A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants
[Display omitted] •The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimi...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 411; p. 127957 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimination.•Oxygen vacancies and defects, as well as metals’ presence determine the degradation mechanisms.•The leaching of metals from the catalysts was evaluated and compared to assess their suitability.
The heterogeneous, sulfate radical-based AOPs (SR-AOPs) have emerged over the last decade as a highly potent technology for the removal of various organic contaminants from water. This review aims to summarize the rapid development of the various heterogeneous catalysts developed for peroxymonosulfate (PMS) activation, destined for the degradation of organic contaminants. We cover catalysts such as metal and bi-metallic oxides, supported noble/non-noble metal catalysts, carbonaceous-based materials, layered double hydroxides, metal organic frameworks, zeolite and perovskite-based catalysts, used as effective activators for the activation of PMS. The radical and non-radical pathways, as well as the role of each radical in the reaction mechanism were discussed in detail. In addition, the physicochemical properties of the catalyst influencing the PMS activation mechanisms were summarized. Finally, a critical comparison of the main categories of heterogeneous catalysts is presented, while the opportunities and shortcomings of their conception and application are also discussed. |
---|---|
AbstractList | [Display omitted]
•The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and carbonaceous catalysts were discussed.•Depending on the catalyst, both radical & non-radical pathways can contribute to contaminants elimination.•Oxygen vacancies and defects, as well as metals’ presence determine the degradation mechanisms.•The leaching of metals from the catalysts was evaluated and compared to assess their suitability.
The heterogeneous, sulfate radical-based AOPs (SR-AOPs) have emerged over the last decade as a highly potent technology for the removal of various organic contaminants from water. This review aims to summarize the rapid development of the various heterogeneous catalysts developed for peroxymonosulfate (PMS) activation, destined for the degradation of organic contaminants. We cover catalysts such as metal and bi-metallic oxides, supported noble/non-noble metal catalysts, carbonaceous-based materials, layered double hydroxides, metal organic frameworks, zeolite and perovskite-based catalysts, used as effective activators for the activation of PMS. The radical and non-radical pathways, as well as the role of each radical in the reaction mechanism were discussed in detail. In addition, the physicochemical properties of the catalyst influencing the PMS activation mechanisms were summarized. Finally, a critical comparison of the main categories of heterogeneous catalysts is presented, while the opportunities and shortcomings of their conception and application are also discussed. |
ArticleNumber | 127957 |
Author | Moussavi, Gholamreza Kohantorabi, Mona Giannakis, Stefanos |
Author_xml | – sequence: 1 givenname: Mona surname: Kohantorabi fullname: Kohantorabi, Mona organization: Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran – sequence: 2 givenname: Gholamreza surname: Moussavi fullname: Moussavi, Gholamreza email: moussavi@modares.ac.ir organization: Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran – sequence: 3 givenname: Stefanos surname: Giannakis fullname: Giannakis, Stefanos organization: Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain |
BookMark | eNp9kc9uEzEQxi1UJNrCA3DzESQ2-M_u2itOVVVopSKQ6N2atWcTRxs7st2keU2eCKeBC4ee_H2j-Xlm9F2QsxADEvKeswVnvP-8XlhcLwQT1Qs1dOoVOedayUYKLs6qlrpr9NCqN-Qi5zVjrB_4cE5-X9GEO497GidaVkh9CHEHxceQq6YbLDA3FIKjFtIYQzNCxqOp9UMumeLTdo6plqaY6AoLprjEgPEx023VT4dNDDE_zhMUpB9-fv_1kYIt_jTjE937sqqore0x0ATOW5jpLi9ovbD55x0uq3xG6BbKag-HfNw4piUEb6mNocDGBwglvyWvJ5gzvvv7XpKHrzcP17fN_Y9vd9dX940VgyqN7Pgk3eg6iaJXwnHd6wl5Bxq6tlesldqNqmNatDBoprXmomeiHwYxqlbKS6JO39oUc044GevL84YlgZ8NZ-aYjFmbmow5JmNOyVSS_0duk99AOrzIfDkxWC-qeSWTrcdg0fmEthgX_Qv0H681rNg |
CitedBy_id | crossref_primary_10_1016_j_cclet_2022_01_008 crossref_primary_10_1016_j_cej_2024_149227 crossref_primary_10_1016_j_seppur_2022_121991 crossref_primary_10_1016_j_watres_2023_119577 crossref_primary_10_2139_ssrn_3991527 crossref_primary_10_1016_j_jhazmat_2021_125308 crossref_primary_10_1016_j_jcis_2025_137262 crossref_primary_10_1007_s11356_024_32059_w crossref_primary_10_1016_j_apcatb_2024_124966 crossref_primary_10_1016_j_envres_2024_120398 crossref_primary_10_1016_j_jtice_2021_11_025 crossref_primary_10_1016_j_seppur_2022_122728 crossref_primary_10_1016_j_seppur_2022_122849 crossref_primary_10_1007_s12274_023_5517_1 crossref_primary_10_1016_j_scitotenv_2023_166376 crossref_primary_10_1016_j_micromeso_2023_112735 crossref_primary_10_3390_min15030318 crossref_primary_10_1007_s11356_023_29394_9 crossref_primary_10_1016_j_cej_2024_155918 crossref_primary_10_1016_j_apsusc_2023_158864 crossref_primary_10_1016_j_jece_2024_114500 crossref_primary_10_1016_j_watres_2023_120697 crossref_primary_10_1016_j_apsusc_2023_158861 crossref_primary_10_1039_D3EN00988B crossref_primary_10_1016_j_scitotenv_2022_155063 crossref_primary_10_1016_j_colsurfa_2025_136482 crossref_primary_10_3390_molecules29071525 crossref_primary_10_1021_acsanm_2c02684 crossref_primary_10_1016_j_seppur_2024_127965 crossref_primary_10_1016_j_chemosphere_2022_136360 crossref_primary_10_1016_j_cej_2024_149352 crossref_primary_10_1016_j_jclepro_2023_137650 crossref_primary_10_3390_su17072831 crossref_primary_10_1016_j_jece_2024_112590 crossref_primary_10_1002_slct_202404504 crossref_primary_10_1080_09593330_2023_2218042 crossref_primary_10_3390_app14178075 crossref_primary_10_1016_j_watres_2023_120542 crossref_primary_10_1016_j_jcis_2025_01_203 crossref_primary_10_1016_j_cej_2023_144837 crossref_primary_10_1016_j_jclepro_2022_133926 crossref_primary_10_1016_j_scitotenv_2022_159587 crossref_primary_10_1039_D2NJ05132J crossref_primary_10_1016_j_apsusc_2024_161177 crossref_primary_10_1016_j_apcatb_2021_120786 crossref_primary_10_1016_j_cej_2022_136616 crossref_primary_10_2139_ssrn_4145442 crossref_primary_10_1016_j_apcatb_2024_124982 crossref_primary_10_1016_j_efmat_2024_07_003 crossref_primary_10_1016_j_jclepro_2023_137762 crossref_primary_10_1002_slct_202404631 crossref_primary_10_1039_D2NJ00778A crossref_primary_10_1016_j_jwpe_2024_105910 crossref_primary_10_1007_s11356_023_31567_5 crossref_primary_10_1016_j_ecoenv_2023_115435 crossref_primary_10_1016_j_envres_2023_115994 crossref_primary_10_1016_j_ceramint_2023_02_062 crossref_primary_10_1016_j_jece_2024_112466 crossref_primary_10_1016_j_jhazmat_2021_127938 crossref_primary_10_3390_w16010006 crossref_primary_10_1016_j_seppur_2024_126851 crossref_primary_10_1007_s11783_024_1894_2 crossref_primary_10_1016_j_cej_2022_135897 crossref_primary_10_1016_j_jallcom_2023_172184 crossref_primary_10_1016_j_apcatb_2023_123224 crossref_primary_10_1016_j_seppur_2024_126977 crossref_primary_10_1016_j_seppur_2022_121432 crossref_primary_10_1016_j_jenvman_2024_121970 crossref_primary_10_1016_j_jenvman_2022_115851 crossref_primary_10_1016_j_apsusc_2025_162754 crossref_primary_10_1016_j_eti_2024_103932 crossref_primary_10_1016_j_jiec_2024_06_007 crossref_primary_10_1016_j_cej_2024_151981 crossref_primary_10_1016_j_psep_2024_09_120 crossref_primary_10_1016_j_cej_2024_157179 crossref_primary_10_3390_w16131818 crossref_primary_10_1016_j_cej_2022_139901 crossref_primary_10_1016_j_apcatb_2024_123955 crossref_primary_10_1016_j_cej_2022_134695 crossref_primary_10_1016_j_cej_2023_148050 crossref_primary_10_1016_j_cej_2022_135788 crossref_primary_10_1016_j_scitotenv_2022_158799 crossref_primary_10_1016_j_cej_2022_136759 crossref_primary_10_1016_j_seppur_2024_126968 crossref_primary_10_1016_j_seppur_2022_120576 crossref_primary_10_1016_j_cej_2024_151878 crossref_primary_10_2139_ssrn_4046914 crossref_primary_10_1016_j_watres_2023_120378 crossref_primary_10_1016_j_ccr_2024_215693 crossref_primary_10_1016_j_jallcom_2022_165189 crossref_primary_10_1007_s11356_025_35950_2 crossref_primary_10_1016_j_apcatb_2024_123818 crossref_primary_10_1016_j_apsusc_2024_161158 crossref_primary_10_1016_j_dwt_2025_101024 crossref_primary_10_1016_j_cej_2024_158259 crossref_primary_10_1016_j_jcis_2024_06_224 crossref_primary_10_1016_j_cej_2024_148585 crossref_primary_10_1016_j_seppur_2022_121428 crossref_primary_10_2139_ssrn_4145277 crossref_primary_10_1016_j_cclet_2024_110244 crossref_primary_10_1016_j_cej_2024_150636 crossref_primary_10_1016_j_jcis_2023_05_023 crossref_primary_10_1016_j_scitotenv_2024_177326 crossref_primary_10_2139_ssrn_4172985 crossref_primary_10_3390_c9040107 crossref_primary_10_1016_j_cclet_2022_01_029 crossref_primary_10_1016_j_cej_2023_141885 crossref_primary_10_1016_j_envpol_2023_122059 crossref_primary_10_3390_w16243667 crossref_primary_10_1016_j_envres_2025_120779 crossref_primary_10_1016_j_jece_2024_113403 crossref_primary_10_1016_j_seppur_2025_132317 crossref_primary_10_1007_s11356_022_24983_6 crossref_primary_10_1016_j_chemosphere_2022_137346 crossref_primary_10_1016_j_carbpol_2022_119969 crossref_primary_10_1016_j_seppur_2024_131056 crossref_primary_10_1016_j_envpol_2022_118836 crossref_primary_10_3390_w15203679 crossref_primary_10_1016_j_jece_2022_107966 crossref_primary_10_1016_j_seppur_2022_121459 crossref_primary_10_1039_D3TA06102G crossref_primary_10_1002_adsu_202500108 crossref_primary_10_1016_j_seppur_2022_122773 crossref_primary_10_1016_j_efmat_2022_11_001 crossref_primary_10_1016_j_jece_2024_112424 crossref_primary_10_1039_D4MH00696H crossref_primary_10_1016_j_jece_2021_107093 crossref_primary_10_1016_j_apcatb_2022_122034 crossref_primary_10_3390_w15101849 crossref_primary_10_1016_j_jcis_2024_02_149 crossref_primary_10_2139_ssrn_4056722 crossref_primary_10_1016_j_apcatb_2022_121184 crossref_primary_10_1007_s11696_025_04006_7 crossref_primary_10_1016_j_apsusc_2023_156616 crossref_primary_10_1021_acsnano_4c18558 crossref_primary_10_1016_j_apsusc_2023_157945 crossref_primary_10_1016_j_envres_2023_115365 crossref_primary_10_3390_catal15030244 crossref_primary_10_1016_j_cej_2023_146636 crossref_primary_10_1016_j_jwpe_2024_106616 crossref_primary_10_1016_j_jece_2022_108231 crossref_primary_10_1016_j_cej_2021_131134 crossref_primary_10_1016_j_apsusc_2023_157120 crossref_primary_10_1016_j_jece_2022_108590 crossref_primary_10_1016_j_jtice_2024_105533 crossref_primary_10_1039_D3EN00911D crossref_primary_10_3390_w16162355 crossref_primary_10_1016_j_jece_2022_109204 crossref_primary_10_1016_j_seppur_2024_128424 crossref_primary_10_1016_j_apcatb_2023_122429 crossref_primary_10_1016_j_cej_2024_154668 crossref_primary_10_1016_j_cej_2024_154667 crossref_primary_10_1016_j_scitotenv_2022_158752 crossref_primary_10_1016_j_seppur_2023_124221 crossref_primary_10_1016_j_ces_2023_118979 crossref_primary_10_1016_j_envres_2024_118919 crossref_primary_10_1007_s11356_022_18929_1 crossref_primary_10_3390_w17050744 crossref_primary_10_1016_j_watres_2024_122066 crossref_primary_10_1016_j_cej_2022_141220 crossref_primary_10_3390_molecules29174120 crossref_primary_10_1016_j_seppur_2021_119441 crossref_primary_10_2166_wst_2022_371 crossref_primary_10_1016_j_watres_2022_119444 crossref_primary_10_1016_j_seppur_2021_119687 crossref_primary_10_1016_j_jece_2024_113010 crossref_primary_10_1007_s11356_022_24551_y crossref_primary_10_1016_j_jwpe_2023_104029 crossref_primary_10_1016_j_watres_2023_120614 crossref_primary_10_1016_j_jece_2022_107251 crossref_primary_10_1016_j_jece_2024_112048 crossref_primary_10_1016_j_apcatb_2023_123401 crossref_primary_10_1016_j_cclet_2023_108623 crossref_primary_10_1016_j_seppur_2022_121909 crossref_primary_10_1016_j_coche_2023_100940 crossref_primary_10_1016_j_jiec_2023_07_002 crossref_primary_10_1016_j_jallcom_2025_179798 crossref_primary_10_1016_j_jece_2024_112280 crossref_primary_10_1016_j_seppur_2021_120313 crossref_primary_10_1016_j_jclepro_2022_132781 crossref_primary_10_1016_j_jece_2025_115742 crossref_primary_10_1016_j_jwpe_2024_106711 crossref_primary_10_1039_D2NJ01458K crossref_primary_10_1007_s10924_024_03466_4 crossref_primary_10_1016_j_colsurfa_2022_129612 crossref_primary_10_2166_wst_2023_069 crossref_primary_10_1016_j_envres_2025_121149 crossref_primary_10_1039_D3EW00636K crossref_primary_10_1080_00150193_2024_2320564 crossref_primary_10_1016_j_jece_2025_115749 crossref_primary_10_3390_catal15010051 crossref_primary_10_1016_j_chphi_2024_100505 crossref_primary_10_1016_j_seppur_2024_130961 crossref_primary_10_1039_D3NJ02953K crossref_primary_10_1016_j_mex_2025_103252 crossref_primary_10_1016_j_jwpe_2024_105737 crossref_primary_10_1016_j_jhazmat_2021_128077 crossref_primary_10_1016_j_seppur_2023_125455 crossref_primary_10_1016_j_watres_2023_119957 crossref_primary_10_2139_ssrn_3987645 crossref_primary_10_1016_j_chemosphere_2021_133069 crossref_primary_10_3390_w14223754 crossref_primary_10_1016_j_molliq_2024_125607 crossref_primary_10_1016_j_jenvman_2022_117022 crossref_primary_10_1016_j_scitotenv_2024_173211 crossref_primary_10_1016_j_jece_2024_114241 crossref_primary_10_1016_j_apsusc_2023_158202 crossref_primary_10_1016_j_seppur_2021_119783 crossref_primary_10_2298_SOS230427037S crossref_primary_10_1016_j_cej_2023_143339 crossref_primary_10_1016_j_jhazmat_2024_135002 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_memsci_2023_121785 crossref_primary_10_1016_j_jece_2021_106003 crossref_primary_10_1016_j_jhazmat_2025_137606 crossref_primary_10_1021_acsami_4c14775 crossref_primary_10_1016_j_seppur_2023_124257 crossref_primary_10_1016_j_cej_2022_140282 crossref_primary_10_1016_j_colsurfa_2021_127152 crossref_primary_10_1016_j_seppur_2024_126339 crossref_primary_10_3390_catal14020127 crossref_primary_10_3390_molecules28083622 crossref_primary_10_1016_j_colsurfa_2023_130984 crossref_primary_10_1016_j_cej_2023_144774 crossref_primary_10_1016_j_chemosphere_2024_141587 crossref_primary_10_2139_ssrn_4150458 crossref_primary_10_1016_j_ica_2024_122070 crossref_primary_10_1016_j_jwpe_2024_106779 crossref_primary_10_1016_j_seppur_2025_132174 crossref_primary_10_1016_j_materresbull_2022_111924 crossref_primary_10_1021_acsomega_1c01597 crossref_primary_10_1016_j_cej_2021_131292 crossref_primary_10_1016_j_jclepro_2022_134514 crossref_primary_10_2139_ssrn_4134099 crossref_primary_10_1007_s11270_023_06202_1 crossref_primary_10_1016_j_ijbiomac_2024_136525 crossref_primary_10_1016_j_seppur_2024_126320 crossref_primary_10_1016_j_cej_2024_152568 crossref_primary_10_1016_j_cej_2025_161675 crossref_primary_10_1016_j_cej_2022_134614 crossref_primary_10_1016_j_seppur_2024_128502 crossref_primary_10_1007_s11356_022_20277_z crossref_primary_10_1007_s44297_024_00031_2 crossref_primary_10_1016_j_seppur_2023_124029 crossref_primary_10_1016_j_jclepro_2022_133420 crossref_primary_10_1039_D4EN00892H crossref_primary_10_1016_j_cej_2023_142340 crossref_primary_10_1016_j_colsurfa_2022_128674 crossref_primary_10_1021_acsestwater_2c00448 crossref_primary_10_1016_j_seppur_2021_119369 crossref_primary_10_2139_ssrn_4045300 crossref_primary_10_3390_ma15175832 crossref_primary_10_1016_j_ijbiomac_2024_134453 crossref_primary_10_1016_j_jcis_2024_06_183 crossref_primary_10_1016_j_apcatb_2023_122511 crossref_primary_10_1016_j_chemosphere_2022_136205 crossref_primary_10_1016_j_jece_2021_106267 crossref_primary_10_1016_j_jece_2023_110911 crossref_primary_10_1016_j_apt_2022_103802 crossref_primary_10_1016_j_cej_2021_132387 crossref_primary_10_1016_j_ijbiomac_2024_137844 crossref_primary_10_3390_catal13050820 crossref_primary_10_1016_j_cej_2021_132027 crossref_primary_10_1016_j_chemosphere_2024_142318 crossref_primary_10_1016_j_seppur_2024_128616 crossref_primary_10_1016_j_seppur_2021_120358 crossref_primary_10_1007_s11356_024_32416_9 crossref_primary_10_1016_j_jece_2024_113243 crossref_primary_10_1016_j_jenvman_2023_117377 crossref_primary_10_1016_j_jwpe_2023_104295 crossref_primary_10_1016_j_cej_2023_144512 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1016_j_jcis_2024_11_053 crossref_primary_10_1016_j_cej_2023_145600 crossref_primary_10_1016_j_scitotenv_2024_174456 crossref_primary_10_1016_j_wri_2022_100194 crossref_primary_10_1039_D1NJ05834G crossref_primary_10_1016_j_jece_2024_112039 crossref_primary_10_1016_j_jece_2024_114699 crossref_primary_10_1007_s11356_024_35204_7 crossref_primary_10_1016_j_chemosphere_2021_130949 crossref_primary_10_1021_acs_est_4c06725 crossref_primary_10_1016_j_colsurfa_2024_135336 crossref_primary_10_1016_j_seppur_2023_124044 crossref_primary_10_1016_j_seppur_2023_125135 crossref_primary_10_1007_s11270_024_07426_5 crossref_primary_10_1016_j_cej_2022_137904 crossref_primary_10_1016_j_cej_2022_141046 crossref_primary_10_1016_j_jclepro_2022_135500 crossref_primary_10_1016_j_desal_2023_116536 crossref_primary_10_1016_j_jece_2023_109905 crossref_primary_10_1016_j_seppur_2021_119580 crossref_primary_10_1016_j_apcatb_2022_121234 crossref_primary_10_3390_w16060875 crossref_primary_10_1016_j_chemosphere_2022_135682 crossref_primary_10_1016_j_seppur_2024_127879 crossref_primary_10_1016_j_apsusc_2023_157676 crossref_primary_10_1016_j_jwpe_2025_106940 crossref_primary_10_1016_j_cej_2025_159580 crossref_primary_10_1039_D3MA00462G crossref_primary_10_1016_j_jaap_2023_106310 crossref_primary_10_1016_j_jclepro_2024_142517 crossref_primary_10_1016_j_jenvman_2023_119548 crossref_primary_10_1016_j_jwpe_2023_104282 crossref_primary_10_1016_j_colsurfa_2022_130772 crossref_primary_10_1016_j_jtice_2023_105042 crossref_primary_10_1016_j_seppur_2021_119468 crossref_primary_10_1016_j_mcat_2023_113817 crossref_primary_10_1039_D3EW00858D crossref_primary_10_1016_j_apcatb_2022_121342 crossref_primary_10_1002_smll_202404254 crossref_primary_10_1016_j_seppur_2024_126652 crossref_primary_10_1016_j_jece_2021_107012 crossref_primary_10_1007_s11356_024_35775_5 crossref_primary_10_1007_s11356_024_35642_3 crossref_primary_10_1016_j_apcatb_2022_121589 crossref_primary_10_1016_j_apsusc_2021_149692 crossref_primary_10_1016_j_cej_2024_149379 crossref_primary_10_1016_j_apsusc_2023_157669 crossref_primary_10_1016_j_seppur_2022_121723 crossref_primary_10_1016_j_jallcom_2023_171294 crossref_primary_10_1016_j_ecoenv_2023_115592 crossref_primary_10_1016_j_jwpe_2024_106577 crossref_primary_10_1007_s11164_022_04895_3 crossref_primary_10_1016_j_seppur_2022_122047 crossref_primary_10_1007_s10854_024_13652_8 crossref_primary_10_1016_j_chemosphere_2023_140214 crossref_primary_10_1016_j_cclet_2023_109331 crossref_primary_10_1016_j_pnsc_2023_10_002 crossref_primary_10_1016_j_ijbiomac_2024_132486 crossref_primary_10_3390_catal12111452 crossref_primary_10_1007_s11270_024_07080_x crossref_primary_10_1039_D4EW00596A crossref_primary_10_1016_j_jece_2024_115042 crossref_primary_10_1016_j_seppur_2023_125710 crossref_primary_10_1007_s11356_023_29949_w crossref_primary_10_1021_acsestengg_3c00421 crossref_primary_10_1016_j_jhazmat_2022_128549 crossref_primary_10_1016_j_jcis_2024_05_035 crossref_primary_10_1039_D3EW00801K crossref_primary_10_1016_j_apsusc_2024_160545 crossref_primary_10_1016_j_cej_2022_138460 crossref_primary_10_1016_j_jwpe_2024_105016 crossref_primary_10_1016_j_jtice_2022_104279 crossref_primary_10_1016_j_seppur_2024_130458 crossref_primary_10_1016_j_seppur_2024_131300 crossref_primary_10_1016_j_seppur_2024_129106 crossref_primary_10_1016_j_scitotenv_2023_164742 crossref_primary_10_1016_j_cej_2022_138469 crossref_primary_10_1016_j_seppur_2023_124990 crossref_primary_10_1016_j_jece_2021_106989 crossref_primary_10_1016_j_seppur_2023_125961 crossref_primary_10_3390_molecules29235696 crossref_primary_10_1016_j_cej_2023_145011 crossref_primary_10_1016_j_seppur_2023_125965 crossref_primary_10_1021_acsestengg_4c00053 crossref_primary_10_1016_j_colsurfa_2022_129694 crossref_primary_10_1016_j_jenvman_2024_120040 crossref_primary_10_1016_j_seppur_2023_125967 crossref_primary_10_3390_w15152856 crossref_primary_10_1016_j_ijbiomac_2022_10_003 crossref_primary_10_1016_j_jallcom_2024_176292 crossref_primary_10_1016_j_jwpe_2023_104096 crossref_primary_10_1007_s11783_024_1769_6 crossref_primary_10_1002_adfm_202301229 crossref_primary_10_1002_apj_3156 crossref_primary_10_1021_acsestengg_1c00330 crossref_primary_10_3390_catal13081150 crossref_primary_10_1021_acs_langmuir_4c01421 crossref_primary_10_1016_j_envres_2023_116271 crossref_primary_10_3390_catal12111310 crossref_primary_10_1016_j_jhazmat_2022_129609 crossref_primary_10_1007_s10562_024_04827_3 crossref_primary_10_1021_acsestengg_4c00282 crossref_primary_10_1016_j_jece_2023_109304 crossref_primary_10_1016_j_apcata_2023_119543 crossref_primary_10_1016_j_jece_2022_108059 crossref_primary_10_1016_j_apcatb_2023_122924 crossref_primary_10_1016_j_seppur_2023_123670 crossref_primary_10_1016_j_seppur_2024_127157 crossref_primary_10_1016_j_seppur_2024_127156 crossref_primary_10_1016_j_jenvman_2024_121165 crossref_primary_10_1016_j_cej_2023_143063 crossref_primary_10_1016_j_cej_2023_146692 crossref_primary_10_1016_j_chemosphere_2023_138034 crossref_primary_10_1016_j_chemosphere_2023_138398 crossref_primary_10_1016_j_apcatb_2024_124291 crossref_primary_10_1016_j_cej_2023_143298 crossref_primary_10_1021_acs_est_2c00464 crossref_primary_10_1016_j_jenvman_2024_123207 crossref_primary_10_1016_j_cej_2023_146565 crossref_primary_10_1016_j_hazadv_2023_100286 crossref_primary_10_1016_j_watres_2022_118730 crossref_primary_10_1016_j_jhazmat_2023_132191 crossref_primary_10_1016_j_jece_2022_108286 crossref_primary_10_1016_j_cej_2022_136061 crossref_primary_10_1016_j_cej_2024_156532 crossref_primary_10_3390_molecules30051005 crossref_primary_10_1016_j_cej_2022_139699 crossref_primary_10_1016_j_jwpe_2022_103403 crossref_primary_10_1016_j_jallcom_2023_171896 crossref_primary_10_1016_j_seppur_2023_125980 crossref_primary_10_2139_ssrn_4067090 crossref_primary_10_1007_s12598_022_02170_3 crossref_primary_10_1016_j_chemosphere_2023_140491 crossref_primary_10_1016_j_cej_2023_147884 crossref_primary_10_1039_D1NR07915H crossref_primary_10_1016_j_nxnano_2024_100069 crossref_primary_10_1016_j_cej_2021_131457 crossref_primary_10_1016_j_jhazmat_2021_127247 crossref_primary_10_3390_w14142248 crossref_primary_10_1016_j_chemosphere_2023_140376 crossref_primary_10_1016_j_seppur_2021_118665 crossref_primary_10_1016_j_envres_2023_116253 crossref_primary_10_1016_j_jwpe_2024_106012 crossref_primary_10_3390_ma14185284 crossref_primary_10_1016_j_seppur_2024_130545 crossref_primary_10_1016_j_cej_2024_152043 crossref_primary_10_1021_acs_est_3c05153 crossref_primary_10_1063_5_0060141 crossref_primary_10_1016_j_micromeso_2022_111729 crossref_primary_10_1016_j_cej_2024_157976 crossref_primary_10_1016_j_jwpe_2022_102602 crossref_primary_10_1016_j_apcatb_2022_121536 crossref_primary_10_1016_j_cej_2021_132438 crossref_primary_10_1016_j_envpol_2022_119386 crossref_primary_10_1016_j_seppur_2023_124302 crossref_primary_10_1016_j_seppur_2023_125511 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1016_j_jallcom_2023_170370 crossref_primary_10_1016_j_cej_2023_143155 crossref_primary_10_1021_acssuschemeng_1c07605 crossref_primary_10_1016_j_jre_2025_01_006 crossref_primary_10_1021_acs_langmuir_4c00485 crossref_primary_10_1016_j_jclepro_2023_140098 crossref_primary_10_1021_acsestengg_1c00327 crossref_primary_10_1016_j_jece_2023_109417 crossref_primary_10_1016_j_psep_2021_11_056 crossref_primary_10_1016_j_jwpe_2023_103804 crossref_primary_10_1021_acs_cgd_4c01357 crossref_primary_10_1021_acs_est_3c06252 crossref_primary_10_1016_j_chemosphere_2022_135631 crossref_primary_10_1016_j_jallcom_2023_171234 crossref_primary_10_1021_acsestwater_4c00599 crossref_primary_10_1002_jctb_7710 crossref_primary_10_1016_j_apcatb_2024_124594 crossref_primary_10_1002_cctc_202300313 crossref_primary_10_2166_wst_2022_320 crossref_primary_10_1016_j_jclepro_2023_138263 crossref_primary_10_1016_j_cej_2022_138271 crossref_primary_10_1021_acs_est_1c06244 crossref_primary_10_1016_j_envpol_2023_121761 crossref_primary_10_1021_acs_est_3c06229 crossref_primary_10_1016_j_cej_2022_139245 crossref_primary_10_1016_j_jwpe_2022_102751 crossref_primary_10_1016_j_psep_2023_03_003 crossref_primary_10_1016_j_cej_2022_138278 crossref_primary_10_1016_j_cej_2024_150079 crossref_primary_10_1016_j_biortech_2024_130907 crossref_primary_10_1016_j_cej_2024_156981 crossref_primary_10_1016_j_cej_2022_137067 crossref_primary_10_1016_j_jhazmat_2024_135854 crossref_primary_10_1016_j_cej_2024_156501 crossref_primary_10_1039_D2NJ00497F crossref_primary_10_3390_molecules29174267 crossref_primary_10_1016_j_cej_2024_154687 crossref_primary_10_1016_j_colsurfa_2024_135610 crossref_primary_10_1016_j_jallcom_2023_172898 crossref_primary_10_1016_j_seppur_2022_120806 crossref_primary_10_1016_j_seppur_2023_124322 crossref_primary_10_1039_D3RA04296K crossref_primary_10_1016_j_chemosphere_2024_143818 crossref_primary_10_1016_j_seppur_2023_125657 crossref_primary_10_1016_j_jiec_2024_03_016 crossref_primary_10_1016_j_watres_2024_122040 crossref_primary_10_1016_j_molliq_2023_123723 crossref_primary_10_1016_j_jece_2025_115557 crossref_primary_10_1039_D2RA02970G crossref_primary_10_2166_wst_2023_375 crossref_primary_10_1016_j_jece_2023_110863 crossref_primary_10_1016_j_scitotenv_2023_162217 crossref_primary_10_1016_j_jwpe_2024_106486 crossref_primary_10_1016_j_jece_2025_115438 crossref_primary_10_1016_j_seppur_2024_128674 crossref_primary_10_1016_j_jhazmat_2024_133425 crossref_primary_10_1016_j_jclepro_2022_135117 crossref_primary_10_1016_j_cej_2024_154679 crossref_primary_10_1016_j_cjche_2022_07_032 crossref_primary_10_1016_j_chemosphere_2021_132047 crossref_primary_10_1016_j_watres_2023_119926 crossref_primary_10_1016_j_jclepro_2023_139334 crossref_primary_10_1016_j_electacta_2025_145821 crossref_primary_10_1016_j_jwpe_2025_107426 crossref_primary_10_1016_j_psep_2024_01_010 crossref_primary_10_1021_acs_est_1c01531 crossref_primary_10_1016_j_seppur_2022_121595 crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_1016_j_mtchem_2025_102581 crossref_primary_10_1016_j_apcata_2022_118679 crossref_primary_10_1016_j_jhazmat_2022_128818 crossref_primary_10_1016_j_jclepro_2021_127584 crossref_primary_10_1016_j_jwpe_2024_106056 crossref_primary_10_1016_j_seppur_2024_129083 crossref_primary_10_1016_j_cej_2024_158349 crossref_primary_10_1016_j_envres_2021_112417 crossref_primary_10_1016_j_jcis_2022_12_072 crossref_primary_10_1016_j_jece_2024_113816 crossref_primary_10_1007_s11270_025_07847_w crossref_primary_10_1016_j_cej_2022_138976 crossref_primary_10_1016_j_apcatb_2023_123197 crossref_primary_10_1002_jctb_7748 crossref_primary_10_2139_ssrn_4134859 crossref_primary_10_1021_acs_est_2c00522 crossref_primary_10_1016_j_jenvman_2023_118079 crossref_primary_10_1016_j_cej_2024_148789 crossref_primary_10_1016_j_jwpe_2025_107418 crossref_primary_10_1016_j_seppur_2022_122550 crossref_primary_10_2139_ssrn_4105299 crossref_primary_10_1016_j_jece_2024_113814 crossref_primary_10_1016_j_jssc_2023_124332 crossref_primary_10_1021_acsestengg_3c00260 crossref_primary_10_1016_j_cej_2023_143915 crossref_primary_10_1016_j_cej_2022_135474 crossref_primary_10_1039_D3CY00664F crossref_primary_10_1002_tcr_202300203 crossref_primary_10_1016_j_jece_2024_112838 crossref_primary_10_1016_j_seppur_2024_131143 crossref_primary_10_1016_j_chemosphere_2023_139610 crossref_primary_10_1021_acsestengg_4c00333 crossref_primary_10_1016_j_jece_2021_106904 crossref_primary_10_1007_s10853_022_07683_x crossref_primary_10_1016_j_inoche_2023_110823 crossref_primary_10_3390_catal12101114 crossref_primary_10_1016_j_jcis_2021_11_097 crossref_primary_10_1016_j_apcatb_2022_121704 crossref_primary_10_1016_j_chemosphere_2021_132646 crossref_primary_10_1016_j_seppur_2025_131663 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_cej_2022_135124 crossref_primary_10_1007_s11356_023_30785_1 crossref_primary_10_1016_j_jwpe_2022_103239 crossref_primary_10_1016_j_jhazmat_2024_133751 crossref_primary_10_1016_j_chemosphere_2022_137022 crossref_primary_10_1016_j_cej_2023_148348 crossref_primary_10_1016_j_jmst_2022_08_003 crossref_primary_10_1016_j_jwpe_2022_103371 crossref_primary_10_1039_D3RA04575G crossref_primary_10_1016_j_chemosphere_2022_137392 crossref_primary_10_1016_j_psep_2023_01_069 crossref_primary_10_1021_acscatal_1c02031 crossref_primary_10_2139_ssrn_4122750 crossref_primary_10_1016_j_jece_2023_110023 crossref_primary_10_1016_j_compositesb_2024_111424 crossref_primary_10_1016_j_gee_2023_10_005 crossref_primary_10_1016_j_cej_2022_136589 crossref_primary_10_1021_acsestwater_4c01148 crossref_primary_10_1016_j_chemosphere_2023_138788 crossref_primary_10_1016_j_psep_2024_10_099 crossref_primary_10_1002_smll_202308957 crossref_primary_10_1016_j_jclepro_2023_138688 crossref_primary_10_1016_j_mtbio_2024_101288 crossref_primary_10_1016_j_seppur_2023_124811 crossref_primary_10_1016_j_seppur_2023_125900 crossref_primary_10_1016_j_cej_2023_147369 crossref_primary_10_1016_j_envres_2024_119647 crossref_primary_10_1021_acsestengg_3c00210 crossref_primary_10_1016_j_jwpe_2025_107109 crossref_primary_10_1002_jctb_7300 crossref_primary_10_1016_j_cej_2022_135260 crossref_primary_10_1016_j_psep_2024_05_074 crossref_primary_10_1016_j_seppur_2022_121272 crossref_primary_10_1016_j_jclepro_2022_130714 crossref_primary_10_1016_j_chemosphere_2022_134807 crossref_primary_10_1016_j_jece_2022_109084 crossref_primary_10_1016_j_cej_2024_154185 crossref_primary_10_1016_j_jorganchem_2024_123293 crossref_primary_10_1016_j_envres_2025_120912 crossref_primary_10_1016_j_cej_2022_140613 crossref_primary_10_1016_j_matlet_2023_133833 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1016_j_jhazmat_2021_127640 crossref_primary_10_1016_j_cej_2021_133806 crossref_primary_10_1016_j_cej_2024_150826 crossref_primary_10_1016_j_jece_2022_109190 crossref_primary_10_1039_D2EN00219A crossref_primary_10_1016_j_seppur_2022_122475 crossref_primary_10_1021_acsestengg_3c00222 crossref_primary_10_1016_j_jece_2023_110120 crossref_primary_10_1016_j_jhazmat_2021_126786 crossref_primary_10_1016_j_rechem_2024_101532 crossref_primary_10_1016_j_cej_2022_136483 crossref_primary_10_1016_j_cej_2022_138428 crossref_primary_10_1016_j_seppur_2024_127088 crossref_primary_10_1016_j_cej_2022_138302 crossref_primary_10_1016_j_jscs_2024_101857 crossref_primary_10_1016_j_chemosphere_2023_139539 crossref_primary_10_1016_j_seppur_2024_130372 crossref_primary_10_1016_j_cej_2024_149831 crossref_primary_10_1016_j_apcatb_2024_124753 crossref_primary_10_1016_j_jhazmat_2021_127988 crossref_primary_10_1016_j_cej_2023_147224 crossref_primary_10_1016_j_jclepro_2023_137571 crossref_primary_10_1007_s11356_024_32729_9 crossref_primary_10_1016_j_seppur_2024_129381 crossref_primary_10_3390_catal12111359 crossref_primary_10_1016_j_jece_2023_110452 crossref_primary_10_1007_s40789_023_00659_5 crossref_primary_10_1016_j_jece_2024_112714 crossref_primary_10_1016_j_chemosphere_2021_130271 crossref_primary_10_1016_j_seppur_2024_127077 crossref_primary_10_1016_j_susmat_2025_e01322 crossref_primary_10_1021_acs_est_2c09122 crossref_primary_10_1016_j_efmat_2024_12_002 crossref_primary_10_1016_j_cej_2021_131525 crossref_primary_10_1021_acsestengg_4c00237 crossref_primary_10_15541_jim20230209 crossref_primary_10_1016_j_jenvman_2022_116895 crossref_primary_10_1016_j_jhazmat_2021_126884 crossref_primary_10_1016_j_cej_2024_148603 crossref_primary_10_3390_w15122243 crossref_primary_10_1016_j_ccr_2024_215993 crossref_primary_10_1016_j_cej_2022_136385 crossref_primary_10_1016_j_ccr_2024_215871 crossref_primary_10_1016_j_jhazmat_2025_137482 crossref_primary_10_1038_s44296_024_00046_4 crossref_primary_10_1016_j_apcatb_2023_123149 crossref_primary_10_1016_j_cej_2022_137237 crossref_primary_10_1016_j_jece_2023_111307 crossref_primary_10_1016_j_chemosphere_2023_138469 crossref_primary_10_1016_j_seppur_2024_129486 crossref_primary_10_1016_j_jece_2023_109355 crossref_primary_10_1016_j_colsurfa_2024_133721 crossref_primary_10_1038_s41545_023_00245_x crossref_primary_10_1007_s11356_025_36116_w crossref_primary_10_1016_j_jece_2024_115096 crossref_primary_10_1016_j_jhazmat_2023_132316 crossref_primary_10_1039_D3AY01808C crossref_primary_10_1016_j_chemosphere_2023_139672 |
Cites_doi | 10.1016/j.cej.2019.123933 10.1016/j.cej.2017.10.040 10.1021/acs.est.7b03007 10.1016/j.chemosphere.2018.01.079 10.1016/j.cej.2019.123726 10.1016/j.cej.2019.123604 10.1016/j.cej.2017.11.164 10.1007/s10570-020-02998-x 10.1016/j.cej.2020.125722 10.1016/j.jhazmat.2020.123039 10.1016/j.cej.2018.04.175 10.1021/es304721g 10.1021/acs.est.9b01449 10.1016/j.cej.2019.122568 10.1021/acs.est.9b05856 10.1007/s11356-017-9168-1 10.1016/j.cej.2012.05.040 10.1016/j.cej.2018.11.184 10.1016/j.cej.2017.07.155 10.1021/acs.iecr.9b00167 10.1038/ncomms2315 10.1111/j.1751-1097.1998.tb05217.x 10.1016/j.seppur.2019.115967 10.1016/j.scitotenv.2018.12.187 10.1016/j.jhazmat.2020.123297 10.1016/S1872-2067(16)62566-4 10.1016/j.apcatb.2019.117763 10.1016/j.apcata.2014.02.024 10.1002/jctb.5153 10.1039/C7TA07942G 10.1016/j.carbon.2016.06.016 10.1071/EN07045 10.1016/j.ibiod.2015.07.008 10.1016/j.seppur.2018.12.044 10.1016/j.cej.2018.09.086 10.1016/j.cej.2017.07.137 10.1021/acs.accounts.7b00535 10.1016/j.apcatb.2015.08.050 10.1021/acs.est.8b05246 10.1021/acs.est.9b07082 10.1016/j.seppur.2019.115886 10.1016/j.cattod.2011.03.005 10.1016/j.jcis.2020.07.100 10.1016/j.apcatb.2016.05.075 10.1016/j.jcis.2017.11.053 10.1016/j.chemosphere.2018.11.105 10.1016/j.chemosphere.2020.127160 10.1021/acsnano.6b02110 10.1016/j.chemosphere.2018.08.065 10.1016/j.cej.2019.05.170 10.1016/j.seppur.2017.04.045 10.1063/1.555965 10.1016/j.jcis.2017.03.004 10.1039/c3cc43401j 10.1007/s11270-017-3648-2 10.1002/smll.201403715 10.1016/j.talanta.2007.08.027 10.1021/cr500032a 10.1016/j.chemosphere.2019.05.291 10.1016/j.scitotenv.2020.140587 10.1016/j.apcatb.2014.09.004 10.1016/j.jhazmat.2019.121995 10.1016/j.cej.2018.02.045 10.1021/acs.est.8b00959 10.1016/j.apcata.2018.05.001 10.1016/j.cej.2019.06.001 10.1016/j.cej.2020.124512 10.1016/j.jes.2019.07.011 10.1016/j.cej.2018.09.064 10.1016/j.cej.2018.07.062 10.1021/ja00443a030 10.1039/C6CY01479H 10.1016/j.cej.2018.11.207 10.1016/j.jhazmat.2020.122808 10.1002/anie.200901826 10.1016/j.seppur.2020.116702 10.1002/anie.201705628 10.1016/j.biortech.2019.121954 10.1016/j.cej.2017.11.059 10.1016/j.cej.2015.05.121 10.1016/j.jpowsour.2015.01.139 10.1016/j.scitotenv.2019.133963 10.1039/C9NJ04379A 10.1016/j.cej.2016.07.027 10.1021/acsomega.9b01883 10.1016/j.cej.2019.123377 10.1016/j.cej.2017.12.069 10.1016/j.apcatb.2019.118302 10.1021/acs.est.6b02079 10.1016/j.apcatb.2019.117765 10.1016/j.cej.2020.126445 10.1016/j.cej.2018.02.125 10.1021/acsami.9b11322 10.1016/j.colsurfa.2020.124568 10.1039/C6RA24101H 10.1021/es5061512 10.1016/j.jhazmat.2016.06.004 10.1016/j.cej.2014.12.014 10.1016/j.cej.2019.123683 10.1016/j.scitotenv.2020.138299 10.1016/j.cej.2014.10.043 10.1016/j.cej.2020.124371 10.1039/C7RA04761D 10.26802/jaots.2017.0075 10.1016/j.carbon.2018.05.039 10.1016/j.apcatb.2019.118056 10.1039/C8CP02080A 10.1016/j.seppur.2017.07.046 10.1016/j.cej.2018.07.105 10.1016/j.cej.2019.123681 10.1016/j.cej.2018.11.165 10.1016/j.jtice.2015.02.027 10.1016/j.apcatb.2017.02.068 10.1016/j.cej.2017.05.168 10.1002/wer.1090 10.1016/j.apcatb.2008.10.013 10.1039/C8RA09841G 10.1021/acs.est.7b05563 10.1021/am505309b 10.1016/j.jcis.2019.03.045 10.1021/ez5002209 10.1016/j.cej.2019.01.129 10.1016/j.jhazmat.2017.01.029 10.1039/C9RA01143A 10.1016/j.cej.2019.04.188 10.1016/S1872-2067(17)62875-4 10.1016/j.chemosphere.2018.01.135 10.1016/j.jhazmat.2010.05.115 10.1016/j.cej.2014.04.104 10.1016/j.apcatb.2018.12.048 10.1016/j.cej.2018.11.120 10.1016/j.apcatb.2016.01.036 10.1016/j.seppur.2016.04.035 10.1016/j.cej.2017.07.042 10.1016/j.cej.2019.123935 10.1021/acs.est.5b03078 10.1016/j.scitotenv.2019.134715 10.1021/acs.est.8b04669 10.1016/j.apcatb.2012.09.001 10.1016/j.apcatb.2014.02.026 10.1016/j.apcatb.2018.03.088 10.1016/j.cej.2018.06.111 10.1016/j.cej.2019.123725 10.1016/j.apcatb.2020.118850 10.1039/C7RA12615H 10.1016/j.carbon.2017.01.060 10.1016/j.apcatb.2018.09.056 10.1016/j.cej.2019.03.127 10.1016/j.apcatb.2020.118601 10.1016/j.cej.2018.05.177 10.1016/j.cej.2017.07.149 10.1016/j.jhazmat.2016.06.058 10.1016/j.chemosphere.2018.04.023 10.1016/j.watres.2018.10.087 10.1021/es506362e 10.1016/j.cej.2013.07.053 10.1016/j.watres.2013.06.023 10.1016/j.cej.2019.123302 10.1016/j.apcatb.2016.01.059 10.1016/j.apcatb.2019.118250 10.1016/j.cej.2019.01.145 10.3390/atmos10120795 10.1016/j.jhazmat.2018.08.028 10.1016/j.cej.2019.123257 10.1016/j.jhazmat.2020.122316 10.1039/C7CC02820B 10.1016/j.jhazmat.2016.01.035 10.1016/j.chemosphere.2018.11.077 10.1016/j.apcatb.2016.04.003 10.1016/j.jhazmat.2020.122884 10.1016/j.cej.2019.123246 10.1016/j.seppur.2020.117246 10.1016/j.scitotenv.2019.01.190 10.1039/C9EN00500E 10.1016/j.apsusc.2017.06.118 10.1016/j.apcatb.2020.118874 10.1016/j.cej.2017.08.115 10.1016/j.cej.2019.03.097 10.1016/j.jhazmat.2019.121447 10.1016/j.cej.2018.09.111 10.1016/j.apsusc.2019.03.034 10.1016/j.jhazmat.2018.05.044 10.1016/j.seppur.2018.12.049 10.1016/j.jenvman.2020.110299 10.1016/j.apcatb.2019.118350 10.1016/j.chemosphere.2017.09.042 10.1016/j.jcis.2018.01.016 10.1016/j.chemosphere.2018.11.197 10.1016/j.cej.2017.03.036 10.1016/j.apcatb.2017.08.088 10.1007/s11164-008-0012-6 10.1016/j.biortech.2017.10.092 10.1016/j.seppur.2020.116617 10.1016/j.apcatb.2018.07.058 10.1007/s11356-017-8811-1 10.1039/C8RA05024D 10.1021/acs.est.9b07245 10.1016/j.apcatb.2017.05.051 10.1016/j.apcatb.2019.118214 10.1021/es062529n 10.1016/j.cej.2018.08.043 10.1016/j.watres.2019.05.008 10.1016/j.cej.2019.04.007 10.1016/j.apcatb.2017.07.016 10.1016/j.cej.2016.09.075 10.1016/j.cej.2017.03.117 10.1016/j.envpol.2016.10.052 10.1016/j.ces.2016.11.017 10.1016/j.jhazmat.2019.121801 10.1016/j.chemosphere.2019.124478 10.1016/j.scitotenv.2020.140388 10.1016/j.cej.2019.122768 10.1016/j.carbon.2017.01.058 10.1021/acs.est.9b04696 10.1039/C6TA09100H 10.1016/j.apcatb.2019.118129 10.1021/acs.est.9b04105 10.1016/j.cej.2019.122041 10.1039/C7TA08472B 10.1016/j.cej.2019.03.235 10.1039/C5CC05101K 10.1088/2053-1591/ab4b98 10.1021/acs.est.6b02841 10.1016/j.jhazmat.2015.04.014 10.1039/C6CY02130A 10.1016/j.catcom.2017.08.016 10.1016/j.jhazmat.2019.121518 10.1021/acscatal.6b02303 10.1016/j.cej.2020.124532 10.1016/j.cej.2016.08.117 10.1016/j.cej.2019.123056 10.1021/acs.est.9b00658 10.1016/j.cej.2018.07.117 10.1016/j.cattod.2017.12.004 10.1002/aoc.3806 10.1016/j.cej.2020.125339 10.1016/j.jhazmat.2014.05.068 10.1016/j.scitotenv.2019.04.098 10.1021/es2017363 10.1016/j.cej.2018.03.169 10.1039/b900144a 10.1016/j.apcatb.2019.02.018 10.1016/j.cej.2020.127083 10.1016/j.cej.2015.05.001 10.1016/j.jssc.2017.08.031 10.1016/j.cattod.2016.04.043 10.1039/C6RA15590A 10.1039/C5TA06563A 10.1016/j.jwpe.2019.101037 10.1016/j.scitotenv.2020.142282 10.1016/j.scitotenv.2020.136728 10.1016/j.cej.2019.122009 10.1016/j.cej.2020.124458 10.1016/j.carbon.2019.09.050 10.1016/j.apcatb.2007.11.009 10.1021/acs.est.5b01059 10.1016/j.cej.2018.04.215 10.1016/j.jhazmat.2018.04.021 10.1021/acs.iecr.9b03814 10.1016/j.cej.2019.123298 10.1016/j.jcis.2015.05.009 10.1016/j.cej.2020.125676 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.127957 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_127957 S1385894720340766 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-351f3dbd53e2672d1868fe15a8a54670438db750824a980888126026992b7433 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:14 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 23 02:42:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Radical and non-radical pathways Singlet oxygen Heterogeneous catalysts Peroxymonosulfate activation Electron transfer mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-351f3dbd53e2672d1868fe15a8a54670438db750824a980888126026992b7433 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2020_127957 crossref_primary_10_1016_j_cej_2020_127957 elsevier_sciencedirect_doi_10_1016_j_cej_2020_127957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Chen, Zhu, Li, Hu (b0210) 2020; 54 Cong, Lei, Zhao, Liu, Wang, Lu, Li, Xu, Gao (b0860) 2017; 256 Xu, Quan, Chen (b0360) 2019; 217 Li, Li, Ai, Jia, Zhang (b1150) 2018; 57 Tan, Gao, Deng, Deng, Zhou, Li, Xin (b0260) 2014; 276 Gong, Chen, Yang, Luo, Yao, Wang, Wang, Wu, Li, Wang, Zeng (b0580) 2017; 321 Chen, Chen, Qiao, Wang, Cai (b0295) 2008; 80 Duan, Sun, Ao, Zhou, Wang, Wang (b1205) 2016; 107 Hong, Zhou, Xiong, Liu, Yao, Lai (b0620) 2020; 391 Lashkaryani, Kakavandi, Kalantary, Jafari, Gholami (b0100) 2019 Li, Sun, Huang, Xue, Zhu, Wang, Liu (b0410) 2020; 88 Wu, He, Inthapanya, Yang, Lu, Zeng, Han (b0960) 2017; 24 Ji, Li, Wei, Yu (b0300) 2013; 231 Fang, Liu, Gao, Dionysiou, Zhou (b1090) 2015; 49 Martinez, Sik, Chignell (b1310) 1998; 67 Fanaei, Moussavi, Srivastava, Sillanpää (b0020) 2019; 371 Zhu, Zhu, Zhang, Lu, Qiu (b0640) 2019; 9 Zhou, Li, Zhao, Liu, Yu, Jiang, Jiao (b0645) 2019; 30 Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (b0945) 2016; 50 Lin, Chang (b0855) 2015; 53 Wang, Nie, Ji, Quan, Chen, Wang, Yu, Guo (b1010) 2019; 6 Ma, Wang, Tong, Zhang, Lin, Han, Du (b0920) 2018; 137 Hammouda, Zhao, Safaei, Ramasamy, Doshi, Sillanpää (b0715) 2018; 233 Wu, Lin, Yang, Du, Teng, Ma, Zhang, Nie, Zhong (b0730) 2019; 237 Tian, Dong, Chen, Li, Xie (b1120) 2020; 250 Liang, Zhang, Duan, Sun, Liu, Tade, Wang (b0850) 2017; 4 Lu, Wang, Chen, Yu, Ye, Quan (b0735) 2018; 353 Tian, Gao, Nie, Yang, Zhou, Li, Wang (b0045) 2017; 53 Lu, Min, Qin, Shi, Wu, Fan, Min, Xu (b0970) 2021; 752 Mian, Liu, Fu, Song (b1125) 2019; 255 T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation, Catal. Sci. Technol. 7 (2) (2017) 396-404. https://doi.org/10.1039/C6CY02130A. Rao, Han, Chen, Wang, Xue, Wang, Pu (b0680) 2019; 218 Su, Duan, Miao, Zhong, Zhou, Wang, Shao (b0700) 2017; 7 Liu, Zhao, Shao, Cui (b0495) 2015; 262 Yang, Jiang, Lu, Ma, Liu (b1320) 2015; 49 Wang, Wang (b1080) 2020; 385 Xiao, Ye, Wei, Luo, Yang, Spinney (b1220) 2015; 49 Wang, Xu, Wang (b1015) 2019; 375 M. Kohantorabi, M. Hosseinifard, A. Kazemzadeh, Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal, New j. Chem. 44 (10) (2020) 4185-4198. https://doi.org/10.1039/C9NJ04379A. Li, Wang, Zhang, Rykov, Ahmed, Wang (b0820) 2016; 181 Oh, Dong, Lim (b0175) 2017; 280 Yao, Yu, Wang, Zou, Lu, Ai, Alharbi, Alsaedi, Hayat, Wang (b0610) 2017; 307 Su, Acik, Takai, Lu, Hao, Zheng, Wu, Bao, Enoki, Chabal, Loh (b1215) 2012; 3 Zhao, An, Feng, Ren, Ma (b0280) 2019; 53 Yu, Zhang, Zeng, Wang, Sun, Chen, Song, Shi (b0545) 2019; 213 Nguyen, Nguyen, Chen, Hung, Huang, Dong (b1105) 2019; 292 L. Zhang, T. Tong, N. Wang, W. Ma, B. Sun, J. Chu, K. A. Lin, Y. Du, Facile synthesis of yolk-shell Mn3O4 microspheres as a high-performance peroxymonosulfate activator for bisphenol A degradation, Ind. Eng. Chem. Res. 58 (47) (2019) 21304-21311. https://doi.org/10.1021/acs.iecr.9b03814. Duan, O'Donnell, Sun, Wang, Wang (b0985) 2015; 11 Yang, Qiu, Jin, Dzakpasu, Wang, Zhang, zhang, Yang, Ding, Wang, Wu (b0830) 2018; 353 K. J. Rudzinski, R. Szmigielski, Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context. Atmosphere, 10 (2019) 795. https://doi.org/10.3390/atmos10120795. Ahn, Bae, Kim, Kim, Kim, Lee, Lee (b0795) 2019; 241 Royer, Duprez, Can, Courtois, Batiot-Dupeyrat, Laassiri, Alamdari (b0765) 2014; 114 Shukla, Sun, Wang, Ang, Tadé (b0485) 2011; 175 Chen, Zhu, Wang, Zhang, Qiu, Yin, Zhao (b0745) 2020; 385 Duan, Ao, Sun, Zhou, Wang, Wang (b0955) 2015; 51 Frank, Zhang, Blume, Schlögl, Su (b0200) 2009; 48 Wang, Wang (b1140) 2018; 334 Wang, Kang, Liang, Zhang, Sun, Tadé, Wang (b1025) 2017; 4 Li, Wu, Chen, Zhang, Xu, Wang, Wang, Sun (b0430) 2020; 256 Zeng, Deng, Zhang, Zhou, Shi (b0655) 2020; 400 Yang, Huang, Wu, Li, Dong, Li, Zhu, Duan, Dionysiou (b0140) 2020; 260 Wu, Zhao, Huang, Zhang (b0935) 2020; 381 Liang, Sun, Patel, Shukla, Zhu, Wang (b0505) 2012; 127 Ren, Zhou, Zhu, Jiang, Wei, Niu, Fu, Qiu (b0040) 2015; 104 X. Zhang, J. Zhang, X. Huang, Q. P. Wu, C. H. Yan, J. F. Lu, Efficient peroxymonosulfate activation by Zn/Fe metal–organic framework‐derived ZnO/Fe3O4@carbon spheres for the degradation of Acid Orange 7, Water. Environ. Res. 91 (2019) 634-641. https://doi.org/10.1002/wer.1090. Qi, Ge, Zhang, Jiang, Wang, Akram, Xu (b1045) 2020; 399 Chen, Ding, Liu, Cai, Qu, Yang, Gao, Cai (b0015) 2018; 334 Wang, Shao, Gao, Chu, Chen, Lu, Zhu, An (b0055) 2017; 189 Zhu, Li, Kang, Duan, Wang (b0150) 2019; 53 Shao, Zhao, Wang, Mao, Wang, Qiao, Zhao, Zhu (b0110) 2017; 218 Chen, He, Liu, Li, Zeng, Xia, Yang (b0885) 2018; 249 Wang, Gong, Ali, Shen, Cai, Zhou, Liao, Wang, Chen (b1165) 2020; 390 Giannakis, Lin, Ghanbari (b0080) 2021; 406 Luo, Li, Wang, Zhang, Nasir Khan, Sun, Shen, Han, Wang, Li (b0155) 2019; 148 Gu, Sun, Liu, Dong, Yang (b0310) 2014; 4 Rao, Zhang, Han, Guo, Huang, Li, Qi, Ma (b1170) 2018; 352 Tang, Zhang, Guo (b0330) 2015; 454 Hammouda, Zhao, Safaei, Srivastava, Lakshmi Ramasamy, Iftekhar, kalliola, Sillanpää (b0675) 2017; 215 Fu, Zhang, Zhao, Zhang, Nie, Zhang, Lu (b0890) 2020; 230 Gao, Tian, Nie, Yang, Zhou, Wang (b0750) 2019; 359 Wang, Shen, Gong, Wang, Cai, Wang, Chen (b1070) 2020; 714 Guan, Jiang, Pang, Chen, Webster, Lim (b1240) 2020; 387 Fan, Zhao, Ding, Liu (b0320) 2018; 8 Wang, Ma, Ren, Du, Xu, Han (b0195) 2018; 6 Zhou, Zhang, Hu (b0415) 2020; 597 Xu, Jiang, Wang, Wang, Song, Chen, Ma, Zhang (b1035) 2020; 263 Li, Wan, Ma, Wang, Chen, Guan (b0800) 2016; 318 Gan, Hou, Liang, Qiu, Tao, Yang, Yu, Xiao, Liu, Hu, Wang, Yang (b1075) 2020; 725 Chen, Deng, Ye, Xu, Huai, Li, Li (b0435) 2020; 742 Duan, Sun, Wang (b0630) 2018; 51 Xu, Wang, Ma, Zhang, Lu, Chen (b1340) 2018; 238 Rodriguez-Chueca, Giannakis, Marjavonic, Kohantorabi, Gholami, Grandjean, de Alencastro, Pulgarin (b0035) 2019; 248 X. Dong, X. Duan, Z. Sun, X. Zhang, C. Li, S. Yang, B. Ren, S. Zheng, D. D. Dionysiou, Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis, Appl. Catal. B: Environ. 261 (2020) 118214. https://doi.org/j.apcatb.2019.118214. Hou, Li, Yang, Chen, Wang, Ma, Wu, Zhu, Huang, Wang (b0585) 2019; 663 J. Deng, S. Feng, K. Zhang, J. Li, H. Wang, T. Zhang, X. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J. 308 (2017) 505-515. https://doi.org/10.1016/j.cej.2016.09.075. Yang, Wang, Shi, Wu, Min, Xu, Guo (b1040) 2020; 384 Wilkinson, Helman, Ross (b1280) 1995; 24 Hu, Tong, Li, Xie, Chen, Wen, Feng, Wang, Li, Wang, Zhang (b1085) 2020; 388 Yao, Cai, Wu, Wei, Li, Chen, Wang (b0365) 2015; 296 Long, Huang, Wu, Shi, Xiao (b1275) 2019; 369 Lin, Wu, Yang, Chen, Li (b0720) 2019; 245 Fan, Qin, Jiang (b1130) 2019; 359 Wang, Ao, Sun, Duan, Wang (b1200) 2016; 198 Zaeni, Lim, Wang, Ding, Chua, Ng, Oh (b1055) 2020; 241 Zhao, An, Dong, Feng, Wei, Ren, Ma (b0270) 2020; 388 Shah, Khan, Sayed, Khan, Rizwan, Muhammad, Boczkaj, Murtaza, Imran, Khan, Zaman (b1305) 2018; 351 Liu, Guo, Zhang, Tang, Cheng, Li (b0425) 2018; 343 Yang, Wu, Liu, Chen, Ahmed, Zhu (b1135) 2018; 350 Khan, He, Shah, Khan, Hapeshi, Fatta-Kassinos, Dionysiou (b1315) 2014; 252 Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (b0965) 2019; 159 Lin, Chen, Lin (b0690) 2017; 160 Guan, Ma, Li, Fang, Chen (b0075) 2011; 45 Zhu, Xu, Zhu, Liu, Wang (b0065) 2020; 384 Huang, Wang, Yang, Guo, Yu (b0340) 2017; 51 Pang, Kong, Chen, Yuvaraja, Mehmood (b1270) 2020; 384 Chu, Tan, Shen, Liu, Han, Kang, Duan, Wang, Liu, Liu (b0685) 2018; 356 Li, Tian, Zhu, Cui, Zhu, Duan, Wang (b1175) 2018; 354 Deng, Feng, Ma, Tan, Wang, Zhou, Zhang, Li (b0335) 2016; 167 Nie, Huang, Hu, Ding, Han, Tang (b0420) 2017; 38 Yang, Choi, Al-Abed, Dionysiou (b1335) 2009; 88 X. Li, A. I. Rykov, B. Zhang, Y. Zhang, J. Wang, Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate, Catal. Sci. Technol. 6 (2016) 7486-7494. https://doi.org/10.1039/C6CY01479H. Zhu, Zhu, Jiang, Zhang, Wang, Zhu, Zhang (b0225) 2017; 209 Guo, Wang, Yang, Fida, You, Zhou (b1185) 2020; 262 Zhu, Yang, Duan, Zhang, Wang, Yuan, Fu (b0915) 2020; 397 Lee, von Gunten, Kim (b1225) 2020; 54 Zou, Wang, Chen, Yao, Ai, Liu, Hayat, Alsaedi, Alharbi, Wang (b0605) 2016; 219 He, Zhang, Zhou, Yao, Lai (b0060) 2020; 380 Ma, Wang, Fan, Tong, Han, Du (b0190) 2018; 336 Zhang, Li, Lyu, Hu (b0470) 2020; 270 Yu, Zeng, Wang, Zhang, Sun, Chen, Song, Li, Shi (b0560) 2020; 394 Li, Wu, Peng, Fang, Liu (b0105) 2019; 356 Yuan, Hu, Yu, Wang, Wang, Fang (b0525) 2018; 198 T. Zhang, H. B. Zhu, J. P. Croue, Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism, Environ. Sci. Technol. 47 (2013) 2784-2791. https://doi.org/10.1021/es304721g. Zhang, Ding, Tang (b0740) 2015; 264 Oh, Dong, Lim (b0050) 2016; 194 Chen, Zuo, Yang, Cai, Ding (b0095) 2019; 359 Hu, Zhang, Wang, Sun, Liu, Wang (b0515) 2017; 326 Y. Wang, H. Sun, H. M. Ang, M. O. Tade, S. Wang, Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate, ACS Appl. Mater. Interfaces. 22 (2014) 19914-19923. https://doi.org/10.1021/am505309b. Guo, Nengzi, Chen, Li, Zhang, Cheng (b0650) 2020; 398 Qin, Fang, Wang, Zhou (b0370) 2018; 348 Fan, Zhou, Feng, Zhou, Wen, Shih (b0070) 2020; 383 Du, Ma, Liu, Zou, Ma (b0475) 2016; 308 Zhu, Wang, Shan, Zhang, Lv, Pan (b1180) 2019; 375 L. Peng, X. Gong, X. Wang, Z. Yang, Y. Liu, In situ growth of ZIF-67 on a nickel foam as a three-dimensional heterogeneous catalyst for peroxymonosulfate activation, RSC Adv. 8 (2018) 26377-26382. https://doi.org/10.1039/C8RA05024D. Ding, Yang, Chen, Cai (b1230) 2020; 392 Pang, Guo, Zhang, Xu, Qi (b0695) 2016; 304 L. Luo, Y. Wang, M. Zhu, X. Cheng, X. hang, X. Meng, X. Huang, H. Hao, Co–Cu–Al Layered Double Oxides as Heterogeneous Catalyst for Enhanced Degradation of Organic Poll Rodriguez-Chueca (10.1016/j.cej.2020.127957_b0035) 2019; 248 Liu (10.1016/j.cej.2020.127957_b0980) 2016; 187 Zhou (10.1016/j.cej.2020.127957_b0645) 2019; 30 Qin (10.1016/j.cej.2020.127957_b1155) 2020; 398 Du (10.1016/j.cej.2020.127957_b0975) 2020; 262 Gong (10.1016/j.cej.2020.127957_b0580) 2017; 321 Yao (10.1016/j.cej.2020.127957_b0025) 2017; 330 Gao (10.1016/j.cej.2020.127957_b0750) 2019; 359 Li (10.1016/j.cej.2020.127957_b1150) 2018; 57 Yu (10.1016/j.cej.2020.127957_b0560) 2020; 394 Huang (10.1016/j.cej.2020.127957_b0220) 2018; 560 Li (10.1016/j.cej.2020.127957_b0275) 2019; 233 Shah (10.1016/j.cej.2020.127957_b1305) 2018; 351 Wu (10.1016/j.cej.2020.127957_b0960) 2017; 24 Westerhoff (10.1016/j.cej.2020.127957_b1330) 2007; 41 Yuan (10.1016/j.cej.2020.127957_b0525) 2018; 198 Guo (10.1016/j.cej.2020.127957_b0650) 2020; 398 Wang (10.1016/j.cej.2020.127957_b1210) 2017; 115 Zeng (10.1016/j.cej.2020.127957_b0590) 2018; 515 Royer (10.1016/j.cej.2020.127957_b0765) 2014; 114 Jawad (10.1016/j.cej.2020.127957_b0445) 2020; 54 Yin (10.1016/j.cej.2020.127957_b0780) 2020; 390 Ziajka (10.1016/j.cej.2020.127957_b1245) 2007; 4 Yao (10.1016/j.cej.2020.127957_b0610) 2017; 307 Chen (10.1016/j.cej.2020.127957_b0635) 2019; 695 Zhang (10.1016/j.cej.2020.127957_b0740) 2015; 264 Chen (10.1016/j.cej.2020.127957_b0170) 2018; 345 Yang (10.1016/j.cej.2020.127957_b1335) 2009; 88 Zhang (10.1016/j.cej.2020.127957_b0185) 2020; 156 Neta (10.1016/j.cej.2020.127957_b0600) 1977; 99 Duan (10.1016/j.cej.2020.127957_b0985) 2015; 11 Liu (10.1016/j.cej.2020.127957_b0705) 2019; 545 Shukla (10.1016/j.cej.2020.127957_b0485) 2011; 175 Lin (10.1016/j.cej.2020.127957_b0770) 2018; 229 Wang (10.1016/j.cej.2020.127957_b1200) 2016; 198 Frank (10.1016/j.cej.2020.127957_b0200) 2009; 48 Ouyang (10.1016/j.cej.2020.127957_b1100) 2019; 370 Long (10.1016/j.cej.2020.127957_b1275) 2019; 369 Kappler (10.1016/j.cej.2020.127957_b1095) 2014; 1 Fu (10.1016/j.cej.2020.127957_b0890) 2020; 230 Shao (10.1016/j.cej.2020.127957_b0110) 2017; 218 Lee (10.1016/j.cej.2020.127957_b0945) 2016; 50 Guo (10.1016/j.cej.2020.127957_b1185) 2020; 262 10.1016/j.cej.2020.127957_b0550 Zhu (10.1016/j.cej.2020.127957_b0640) 2019; 9 Saputa (10.1016/j.cej.2020.127957_b0160) 2020; 16 Wang (10.1016/j.cej.2020.127957_b1025) 2017; 4 Liang (10.1016/j.cej.2020.127957_b0505) 2012; 127 Wang (10.1016/j.cej.2020.127957_b0710) 2019; 673 Chen (10.1016/j.cej.2020.127957_b0380) 2016; 6 Musa (10.1016/j.cej.2020.127957_b1285) 2009; 11 10.1016/j.cej.2020.127957_b0315 Wang (10.1016/j.cej.2020.127957_b0290) 2020; 387 Li (10.1016/j.cej.2020.127957_b0930) 2020; 262 Duan (10.1016/j.cej.2020.127957_b0955) 2015; 51 Mahdi Ahmed (10.1016/j.cej.2020.127957_b1290) 2012; 197 Lu (10.1016/j.cej.2020.127957_b0735) 2018; 353 Wang (10.1016/j.cej.2020.127957_b1010) 2019; 6 Hu (10.1016/j.cej.2020.127957_b0350) 2018; 212 Liu (10.1016/j.cej.2020.127957_b0495) 2015; 262 Yun (10.1016/j.cej.2020.127957_b1020) 2018; 52 Li (10.1016/j.cej.2020.127957_b0665) 2020; 398 Ma (10.1016/j.cej.2020.127957_b0190) 2018; 336 Chen (10.1016/j.cej.2020.127957_b0450) 2019; 213 Lin (10.1016/j.cej.2020.127957_b0725) 2017; 497 Guo (10.1016/j.cej.2020.127957_b0240) 2019; 218 Tian (10.1016/j.cej.2020.127957_b0045) 2017; 53 Lin (10.1016/j.cej.2020.127957_b0855) 2015; 53 Rao (10.1016/j.cej.2020.127957_b1170) 2018; 352 Guan (10.1016/j.cej.2020.127957_b0075) 2011; 45 Zaeni (10.1016/j.cej.2020.127957_b1055) 2020; 241 10.1016/j.cej.2020.127957_b0090 Li (10.1016/j.cej.2020.127957_b0510) 2017; 422 Liu (10.1016/j.cej.2020.127957_b0425) 2018; 343 Duan (10.1016/j.cej.2020.127957_b0670) 2018; 220 Duan (10.1016/j.cej.2020.127957_b1205) 2016; 107 Oh (10.1016/j.cej.2020.127957_b0175) 2017; 280 10.1016/j.cej.2020.127957_b0530 Wilkinson (10.1016/j.cej.2020.127957_b1280) 1995; 24 Wu (10.1016/j.cej.2020.127957_b0870) 2018; 514 Huang (10.1016/j.cej.2020.127957_b0340) 2017; 51 Ho (10.1016/j.cej.2020.127957_b0965) 2019; 159 Li (10.1016/j.cej.2020.127957_b0285) 2020; 385 Tan (10.1016/j.cej.2020.127957_b0085) 2019; 363 10.1016/j.cej.2020.127957_b0535 Yang (10.1016/j.cej.2020.127957_b1320) 2015; 49 Tan (10.1016/j.cej.2020.127957_b0260) 2014; 276 Abdul Nasir Khan (10.1016/j.cej.2020.127957_b0905) 2019; 363 Liu (10.1016/j.cej.2020.127957_b1260) 2010; 181 Ma (10.1016/j.cej.2020.127957_b0920) 2018; 137 Zhu (10.1016/j.cej.2020.127957_b0915) 2020; 397 Pang (10.1016/j.cej.2020.127957_b1270) 2020; 384 Gan (10.1016/j.cej.2020.127957_b1075) 2020; 725 Guan (10.1016/j.cej.2020.127957_b1240) 2020; 387 10.1016/j.cej.2020.127957_b0660 Mian (10.1016/j.cej.2020.127957_b1115) 2020; 392 Lee (10.1016/j.cej.2020.127957_b1225) 2020; 54 Duan (10.1016/j.cej.2020.127957_b0630) 2018; 51 Zhou (10.1016/j.cej.2020.127957_b0345) 2018; 197 Lin (10.1016/j.cej.2020.127957_b0720) 2019; 245 Jaafarzadeh (10.1016/j.cej.2020.127957_b0390) 2017; 320 Cong (10.1016/j.cej.2020.127957_b0860) 2017; 256 Deng (10.1016/j.cej.2020.127957_b0520) 2019; 658 Liu (10.1016/j.cej.2020.127957_b1030) 2019; 356 Ren (10.1016/j.cej.2020.127957_b0040) 2015; 104 Li (10.1016/j.cej.2020.127957_b0820) 2016; 181 Yang (10.1016/j.cej.2020.127957_b0140) 2020; 260 Zhan (10.1016/j.cej.2020.127957_b0760) 2020; 54 10.1016/j.cej.2020.127957_b1160 Pang (10.1016/j.cej.2020.127957_b0695) 2016; 304 Li (10.1016/j.cej.2020.127957_b1175) 2018; 354 Stoyanova (10.1016/j.cej.2020.127957_b0460) 2014; 476 Lu (10.1016/j.cej.2020.127957_b0595) 2019; 357 Mian (10.1016/j.cej.2020.127957_b1125) 2019; 255 Deng (10.1016/j.cej.2020.127957_b0440) 2017; 330 Gao (10.1016/j.cej.2020.127957_b0210) 2020; 54 Jiang (10.1016/j.cej.2020.127957_b1190) 2020; 384 Du (10.1016/j.cej.2020.127957_b0475) 2016; 308 Chen (10.1016/j.cej.2020.127957_b0745) 2020; 385 Lashkaryani (10.1016/j.cej.2020.127957_b0100) 2019 Li (10.1016/j.cej.2020.127957_b0815) 2018; 337 Wu (10.1016/j.cej.2020.127957_b0230) 2019; 480 Li (10.1016/j.cej.2020.127957_b0455) 2015; 279 Bao (10.1016/j.cej.2020.127957_b0880) 2018; 353 Oh (10.1016/j.cej.2020.127957_b1050) 2019; 374 Zhou (10.1016/j.cej.2020.127957_b1195) 2019; 374 Duan (10.1016/j.cej.2020.127957_b0180) 2016; 188 Gao (10.1016/j.cej.2020.127957_b0995) 2018; 52 Li (10.1016/j.cej.2020.127957_b0205) 2020; 240 Guan (10.1016/j.cej.2020.127957_b0355) 2013; 47 Ahn (10.1016/j.cej.2020.127957_b0795) 2019; 241 Ye (10.1016/j.cej.2020.127957_b0215) 2020; 269 Huang (10.1016/j.cej.2020.127957_b0010) 2018; 360 Deng (10.1016/j.cej.2020.127957_b0325) 2017; 330 Feng (10.1016/j.cej.2020.127957_b0005) 2015; 280 Chen (10.1016/j.cej.2020.127957_b0885) 2018; 249 Khan (10.1016/j.cej.2020.127957_b0120) 2017; 329 Li (10.1016/j.cej.2020.127957_b0800) 2016; 318 Yuan (10.1016/j.cej.2020.127957_b1300) 2018; 313 Shahzad (10.1016/j.cej.2020.127957_b0625) 2020; 392 Kohantorabi (10.1016/j.cej.2020.127957_b0940) 2017; 31 Tang (10.1016/j.cej.2020.127957_b0330) 2015; 454 Hu (10.1016/j.cej.2020.127957_b0515) 2017; 326 Liu (10.1016/j.cej.2020.127957_b0115) 2020; 399 Wang (10.1016/j.cej.2020.127957_b1165) 2020; 390 Wang (10.1016/j.cej.2020.127957_b1015) 2019; 375 Wang (10.1016/j.cej.2020.127957_b1070) 2020; 714 Peller (10.1016/j.cej.2020.127957_b1295) 2009; 35 Xiao (10.1016/j.cej.2020.127957_b1220) 2015; 49 Chen (10.1016/j.cej.2020.127957_b0400) 2020; 711 Su (10.1016/j.cej.2020.127957_b0700) 2017; 7 Ding (10.1016/j.cej.2020.127957_b1230) 2020; 392 Zhu (10.1016/j.cej.2020.127957_b1180) 2019; 375 Zhang (10.1016/j.cej.2020.127957_b0465) 2019; 372 Liu (10.1016/j.cej.2020.127957_b0925) 2021; 581 Wang (10.1016/j.cej.2020.127957_b1140) 2018; 334 Su (10.1016/j.cej.2020.127957_b1215) 2012; 3 Yang (10.1016/j.cej.2020.127957_b1040) 2020; 384 10.1016/j.cej.2020.127957_b0865 Wu (10.1016/j.cej.2020.127957_b0935) 2020; 381 Liu (10.1016/j.cej.2020.127957_b0950) 2017; 184 Zhang (10.1016/j.cej.2020.127957_b1000) 2008; 74 Wang (10.1016/j.cej.2020.127957_b0195) 2018; 6 Fan (10.1016/j.cej.2020.127957_b1130) 2019; 359 Li (10.1016/j.cej.2020.127957_b0410) 2020; 88 Zhang (10.1016/j.cej.2020.127957_b0470) 2020; 270 Wang (10.1016/j.cej.2020.127957_b0055) 2017; 189 Du (10.1016/j.cej.2020.127957_b0395) 2019; 376 Ahn (10.1016/j.cej.2020.127957_b0790) 2016; 50 Ma (10.1016/j.cej.2020.127957_b1145) 2015; 280 Zheng (10.1016/j.cej.2020.127957_b0540) 2019; 259 Luo (10.1016/j.cej.2020.127957_b0155) 2019; 148 Xu (10.1016/j.cej.2020.127957_b1340) 2018; 238 Hong (10.1016/j.cej.2020.127957_b0620) 2020; 391 10.1016/j.cej.2020.127957_b0835 Wang (10.1016/j.cej.2020.127957_b0900) 2015; 49 Yang (10.1016/j.cej.2020.127957_b0830) 2018; 353 Wu (10.1016/j.cej.2020.127957_b0730) 2019; 237 Oh (10.1016/j.cej.2020.127957_b0050) 2016; 194 Fu (10.1016/j.cej.2020.127957_b0385) 2019; 360 Han (10.1016/j.cej.2020.127957_b0125) 2020; 232 Mandal (10.1016/j.cej.2020.127957_b1250) 2018; 21 Zhu (10.1016/j.cej.2020.127957_b0225) 2017; 209 Chu (10.1016/j.cej.2020.127957_b0685) 2018; 356 10.1016/j.cej.2020.127957_b1255 Chen (10.1016/j.cej.2020.127957_b0015) 2018; 334 Wang (10.1016/j.cej.2020.127957_b0555) 2017; 328 Cheng (10.1016/j.cej.2020.127957_b0755) 2020; 384 Hong (10.1016/j.cej.2020.127957_b0615) 2019; 370 Ding (10.1016/j.cej.2020.127957_b0030) 2016; 317 Martinez (10.1016/j.cej.2020.127957_b1310) 1998; 67 Deng (10.1016/j.cej.2020.127957_b0335) 2016; 167 Wang (10.1016/j.cej.2020.127957_b1080) 2020; 385 Saputra (10.1016/j.cej.2020.127957_b0480) 2014; 154-155 Sun (10.1016/j.cej.2020.127957_b0990) 2013; 49 Fang (10.1016/j.cej.2020.127957_b1090) 2015; 49 Wang (10.1016/j.cej.2020.127957_b0305) 2015; 164 Zhou (10.1016/j.cej.2020.127957_b0415) 2020; 597 Li (10.1016/j.cej.2020.127957_b0430) 2020; 256 Zhu (10.1016/j.cej.2020.127957_b0150) 2019; 53 Yu (10.1016/j.cej.2020.127957_b0545) 2019; 213 10.1016/j.cej.2020.127957_b0490 Tokudome (10.1016/j.cej.2020.127957_b0565) 2016; 10 Fan (10.1016/j.cej.2020.127957_b0320) 2018; 8 10.1016/j.cej.2020.127957_b0375 10.1016/j.cej.2020.127957_b0135 10.1016/j.cej.2020.127957_b0255 10.1016/j.cej.2020.127957_b0250 Li (10.1016/j.cej.2020.127957_b0805) 2019; 9 He (10.1016/j.cej.2020.127957_b0060) 2020; 380 Yao (10.1016/j.cej.2020.127957_b0365) 2015; 296 10.1016/j.cej.2020.127957_b0130 Hu (10.1016/j.cej.2020.127957_b0895) 2017; 38 Tian (10.1016/j.cej.2020.127957_b1120) 2020; 250 Xu (10.1016/j.cej.2020.127957_b0360) 2019; 217 Zhao (10.1016/j.cej.2020.127957_b0270) |
References_xml | – volume: 53 start-page: 6589 year: 2017 end-page: 6592 ident: b0045 article-title: A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water publication-title: Chem. Commun. – reference: J. Lim, J. M. Lee, C. Kim, S. J. Hwang, J. Lee, W. Choi, Two-dimensional RuO2 nanosheets as robust catalysts for peroxymonosulfate activation, Environ. Sci: Nano. 6 (2019) 2084-2093. https://doi.org/10.1039/C9EN00500E. – volume: 515 start-page: 92 year: 2018 end-page: 100 ident: b0590 article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling publication-title: J. Colloid Interface Sci. – volume: 403 start-page: 126445 year: 2021 ident: b1265 article-title: A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants publication-title: Chem. Eng. J. – volume: 104 start-page: 384 year: 2015 end-page: 390 ident: b0040 article-title: Effect of sulfate radical oxidation on disintegration of waste activated sludge publication-title: Int. Biodeterior. Biodegrad. – volume: 752 start-page: 142282 year: 2021 ident: b0970 article-title: Preparation of nitrogen self-doped hierarchical porous carbon with rapid-freezing support for cooperative pollutant adsorption and catalytic oxidation of persulfate publication-title: Sci. Total Environ. – volume: 7 start-page: 388 year: 2017 end-page: 397 ident: b0700 article-title: Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study publication-title: ACS Catal. – volume: 41 start-page: 4640 year: 2007 end-page: 4646 ident: b1330 article-title: Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Other Dissolved Organic Matter Isolates publication-title: Environ. Sci. Technol. – volume: 695 start-page: 133963 year: 2019 ident: b0635 article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide publication-title: Sci. Total Environ. – volume: 218 start-page: 299 year: 2019 end-page: 307 ident: b0680 article-title: Efficient degradation of diclofenac by LaFeO publication-title: Chemosphere – volume: 10 start-page: 5550 year: 2016 end-page: 5559 ident: b0565 article-title: Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry publication-title: ACS Nano – volume: 392 start-page: 122316 year: 2020 ident: b0625 article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides publication-title: J. Hazard. Mater. – volume: 231 start-page: 434 year: 2013 end-page: 440 ident: b0300 article-title: Efficient performance of porous F publication-title: Chem. Eng. J. – volume: 385 start-page: 123935 year: 2020 ident: b0745 article-title: 3D hollow sphere-like Cu-incorporated LaAlO publication-title: Chem. Eng. J. – volume: 280 start-page: 514 year: 2015 end-page: 524 ident: b0005 article-title: Efficient degradation of sulfamethazine with CuCo publication-title: Chem. Eng. J. – volume: 260 start-page: 118129 year: 2020 ident: b0140 article-title: Rapid removal of tetrabromobisphenol A by α-Fe publication-title: Appl. Catal. B – volume: 48 start-page: 6913 year: 2009 end-page: 6917 ident: b0200 article-title: Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons publication-title: Angew. Chem. Int. Ed. – volume: 217 start-page: 800 year: 2019 end-page: 807 ident: b0360 article-title: A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe publication-title: Chemosphere – volume: 237 start-page: 124478 year: 2019 ident: b0730 article-title: Enhanced activation of peroxymonosulfte by LaFeO publication-title: Chemosphere – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: b1090 article-title: Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation publication-title: Environ. Sci. Technol. – volume: 4 start-page: 355 year: 2007 ident: b1245 article-title: Autoxidation of S publication-title: Environ. Chem. – volume: 148 start-page: 416 year: 2019 end-page: 424 ident: b0155 article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition publication-title: Water Res. – volume: 383 year: 2020 ident: b0070 article-title: Degradation mechanisms of ofloxacin and cefazolin uing peroxymonosulfate activated by reduced graphene oxide-CoFe publication-title: Chem. Eng. J. – volume: 388 start-page: 121801 year: 2020 ident: b1085 article-title: Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate publication-title: J. Hazard. Mater. – volume: 390 start-page: 124512 year: 2020 ident: b1165 article-title: pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process publication-title: Chem. Eng. J. – reference: J. Pu, J. Wan, Y. Wang, Y. Ma, Different Co-based MOFs templated synthesis of Co3O4 nanoparticles to degrade RhB by activation of oxone, RSC Adv. 6 (2016) 91791-91797. https://doi.org/10.1039/C6RA15590A. – volume: 51 start-page: 678 year: 2018 end-page: 687 ident: b0630 article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions publication-title: Acc. Chem. Res. – volume: 215 start-page: 60 year: 2017 end-page: 73 ident: b0675 article-title: Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO 3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study publication-title: Appl. Catal. B – volume: 714 start-page: 136728 year: 2020 ident: b1070 article-title: One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation publication-title: Sci. Total Environ. – volume: 53 start-page: 40 year: 2015 end-page: 45 ident: b0855 article-title: Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water publication-title: J. Taiwan Inst. Chem. Eng. – volume: 4 start-page: 170 year: 2017 end-page: 179 ident: b1025 article-title: Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst publication-title: Environ. Sci.: Nano – volume: 54 start-page: 8333 year: 2020 end-page: 8343 ident: b0760 article-title: Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides publication-title: Environ. Sci. Technol. – volume: 348 start-page: 526 year: 2018 end-page: 534 ident: b0370 article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe publication-title: Chem. Eng. J. – volume: 304 start-page: 897 year: 2016 end-page: 907 ident: b0695 article-title: LaCoO publication-title: Chem. Eng. J. – volume: 57 start-page: 122 year: 2018 end-page: 138 ident: b1150 article-title: Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 17672 year: 2014 end-page: 17683 ident: b0310 article-title: Solvent effect on the solvothermall synthesis of mesoporous NiO catalysts for activation of peroxymonosulfate to degrade organic dyes publication-title: ACS Omega – volume: 725 start-page: 138299 year: 2020 ident: b1075 article-title: Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol publication-title: Sci. Total Environ. – volume: 197 start-page: 440 year: 2012 end-page: 447 ident: b1290 article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination publication-title: Chem. Eng. J. – volume: 248 start-page: 62 year: 2019 end-page: 72 ident: b0035 article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe publication-title: Appl. Catal. B: Environ. – volume: 380 start-page: 122568 year: 2020 ident: b0060 article-title: Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeO publication-title: Chem. Eng. J. – volume: 406 start-page: 127083 year: 2021 ident: b0080 article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) publication-title: Chem. Eng. J. – volume: 391 start-page: 123604 year: 2020 ident: b0620 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. – volume: 88 start-page: 462 year: 2009 end-page: 469 ident: b1335 article-title: Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications publication-title: Appl. Catal. B – volume: 369 start-page: 542 year: 2019 end-page: 552 ident: b1275 article-title: Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight publication-title: Chem. Eng. J. – volume: 175 start-page: 380 year: 2011 end-page: 385 ident: b0485 article-title: Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment publication-title: Catal. Today – reference: X. Zhang, J. Zhang, X. Huang, Q. P. Wu, C. H. Yan, J. F. Lu, Efficient peroxymonosulfate activation by Zn/Fe metal–organic framework‐derived ZnO/Fe3O4@carbon spheres for the degradation of Acid Orange 7, Water. Environ. Res. 91 (2019) 634-641. https://doi.org/10.1002/wer.1090. – volume: 154-155 start-page: 246 year: 2014 end-page: 251 ident: b0480 article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn publication-title: Appl. Catal. B – volume: 256 start-page: 10 year: 2017 end-page: 13 ident: b0860 article-title: Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation publication-title: J. Solid State Chem. – volume: 52 start-page: 14371 year: 2018 end-page: 14380 ident: b0995 article-title: Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation publication-title: Environ. Sci. Technol. – volume: 229 year: 2018 ident: b0770 article-title: Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite publication-title: Water Air Soil Pollut – volume: 370 start-page: 614 year: 2019 end-page: 624 ident: b1100 article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures publication-title: Chem. Eng. J. – volume: 514 start-page: 262 year: 2018 end-page: 271 ident: b0870 article-title: ZIF-67 supported on marcoscale resin as an efficient and convenient heterogeneous catalyst for Oxone activation publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 13394 year: 2015 end-page: 13402 ident: b1220 article-title: Quantitative Structure–Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical publication-title: Environ. Sci. Technol. – reference: Y. Wang, H. Sun, H. M. Ang, M. O. Tade, S. Wang, Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate, ACS Appl. Mater. Interfaces. 22 (2014) 19914-19923. https://doi.org/10.1021/am505309b. – reference: H. Li, C. Shan, B. Pan, Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent Iron-Oxo species, Environ. Sci. Technol. 52 (4) (2018) 2197-2205. https://doi.org/10.1021/acs.est.7b05563. – volume: 354 start-page: 507 year: 2018 end-page: 516 ident: b1175 article-title: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application publication-title: Chem. Eng. J. – volume: 218 start-page: 1071 year: 2019 end-page: 1081 ident: b0240 article-title: Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals publication-title: Chemosphere – volume: 54 start-page: 1232 year: 2020 end-page: 1241 ident: b0210 article-title: New insight into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms publication-title: Environ. Sci. Technol. – volume: 9 start-page: 9410 year: 2019 end-page: 9420 ident: b0805 article-title: Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue publication-title: RSC Adv. – volume: 597 start-page: 124568 year: 2020 ident: b0415 article-title: Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo publication-title: Colloids Surf., A – volume: 218 start-page: 810 year: 2017 end-page: 818 ident: b0110 article-title: Synergetic Activation of Peroxymonosulfate by Co publication-title: Appl. Catal. B: Environ. – volume: 24 start-page: 16560 year: 2017 end-page: 16577 ident: b0960 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review publication-title: Environ Sci Pollut Res – volume: 213 start-page: 264 year: 2019 end-page: 275 ident: b0545 article-title: Stable incorporation of MnO publication-title: Sep. Purif. Technol. – volume: 9 start-page: 2284 year: 2019 end-page: 2291 ident: b0640 article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide publication-title: RSC Adv. – volume: 371 start-page: 404 year: 2019 end-page: 413 ident: b0020 article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen publication-title: Chem. Eng. J. – reference: J. Lim, Y. Yang, M. R. Hoffmann, Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants, Environ. Sci. Technol. 53 (12) (2019) 6972-6980. https://doi.org/10.1021/acs.est.9b01449. – volume: 384 start-page: 123298 year: 2020 ident: b0065 article-title: Activation of peroxymonosulfate by magnetic Co-Fe/SiO publication-title: Chem. Eng. J. – volume: 359 start-page: 373 year: 2019 end-page: 384 ident: b0095 article-title: Rational design and synthesis of hollow Co publication-title: Chem. Eng. J. – volume: 204 start-page: 11 year: 2018 end-page: 21 ident: b0575 article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate publication-title: Chemosphere – reference: K. J. Rudzinski, R. Szmigielski, Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context. Atmosphere, 10 (2019) 795. https://doi.org/10.3390/atmos10120795. – volume: 249 start-page: 890 year: 2018 end-page: 899 ident: b0885 article-title: Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors publication-title: Bioresour. Technol. – volume: 740 start-page: 140388 year: 2020 ident: b1065 article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction publication-title: Sci. Total Environ. – volume: 127 start-page: 330 year: 2012 end-page: 335 ident: b0505 article-title: Excellent performance of mesoporous Co publication-title: Appl. Catal. B – volume: 115 start-page: 649 year: 2017 end-page: 658 ident: b0845 article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation publication-title: Carbon – volume: 399 start-page: 125722 year: 2020 ident: b0115 article-title: Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid publication-title: Chem. Eng. J. – volume: 51 start-page: 12611 year: 2017 end-page: 12618 ident: b0340 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn publication-title: Environ. Sci. Technol. – volume: 241 start-page: 561 year: 2019 end-page: 569 ident: b0795 article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance publication-title: Appl. Catal. B – volume: 337 start-page: 101 year: 2018 end-page: 109 ident: b0815 article-title: Metal organic framework-derived CoMn publication-title: Chem. Eng. J. – volume: 38 start-page: 227 year: 2017 end-page: 239 ident: b0420 article-title: Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu 0 /Fe 3 O 4 submicron composites publication-title: Chin. J. Catal. – reference: J. Lu, Z. Xiong, Z. Xu, Y. Cai, Q. Wang, Activation of peroxymonosulfate with magnetic and recyclable Fe3O4@C/MnCo2O4 nanocomposites for the decolorization of Acid Orange II, Chem. Technol. Biotechnol. 92 (7) (2017) 1601-1612. https://doi.org/10.1002/jctb.5153. – volume: 385 start-page: 121518 year: 2020 ident: b0285 article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity publication-title: J. Hazard. Mater. – volume: 356 start-page: 904 year: 2019 end-page: 914 ident: b0105 article-title: Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe publication-title: Chem. Eng. J. – volume: 317 start-page: 686 year: 2016 end-page: 694 ident: b0030 article-title: Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO publication-title: J. Hazard. Mater. – volume: 198 start-page: 204 year: 2018 end-page: 215 ident: b0525 article-title: Nanostructured Co publication-title: Chemosphere – reference: T. Zeng, M. Yu, H. Zhang, Z. He, J. Chen, S. Song, Fe/Fe3C@N-doped porous carbon hybrids derived from nano-scale MOFs: robust and enhanced heterogeneous catalyst for peroxymonosulfate activation, Catal. Sci. Technol. 7 (2) (2017) 396-404. https://doi.org/10.1039/C6CY02130A. – reference: L. Peng, X. Gong, X. Wang, Z. Yang, Y. Liu, In situ growth of ZIF-67 on a nickel foam as a three-dimensional heterogeneous catalyst for peroxymonosulfate activation, RSC Adv. 8 (2018) 26377-26382. https://doi.org/10.1039/C8RA05024D. – volume: 318 start-page: 154 year: 2016 end-page: 163 ident: b0800 article-title: Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability publication-title: J. Hazard. Mater. – volume: 384 start-page: 123246 year: 2020 ident: b1040 article-title: Recycling of nitrogen-containing waste diapers for catalytic contaminant oxidation: Occurrence of radical and non-radical pathways publication-title: Chem. Eng. J. – volume: 188 start-page: 98 year: 2016 end-page: 105 ident: b0180 article-title: Occurrence of radical and nonradical pathways from aqueous and nonaqueous catalytic oxidation publication-title: Appl. Catal. B: Environ. – volume: 245 start-page: 71 year: 2019 end-page: 86 ident: b0720 article-title: Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI publication-title: Appl. Catal. B – volume: 742 start-page: 140587 year: 2020 ident: b0435 article-title: Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe publication-title: Sci. Total Environ. – volume: 394 start-page: 124458 year: 2020 ident: b0560 article-title: Oxygen-defective MnO publication-title: Chem. Eng. J. – reference: A. Khan, S. Zou, T. Wang, J. Ifthikar, A. Jawad, Z. Liao, A. Shahzad, A. Ngambia, Z. Chen, Facile synthesis of yolk shell Mn2O3@Mn5O8 as an effective catalyst for peroxymonosulfate activation, Phys. Chem. Chem. Phys. 20 (2018) 13909-13919. https://doi.org/10.1039/C8CP02080A. – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: b1020 article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer publication-title: Environ. Sci. Technol. – volume: 4 start-page: 315 year: 2017 end-page: 324 ident: b0850 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci.: Nano – volume: 375 start-page: 122041 year: 2019 ident: b1015 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. – volume: 240 year: 2020 ident: b0205 article-title: Enhanced peroxymonosulfate activation by supported microporous carbón for degradation of tetracycline via non-radical mechanism publication-title: Sep. Purif. Technol. – reference: L. Zhang, T. Tong, N. Wang, W. Ma, B. Sun, J. Chu, K. A. Lin, Y. Du, Facile synthesis of yolk-shell Mn3O4 microspheres as a high-performance peroxymonosulfate activator for bisphenol A degradation, Ind. Eng. Chem. Res. 58 (47) (2019) 21304-21311. https://doi.org/10.1021/acs.iecr.9b03814. – volume: 266 start-page: 118601 year: 2020 ident: b0405 article-title: Catalytic activation of peroxymonosulfate using CeVO publication-title: Appl. Catal. B – volume: 54 start-page: 3064 year: 2020 end-page: 3081 ident: b1225 article-title: Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks publication-title: Environ. Sci. Technol. – volume: 45 start-page: 9308 year: 2011 end-page: 9314 ident: b0075 article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System publication-title: Environ. Sci. Technol. – volume: 321 start-page: 222 year: 2017 end-page: 232 ident: b0580 article-title: Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B publication-title: Chem. Eng. J. – volume: 187 start-page: 1 year: 2016 end-page: 10 ident: b0980 article-title: Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals publication-title: Appl. Catal. B – volume: 31 year: 2017 ident: b0940 article-title: AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4‐nitrophenol: Studies of kinetics and mechanism publication-title: Appl Organometal Chem – reference: X. Li, A. I. Rykov, B. Zhang, Y. Zhang, J. Wang, Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate, Catal. Sci. Technol. 6 (2016) 7486-7494. https://doi.org/10.1039/C6CY01479H. – volume: 255 year: 2019 ident: b0840 article-title: Coupling metal–organic frameworks and g-C publication-title: Appl. Catal. B: Environ. – volume: 392 start-page: 123683 year: 2020 ident: b1005 article-title: High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation publication-title: Chem. Eng. J. – volume: 189 start-page: 176 year: 2017 end-page: 185 ident: b0055 article-title: Activation of peroxymonosulfate by Al publication-title: Sep. Purif. Technol. – volume: 328 start-page: 1112 year: 2017 end-page: 1121 ident: b0555 article-title: Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoO publication-title: Chem. Eng. J. – volume: 308 start-page: 58 year: 2016 end-page: 66 ident: b0475 article-title: Magnetic CoFe publication-title: J. Hazard. Mater. – volume: 320 start-page: 436 year: 2017 end-page: 447 ident: b0390 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes publication-title: Chem. Eng. J. – volume: 5 start-page: 3655 year: 2017 end-page: 3666 ident: b0570 article-title: A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process publication-title: J. Mater. Chem. A – volume: 213 start-page: 456 year: 2019 end-page: 464 ident: b0450 article-title: Novel magnetic MnO publication-title: Sep. Purif. Technol. – volume: 276 start-page: 452 year: 2014 end-page: 460 ident: b0260 article-title: Radical induced degradation of acetaminophen with Fe publication-title: J. Hazard. Mater. – reference: T. Zhang, H. B. Zhu, J. P. Croue, Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism, Environ. Sci. Technol. 47 (2013) 2784-2791. https://doi.org/10.1021/es304721g. – volume: 330 start-page: 505 year: 2017 end-page: 517 ident: b0440 article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation publication-title: Chem. Eng. J. – volume: 343 start-page: 128 year: 2018 end-page: 137 ident: b0425 article-title: Heterogeneous activation of peroxymonosulfate by sillenite Bi publication-title: Chem. Eng. J. – volume: 24 start-page: 11536 year: 2017 end-page: 11548 ident: b0500 article-title: Magnetic EDTA functionalized CoFe publication-title: Environ Sci Pollut Res – volume: 476 start-page: 121 year: 2014 end-page: 132 ident: b0460 article-title: Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate publication-title: Appl. Catal. A – volume: 454 start-page: 44 year: 2015 end-page: 51 ident: b0330 article-title: Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition publication-title: J. Colloid Interface Sci. – volume: 353 start-page: 401 year: 2018 end-page: 409 ident: b0735 article-title: Heterogeneous activation of peroxymonosulfate by LaCo publication-title: J. Hazard. Mater. – volume: 400 start-page: 123297 year: 2020 ident: b0655 article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation publication-title: J. Hazard. Mater. – reference: N. T. Nham, T. M. Al Tahtamouni, T. D. Nguyen, P. T. Huong, K. Jitae, N. M. Viet, N. V. Noi, N. T. M. Phuong, N. T. H. Anh, Synthesis of iron modified rice straw biochar toward arsenic from groundwater, Mater. Res. Express. 6 (2019) 115528. https://doi.org/10.1088/2053-1591/ab4b98. – volume: 21 start-page: 178 year: 2018 end-page: 195 ident: b1250 article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes publication-title: J. Adv. Oxidation. Technol – volume: 256 start-page: 127160 year: 2020 ident: b0430 article-title: Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions publication-title: Chemosphere – volume: 6 start-page: 884 year: 2018 end-page: 895 ident: b0195 article-title: Prussian blue analogues derived porous nitrogen-doped carbón microspheres as high-performance metal-free peroxymonosulfate activation for non-radical-dominated degradation of organic pollutants publication-title: J. Mater. Chem. A. – volume: 353 start-page: 69 year: 2018 end-page: 79 ident: b0880 article-title: Surface-nucleated heterogeneous growth of zeolitic imidazolate framework – A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation publication-title: Chem. Eng. J. – volume: 658 start-page: 343 year: 2019 end-page: 356 ident: b0520 article-title: Iron-doped ordered mesoporous Co publication-title: Sci. Total Environ. – volume: 398 start-page: 122884 year: 2020 ident: b0665 article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways publication-title: J. Hazard. Mater. – volume: 398 start-page: 122808 year: 2020 ident: b1155 article-title: Rational design of efficient metal-free catalysts for peroxymonosulfate activation: Selective degradation of organic contaminants via a dual nonradical reaction pathway publication-title: J. Hazard. Mater. – volume: 252 start-page: 393 year: 2014 end-page: 403 ident: b1315 article-title: Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H publication-title: Chem. Eng. J. – volume: 330 start-page: 1390 year: 2017 end-page: 1400 ident: b0325 article-title: Degradation of ciprofloxacin using α-MnO publication-title: Chem. Eng. J. – volume: 259 start-page: 118056 year: 2019 ident: b0540 article-title: Efficient degradation of atrazine with porous sulfurized Fe publication-title: Appl. Catal. B – volume: 67 start-page: 399 year: 1998 end-page: 403 ident: b1310 article-title: Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity publication-title: Photochem Photobiol – volume: 3 start-page: 1298 year: 2012 ident: b1215 article-title: Probing the catalytic activity of porous graphene oxide and the origin of this behavior publication-title: Nat. Commun. – volume: 80 start-page: 116 year: 2008 end-page: 121 ident: b0295 article-title: Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound publication-title: Appl. Catal. B – volume: 370 start-page: 354 year: 2019 end-page: 363 ident: b0615 article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: Optimization, degradation pathways and mechanism publication-title: Chem. Eng. J. – volume: 398 start-page: 125676 year: 2020 ident: b0650 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. – reference: Y. Fan, W. Ma, J. He, Y. Du, CoMoO4 as a novel heterogeneous catalyst of peroxymonosulfate activation for the degradation of organic dyes, RSC Adv. 7 (2017) 36193-36200. https://doi.org/10.1039/C7RA04761D. – volume: 374 start-page: 947 year: 2019 end-page: 957 ident: b1050 article-title: Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation publication-title: Chem. Eng. J. – volume: 47 start-page: 5431 year: 2013 end-page: 5438 ident: b0355 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. – volume: 353 start-page: 329 year: 2018 end-page: 339 ident: b0830 article-title: MOF-templated synthesis of CoFe publication-title: Chem. Eng. J. – volume: 49 start-page: 9914 year: 2013 ident: b0990 article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation publication-title: Chem. Commun. – volume: 54 start-page: 2476 year: 2020 end-page: 2488 ident: b0445 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environ. Sci. Technol. – volume: 374 start-page: 170 year: 2019 end-page: 180 ident: b1195 article-title: Degradation of organic pollutants by peroxymonosulfate activated by MnO publication-title: Chem. Eng. J. – volume: 49 start-page: 6855 year: 2015 end-page: 6864 ident: b0900 article-title: Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis publication-title: Environ. Sci. Technol. – volume: 376 start-page: 119193 year: 2019 ident: b0395 article-title: Facile preparation of porous Mn/Fe publication-title: Chem. Eng. J. – volume: 269 start-page: 118850 year: 2020 ident: b0215 article-title: Nitrogen-doped biochar fiber with graphitization from publication-title: Appl. Catal. B – volume: 392 start-page: 123681 year: 2020 ident: b1115 article-title: Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism publication-title: Chem. Eng. J. – volume: 384 start-page: 123302 year: 2020 ident: b1190 article-title: Enhanced activation of peroxymonosulfate with metal-substituted hollow M publication-title: Chem. Eng. J. – volume: 164 start-page: 159 year: 2015 end-page: 167 ident: b0305 article-title: 3D-hierarchically structured MnO publication-title: Appl. Catal. B – volume: 334 start-page: 273 year: 2018 end-page: 284 ident: b0015 article-title: Degradation of norfloxacin by CoFe publication-title: Chem. Eng. J. – volume: 51 start-page: 15249 year: 2015 end-page: 15252 ident: b0955 article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study publication-title: Chem. Commun. – volume: 363 start-page: 234 year: 2019 end-page: 246 ident: b0905 article-title: Metal-organic framework-derived hollow Co publication-title: Chem. Eng. J. – volume: 262 start-page: 110299 year: 2020 ident: b0930 article-title: Yolk-shell ZIFs@SiO publication-title: J. Environ. Manage. – volume: 560 start-page: 195 year: 2018 end-page: 205 ident: b0220 article-title: Superior performance of α@β-MnO publication-title: Appl. Catal. A. – volume: 331 start-page: 144 year: 2018 end-page: 151 ident: b0235 article-title: Controlled synthesis of dandelion-like NiCo publication-title: Chem. Eng. J. – volume: 184 start-page: 213 year: 2017 end-page: 219 ident: b0950 article-title: Nitrogen-doped carbon material as a catalyst for the degradation of direct red23 based on persulfate oxidation publication-title: Sep. Purif. Technol. – volume: 30 start-page: 19009 year: 2019 end-page: 19019 ident: b0645 article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol publication-title: J Mater Sci: Mater Electron – volume: 480 start-page: 717 year: 2019 end-page: 726 ident: b0230 article-title: A novel magnetic heterogeneous catalyst oxygen-defective CoF publication-title: Appl. Surf. Sci. – volume: 270 start-page: 118874 year: 2020 ident: b0470 article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification publication-title: Appl. Catal. B – volume: 359 start-page: 723 year: 2019 end-page: 732 ident: b1130 article-title: Mn-doped g-C publication-title: Chem. Eng. J. – start-page: 1 year: 2019 end-page: 10 ident: b0100 article-title: Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe publication-title: Tokin Rev. – volume: 280 start-page: 526 year: 2015 end-page: 532 ident: b1145 article-title: Control of MnO publication-title: J. Power Sources – reference: X. Dong, X. Duan, Z. Sun, X. Zhang, C. Li, S. Yang, B. Ren, S. Zheng, D. D. Dionysiou, Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis, Appl. Catal. B: Environ. 261 (2020) 118214. https://doi.org/j.apcatb.2019.118214. – volume: 399 start-page: 123039 year: 2020 ident: b1045 article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation publication-title: J. Hazard. Mater. – volume: 198 start-page: 295 year: 2016 end-page: 302 ident: b1200 article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations publication-title: Appl. Catal. B – volume: 329 start-page: 262 year: 2017 end-page: 271 ident: b0120 article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co publication-title: J. Hazard. Mater. – volume: 53 start-page: 307 year: 2019 end-page: 315 ident: b0150 article-title: Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants publication-title: Environ. Sci. Technol. – volume: 220 start-page: 626 year: 2018 end-page: 634 ident: b0670 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B – volume: 352 start-page: 601 year: 2018 end-page: 611 ident: b1170 article-title: Heterogeneous activation of peroxymonosulfate by LaFeO publication-title: Chem. Eng. J. – volume: 262 year: 2020 ident: b1185 article-title: Scalable synthesis of Ca-doped ɑ-Fe publication-title: Appl. Catal. B: Environ. – volume: 49 start-page: 7330 year: 2015 end-page: 7339 ident: b1320 article-title: Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process publication-title: Environ. Sci. Technol. – volume: 74 start-page: 1154 year: 2008 end-page: 1159 ident: b1000 article-title: Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system publication-title: Talanta – volume: 360 start-page: 157 year: 2019 end-page: 170 ident: b0385 article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe publication-title: Chem. Eng. J. – volume: 387 start-page: 121995 year: 2020 ident: b0290 article-title: A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation publication-title: J. Hazard. Mater. – volume: 356 start-page: 53 year: 2018 end-page: 60 ident: b0685 article-title: Efficient removal of organic and bacterial pollutants by Ag-La publication-title: J. Hazard. Mater. – volume: 313 start-page: 155 year: 2018 end-page: 160 ident: b1300 article-title: Rapid oxidation of paracetamol by Cobalt(II) catalyzed sulfite at alkaline pH publication-title: Catal. Today – volume: 359 start-page: 828 year: 2019 end-page: 839 ident: b0750 article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration publication-title: Chem. Eng. J. – volume: 330 start-page: 345 year: 2017 end-page: 354 ident: b0025 article-title: Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification publication-title: Chem. Eng. J. – volume: 232 start-page: 115967 year: 2020 ident: b0125 article-title: The oxidative degradation of diclofenac using the activation of peroxymonosulfate by BiFeO publication-title: Sep. Purif. Technol. – volume: 545 start-page: 311 year: 2019 end-page: 316 ident: b0705 article-title: Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection publication-title: J. Colloid Interface Sci. – volume: 363 start-page: 318 year: 2019 end-page: 328 ident: b0085 article-title: Novel activation of peroxymonosulfate by an easily recyclable VC@Fe publication-title: Chem. Eng. J. – volume: 11 start-page: 4601 year: 2009 ident: b1285 article-title: Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct publication-title: Phys. Chem. Chem. Phys. – volume: 250 start-page: 117246 year: 2020 ident: b1120 article-title: Amorphous Co publication-title: Sep. Purif. Technol. – volume: 375 start-page: 122009 year: 2019 ident: b1180 article-title: Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO publication-title: Chem. Eng. J. – volume: 422 start-page: 754 year: 2017 end-page: 762 ident: b0510 article-title: Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve publication-title: Appl. Surf. Sci. – volume: 8 start-page: 7269 year: 2018 end-page: 7279 ident: b0320 article-title: Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation publication-title: RSC Adv. – volume: 390 start-page: 124532 year: 2020 ident: b0780 article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C publication-title: Chem. Eng. J. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: b1140 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 181 start-page: 1010 year: 2010 end-page: 1015 ident: b1260 article-title: Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis publication-title: J. Hazard. Mater. – volume: 263 start-page: 118350 year: 2020 ident: b1035 article-title: Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways publication-title: Appl. Catal. B – volume: 497 start-page: 325 year: 2017 end-page: 332 ident: b0725 article-title: Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water publication-title: J. Colloid Interface Sci. – volume: 115 start-page: 730 year: 2017 end-page: 739 ident: b1210 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon – volume: 307 start-page: 476 year: 2017 end-page: 486 ident: b0610 article-title: Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides publication-title: Chem. Eng. J. – volume: 11 start-page: 35720 year: 2019 end-page: 35728 ident: b0775 article-title: Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate publication-title: ACS Appl. Mater. Interfaces – volume: 160 start-page: 96 year: 2017 end-page: 105 ident: b0690 article-title: LaMO 3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water publication-title: Chem. Eng. Sci. – reference: C. Chen, L. Liu, Y. Li, W. Li, L. Zhou, Y. Lan, Y. Li, Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate, Chem. Eng. J. 384 (2020) 123257. https://doi.org/10.106/j.cej.2019.123257. – volume: 181 start-page: 788 year: 2016 end-page: 799 ident: b0820 article-title: Fe publication-title: Appl. Catal. B: Environ. – volume: 350 start-page: 484 year: 2018 end-page: 495 ident: b1135 article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe publication-title: Chem. Eng. J. – volume: 33 start-page: 101037 year: 2020 ident: b1060 article-title: Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater publication-title: J. Water Process Eng. – volume: 296 start-page: 128 year: 2015 end-page: 137 ident: b0365 article-title: Sulfate radicals iduced from peroxymonosulfate by cobalt manganese oxides (Co publication-title: J. Hazard. Mater. – volume: 336 start-page: 721 year: 2018 end-page: 731 ident: b0190 article-title: Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate publication-title: Chem. Eng. J. – volume: 99 start-page: 163 year: 1977 end-page: 164 ident: b0600 article-title: Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds publication-title: J. Am. Chem. Soc. – volume: 663 start-page: 453 year: 2019 end-page: 464 ident: b0585 article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation publication-title: Sci. Total Environ. – volume: 137 start-page: 291 year: 2018 end-page: 303 ident: b0920 article-title: Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A publication-title: Carbon – volume: 16 year: 2020 ident: b0160 article-title: carbon-supported manganese for heterogeneous activation of peroxymnosulfate for the decomposition of phenol in aqueous solution publication-title: Mater. Today. Chem. – reference: J. Deng, S. Feng, K. Zhang, J. Li, H. Wang, T. Zhang, X. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J. 308 (2017) 505-515. https://doi.org/10.1016/j.cej.2016.09.075. – volume: 292 start-page: 121954 year: 2019 ident: b1105 article-title: Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water publication-title: Bioresour. Technol. – volume: 392 start-page: 123725 year: 2020 ident: b1230 article-title: Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate publication-title: Chem. Eng. J. – volume: 326 start-page: 1095 year: 2017 end-page: 1104 ident: b0515 article-title: Facile synthesis of novel Co publication-title: Chem. Eng. J. – volume: 384 start-page: 121447 year: 2020 ident: b1270 article-title: Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B publication-title: J. Hazard. Mater. – volume: 156 start-page: 399 year: 2020 end-page: 409 ident: b0185 article-title: Glucose and melamine derived nitrogen-doped carbonaceous catalyst for nonradical peroxymonosufate activation publication-title: Carbon – volume: 209 start-page: 729 year: 2017 end-page: 737 ident: b0225 article-title: Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination publication-title: Appl. Catal. B – volume: 189 start-page: 224 year: 2017 end-page: 238 ident: b0165 article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications publication-title: Chemosphere – volume: 387 start-page: 123726 year: 2020 ident: b1240 article-title: Facile synthesis of pure g-C publication-title: Chem. Eng. J. – volume: 35 start-page: 21 year: 2009 end-page: 34 ident: b1295 article-title: Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions publication-title: Res Chem Intermed – volume: 233 start-page: 549 year: 2019 end-page: 558 ident: b0275 article-title: Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO publication-title: Chemosphere – volume: 241 start-page: 116702 year: 2020 ident: b1055 article-title: In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies publication-title: Sep. Purif. Technol. – volume: 279 start-page: 93 year: 2015 end-page: 102 ident: b0455 article-title: Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism publication-title: Chem. Eng. J. – volume: 27 start-page: 3287 year: 2020 end-page: 3300 ident: b0875 article-title: Recyclable ZIF-9@CA-Fe publication-title: Cellulose – volume: 102 start-page: 85 year: 2017 end-page: 88 ident: b0785 article-title: Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C publication-title: Catal. Commun. – volume: 385 start-page: 123933 year: 2020 ident: b1080 article-title: Peroxymonosulfate activation by Co publication-title: Chem. Eng. J. – volume: 6 start-page: 399 year: 2019 end-page: 410 ident: b1010 article-title: Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N publication-title: Environ. Sci.: Nano – volume: 357 start-page: 140 year: 2019 end-page: 149 ident: b0595 article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals publication-title: Chem. Eng. J. – reference: W. D. Oh, Z. Dong, Z. T. Hu, T. T. Lim, A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation, J. Mater. Chem. A. 3 (2015) 22208-22217. https://doi.org/10.1039/C5TA06563A. – volume: 351 start-page: 841 year: 2018 end-page: 855 ident: b1305 article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation publication-title: Chem. Eng. J. – volume: 219 start-page: 107 year: 2016 end-page: 117 ident: b0605 article-title: Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides publication-title: Environ. Pollut. – volume: 230 start-page: 115886 year: 2020 ident: b0890 article-title: Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field publication-title: Sep. Purif. Technol. – volume: 384 start-page: 123377 year: 2020 ident: b0755 article-title: Enhanced performance of LaFeO publication-title: Chem. Eng. J. – volume: 341 start-page: 383 year: 2018 end-page: 391 ident: b1235 article-title: Heterogeneous activation of peroxymonosulfate over monodispersed Co publication-title: Chem. Eng. J. – volume: 238 start-page: 557 year: 2018 end-page: 567 ident: b1340 article-title: A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S publication-title: Appl. Catal. B – volume: 38 start-page: 1360 year: 2017 end-page: 1372 ident: b0895 article-title: Peroxymonosulfate activation by Mn 3 O 4 /metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B publication-title: Chin. J. Catal. – volume: 397 start-page: 125339 year: 2020 ident: b0915 article-title: Interfacial CoAl publication-title: Chem. Eng. J. – volume: 212 start-page: 152 year: 2018 end-page: 161 ident: b0350 article-title: Optimization of the catalytic activity of a ZnCo publication-title: Chemosphere – volume: 381 start-page: 122768 year: 2020 ident: b0935 article-title: A mechanistic study of amorphous CoS publication-title: Chem. Eng. J. – volume: 345 start-page: 364 year: 2018 end-page: 374 ident: b0170 article-title: Efficient heterogeneous activation of peroxyonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism publication-title: Chem. Eng. J. – volume: 233 start-page: 99 year: 2018 end-page: 111 ident: b0715 article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr publication-title: Appl. Catal. B – volume: 255 start-page: 117765 year: 2019 ident: b1125 article-title: Facile synthesis of sludge-derived MnO publication-title: Appl. Catal. B – volume: 372 start-page: 796 year: 2019 end-page: 808 ident: b0465 article-title: Efficient degradation of atrazine by LaCoO publication-title: Chem. Eng. J. – reference: M. Kohantorabi, M. Hosseinifard, A. Kazemzadeh, Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal, New j. Chem. 44 (10) (2020) 4185-4198. https://doi.org/10.1039/C9NJ04379A. – volume: 264 start-page: 681 year: 2015 end-page: 689 ident: b0740 article-title: Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants publication-title: Chem. Eng. J. – volume: 280 start-page: 2 year: 2017 end-page: 7 ident: b0175 article-title: Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation publication-title: Catal. Today – volume: 194 start-page: 169 year: 2016 end-page: 201 ident: b0050 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects publication-title: Appl. Catal. B – volume: 1 start-page: 339 year: 2014 end-page: 344 ident: b1095 article-title: Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals publication-title: Environ. Sci. Technol. Lett. – volume: 167 start-page: 181 year: 2016 end-page: 189 ident: b0335 article-title: Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe publication-title: Sep. Purif. Technol. – volume: 711 start-page: 134715 year: 2020 ident: b0400 article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification publication-title: Sci. Total Environ. – volume: 6 start-page: 101361 year: 2016 end-page: 101364 ident: b0380 article-title: Yolk-shell structured CoFe publication-title: RSC Adv. – volume: 53 start-page: 4500 year: 2019 end-page: 4510 ident: b0280 article-title: Impact of crystal types of AgFeO publication-title: Environ. Sci. Technol. – volume: 50 start-page: 10187 year: 2016 end-page: 10197 ident: b0790 article-title: Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds publication-title: Environ. Sci. Technol. – volume: 53 start-page: 11783 year: 2019 end-page: 11791 ident: b1325 article-title: Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical publication-title: Environ. Sci. Technol. – volume: 360 start-page: 303 year: 2018 end-page: 310 ident: b0010 article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO publication-title: J. Hazard. Mater. – volume: 114 start-page: 10292 year: 2014 end-page: 10368 ident: b0765 article-title: Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality publication-title: Chem. Rev. – reference: A. Khan, H. Wang, Y. Liu, A. Jawad, J. Ifthikar, Z. Liao, T. Wang, Z. Chen, Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: comprehensive investigation of manganese oxides, J. Mater. Chem. A. 6 (2018) 1590-1600. https://doi.org/10.1039/C7TA07942G. – volume: 197 start-page: 670 year: 2018 end-page: 679 ident: b0345 article-title: Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo publication-title: Chemosphere – volume: 356 start-page: 717 year: 2019 end-page: 726 ident: b1030 article-title: Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping: Performance, mechanism and degradation pathway publication-title: Chem. Eng. J. – volume: 50 start-page: 10134 year: 2016 end-page: 10142 ident: b0945 article-title: Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds publication-title: Environ. Sci. Technol. – volume: 581 start-page: 195 year: 2021 end-page: 204 ident: b0925 article-title: Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions publication-title: J. Colloid Interface Sci. – volume: 88 start-page: 46 year: 2020 end-page: 58 ident: b0410 article-title: Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater publication-title: J. Environ. Sci. – volume: 11 start-page: 3036 year: 2015 end-page: 3044 ident: b0985 article-title: Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions publication-title: Small – volume: 159 start-page: 77 year: 2019 end-page: 86 ident: b0965 article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation publication-title: Water Res. – volume: 107 start-page: 371 year: 2016 end-page: 378 ident: b1205 article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation publication-title: Carbon – volume: 673 start-page: 565 year: 2019 end-page: 575 ident: b0710 article-title: Enhanced degradation of atrazine by nanoscale LaFe publication-title: Sci. Total Environ. – volume: 262 start-page: 118302 year: 2020 ident: b0975 article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation publication-title: Appl. Catal. B – volume: 24 start-page: 663 year: 1995 end-page: 677 ident: b1280 article-title: Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation publication-title: J. Phys. Chem. Ref. Data – reference: L. Luo, Y. Wang, M. Zhu, X. Cheng, X. hang, X. Meng, X. Huang, H. Hao, Co–Cu–Al Layered Double Oxides as Heterogeneous Catalyst for Enhanced Degradation of Organic Pollutants in Wastewater by Activating Peroxymonosulfate: Performance and Synergistic Effect, Ind. Eng. Chem. Res. 58 (20) (2019) 8699-8711. https://doi.org/10.1021/acs.iecr.9b00167. – volume: 388 start-page: 124371 year: 2020 ident: b0270 article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO publication-title: Chem. Eng. J. – volume: 262 start-page: 854 year: 2015 end-page: 861 ident: b0495 article-title: Activation of peroxymonosulfate with magnetic Fe publication-title: Chem. Eng. J. – volume: 385 start-page: 123933 year: 2020 ident: 10.1016/j.cej.2020.127957_b1080 article-title: Peroxymonosulfate activation by Co9S8@ S and N co‐doped biochar for sulfamethoxazole degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123933 – volume: 334 start-page: 273 year: 2018 ident: 10.1016/j.cej.2020.127957_b0015 article-title: Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.040 – volume: 51 start-page: 12611 issue: 21 year: 2017 ident: 10.1016/j.cej.2020.127957_b0340 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8O1.2O4 nanospheres: Synthesis between Mn and Fe publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03007 – volume: 197 start-page: 670 year: 2018 ident: 10.1016/j.cej.2020.127957_b0345 article-title: Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.079 – volume: 387 start-page: 123726 year: 2020 ident: 10.1016/j.cej.2020.127957_b1240 article-title: Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123726 – volume: 391 start-page: 123604 year: 2020 ident: 10.1016/j.cej.2020.127957_b0620 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123604 – volume: 336 start-page: 721 year: 2018 ident: 10.1016/j.cej.2020.127957_b0190 article-title: Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.164 – volume: 27 start-page: 3287 issue: 6 year: 2020 ident: 10.1016/j.cej.2020.127957_b0875 article-title: Recyclable ZIF-9@CA-Fe3O4/RGO/cellulose composite membrane as efficient catalysts for activating peroxymonosulfate to degrade methylene blue publication-title: Cellulose doi: 10.1007/s10570-020-02998-x – start-page: 1 year: 2019 ident: 10.1016/j.cej.2020.127957_b0100 article-title: Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe2O4@Gr) publication-title: Tokin Rev. – volume: 399 start-page: 125722 year: 2020 ident: 10.1016/j.cej.2020.127957_b0115 article-title: Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125722 – volume: 399 start-page: 123039 year: 2020 ident: 10.1016/j.cej.2020.127957_b1045 article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123039 – volume: 350 start-page: 484 year: 2018 ident: 10.1016/j.cej.2020.127957_b1135 article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.175 – ident: 10.1016/j.cej.2020.127957_b1160 doi: 10.1021/es304721g – ident: 10.1016/j.cej.2020.127957_b0530 doi: 10.1021/acs.est.9b01449 – volume: 380 start-page: 122568 year: 2020 ident: 10.1016/j.cej.2020.127957_b0060 article-title: Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeOx@Fe0 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122568 – volume: 54 start-page: 1232 issue: 2 year: 2020 ident: 10.1016/j.cej.2020.127957_b0210 article-title: New insight into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05856 – volume: 24 start-page: 16560 issue: 20 year: 2017 ident: 10.1016/j.cej.2020.127957_b0960 article-title: Role of biochar on composting of organic wastes and remediation of contaminated soils—a review publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-9168-1 – volume: 197 start-page: 440 year: 2012 ident: 10.1016/j.cej.2020.127957_b1290 article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.040 – volume: 359 start-page: 828 year: 2019 ident: 10.1016/j.cej.2020.127957_b0750 article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.184 – volume: 330 start-page: 345 year: 2017 ident: 10.1016/j.cej.2020.127957_b0025 article-title: Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.155 – ident: 10.1016/j.cej.2020.127957_b0660 doi: 10.1021/acs.iecr.9b00167 – volume: 3 start-page: 1298 year: 2012 ident: 10.1016/j.cej.2020.127957_b1215 article-title: Probing the catalytic activity of porous graphene oxide and the origin of this behavior publication-title: Nat. Commun. doi: 10.1038/ncomms2315 – volume: 67 start-page: 399 issue: 4 year: 1998 ident: 10.1016/j.cej.2020.127957_b1310 article-title: Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1998.tb05217.x – volume: 232 start-page: 115967 year: 2020 ident: 10.1016/j.cej.2020.127957_b0125 article-title: The oxidative degradation of diclofenac using the activation of peroxymonosulfate by BiFeO3 microspheres—Kinetics, role of visible light and decay pathways publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115967 – volume: 658 start-page: 343 year: 2019 ident: 10.1016/j.cej.2020.127957_b0520 article-title: Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: Performance, mechanism and degradation pathway publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.187 – volume: 400 start-page: 123297 year: 2020 ident: 10.1016/j.cej.2020.127957_b0655 article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123297 – volume: 38 start-page: 227 issue: 2 year: 2017 ident: 10.1016/j.cej.2020.127957_b0420 article-title: Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu 0 /Fe 3 O 4 submicron composites publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62566-4 – volume: 255 year: 2019 ident: 10.1016/j.cej.2020.127957_b0840 article-title: Coupling metal–organic frameworks and g-C3N4 to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: Upgrading framework stability and performance publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117763 – volume: 476 start-page: 121 year: 2014 ident: 10.1016/j.cej.2020.127957_b0460 article-title: Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2014.02.024 – ident: 10.1016/j.cej.2020.127957_b0250 doi: 10.1002/jctb.5153 – ident: 10.1016/j.cej.2020.127957_b0135 doi: 10.1039/C7TA07942G – volume: 107 start-page: 371 year: 2016 ident: 10.1016/j.cej.2020.127957_b1205 article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation publication-title: Carbon doi: 10.1016/j.carbon.2016.06.016 – volume: 4 start-page: 355 issue: 5 year: 2007 ident: 10.1016/j.cej.2020.127957_b1245 article-title: Autoxidation of SIV inhibited by chlorophenols reacting with sulfate radicals publication-title: Environ. Chem. doi: 10.1071/EN07045 – volume: 104 start-page: 384 year: 2015 ident: 10.1016/j.cej.2020.127957_b0040 article-title: Effect of sulfate radical oxidation on disintegration of waste activated sludge publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2015.07.008 – volume: 213 start-page: 264 year: 2019 ident: 10.1016/j.cej.2020.127957_b0545 article-title: Stable incorporation of MnOx quantum dots into N-doped hollow carbon: A synergistic peroxymonosulfate activator for enhanced removal of bisphenol A publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.12.044 – volume: 356 start-page: 717 year: 2019 ident: 10.1016/j.cej.2020.127957_b1030 article-title: Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping: Performance, mechanism and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.086 – volume: 330 start-page: 1390 year: 2017 ident: 10.1016/j.cej.2020.127957_b0325 article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: Effect of water constituents, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.137 – volume: 51 start-page: 678 issue: 3 year: 2018 ident: 10.1016/j.cej.2020.127957_b0630 article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00535 – volume: 181 start-page: 788 year: 2016 ident: 10.1016/j.cej.2020.127957_b0820 article-title: FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.08.050 – volume: 52 start-page: 14371 issue: 24 year: 2018 ident: 10.1016/j.cej.2020.127957_b0995 article-title: Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05246 – volume: 54 start-page: 3064 issue: 6 year: 2020 ident: 10.1016/j.cej.2020.127957_b1225 article-title: Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07082 – volume: 230 start-page: 115886 year: 2020 ident: 10.1016/j.cej.2020.127957_b0890 article-title: Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115886 – volume: 175 start-page: 380 issue: 1 year: 2011 ident: 10.1016/j.cej.2020.127957_b0485 article-title: Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment publication-title: Catal. Today doi: 10.1016/j.cattod.2011.03.005 – volume: 4 start-page: 170 issue: 1 year: 2017 ident: 10.1016/j.cej.2020.127957_b1025 article-title: Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst publication-title: Environ. Sci.: Nano – volume: 581 start-page: 195 year: 2021 ident: 10.1016/j.cej.2020.127957_b0925 article-title: Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.100 – volume: 198 start-page: 295 year: 2016 ident: 10.1016/j.cej.2020.127957_b1200 article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.075 – volume: 514 start-page: 262 year: 2018 ident: 10.1016/j.cej.2020.127957_b0870 article-title: ZIF-67 supported on marcoscale resin as an efficient and convenient heterogeneous catalyst for Oxone activation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.11.053 – volume: 218 start-page: 299 year: 2019 ident: 10.1016/j.cej.2020.127957_b0680 article-title: Efficient degradation of diclofenac by LaFeO3-Catalyzed peroxymonosulfate oxidation---kinetics and toxicity assessment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.105 – volume: 256 start-page: 127160 year: 2020 ident: 10.1016/j.cej.2020.127957_b0430 article-title: Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127160 – volume: 10 start-page: 5550 issue: 5 year: 2016 ident: 10.1016/j.cej.2020.127957_b0565 article-title: Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry publication-title: ACS Nano doi: 10.1021/acsnano.6b02110 – volume: 212 start-page: 152 year: 2018 ident: 10.1016/j.cej.2020.127957_b0350 article-title: Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.065 – volume: 374 start-page: 170 year: 2019 ident: 10.1016/j.cej.2020.127957_b1195 article-title: Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.170 – volume: 184 start-page: 213 year: 2017 ident: 10.1016/j.cej.2020.127957_b0950 article-title: Nitrogen-doped carbon material as a catalyst for the degradation of direct red23 based on persulfate oxidation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.04.045 – volume: 24 start-page: 663 issue: 2 year: 1995 ident: 10.1016/j.cej.2020.127957_b1280 article-title: Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555965 – volume: 497 start-page: 325 year: 2017 ident: 10.1016/j.cej.2020.127957_b0725 article-title: Lanthanum cobaltite perovskite supported on zirconia as an efficient heterogeneous catalyst for activating Oxone in water publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.03.004 – volume: 49 start-page: 9914 issue: 85 year: 2013 ident: 10.1016/j.cej.2020.127957_b0990 article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation publication-title: Chem. Commun. doi: 10.1039/c3cc43401j – volume: 229 issue: 1 year: 2018 ident: 10.1016/j.cej.2020.127957_b0770 article-title: Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite publication-title: Water Air Soil Pollut doi: 10.1007/s11270-017-3648-2 – volume: 11 start-page: 3036 issue: 25 year: 2015 ident: 10.1016/j.cej.2020.127957_b0985 article-title: Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions publication-title: Small doi: 10.1002/smll.201403715 – volume: 74 start-page: 1154 issue: 5 year: 2008 ident: 10.1016/j.cej.2020.127957_b1000 article-title: Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system publication-title: Talanta doi: 10.1016/j.talanta.2007.08.027 – volume: 114 start-page: 10292 issue: 20 year: 2014 ident: 10.1016/j.cej.2020.127957_b0765 article-title: Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality publication-title: Chem. Rev. doi: 10.1021/cr500032a – volume: 233 start-page: 549 year: 2019 ident: 10.1016/j.cej.2020.127957_b0275 article-title: Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.291 – volume: 742 start-page: 140587 year: 2020 ident: 10.1016/j.cej.2020.127957_b0435 article-title: Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140587 – volume: 164 start-page: 159 year: 2015 ident: 10.1016/j.cej.2020.127957_b0305 article-title: 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.09.004 – volume: 387 start-page: 121995 year: 2020 ident: 10.1016/j.cej.2020.127957_b0290 article-title: A stable and easily prepared copper oxide catalyst for degradation of organic pollutants by peroxymonosulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121995 – volume: 341 start-page: 383 year: 2018 ident: 10.1016/j.cej.2020.127957_b1235 article-title: Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.045 – volume: 52 start-page: 7032 issue: 12 year: 2018 ident: 10.1016/j.cej.2020.127957_b1020 article-title: Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 560 start-page: 195 year: 2018 ident: 10.1016/j.cej.2020.127957_b0220 article-title: Superior performance of α@β-MnO2 or the toluene oxidation: Active interface and oxygen vacancy publication-title: Appl. Catal. A. doi: 10.1016/j.apcata.2018.05.001 – volume: 374 start-page: 947 year: 2019 ident: 10.1016/j.cej.2020.127957_b1050 article-title: Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.001 – volume: 390 start-page: 124512 year: 2020 ident: 10.1016/j.cej.2020.127957_b1165 article-title: pH-dependent transformation products and residual toxicity evaluation of sulfamethoxazole degradation through non-radical oxygen species involved process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124512 – volume: 88 start-page: 46 year: 2020 ident: 10.1016/j.cej.2020.127957_b0410 article-title: Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.07.011 – volume: 356 start-page: 904 year: 2019 ident: 10.1016/j.cej.2020.127957_b0105 article-title: Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.064 – volume: 352 start-page: 601 year: 2018 ident: 10.1016/j.cej.2020.127957_b1170 article-title: Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.062 – volume: 99 start-page: 163 issue: 1 year: 1977 ident: 10.1016/j.cej.2020.127957_b0600 article-title: Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00443a030 – ident: 10.1016/j.cej.2020.127957_b0825 doi: 10.1039/C6CY01479H – volume: 360 start-page: 157 year: 2019 ident: 10.1016/j.cej.2020.127957_b0385 article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.207 – volume: 398 start-page: 122808 year: 2020 ident: 10.1016/j.cej.2020.127957_b1155 article-title: Rational design of efficient metal-free catalysts for peroxymonosulfate activation: Selective degradation of organic contaminants via a dual nonradical reaction pathway publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122808 – volume: 48 start-page: 6913 issue: 37 year: 2009 ident: 10.1016/j.cej.2020.127957_b0200 article-title: Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901826 – volume: 241 start-page: 116702 year: 2020 ident: 10.1016/j.cej.2020.127957_b1055 article-title: In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116702 – volume: 57 start-page: 122 issue: 1 year: 2018 ident: 10.1016/j.cej.2020.127957_b1150 article-title: Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705628 – volume: 292 start-page: 121954 year: 2019 ident: 10.1016/j.cej.2020.127957_b1105 article-title: Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121954 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.cej.2020.127957_b1140 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 280 start-page: 514 year: 2015 ident: 10.1016/j.cej.2020.127957_b0005 article-title: Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.121 – volume: 280 start-page: 526 year: 2015 ident: 10.1016/j.cej.2020.127957_b1145 article-title: Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.139 – volume: 695 start-page: 133963 year: 2019 ident: 10.1016/j.cej.2020.127957_b0635 article-title: Octadecylamine degradation through catalytic activation of peroxymonosulfate by Fe Mn layered double hydroxide publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133963 – ident: 10.1016/j.cej.2020.127957_b0550 doi: 10.1039/C9NJ04379A – volume: 304 start-page: 897 year: 2016 ident: 10.1016/j.cej.2020.127957_b0695 article-title: LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.027 – volume: 4 start-page: 17672 issue: 18 year: 2014 ident: 10.1016/j.cej.2020.127957_b0310 article-title: Solvent effect on the solvothermall synthesis of mesoporous NiO catalysts for activation of peroxymonosulfate to degrade organic dyes publication-title: ACS Omega doi: 10.1021/acsomega.9b01883 – volume: 384 start-page: 123377 year: 2020 ident: 10.1016/j.cej.2020.127957_b0755 article-title: Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123377 – volume: 337 start-page: 101 year: 2018 ident: 10.1016/j.cej.2020.127957_b0815 article-title: Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.069 – volume: 262 start-page: 118302 year: 2020 ident: 10.1016/j.cej.2020.127957_b0975 article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118302 – volume: 50 start-page: 10134 issue: 18 year: 2016 ident: 10.1016/j.cej.2020.127957_b0945 article-title: Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02079 – volume: 255 start-page: 117765 year: 2019 ident: 10.1016/j.cej.2020.127957_b1125 article-title: Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117765 – volume: 403 start-page: 126445 year: 2021 ident: 10.1016/j.cej.2020.127957_b1265 article-title: A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126445 – volume: 343 start-page: 128 year: 2018 ident: 10.1016/j.cej.2020.127957_b0425 article-title: Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.125 – volume: 11 start-page: 35720 issue: 39 year: 2019 ident: 10.1016/j.cej.2020.127957_b0775 article-title: Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11322 – volume: 597 start-page: 124568 year: 2020 ident: 10.1016/j.cej.2020.127957_b0415 article-title: Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4−x spinel for 2,4-dichlorophenol removal: Singlet oxygen-dominated nonradical process publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.124568 – volume: 6 start-page: 101361 year: 2016 ident: 10.1016/j.cej.2020.127957_b0380 article-title: Yolk-shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfte activation for efficient degradation of butyl paraben publication-title: RSC Adv. doi: 10.1039/C6RA24101H – volume: 49 start-page: 5645 issue: 9 year: 2015 ident: 10.1016/j.cej.2020.127957_b1090 article-title: Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 16 year: 2020 ident: 10.1016/j.cej.2020.127957_b0160 article-title: carbon-supported manganese for heterogeneous activation of peroxymnosulfate for the decomposition of phenol in aqueous solution publication-title: Mater. Today. Chem. – volume: 317 start-page: 686 year: 2016 ident: 10.1016/j.cej.2020.127957_b0030 article-title: Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.004 – volume: 264 start-page: 681 year: 2015 ident: 10.1016/j.cej.2020.127957_b0740 article-title: Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.014 – volume: 392 start-page: 123683 year: 2020 ident: 10.1016/j.cej.2020.127957_b1005 article-title: High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123683 – volume: 725 start-page: 138299 year: 2020 ident: 10.1016/j.cej.2020.127957_b1075 article-title: Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138299 – volume: 262 start-page: 854 year: 2015 ident: 10.1016/j.cej.2020.127957_b0495 article-title: Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.10.043 – volume: 388 start-page: 124371 year: 2020 ident: 10.1016/j.cej.2020.127957_b0270 article-title: Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: Evolution of reactive oxygen species and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124371 – ident: 10.1016/j.cej.2020.127957_b0375 doi: 10.1039/C7RA04761D – volume: 21 start-page: 178 issue: 1 year: 2018 ident: 10.1016/j.cej.2020.127957_b1250 article-title: Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes publication-title: J. Adv. Oxidation. Technol doi: 10.26802/jaots.2017.0075 – volume: 137 start-page: 291 year: 2018 ident: 10.1016/j.cej.2020.127957_b0920 article-title: Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A publication-title: Carbon doi: 10.1016/j.carbon.2018.05.039 – volume: 259 start-page: 118056 year: 2019 ident: 10.1016/j.cej.2020.127957_b0540 article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118056 – ident: 10.1016/j.cej.2020.127957_b0535 doi: 10.1039/C8CP02080A – volume: 189 start-page: 176 year: 2017 ident: 10.1016/j.cej.2020.127957_b0055 article-title: Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.046 – volume: 353 start-page: 329 year: 2018 ident: 10.1016/j.cej.2020.127957_b0830 article-title: MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.105 – volume: 392 start-page: 123681 year: 2020 ident: 10.1016/j.cej.2020.127957_b1115 article-title: Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123681 – volume: 359 start-page: 723 year: 2019 ident: 10.1016/j.cej.2020.127957_b1130 article-title: Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.165 – volume: 53 start-page: 40 year: 2015 ident: 10.1016/j.cej.2020.127957_b0855 article-title: Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2015.02.027 – volume: 209 start-page: 729 year: 2017 ident: 10.1016/j.cej.2020.127957_b0225 article-title: Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.02.068 – volume: 326 start-page: 1095 year: 2017 ident: 10.1016/j.cej.2020.127957_b0515 article-title: Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.168 – ident: 10.1016/j.cej.2020.127957_b0835 doi: 10.1002/wer.1090 – volume: 88 start-page: 462 issue: 3-4 year: 2009 ident: 10.1016/j.cej.2020.127957_b1335 article-title: Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2008.10.013 – volume: 9 start-page: 2284 issue: 4 year: 2019 ident: 10.1016/j.cej.2020.127957_b0640 article-title: Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide publication-title: RSC Adv. doi: 10.1039/C8RA09841G – volume: 6 start-page: 399 issue: 2 year: 2019 ident: 10.1016/j.cej.2020.127957_b1010 article-title: Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N publication-title: Environ. Sci.: Nano – ident: 10.1016/j.cej.2020.127957_b0255 doi: 10.1021/acs.est.7b05563 – ident: 10.1016/j.cej.2020.127957_b0130 doi: 10.1021/am505309b – volume: 545 start-page: 311 year: 2019 ident: 10.1016/j.cej.2020.127957_b0705 article-title: Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.045 – volume: 1 start-page: 339 issue: 8 year: 2014 ident: 10.1016/j.cej.2020.127957_b1095 article-title: Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez5002209 – volume: 363 start-page: 234 year: 2019 ident: 10.1016/j.cej.2020.127957_b0905 article-title: Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.129 – volume: 329 start-page: 262 year: 2017 ident: 10.1016/j.cej.2020.127957_b0120 article-title: Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.01.029 – volume: 9 start-page: 9410 issue: 17 year: 2019 ident: 10.1016/j.cej.2020.127957_b0805 article-title: Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue publication-title: RSC Adv. doi: 10.1039/C9RA01143A – volume: 372 start-page: 796 year: 2019 ident: 10.1016/j.cej.2020.127957_b0465 article-title: Efficient degradation of atrazine by LaCoO3/Al2O3 catalyzed peroxymonosulfate: Performance, degradation intermediates and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.188 – volume: 38 start-page: 1360 issue: 8 year: 2017 ident: 10.1016/j.cej.2020.127957_b0895 article-title: Peroxymonosulfate activation by Mn 3 O 4 /metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62875-4 – volume: 198 start-page: 204 year: 2018 ident: 10.1016/j.cej.2020.127957_b0525 article-title: Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.135 – volume: 181 start-page: 1010 issue: 1-3 year: 2010 ident: 10.1016/j.cej.2020.127957_b1260 article-title: Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.115 – volume: 252 start-page: 393 year: 2014 ident: 10.1016/j.cej.2020.127957_b1315 article-title: Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5− publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.104 – volume: 245 start-page: 71 year: 2019 ident: 10.1016/j.cej.2020.127957_b0720 article-title: Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.048 – volume: 359 start-page: 373 year: 2019 ident: 10.1016/j.cej.2020.127957_b0095 article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.120 – volume: 187 start-page: 1 year: 2016 ident: 10.1016/j.cej.2020.127957_b0980 article-title: Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.01.036 – volume: 167 start-page: 181 year: 2016 ident: 10.1016/j.cej.2020.127957_b0335 article-title: Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.04.035 – volume: 328 start-page: 1112 year: 2017 ident: 10.1016/j.cej.2020.127957_b0555 article-title: Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.042 – volume: 385 start-page: 123935 year: 2020 ident: 10.1016/j.cej.2020.127957_b0745 article-title: 3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123935 – volume: 49 start-page: 13394 issue: 22 year: 2015 ident: 10.1016/j.cej.2020.127957_b1220 article-title: Quantitative Structure–Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03078 – volume: 711 start-page: 134715 year: 2020 ident: 10.1016/j.cej.2020.127957_b0400 article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134715 – volume: 53 start-page: 307 issue: 1 year: 2019 ident: 10.1016/j.cej.2020.127957_b0150 article-title: Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04669 – volume: 127 start-page: 330 year: 2012 ident: 10.1016/j.cej.2020.127957_b0505 article-title: Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.09.001 – volume: 154-155 start-page: 246 year: 2014 ident: 10.1016/j.cej.2020.127957_b0480 article-title: Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.02.026 – volume: 233 start-page: 99 year: 2018 ident: 10.1016/j.cej.2020.127957_b0715 article-title: Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate: Influence of co-existing chemicals and UV irradiation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.088 – volume: 351 start-page: 841 year: 2018 ident: 10.1016/j.cej.2020.127957_b1305 article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.111 – volume: 392 start-page: 123725 year: 2020 ident: 10.1016/j.cej.2020.127957_b1230 article-title: Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123725 – volume: 269 start-page: 118850 year: 2020 ident: 10.1016/j.cej.2020.127957_b0215 article-title: Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118850 – volume: 8 start-page: 7269 issue: 13 year: 2018 ident: 10.1016/j.cej.2020.127957_b0320 article-title: Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation publication-title: RSC Adv. doi: 10.1039/C7RA12615H – volume: 115 start-page: 730 year: 2017 ident: 10.1016/j.cej.2020.127957_b1210 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon doi: 10.1016/j.carbon.2017.01.060 – volume: 241 start-page: 561 year: 2019 ident: 10.1016/j.cej.2020.127957_b0795 article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.056 – volume: 370 start-page: 354 year: 2019 ident: 10.1016/j.cej.2020.127957_b0615 article-title: Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: Optimization, degradation pathways and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.127 – volume: 266 start-page: 118601 year: 2020 ident: 10.1016/j.cej.2020.127957_b0405 article-title: Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118601 – volume: 376 start-page: 119193 year: 2019 ident: 10.1016/j.cej.2020.127957_b0395 article-title: Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.177 – volume: 330 start-page: 505 year: 2017 ident: 10.1016/j.cej.2020.127957_b0440 article-title: Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.149 – volume: 318 start-page: 154 year: 2016 ident: 10.1016/j.cej.2020.127957_b0800 article-title: Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.058 – volume: 204 start-page: 11 year: 2018 ident: 10.1016/j.cej.2020.127957_b0575 article-title: Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.023 – volume: 148 start-page: 416 year: 2019 ident: 10.1016/j.cej.2020.127957_b0155 article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition publication-title: Water Res. doi: 10.1016/j.watres.2018.10.087 – volume: 49 start-page: 7330 issue: 12 year: 2015 ident: 10.1016/j.cej.2020.127957_b1320 article-title: Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process publication-title: Environ. Sci. Technol. doi: 10.1021/es506362e – volume: 231 start-page: 434 year: 2013 ident: 10.1016/j.cej.2020.127957_b0300 article-title: Efficient performance of porous F2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.053 – volume: 47 start-page: 5431 issue: 14 year: 2013 ident: 10.1016/j.cej.2020.127957_b0355 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. doi: 10.1016/j.watres.2013.06.023 – volume: 384 start-page: 123302 year: 2020 ident: 10.1016/j.cej.2020.127957_b1190 article-title: Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons for superfast degradation of sulfamethazine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123302 – volume: 188 start-page: 98 year: 2016 ident: 10.1016/j.cej.2020.127957_b0180 article-title: Occurrence of radical and nonradical pathways from aqueous and nonaqueous catalytic oxidation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.01.059 – volume: 262 year: 2020 ident: 10.1016/j.cej.2020.127957_b1185 article-title: Scalable synthesis of Ca-doped ɑ-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118250 – volume: 363 start-page: 318 year: 2019 ident: 10.1016/j.cej.2020.127957_b0085 article-title: Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.145 – ident: 10.1016/j.cej.2020.127957_b1255 doi: 10.3390/atmos10120795 – volume: 360 start-page: 303 year: 2018 ident: 10.1016/j.cej.2020.127957_b0010 article-title: Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu(II) substitution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.028 – ident: 10.1016/j.cej.2020.127957_b0245 doi: 10.1016/j.cej.2019.123257 – volume: 392 start-page: 122316 year: 2020 ident: 10.1016/j.cej.2020.127957_b0625 article-title: Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122316 – volume: 53 start-page: 6589 issue: 49 year: 2017 ident: 10.1016/j.cej.2020.127957_b0045 article-title: A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water publication-title: Chem. Commun. doi: 10.1039/C7CC02820B – volume: 308 start-page: 58 year: 2016 ident: 10.1016/j.cej.2020.127957_b0475 article-title: Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.035 – volume: 217 start-page: 800 year: 2019 ident: 10.1016/j.cej.2020.127957_b0360 article-title: A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe2O4 catalyst regeneration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.077 – volume: 194 start-page: 169 year: 2016 ident: 10.1016/j.cej.2020.127957_b0050 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.04.003 – volume: 398 start-page: 122884 year: 2020 ident: 10.1016/j.cej.2020.127957_b0665 article-title: Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122884 – volume: 384 start-page: 123246 year: 2020 ident: 10.1016/j.cej.2020.127957_b1040 article-title: Recycling of nitrogen-containing waste diapers for catalytic contaminant oxidation: Occurrence of radical and non-radical pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123246 – volume: 250 start-page: 117246 year: 2020 ident: 10.1016/j.cej.2020.127957_b1120 article-title: Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117246 – volume: 663 start-page: 453 year: 2019 ident: 10.1016/j.cej.2020.127957_b0585 article-title: Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.190 – ident: 10.1016/j.cej.2020.127957_b0315 doi: 10.1039/C9EN00500E – volume: 422 start-page: 754 year: 2017 ident: 10.1016/j.cej.2020.127957_b0510 article-title: Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.118 – volume: 270 start-page: 118874 year: 2020 ident: 10.1016/j.cej.2020.127957_b0470 article-title: Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118874 – volume: 331 start-page: 144 year: 2018 ident: 10.1016/j.cej.2020.127957_b0235 article-title: Controlled synthesis of dandelion-like NiCo2O4 microspheres and their catalytic performance for peroxymonosulfate activation in humic acid degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.115 – volume: 369 start-page: 542 year: 2019 ident: 10.1016/j.cej.2020.127957_b1275 article-title: Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.097 – volume: 384 start-page: 121447 year: 2020 ident: 10.1016/j.cej.2020.127957_b1270 article-title: Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121447 – volume: 357 start-page: 140 year: 2019 ident: 10.1016/j.cej.2020.127957_b0595 article-title: Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.111 – volume: 480 start-page: 717 year: 2019 ident: 10.1016/j.cej.2020.127957_b0230 article-title: A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4−x for activating peroxymonosulfate publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.034 – volume: 356 start-page: 53 year: 2018 ident: 10.1016/j.cej.2020.127957_b0685 article-title: Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.05.044 – volume: 213 start-page: 456 year: 2019 ident: 10.1016/j.cej.2020.127957_b0450 article-title: Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.12.049 – volume: 262 start-page: 110299 year: 2020 ident: 10.1016/j.cej.2020.127957_b0930 article-title: Yolk-shell ZIFs@SiO2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.110299 – volume: 263 start-page: 118350 year: 2020 ident: 10.1016/j.cej.2020.127957_b1035 article-title: Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118350 – volume: 189 start-page: 224 year: 2017 ident: 10.1016/j.cej.2020.127957_b0165 article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.042 – volume: 515 start-page: 92 year: 2018 ident: 10.1016/j.cej.2020.127957_b0590 article-title: Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.016 – volume: 218 start-page: 1071 year: 2019 ident: 10.1016/j.cej.2020.127957_b0240 article-title: Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.197 – volume: 320 start-page: 436 year: 2017 ident: 10.1016/j.cej.2020.127957_b0390 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.036 – volume: 220 start-page: 626 year: 2018 ident: 10.1016/j.cej.2020.127957_b0670 article-title: Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.08.088 – volume: 35 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.cej.2020.127957_b1295 article-title: Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions publication-title: Res Chem Intermed doi: 10.1007/s11164-008-0012-6 – volume: 249 start-page: 890 year: 2018 ident: 10.1016/j.cej.2020.127957_b0885 article-title: Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.10.092 – volume: 240 year: 2020 ident: 10.1016/j.cej.2020.127957_b0205 article-title: Enhanced peroxymonosulfate activation by supported microporous carbón for degradation of tetracycline via non-radical mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116617 – volume: 238 start-page: 557 year: 2018 ident: 10.1016/j.cej.2020.127957_b1340 article-title: A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.07.058 – volume: 24 start-page: 11536 issue: 12 year: 2017 ident: 10.1016/j.cej.2020.127957_b0500 article-title: Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-8811-1 – ident: 10.1016/j.cej.2020.127957_b0865 doi: 10.1039/C8RA05024D – volume: 54 start-page: 8333 issue: 13 year: 2020 ident: 10.1016/j.cej.2020.127957_b0760 article-title: Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07245 – volume: 215 start-page: 60 year: 2017 ident: 10.1016/j.cej.2020.127957_b0675 article-title: Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO 3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.05.051 – ident: 10.1016/j.cej.2020.127957_b0145 doi: 10.1016/j.apcatb.2019.118214 – volume: 41 start-page: 4640 issue: 13 year: 2007 ident: 10.1016/j.cej.2020.127957_b1330 article-title: Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Other Dissolved Organic Matter Isolates publication-title: Environ. Sci. Technol. doi: 10.1021/es062529n – volume: 354 start-page: 507 year: 2018 ident: 10.1016/j.cej.2020.127957_b1175 article-title: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.043 – volume: 159 start-page: 77 year: 2019 ident: 10.1016/j.cej.2020.127957_b0965 article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation publication-title: Water Res. doi: 10.1016/j.watres.2019.05.008 – volume: 371 start-page: 404 year: 2019 ident: 10.1016/j.cej.2020.127957_b0020 article-title: The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.007 – volume: 218 start-page: 810 year: 2017 ident: 10.1016/j.cej.2020.127957_b0110 article-title: Synergetic Activation of Peroxymonosulfate by Co3O4 Modified g-C3N4 for Enhanced Degradation of Diclofenac Sodium under Visible Light Irradiation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.07.016 – ident: 10.1016/j.cej.2020.127957_b0090 doi: 10.1016/j.cej.2016.09.075 – volume: 321 start-page: 222 year: 2017 ident: 10.1016/j.cej.2020.127957_b0580 article-title: Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.117 – volume: 219 start-page: 107 year: 2016 ident: 10.1016/j.cej.2020.127957_b0605 article-title: Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.052 – volume: 160 start-page: 96 year: 2017 ident: 10.1016/j.cej.2020.127957_b0690 article-title: LaMO 3 perovskites (M=Co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.11.017 – volume: 388 start-page: 121801 year: 2020 ident: 10.1016/j.cej.2020.127957_b1085 article-title: Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121801 – volume: 237 start-page: 124478 year: 2019 ident: 10.1016/j.cej.2020.127957_b0730 article-title: Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124478 – volume: 740 start-page: 140388 year: 2020 ident: 10.1016/j.cej.2020.127957_b1065 article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140388 – volume: 381 start-page: 122768 year: 2020 ident: 10.1016/j.cej.2020.127957_b0935 article-title: A mechanistic study of amorphous CoSx cages as advanced oxidation catalysts for excellent peroxymonosulfate activation towards antibiotics degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122768 – volume: 115 start-page: 649 year: 2017 ident: 10.1016/j.cej.2020.127957_b0845 article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation publication-title: Carbon doi: 10.1016/j.carbon.2017.01.058 – volume: 54 start-page: 2476 issue: 4 year: 2020 ident: 10.1016/j.cej.2020.127957_b0445 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04696 – volume: 5 start-page: 3655 issue: 7 year: 2017 ident: 10.1016/j.cej.2020.127957_b0570 article-title: A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09100H – volume: 260 start-page: 118129 year: 2020 ident: 10.1016/j.cej.2020.127957_b0140 article-title: Rapid removal of tetrabromobisphenol A by α-Fe2O3-x@Graphene@Montmorillonite catalyst with oxygen vacancies through peroxymonosulfate activation: Role of halogen and α-hydroxyalkyl radicals publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118129 – volume: 53 start-page: 11783 issue: 20 year: 2019 ident: 10.1016/j.cej.2020.127957_b1325 article-title: Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04105 – volume: 375 start-page: 122041 year: 2019 ident: 10.1016/j.cej.2020.127957_b1015 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122041 – volume: 6 start-page: 884 year: 2018 ident: 10.1016/j.cej.2020.127957_b0195 article-title: Prussian blue analogues derived porous nitrogen-doped carbón microspheres as high-performance metal-free peroxymonosulfate activation for non-radical-dominated degradation of organic pollutants publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA08472B – volume: 370 start-page: 614 year: 2019 ident: 10.1016/j.cej.2020.127957_b1100 article-title: Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.235 – volume: 51 start-page: 15249 issue: 83 year: 2015 ident: 10.1016/j.cej.2020.127957_b0955 article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study publication-title: Chem. Commun. doi: 10.1039/C5CC05101K – ident: 10.1016/j.cej.2020.127957_b1110 doi: 10.1088/2053-1591/ab4b98 – volume: 50 start-page: 10187 issue: 18 year: 2016 ident: 10.1016/j.cej.2020.127957_b0790 article-title: Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02841 – volume: 296 start-page: 128 year: 2015 ident: 10.1016/j.cej.2020.127957_b0365 article-title: Sulfate radicals iduced from peroxymonosulfate by cobalt manganese oxides (CoxMN3-xO4) for Fenton-like reaction in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.04.014 – ident: 10.1016/j.cej.2020.127957_b0810 doi: 10.1039/C6CY02130A – volume: 102 start-page: 85 year: 2017 ident: 10.1016/j.cej.2020.127957_b0785 article-title: Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: The role of superoxide radical and singlet oxygen publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.08.016 – volume: 385 start-page: 121518 year: 2020 ident: 10.1016/j.cej.2020.127957_b0285 article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121518 – volume: 7 start-page: 388 issue: 1 year: 2017 ident: 10.1016/j.cej.2020.127957_b0700 article-title: Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study publication-title: ACS Catal. doi: 10.1021/acscatal.6b02303 – volume: 390 start-page: 124532 year: 2020 ident: 10.1016/j.cej.2020.127957_b0780 article-title: Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124532 – volume: 4 start-page: 315 issue: 2 year: 2017 ident: 10.1016/j.cej.2020.127957_b0850 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci.: Nano – volume: 307 start-page: 476 year: 2017 ident: 10.1016/j.cej.2020.127957_b0610 article-title: Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.117 – volume: 383 year: 2020 ident: 10.1016/j.cej.2020.127957_b0070 article-title: Degradation mechanisms of ofloxacin and cefazolin uing peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123056 – volume: 53 start-page: 4500 year: 2019 ident: 10.1016/j.cej.2020.127957_b0280 article-title: Impact of crystal types of AgFeO2 nanoparticles on the peroxymonosulfate activation in the water publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b00658 – volume: 353 start-page: 69 year: 2018 ident: 10.1016/j.cej.2020.127957_b0880 article-title: Surface-nucleated heterogeneous growth of zeolitic imidazolate framework – A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.117 – volume: 313 start-page: 155 year: 2018 ident: 10.1016/j.cej.2020.127957_b1300 article-title: Rapid oxidation of paracetamol by Cobalt(II) catalyzed sulfite at alkaline pH publication-title: Catal. Today doi: 10.1016/j.cattod.2017.12.004 – volume: 31 issue: 11 year: 2017 ident: 10.1016/j.cej.2020.127957_b0940 article-title: AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4‐nitrophenol: Studies of kinetics and mechanism publication-title: Appl Organometal Chem doi: 10.1002/aoc.3806 – volume: 397 start-page: 125339 year: 2020 ident: 10.1016/j.cej.2020.127957_b0915 article-title: Interfacial CoAl2O4 from ZIF-67@γ-Al2O3 pellets toward catalytic activation of peroxymonosulfate for metronidazole removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125339 – volume: 276 start-page: 452 year: 2014 ident: 10.1016/j.cej.2020.127957_b0260 article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activation of peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.05.068 – volume: 673 start-page: 565 year: 2019 ident: 10.1016/j.cej.2020.127957_b0710 article-title: Enhanced degradation of atrazine by nanoscale LaFe1-xCuxO3-δ perovskite activated peroxymonosulfate: Performance and mechanism publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.098 – volume: 45 start-page: 9308 issue: 21 year: 2011 ident: 10.1016/j.cej.2020.127957_b0075 article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 345 start-page: 364 year: 2018 ident: 10.1016/j.cej.2020.127957_b0170 article-title: Efficient heterogeneous activation of peroxyonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.169 – volume: 11 start-page: 4601 issue: 22 year: 2009 ident: 10.1016/j.cej.2020.127957_b1285 article-title: Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b900144a – volume: 248 start-page: 62 year: 2019 ident: 10.1016/j.cej.2020.127957_b0035 article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking wáter publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.02.018 – volume: 406 start-page: 127083 year: 2021 ident: 10.1016/j.cej.2020.127957_b0080 article-title: A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127083 – volume: 279 start-page: 93 year: 2015 ident: 10.1016/j.cej.2020.127957_b0455 article-title: Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.001 – volume: 256 start-page: 10 year: 2017 ident: 10.1016/j.cej.2020.127957_b0860 article-title: Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.08.031 – volume: 280 start-page: 2 year: 2017 ident: 10.1016/j.cej.2020.127957_b0175 article-title: Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation publication-title: Catal. Today doi: 10.1016/j.cattod.2016.04.043 – ident: 10.1016/j.cej.2020.127957_b0910 doi: 10.1039/C6RA15590A – ident: 10.1016/j.cej.2020.127957_b0490 doi: 10.1039/C5TA06563A – volume: 33 start-page: 101037 year: 2020 ident: 10.1016/j.cej.2020.127957_b1060 article-title: Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.101037 – volume: 752 start-page: 142282 year: 2021 ident: 10.1016/j.cej.2020.127957_b0970 article-title: Preparation of nitrogen self-doped hierarchical porous carbon with rapid-freezing support for cooperative pollutant adsorption and catalytic oxidation of persulfate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142282 – volume: 714 start-page: 136728 year: 2020 ident: 10.1016/j.cej.2020.127957_b1070 article-title: One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136728 – volume: 375 start-page: 122009 year: 2019 ident: 10.1016/j.cej.2020.127957_b1180 article-title: Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122009 – volume: 394 start-page: 124458 year: 2020 ident: 10.1016/j.cej.2020.127957_b0560 article-title: Oxygen-defective MnO2−x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124458 – volume: 156 start-page: 399 year: 2020 ident: 10.1016/j.cej.2020.127957_b0185 article-title: Glucose and melamine derived nitrogen-doped carbonaceous catalyst for nonradical peroxymonosufate activation publication-title: Carbon doi: 10.1016/j.carbon.2019.09.050 – volume: 80 start-page: 116 issue: 1-2 year: 2008 ident: 10.1016/j.cej.2020.127957_b0295 article-title: Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2007.11.009 – volume: 49 start-page: 6855 issue: 11 year: 2015 ident: 10.1016/j.cej.2020.127957_b0900 article-title: Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01059 – volume: 348 start-page: 526 year: 2018 ident: 10.1016/j.cej.2020.127957_b0370 article-title: Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.215 – volume: 353 start-page: 401 year: 2018 ident: 10.1016/j.cej.2020.127957_b0735 article-title: Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.04.021 – ident: 10.1016/j.cej.2020.127957_b0265 doi: 10.1021/acs.iecr.9b03814 – volume: 30 start-page: 19009 issue: 20 year: 2019 ident: 10.1016/j.cej.2020.127957_b0645 article-title: Heterogeneous co-activation of peroxymonosulfate by CuCoFe calcined layered double hydroxides and ultraviolet irradiation for the efficient removal of p-nitrophenol publication-title: J Mater Sci: Mater Electron – volume: 384 start-page: 123298 year: 2020 ident: 10.1016/j.cej.2020.127957_b0065 article-title: Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123298 – volume: 454 start-page: 44 year: 2015 ident: 10.1016/j.cej.2020.127957_b0330 article-title: Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.05.009 – volume: 398 start-page: 125676 year: 2020 ident: 10.1016/j.cej.2020.127957_b0650 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125676 |
SSID | ssj0006919 |
Score | 2.72137 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The heterogeneous PMS methods for the elimination of organic contaminants were reviewed.•PMS activation by distinct groups of metallic and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127957 |
SubjectTerms | Electron transfer mechanism Heterogeneous catalysts Peroxymonosulfate activation Radical and non-radical pathways Singlet oxygen |
Title | A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants |
URI | https://dx.doi.org/10.1016/j.cej.2020.127957 |
Volume | 411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQXOCAWMVazYEDIEKp46TxsapAhQqEWAS3yLEdUQQJalKWCx_JFzGThUUCDpyyyFaszmjmufM8j7ENoXXsak872nrcEdaNnahF5UITuUb5rjKFasnxid-7FEfX3vUY69ZnYYhWWcX-MqYX0bp606x-zebDYNA8b1FNSwqqI-KuxKe220K0yct3Xz9pHr4sxD1osEOj68pmwfHS9ha3iJx6LLQlZaifctOXfHMww6YroAidci2zbMwmc2zqS_vAefbWgfLkCaQxIJCDwYfEaYb3cG8RWTugEgNaDaM0cShn0UNOnUjyDGzBwMNXCF3hhpgxKTqUTUcZUAPx5xd00jQb3cWISGHz9Ph8C-ggRPmNHaA_cXGqxuFpAkNV1HzgMduFBD9WPxvqR1FKNwEJID-pl4xWXApKaSC2vKoYOQvs4mD_ottzKo0GR3PZzukgQOyayHiu5X6bG-q-H9uWpwLlYQymOqOJEJUEXCgZYEhDQEGqV1LyCMGLu8jGcUV2iYGVgZIa4VEQxML6RmkRR8bFHRb3lPLtMturjRPqqn85yWjchTVR7TZEe4Zkz7C05zLb_pjyUDbv-GuwqC0efvPAEJPL79NW_jdtlU1yYscU1Mk1Np4PR3Yd4U0eNQr_bbCJzmG_d0LX_tlV_x0QzP9M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeKn7VAi1zAAkQ6bKOk40PPVRAtaXdCqmL1Jvl2I7Yqk2qTbZlL32oPkqfiJn8lCIBB6TeYstOnIw9M858ng_glbQ2C21kA-sjEUgfZkHa53ChS0Nn4tC4mrVktB8Pv8kvh9HhAlx2Z2EYVtnq_kan19q6rem1X7N3Opn0Dvoc01KS44i0K4njFlm56-fntG8rN3c-kZBfC7H9efxxGLTUAoEValAxfj0LXeqi0It4IBwnjc98PzKJiUh1cHjMpWRMEyGNSmglkh1ksialREo2N6Tb3oG7krQFsyZsXPyClcSqJhPhwQU8ui6SWmPKrD-iLangnA4DxRbxT7bwhn3bfgDLrWOKW827P4QFnz-CpRvpCh_D1RY2J12wyJAcR5xcU6qWdI0nnjz5AE3u0JppWuQB20guVJz5pCrR14g_qiJXGb8zEqegCeyLWYmcsPzHnBZFUc6OM_KA8c3X0cFb5IMXzTPeI_80pq6Wmhc5Tk0dY8KzcgNzelhXdpz_oqGKQiZcPjfzkkfcEFhZZHS-aRFAT2B8G4J7Cos0Ir8C6FVilCV3LEky6WNnrMxSF9KOTkTGxH4VPnTC0bbNl860Hce6A8YdaZKnZnnqRp6r8O66y2mTLORfjWUncf3bjNdkzP7e7dn_dXsJ94bj0Z7e29nffQ73BSNzatjmC1ispjO_Rq5Vla7XcxlB3_La-Qlr8zUm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+the+innovations+in+metal-+and+carbon-based+catalysts+explored+for+heterogeneous+peroxymonosulfate+%28PMS%29+activation%2C+with+focus+on+radical+vs.+non-radical+degradation+pathways+of+organic+contaminants&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Kohantorabi%2C+Mona&rft.au=Moussavi%2C+Gholamreza&rft.au=Giannakis%2C+Stefanos&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=411&rft_id=info:doi/10.1016%2Fj.cej.2020.127957&rft.externalDocID=S1385894720340766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |