016
  ident: 10.1016/j.cej.2020.127957_b0790
  article-title: Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02841
– volume: 296
  start-page: 128
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0365
  article-title: Sulfate radicals iduced from peroxymonosulfate by cobalt manganese oxides (CoxMN3-xO4) for Fenton-like reaction in water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.04.014
– ident: 10.1016/j.cej.2020.127957_b0810
  doi: 10.1039/C6CY02130A
– volume: 102
  start-page: 85
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0785
  article-title: Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: The role of superoxide radical and singlet oxygen
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.08.016
– volume: 385
  start-page: 121518
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0285
  article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121518
– volume: 7
  start-page: 388
  issue: 1
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0700
  article-title: Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02303
– volume: 390
  start-page: 124532
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0780
  article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124532
– volume: 4
  start-page: 315
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0850
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci.: Nano
– volume: 307
  start-page: 476
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0610
  article-title: Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.117
– volume: 383
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0070
  article-title: Degradation mechanisms of ofloxacin and cefazolin uing peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123056
– volume: 53
  start-page: 4500
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0280
  article-title: Impact of crystal types of AgFeO2 nanoparticles on the peroxymonosulfate activation in the water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00658
– volume: 353
  start-page: 69
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0880
  article-title: Surface-nucleated heterogeneous growth of zeolitic imidazolate framework – A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.117
– volume: 313
  start-page: 155
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b1300
  article-title: Rapid oxidation of paracetamol by Cobalt(II) catalyzed sulfite at alkaline pH
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.12.004
– volume: 31
  issue: 11
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0940
  article-title: AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4‐nitrophenol: Studies of kinetics and mechanism
  publication-title: Appl Organometal Chem
  doi: 10.1002/aoc.3806
– volume: 397
  start-page: 125339
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0915
  article-title: Interfacial CoAl2O4 from ZIF-67@γ-Al2O3 pellets toward catalytic activation of peroxymonosulfate for metronidazole removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125339
– volume: 276
  start-page: 452
  year: 2014
  ident: 10.1016/j.cej.2020.127957_b0260
  article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activation of peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.05.068
– volume: 673
  start-page: 565
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0710
  article-title: Enhanced degradation of atrazine by nanoscale LaFe1-xCuxO3-δ perovskite activated peroxymonosulfate: Performance and mechanism
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.098
– volume: 45
  start-page: 9308
  issue: 21
  year: 2011
  ident: 10.1016/j.cej.2020.127957_b0075
  article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2017363
– volume: 345
  start-page: 364
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0170
  article-title: Efficient heterogeneous activation of peroxyonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.169
– volume: 11
  start-page: 4601
  issue: 22
  year: 2009
  ident: 10.1016/j.cej.2020.127957_b1285
  article-title: Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b900144a
– volume: 248
  start-page: 62
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0035
  article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking wáter
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.02.018
– volume: 406
  start-page: 127083
  year: 2021
  ident: 10.1016/j.cej.2020.127957_b0080
  article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127083
– volume: 279
  start-page: 93
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0455
  article-title: Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.001
– volume: 256
  start-page: 10
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0860
  article-title: Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2017.08.031
– volume: 280
  start-page: 2
  year: 2017
  ident: 10.1016/j.cej.2020.127957_b0175
  article-title: Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.04.043
– ident: 10.1016/j.cej.2020.127957_b0910
  doi: 10.1039/C6RA15590A
– ident: 10.1016/j.cej.2020.127957_b0490
  doi: 10.1039/C5TA06563A
– volume: 33
  start-page: 101037
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1060
  article-title: Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2019.101037
– volume: 752
  start-page: 142282
  year: 2021
  ident: 10.1016/j.cej.2020.127957_b0970
  article-title: Preparation of nitrogen self-doped hierarchical porous carbon with rapid-freezing support for cooperative pollutant adsorption and catalytic oxidation of persulfate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142282
– volume: 714
  start-page: 136728
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b1070
  article-title: One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136728
– volume: 375
  start-page: 122009
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b1180
  article-title: Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122009
– volume: 394
  start-page: 124458
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0560
  article-title: Oxygen-defective MnO2−x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124458
– volume: 156
  start-page: 399
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0185
  article-title: Glucose and melamine derived nitrogen-doped carbonaceous catalyst for nonradical peroxymonosufate activation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.050
– volume: 80
  start-page: 116
  issue: 1-2
  year: 2008
  ident: 10.1016/j.cej.2020.127957_b0295
  article-title: Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2007.11.009
– volume: 49
  start-page: 6855
  issue: 11
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0900
  article-title: Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01059
– volume: 348
  start-page: 526
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0370
  article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.215
– volume: 353
  start-page: 401
  year: 2018
  ident: 10.1016/j.cej.2020.127957_b0735
  article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.04.021
– ident: 10.1016/j.cej.2020.127957_b0265
  doi: 10.1021/acs.iecr.9b03814
– volume: 30
  start-page: 19009
  issue: 20
  year: 2019
  ident: 10.1016/j.cej.2020.127957_b0645
  article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol
  publication-title: J Mater Sci: Mater Electron
– volume: 384
  start-page: 123298
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0065
  article-title: Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123298
– volume: 454
  start-page: 44
  year: 2015
  ident: 10.1016/j.cej.2020.127957_b0330
  article-title: Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.05.009
– volume: 398
  start-page: 125676
  year: 2020
  ident: 10.1016/j.cej.2020.127957_b0650
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125676
SSID ssj0006919
Score 2.72137
SecondaryResourceType review_article
Snippet [Display omitted] •The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127957
SubjectTerms Electron transfer mechanism
Heterogeneous catalysts
Peroxymonosulfate activation
Radical and non-radical pathways
Singlet oxygen
Title A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants
URI https://dx.doi.org/10.1016/j.cej.2020.127957
Volume 411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXOCAWMVazYEDIEKp46TxsapAhQqEWAS3yLEdUQQJalKWCx_JFzGThUUCDpyyyFaszmjmufM8j7ENoXXsak872nrcEdaNnahF5UITuUb5rjKFasnxid-7FEfX3vUY69ZnYYhWWcX-MqYX0bp606x-zebDYNA8b1FNSwqqI-KuxKe220K0yct3Xz9pHr4sxD1osEOj68pmwfHS9ha3iJx6LLQlZaifctOXfHMww6YroAidci2zbMwmc2zqS_vAefbWgfLkCaQxIJCDwYfEaYb3cG8RWTugEgNaDaM0cShn0UNOnUjyDGzBwMNXCF3hhpgxKTqUTUcZUAPx5xd00jQb3cWISGHz9Ph8C-ggRPmNHaA_cXGqxuFpAkNV1HzgMduFBD9WPxvqR1FKNwEJID-pl4xWXApKaSC2vKoYOQvs4mD_ottzKo0GR3PZzukgQOyayHiu5X6bG-q-H9uWpwLlYQymOqOJEJUEXCgZYEhDQEGqV1LyCMGLu8jGcUV2iYGVgZIa4VEQxML6RmkRR8bFHRb3lPLtMturjRPqqn85yWjchTVR7TZEe4Zkz7C05zLb_pjyUDbv-GuwqC0efvPAEJPL79NW_jdtlU1yYscU1Mk1Np4PR3Yd4U0eNQr_bbCJzmG_d0LX_tlV_x0QzP9M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeKn7VAi1zAAkQ6bKOk40PPVRAtaXdCqmL1Jvl2I7Yqk2qTbZlL32oPkqfiJn8lCIBB6TeYstOnIw9M858ng_glbQ2C21kA-sjEUgfZkHa53ChS0Nn4tC4mrVktB8Pv8kvh9HhAlx2Z2EYVtnq_kan19q6rem1X7N3Opn0Dvoc01KS44i0K4njFlm56-fntG8rN3c-kZBfC7H9efxxGLTUAoEValAxfj0LXeqi0It4IBwnjc98PzKJiUh1cHjMpWRMEyGNSmglkh1ksialREo2N6Tb3oG7krQFsyZsXPyClcSqJhPhwQU8ui6SWmPKrD-iLangnA4DxRbxT7bwhn3bfgDLrWOKW827P4QFnz-CpRvpCh_D1RY2J12wyJAcR5xcU6qWdI0nnjz5AE3u0JppWuQB20guVJz5pCrR14g_qiJXGb8zEqegCeyLWYmcsPzHnBZFUc6OM_KA8c3X0cFb5IMXzTPeI_80pq6Wmhc5Tk0dY8KzcgNzelhXdpz_oqGKQiZcPjfzkkfcEFhZZHS-aRFAT2B8G4J7Cos0Ir8C6FVilCV3LEky6WNnrMxSF9KOTkTGxH4VPnTC0bbNl860Hce6A8YdaZKnZnnqRp6r8O66y2mTLORfjWUncf3bjNdkzP7e7dn_dXsJ94bj0Z7e29nffQ73BSNzatjmC1ispjO_Rq5Vla7XcxlB3_La-Qlr8zUm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+the+innovations+in+metal-+and+carbon-based+catalysts+explored+for+heterogeneous+peroxymonosulfate+%28PMS%29+activation%2C+with+focus+on+radical+vs.+non-radical+degradation+pathways+of+organic+contaminants&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Kohantorabi%2C+Mona&rft.au=Moussavi%2C+Gholamreza&rft.au=Giannakis%2C+Stefanos&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=411&rft_id=info:doi/10.1016%2Fj.cej.2020.127957&rft.externalDocID=S1385894720340766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon