A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries

Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertaint...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 61; p. 106788
Main Authors Shao, Junya, Li, Junfu, Yuan, Weizhe, Dai, Changsong, Wang, Zhenbo, Zhao, Ming, Pecht, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertainty of operating conditions. In this work, a discharge capacity prognostics method for lithium-ion batteries is developed based on a simplified electrochemical coupled aging mechanism model. Firstly, the solid-phase diffusion process is analyzed by using a simplified electrochemical model, and the particle rupture stress at different C rates is obtained. Then, based on the aging mechanisms in terms of Solid Electrolyte Interphase (SEI) layer growth model and particle volume expansion model, the SEI growth rate and correlated aging kinetics parameters are optimized by using particle swarm optimization algorithm. Finally, combined with the further analysis of aging mechanisms and variation of model parameters at early, middle, and late stage of degradation, the developed discharge capacity prediction method is verified at separate stages for batteries at 1C, 2C and 3C respectively, with the average relative error of full life cycle no more than 4 %. [Display omitted] •Developed a simplified electrochemical coupled aging mechanism model.•Accurate and rapid capacity prediction for early, middle and late stage of aging process.•The developed method is verified based on the aging test data at different discharge rates.•PSO algorithm is applied to estimate aging parameters based on degradation modeling.
AbstractList Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertainty of operating conditions. In this work, a discharge capacity prognostics method for lithium-ion batteries is developed based on a simplified electrochemical coupled aging mechanism model. Firstly, the solid-phase diffusion process is analyzed by using a simplified electrochemical model, and the particle rupture stress at different C rates is obtained. Then, based on the aging mechanisms in terms of Solid Electrolyte Interphase (SEI) layer growth model and particle volume expansion model, the SEI growth rate and correlated aging kinetics parameters are optimized by using particle swarm optimization algorithm. Finally, combined with the further analysis of aging mechanisms and variation of model parameters at early, middle, and late stage of degradation, the developed discharge capacity prediction method is verified at separate stages for batteries at 1C, 2C and 3C respectively, with the average relative error of full life cycle no more than 4 %. [Display omitted] •Developed a simplified electrochemical coupled aging mechanism model.•Accurate and rapid capacity prediction for early, middle and late stage of aging process.•The developed method is verified based on the aging test data at different discharge rates.•PSO algorithm is applied to estimate aging parameters based on degradation modeling.
ArticleNumber 106788
Author Li, Junfu
Dai, Changsong
Zhao, Ming
Pecht, Michael
Shao, Junya
Yuan, Weizhe
Wang, Zhenbo
Author_xml – sequence: 1
  givenname: Junya
  surname: Shao
  fullname: Shao, Junya
  organization: School of Automotive Engineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
– sequence: 2
  givenname: Junfu
  surname: Li
  fullname: Li, Junfu
  email: lijunfu@hit.edu.cn
  organization: School of Automotive Engineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
– sequence: 3
  givenname: Weizhe
  surname: Yuan
  fullname: Yuan, Weizhe
  email: 181720121@stu.hit.edu.cn
  organization: School of New energy, Harbin Institute of Technology, Weihai 264209, Shandong, China
– sequence: 4
  givenname: Changsong
  surname: Dai
  fullname: Dai, Changsong
  email: changsd@hit.edu.cn
  organization: School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
– sequence: 5
  givenname: Zhenbo
  surname: Wang
  fullname: Wang, Zhenbo
  email: wangzhb@hit.edu.cn
  organization: School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
– sequence: 6
  givenname: Ming
  surname: Zhao
  fullname: Zhao, Ming
  email: zhaoming@ghtech.com
  organization: Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000, Guangdong, China
– sequence: 7
  givenname: Michael
  surname: Pecht
  fullname: Pecht, Michael
  email: pecht@umd.edu
  organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA
BookMark eNp9kE1LAzEQhoNUsNb-AG_5A1uTbHc3wVMpfoHgRcFbSLOTdsrupiSx0LN_3JSKBw89zQzM88L7XJPR4Acg5JazGWe8vtvOIKaZYKLMd91IeUHGoqxEwatSjv528XlFpjFuGctQxbmqx-R7QQe_h472kDa-pd7RFqPdmLAGas3OWEwHugvQok3oB7oyEfLbQCP2uw4d5gs6sCl4u4EerclZvoWuMGsc1jk3hw0Ye-p8oB2mDX71xSkpJQgI8YZcOtNFmP7OCfl4fHhfPhevb08vy8VrYYVqUiFczVwpy1bxuWKsreamcQ1TQnDpYC5L2yhX1UZIsVK2qVTZrlYNk8rOnTS8LiekOeXa4GMM4HQuZ46tUjDYac70Uafe6qxTH3Xqk85M8n_kLmBvwuEsc39iIFfaIwQdLcJgs8mQdenW4xn6B5u8kc0
CitedBy_id crossref_primary_10_1016_j_energy_2025_134569
crossref_primary_10_1038_s41598_025_89727_1
crossref_primary_10_1002_est2_70118
crossref_primary_10_1016_j_energy_2024_131154
crossref_primary_10_1016_j_jclepro_2025_144804
crossref_primary_10_3390_en17071681
crossref_primary_10_1002_cnl2_124
crossref_primary_10_1016_j_energy_2023_130220
crossref_primary_10_3390_en16196887
crossref_primary_10_1016_j_engfracmech_2023_109597
crossref_primary_10_1016_j_est_2025_116310
crossref_primary_10_1016_j_energy_2023_127033
crossref_primary_10_1016_j_jpowsour_2024_234781
crossref_primary_10_1016_j_est_2024_112921
crossref_primary_10_1016_j_est_2024_113850
crossref_primary_10_1016_j_jpowsour_2025_236809
crossref_primary_10_1109_TVT_2024_3350663
crossref_primary_10_3390_en17122845
crossref_primary_10_1016_j_energy_2024_134272
crossref_primary_10_1016_j_est_2023_108586
crossref_primary_10_1149_1945_7111_ad9353
crossref_primary_10_1016_j_est_2023_109701
crossref_primary_10_1002_est2_70133
crossref_primary_10_1088_1757_899X_1306_1_012009
Cites_doi 10.1016/j.apenergy.2017.09.106
10.1016/j.electacta.2015.02.189
10.1016/j.electacta.2018.04.098
10.1109/TPEL.2019.2893622
10.1016/j.est.2015.05.003
10.1016/j.apenergy.2017.03.079
10.1016/j.apenergy.2018.03.053
10.1149/2.098206jes
10.1016/j.jpowsour.2015.07.100
10.1016/j.est.2020.101538
10.1016/j.est.2018.12.011
10.1149/1.1838857
10.1016/j.etran.2019.100005
10.1016/j.est.2016.01.003
10.1016/j.jclepro.2018.08.134
10.1016/j.jpowsour.2020.229026
10.1016/S0378-7753(01)00722-4
10.1016/j.jpowsour.2020.229422
10.1016/j.est.2019.100951
10.1109/TIE.2019.2899565
10.1109/TTE.2021.3118813
10.1016/j.jpowsour.2020.228581
10.1016/j.electacta.2018.06.119
10.1016/j.apenergy.2015.12.063
10.1149/1.3455179
10.1016/j.jpowsour.2015.06.014
10.1016/j.egyr.2020.07.026
10.1016/j.apenergy.2018.01.011
10.1149/2.049210jes
10.1016/j.jpowsour.2013.12.060
10.1016/j.jpowsour.2016.12.099
10.1016/j.jpowsour.2020.228654
10.1149/1.2759840
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2023.106788
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID 10_1016_j_est_2023_106788
S2352152X23001858
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-2f60f383d914900d54a7f7092218fe483c79f56a282b9c7593dbb7089c4f8a163
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Thu Apr 24 22:51:53 EDT 2025
Tue Jul 01 00:51:43 EDT 2025
Fri Feb 23 02:36:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Solid electrolyte interphase layer growth
Particle volume expansion
Aging mechanisms
Simplified electrochemical model
Capacity prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-2f60f383d914900d54a7f7092218fe483c79f56a282b9c7593dbb7089c4f8a163
ParticipantIDs crossref_citationtrail_10_1016_j_est_2023_106788
crossref_primary_10_1016_j_est_2023_106788
elsevier_sciencedirect_doi_10_1016_j_est_2023_106788
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rahimian, Rayman, White (bb0105) 2012; 159
Broussely, Herreyre (bb0145) 2001; 97
Ma, Wu, Guan (bb0060) 2020; 476
Li, Zhang, Wang (bb0070) 2019; 21
Deshpande, Verbrugge, Cheng (bb0140) 2012; 159
Xiong, Li, Li (bb0115) 2018; 219
Li, Wang, Lyu (bb0130) 2018; 275
Cheng, Verbrugge (bb0180) 2010; 13
Yang, Wang, Xu (bb0065) 2020; 476
Hendricks, Williard, Mathew (bb0025) 2015; 297
Tanim, Rahn (bb0110) 2015; 294
Arora, White, Doyle (bb0155) 1998; 145
Li, Adewuyi, Lotfi (bb0030) 2018; 212
Atalay, Sheikh, Mariani (bb0045) 2020; 478
Petzl, Danzer (bb0150) 2014; 254
Timoshenko, Goodier (bb0175) 1970
Han, Lu, Zheng (bb0020) 2019; 1
Ouyang, Feng, Han (bb0120) 2016; 165
Chen, Wang (bb0085) 2020; 6
Jin, Vora, Hoshing (bb0125) 2017; 342
Li, Wang, Deng (bb0135) 2020; 31
Xue, Zhang, Cheng (bb0080) 2020; 376
Xiong, Yu, Shen (bb0010) 2019; 34
Schuster, Bach, Fleder (bb0040) 2015; 1
Anderson (bb0160) 2017
Zhang, Zhai, Guo (bb0075) 2019; 26
Xiong, Yang, Chen (bb0015) 2019; 67
Zhang, Wei, Sastry (bb0170) 2007; 154
Kennedy, Eberhart (bb0185) 1995; 4
Xiong, Chen, Wang (bb0005) 2018; 202
Zhu, Knapp, Sørensen (bb0035) 2021; 489
Tang, Liu, Lv (bb0100) 2017; 204
Phul, Deshpande, Krishnamurthy (bb0095) 2015; 164
Bach, Schuster, Fleder (bb0050) 2016; 5
Xu, Peng, Liu (bb0090) 2022; 8
Tahmasbi, Eikerling (bb0165) 2018; 283
Chang, Fang, Zhang (bb0055) 2017; 206
Li (10.1016/j.est.2023.106788_bb0070) 2019; 21
Rahimian (10.1016/j.est.2023.106788_bb0105) 2012; 159
Xiong (10.1016/j.est.2023.106788_bb0115) 2018; 219
Chang (10.1016/j.est.2023.106788_bb0055) 2017; 206
Atalay (10.1016/j.est.2023.106788_bb0045) 2020; 478
Zhu (10.1016/j.est.2023.106788_bb0035) 2021; 489
Schuster (10.1016/j.est.2023.106788_bb0040) 2015; 1
Yang (10.1016/j.est.2023.106788_bb0065) 2020; 476
Xue (10.1016/j.est.2023.106788_bb0080) 2020; 376
Phul (10.1016/j.est.2023.106788_bb0095) 2015; 164
Xu (10.1016/j.est.2023.106788_bb0090) 2022; 8
Arora (10.1016/j.est.2023.106788_bb0155) 1998; 145
Li (10.1016/j.est.2023.106788_bb0130) 2018; 275
Timoshenko (10.1016/j.est.2023.106788_bb0175) 1970
Li (10.1016/j.est.2023.106788_bb0135) 2020; 31
Hendricks (10.1016/j.est.2023.106788_bb0025) 2015; 297
Broussely (10.1016/j.est.2023.106788_bb0145) 2001; 97
Li (10.1016/j.est.2023.106788_bb0030) 2018; 212
Tanim (10.1016/j.est.2023.106788_bb0110) 2015; 294
Xiong (10.1016/j.est.2023.106788_bb0015) 2019; 67
Bach (10.1016/j.est.2023.106788_bb0050) 2016; 5
Tahmasbi (10.1016/j.est.2023.106788_bb0165) 2018; 283
Cheng (10.1016/j.est.2023.106788_bb0180) 2010; 13
Han (10.1016/j.est.2023.106788_bb0020) 2019; 1
Jin (10.1016/j.est.2023.106788_bb0125) 2017; 342
Ma (10.1016/j.est.2023.106788_bb0060) 2020; 476
Zhang (10.1016/j.est.2023.106788_bb0170) 2007; 154
Deshpande (10.1016/j.est.2023.106788_bb0140) 2012; 159
Kennedy (10.1016/j.est.2023.106788_bb0185) 1995; 4
Petzl (10.1016/j.est.2023.106788_bb0150) 2014; 254
Chen (10.1016/j.est.2023.106788_bb0085) 2020; 6
Ouyang (10.1016/j.est.2023.106788_bb0120) 2016; 165
Xiong (10.1016/j.est.2023.106788_bb0005) 2018; 202
Anderson (10.1016/j.est.2023.106788_bb0160) 2017
Xiong (10.1016/j.est.2023.106788_bb0010) 2019; 34
Tang (10.1016/j.est.2023.106788_bb0100) 2017; 204
Zhang (10.1016/j.est.2023.106788_bb0075) 2019; 26
References_xml – volume: 294
  start-page: 239
  year: 2015
  end-page: 247
  ident: bb0110
  article-title: Aging formula for lithium-ion batteries with solid electrolyte interphase layer growth
  publication-title: J. Power Sources
– volume: 34
  start-page: 9709
  year: 2019
  end-page: 9718
  ident: bb0010
  article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles
  publication-title: IEEE Trans. Power Electron.
– volume: 297
  start-page: 113
  year: 2015
  end-page: 120
  ident: bb0025
  article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 21
  start-page: 510
  year: 2019
  end-page: 518
  ident: bb0070
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and elman neural networks
  publication-title: J.Energy Storage
– volume: 67
  start-page: 1081
  year: 2019
  end-page: 1091
  ident: bb0015
  article-title: Online fault diagnosis of external short circuit for lithium-ion battery pack
  publication-title: IEEE Trans. Ind. Electron.
– volume: 476
  year: 2020
  ident: bb0065
  article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model
  publication-title: J. Power Sources
– volume: 13
  start-page: A128
  year: 2010
  ident: bb0180
  article-title: Application of Hasselman's crack propagation model to insertion electrodes
  publication-title: Electrochem.Solid State Lett.
– volume: 5
  start-page: 212
  year: 2016
  end-page: 223
  ident: bb0050
  article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression
  publication-title: J.Energy Storage
– volume: 219
  start-page: 264
  year: 2018
  end-page: 275
  ident: bb0115
  article-title: An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application
  publication-title: Appl. Energy
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bb0185
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN'95-International Conference on Neural Networks
– volume: 1
  start-page: 44
  year: 2015
  end-page: 53
  ident: bb0040
  article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions
  publication-title: J.Energy Storage
– volume: 212
  start-page: 1178
  year: 2018
  end-page: 1190
  ident: bb0030
  article-title: A single particle model with chemical/mechanical degradation physics for lithium-ion battery state of health (SOH) estimation
  publication-title: Appl. Energy
– volume: 489
  year: 2021
  ident: bb0035
  article-title: Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges
  publication-title: J. Power Sources
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  ident: bb0080
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 283
  start-page: 75
  year: 2018
  end-page: 87
  ident: bb0165
  article-title: Statistical physics-based model of mechanical degradation in lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 478
  year: 2020
  ident: bb0045
  article-title: Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction
  publication-title: J. Power Sources
– volume: 97
  start-page: 13
  year: 2001
  end-page: 21
  ident: bb0145
  article-title: Aging mechanism in Li ion cells and calendar life predictions
  publication-title: J. Power Sources
– volume: 31
  year: 2020
  ident: bb0135
  article-title: Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries
  publication-title: J.Energy Storage
– volume: 26
  year: 2019
  ident: bb0075
  article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
  publication-title: J.Energy Storage
– volume: 159
  start-page: A1730
  year: 2012
  ident: bb0140
  article-title: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics
  publication-title: J. Electrochem. Soc.
– volume: 145
  start-page: 3647
  year: 1998
  ident: bb0155
  article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries
  publication-title: J. Electrochem. Soc.
– year: 2017
  ident: bb0160
  article-title: Fracture Mechanics: Fundamentals And Applications
– volume: 342
  start-page: 750
  year: 2017
  end-page: 761
  ident: bb0125
  article-title: Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells
  publication-title: J. Power Sources
– volume: 476
  year: 2020
  ident: bb0060
  article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach
  publication-title: J. Power Sources
– volume: 6
  start-page: 2086
  year: 2020
  end-page: 2093
  ident: bb0085
  article-title: Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model
  publication-title: Energy Rep.
– volume: 1
  year: 2019
  ident: bb0020
  article-title: A review on the key issues of the lithium-ion battery degradation among the whole life cycle
  publication-title: ETransportation
– volume: 164
  start-page: 281
  year: 2015
  end-page: 287
  ident: bb0095
  article-title: A mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium-ion battery
  publication-title: Electrochim. Acta
– volume: 165
  start-page: 48
  year: 2016
  end-page: 59
  ident: bb0120
  article-title: A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery
  publication-title: Appl. Energy
– volume: 159
  start-page: A860
  year: 2012
  ident: bb0105
  article-title: State of charge and loss of active material estimation of a lithium-ion cell under low earth orbit condition using Kalman filtering approaches
  publication-title: J. Electrochem. Soc.
– volume: 275
  start-page: 50
  year: 2018
  end-page: 58
  ident: bb0130
  article-title: A parameter estimation method for a simplified electrochemical model for Li-ion batteries
  publication-title: Electrochim. Acta
– volume: 254
  start-page: 80
  year: 2014
  end-page: 87
  ident: bb0150
  article-title: Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries
  publication-title: J. Power Sources
– year: 1970
  ident: bb0175
  article-title: Theory of Elasticity
– volume: 206
  start-page: 1564
  year: 2017
  end-page: 1578
  ident: bb0055
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
  publication-title: Appl. Energy
– volume: 8
  start-page: 1000
  year: 2022
  end-page: 1012
  ident: bb0090
  article-title: A hybrid drive method for capacity prediction of lithium-ion batteries
  publication-title: IEEE Trans.Transp.Electrificat.
– volume: 202
  start-page: 1228
  year: 2018
  end-page: 1240
  ident: bb0005
  article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management
  publication-title: J. Clean. Prod.
– volume: 204
  start-page: 1275
  year: 2017
  end-page: 1283
  ident: bb0100
  article-title: Observer based battery SOC estimation: using multi-gain-switching approach
  publication-title: Appl. Energy
– volume: 154
  start-page: A910
  year: 2007
  end-page: A916
  ident: bb0170
  article-title: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles
  publication-title: J. Electrochem. Soc.
– volume: 206
  start-page: 1564
  year: 2017
  ident: 10.1016/j.est.2023.106788_bb0055
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.106
– volume: 164
  start-page: 281
  year: 2015
  ident: 10.1016/j.est.2023.106788_bb0095
  article-title: A mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium-ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.189
– year: 2017
  ident: 10.1016/j.est.2023.106788_bb0160
– volume: 275
  start-page: 50
  year: 2018
  ident: 10.1016/j.est.2023.106788_bb0130
  article-title: A parameter estimation method for a simplified electrochemical model for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.098
– volume: 34
  start-page: 9709
  issue: 10
  year: 2019
  ident: 10.1016/j.est.2023.106788_bb0010
  article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2893622
– volume: 1
  start-page: 44
  year: 2015
  ident: 10.1016/j.est.2023.106788_bb0040
  article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions
  publication-title: J.Energy Storage
  doi: 10.1016/j.est.2015.05.003
– year: 1970
  ident: 10.1016/j.est.2023.106788_bb0175
– volume: 204
  start-page: 1275
  year: 2017
  ident: 10.1016/j.est.2023.106788_bb0100
  article-title: Observer based battery SOC estimation: using multi-gain-switching approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.079
– volume: 219
  start-page: 264
  year: 2018
  ident: 10.1016/j.est.2023.106788_bb0115
  article-title: An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.053
– volume: 159
  start-page: A860
  issue: 6
  year: 2012
  ident: 10.1016/j.est.2023.106788_bb0105
  article-title: State of charge and loss of active material estimation of a lithium-ion cell under low earth orbit condition using Kalman filtering approaches
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.098206jes
– volume: 297
  start-page: 113
  year: 2015
  ident: 10.1016/j.est.2023.106788_bb0025
  article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.100
– volume: 31
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0135
  article-title: Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries
  publication-title: J.Energy Storage
  doi: 10.1016/j.est.2020.101538
– volume: 21
  start-page: 510
  year: 2019
  ident: 10.1016/j.est.2023.106788_bb0070
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and elman neural networks
  publication-title: J.Energy Storage
  doi: 10.1016/j.est.2018.12.011
– volume: 376
  start-page: 95
  issue: 2
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0080
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 145
  start-page: 3647
  issue: 10
  year: 1998
  ident: 10.1016/j.est.2023.106788_bb0155
  article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838857
– volume: 1
  year: 2019
  ident: 10.1016/j.est.2023.106788_bb0020
  article-title: A review on the key issues of the lithium-ion battery degradation among the whole life cycle
  publication-title: ETransportation
  doi: 10.1016/j.etran.2019.100005
– volume: 5
  start-page: 212
  year: 2016
  ident: 10.1016/j.est.2023.106788_bb0050
  article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression
  publication-title: J.Energy Storage
  doi: 10.1016/j.est.2016.01.003
– volume: 202
  start-page: 1228
  year: 2018
  ident: 10.1016/j.est.2023.106788_bb0005
  article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.134
– volume: 478
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0045
  article-title: Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229026
– volume: 97
  start-page: 13
  year: 2001
  ident: 10.1016/j.est.2023.106788_bb0145
  article-title: Aging mechanism in Li ion cells and calendar life predictions
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00722-4
– volume: 489
  year: 2021
  ident: 10.1016/j.est.2023.106788_bb0035
  article-title: Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229422
– volume: 26
  year: 2019
  ident: 10.1016/j.est.2023.106788_bb0075
  article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
  publication-title: J.Energy Storage
  doi: 10.1016/j.est.2019.100951
– volume: 67
  start-page: 1081
  issue: 2
  year: 2019
  ident: 10.1016/j.est.2023.106788_bb0015
  article-title: Online fault diagnosis of external short circuit for lithium-ion battery pack
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2899565
– volume: 8
  start-page: 1000
  issue: 1
  year: 2022
  ident: 10.1016/j.est.2023.106788_bb0090
  article-title: A hybrid drive method for capacity prediction of lithium-ion batteries
  publication-title: IEEE Trans.Transp.Electrificat.
  doi: 10.1109/TTE.2021.3118813
– volume: 476
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0060
  article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228581
– volume: 283
  start-page: 75
  year: 2018
  ident: 10.1016/j.est.2023.106788_bb0165
  article-title: Statistical physics-based model of mechanical degradation in lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.119
– volume: 165
  start-page: 48
  year: 2016
  ident: 10.1016/j.est.2023.106788_bb0120
  article-title: A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.063
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.est.2023.106788_bb0185
  article-title: Particle swarm optimization
– volume: 13
  start-page: A128
  issue: 9
  year: 2010
  ident: 10.1016/j.est.2023.106788_bb0180
  article-title: Application of Hasselman's crack propagation model to insertion electrodes
  publication-title: Electrochem.Solid State Lett.
  doi: 10.1149/1.3455179
– volume: 294
  start-page: 239
  year: 2015
  ident: 10.1016/j.est.2023.106788_bb0110
  article-title: Aging formula for lithium-ion batteries with solid electrolyte interphase layer growth
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.014
– volume: 6
  start-page: 2086
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0085
  article-title: Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.07.026
– volume: 212
  start-page: 1178
  year: 2018
  ident: 10.1016/j.est.2023.106788_bb0030
  article-title: A single particle model with chemical/mechanical degradation physics for lithium-ion battery state of health (SOH) estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.011
– volume: 159
  start-page: A1730
  issue: 10
  year: 2012
  ident: 10.1016/j.est.2023.106788_bb0140
  article-title: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.049210jes
– volume: 254
  start-page: 80
  year: 2014
  ident: 10.1016/j.est.2023.106788_bb0150
  article-title: Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.060
– volume: 342
  start-page: 750
  year: 2017
  ident: 10.1016/j.est.2023.106788_bb0125
  article-title: Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.099
– volume: 476
  year: 2020
  ident: 10.1016/j.est.2023.106788_bb0065
  article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228654
– volume: 154
  start-page: A910
  issue: 12
  year: 2007
  ident: 10.1016/j.est.2023.106788_bb0170
  article-title: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2759840
SSID ssj0001651196
Score 2.4095402
Snippet Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106788
SubjectTerms Aging mechanisms
Capacity prediction
Lithium-ion batteries
Particle volume expansion
Simplified electrochemical model
Solid electrolyte interphase layer growth
Title A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries
URI https://dx.doi.org/10.1016/j.est.2023.106788
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKe4EDYhW7fOCEZBpSL_GxqkAFRC-A1FvkOLYIgrSiLT_AjzOTOCwScOCYyGNFGWvesz0zj5DjODZScZEwLs4s49znLHH5GRPYrk4miZQOzyFvRnJ4z6_GYtwig6YWBtMqQ-yvY3oVrcObbvib3WlRdG9j4A6APmMg0RGgTrJEOjGga9Qmnf7l9XD0edQi8bKslpkTMUOb5n6zyvSC8HuKKuKn2E6tkmD5AaG-oM7FGlkNdJH26y9aJy1XbpCVL00EN8lbn5aTV_dEazFoOvEUS22xA5KjFrDQAtGm0xe8kUEvUAQuGFbSWYHp5B5IKA1qODa0D6CVQA6rFIxgXqwOLmbPFAguBdr-UCyeWT0T1gLBXnuL3F-c3w2GLEgrMBtrNWexl5GHzWmuYYcURbngRnkV6RgQ3zue9KzSXkgDG7JMWyV0L88yFSXacp8Y4HDbpF1OSrdDKBDKDNva-Z7x3DhvtBQZV14Yr50yZpdEze9Mbeg7jvIXT2mTYPaYggdS9EBae2CXnHyYTOumG38N5o2P0m8rJwVQ-N1s739m-2QZn-qUxwPSnr8s3CHQknl2FJbdO5qV4SM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE9Rnj7ABcnd1OtHfOCwAqpdtt0LrbS34Di2GtRmV91tK878JP4gM4kDRQIOSL0mthV5nJlv7PH3AbwSwmkjVc6l2vVcyljxPFS7XBFdnc5zrQPtQx7M9PhIfpyr-QZ87-_CUFll8v2dT2-9dXoySLM5WNb14JNA7IDRZ44gOsOok6fKymn4eol52-rt5D0a-bUQex8O3415khbgXliz5iLqLGJyVlnMELKsUtKZaDIrMOLFIPOhNzYq7TAhKa03yg6rsjRZbr2MuUMMg-PegC1iw8Lfams0mY5nv7Z2NB3OdbJ2SnD6xv48ta0sQ3e_Q6rlO0Tf1kq-_CEiXolye3fhToKnbNTNwD3YCM19uH2FtPABfBuxZnERTlgnPs0WkdHVXmJcCsxj7PUI7NnyjE6AyOqMAiU2a9iqpvL1iKCXJfUdn-gKWCvIw1vFJByXbiPXq1OGgJphmnBcn5_ybiS6e4S5_UM4upb5fgSbzaIJj4EhgC2JRi8OXZQuRGe1KqWJykUbjHPbkPXTWfjEc05yGydFX9D2pUALFGSBorPANrz52WXZkXz8q7HsbVT8tlILDEJ_7_bk_7q9hJvjw4P9Yn8ymz6FW_SmK7d8Bpvrs_PwHCHRunyRliCDz9e96n8AZ40cYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+of+discharge+capacity+prediction+based+on+simplified+electrochemical+model-aging+mechanism+for+lithium-ion+batteries&rft.jtitle=Journal+of+energy+storage&rft.au=Shao%2C+Junya&rft.au=Li%2C+Junfu&rft.au=Yuan%2C+Weizhe&rft.au=Dai%2C+Changsong&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=61&rft_id=info:doi/10.1016%2Fj.est.2023.106788&rft.externalDocID=S2352152X23001858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon