A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries
Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertaint...
Saved in:
Published in | Journal of energy storage Vol. 61; p. 106788 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertainty of operating conditions. In this work, a discharge capacity prognostics method for lithium-ion batteries is developed based on a simplified electrochemical coupled aging mechanism model. Firstly, the solid-phase diffusion process is analyzed by using a simplified electrochemical model, and the particle rupture stress at different C rates is obtained. Then, based on the aging mechanisms in terms of Solid Electrolyte Interphase (SEI) layer growth model and particle volume expansion model, the SEI growth rate and correlated aging kinetics parameters are optimized by using particle swarm optimization algorithm. Finally, combined with the further analysis of aging mechanisms and variation of model parameters at early, middle, and late stage of degradation, the developed discharge capacity prediction method is verified at separate stages for batteries at 1C, 2C and 3C respectively, with the average relative error of full life cycle no more than 4 %.
[Display omitted]
•Developed a simplified electrochemical coupled aging mechanism model.•Accurate and rapid capacity prediction for early, middle and late stage of aging process.•The developed method is verified based on the aging test data at different discharge rates.•PSO algorithm is applied to estimate aging parameters based on degradation modeling. |
---|---|
AbstractList | Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the prediction of discharge capacity of lithium-ion batteries requires high accuracy, which is subject to the variation of cells and the uncertainty of operating conditions. In this work, a discharge capacity prognostics method for lithium-ion batteries is developed based on a simplified electrochemical coupled aging mechanism model. Firstly, the solid-phase diffusion process is analyzed by using a simplified electrochemical model, and the particle rupture stress at different C rates is obtained. Then, based on the aging mechanisms in terms of Solid Electrolyte Interphase (SEI) layer growth model and particle volume expansion model, the SEI growth rate and correlated aging kinetics parameters are optimized by using particle swarm optimization algorithm. Finally, combined with the further analysis of aging mechanisms and variation of model parameters at early, middle, and late stage of degradation, the developed discharge capacity prediction method is verified at separate stages for batteries at 1C, 2C and 3C respectively, with the average relative error of full life cycle no more than 4 %.
[Display omitted]
•Developed a simplified electrochemical coupled aging mechanism model.•Accurate and rapid capacity prediction for early, middle and late stage of aging process.•The developed method is verified based on the aging test data at different discharge rates.•PSO algorithm is applied to estimate aging parameters based on degradation modeling. |
ArticleNumber | 106788 |
Author | Li, Junfu Dai, Changsong Zhao, Ming Pecht, Michael Shao, Junya Yuan, Weizhe Wang, Zhenbo |
Author_xml | – sequence: 1 givenname: Junya surname: Shao fullname: Shao, Junya organization: School of Automotive Engineering, Harbin Institute of Technology, Weihai 264209, Shandong, China – sequence: 2 givenname: Junfu surname: Li fullname: Li, Junfu email: lijunfu@hit.edu.cn organization: School of Automotive Engineering, Harbin Institute of Technology, Weihai 264209, Shandong, China – sequence: 3 givenname: Weizhe surname: Yuan fullname: Yuan, Weizhe email: 181720121@stu.hit.edu.cn organization: School of New energy, Harbin Institute of Technology, Weihai 264209, Shandong, China – sequence: 4 givenname: Changsong surname: Dai fullname: Dai, Changsong email: changsd@hit.edu.cn organization: School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China – sequence: 5 givenname: Zhenbo surname: Wang fullname: Wang, Zhenbo email: wangzhb@hit.edu.cn organization: School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China – sequence: 6 givenname: Ming surname: Zhao fullname: Zhao, Ming email: zhaoming@ghtech.com organization: Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000, Guangdong, China – sequence: 7 givenname: Michael surname: Pecht fullname: Pecht, Michael email: pecht@umd.edu organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA |
BookMark | eNp9kE1LAzEQhoNUsNb-AG_5A1uTbHc3wVMpfoHgRcFbSLOTdsrupiSx0LN_3JSKBw89zQzM88L7XJPR4Acg5JazGWe8vtvOIKaZYKLMd91IeUHGoqxEwatSjv528XlFpjFuGctQxbmqx-R7QQe_h472kDa-pd7RFqPdmLAGas3OWEwHugvQok3oB7oyEfLbQCP2uw4d5gs6sCl4u4EerclZvoWuMGsc1jk3hw0Ye-p8oB2mDX71xSkpJQgI8YZcOtNFmP7OCfl4fHhfPhevb08vy8VrYYVqUiFczVwpy1bxuWKsreamcQ1TQnDpYC5L2yhX1UZIsVK2qVTZrlYNk8rOnTS8LiekOeXa4GMM4HQuZ46tUjDYac70Uafe6qxTH3Xqk85M8n_kLmBvwuEsc39iIFfaIwQdLcJgs8mQdenW4xn6B5u8kc0 |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_134569 crossref_primary_10_1038_s41598_025_89727_1 crossref_primary_10_1002_est2_70118 crossref_primary_10_1016_j_energy_2024_131154 crossref_primary_10_1016_j_jclepro_2025_144804 crossref_primary_10_3390_en17071681 crossref_primary_10_1002_cnl2_124 crossref_primary_10_1016_j_energy_2023_130220 crossref_primary_10_3390_en16196887 crossref_primary_10_1016_j_engfracmech_2023_109597 crossref_primary_10_1016_j_est_2025_116310 crossref_primary_10_1016_j_energy_2023_127033 crossref_primary_10_1016_j_jpowsour_2024_234781 crossref_primary_10_1016_j_est_2024_112921 crossref_primary_10_1016_j_est_2024_113850 crossref_primary_10_1016_j_jpowsour_2025_236809 crossref_primary_10_1109_TVT_2024_3350663 crossref_primary_10_3390_en17122845 crossref_primary_10_1016_j_energy_2024_134272 crossref_primary_10_1016_j_est_2023_108586 crossref_primary_10_1149_1945_7111_ad9353 crossref_primary_10_1016_j_est_2023_109701 crossref_primary_10_1002_est2_70133 crossref_primary_10_1088_1757_899X_1306_1_012009 |
Cites_doi | 10.1016/j.apenergy.2017.09.106 10.1016/j.electacta.2015.02.189 10.1016/j.electacta.2018.04.098 10.1109/TPEL.2019.2893622 10.1016/j.est.2015.05.003 10.1016/j.apenergy.2017.03.079 10.1016/j.apenergy.2018.03.053 10.1149/2.098206jes 10.1016/j.jpowsour.2015.07.100 10.1016/j.est.2020.101538 10.1016/j.est.2018.12.011 10.1149/1.1838857 10.1016/j.etran.2019.100005 10.1016/j.est.2016.01.003 10.1016/j.jclepro.2018.08.134 10.1016/j.jpowsour.2020.229026 10.1016/S0378-7753(01)00722-4 10.1016/j.jpowsour.2020.229422 10.1016/j.est.2019.100951 10.1109/TIE.2019.2899565 10.1109/TTE.2021.3118813 10.1016/j.jpowsour.2020.228581 10.1016/j.electacta.2018.06.119 10.1016/j.apenergy.2015.12.063 10.1149/1.3455179 10.1016/j.jpowsour.2015.06.014 10.1016/j.egyr.2020.07.026 10.1016/j.apenergy.2018.01.011 10.1149/2.049210jes 10.1016/j.jpowsour.2013.12.060 10.1016/j.jpowsour.2016.12.099 10.1016/j.jpowsour.2020.228654 10.1149/1.2759840 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.est.2023.106788 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-1538 |
ExternalDocumentID | 10_1016_j_est_2023_106788 S2352152X23001858 |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-2f60f383d914900d54a7f7092218fe483c79f56a282b9c7593dbb7089c4f8a163 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 00:51:43 EDT 2025 Fri Feb 23 02:36:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Solid electrolyte interphase layer growth Particle volume expansion Aging mechanisms Simplified electrochemical model Capacity prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-2f60f383d914900d54a7f7092218fe483c79f56a282b9c7593dbb7089c4f8a163 |
ParticipantIDs | crossref_citationtrail_10_1016_j_est_2023_106788 crossref_primary_10_1016_j_est_2023_106788 elsevier_sciencedirect_doi_10_1016_j_est_2023_106788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rahimian, Rayman, White (bb0105) 2012; 159 Broussely, Herreyre (bb0145) 2001; 97 Ma, Wu, Guan (bb0060) 2020; 476 Li, Zhang, Wang (bb0070) 2019; 21 Deshpande, Verbrugge, Cheng (bb0140) 2012; 159 Xiong, Li, Li (bb0115) 2018; 219 Li, Wang, Lyu (bb0130) 2018; 275 Cheng, Verbrugge (bb0180) 2010; 13 Yang, Wang, Xu (bb0065) 2020; 476 Hendricks, Williard, Mathew (bb0025) 2015; 297 Tanim, Rahn (bb0110) 2015; 294 Arora, White, Doyle (bb0155) 1998; 145 Li, Adewuyi, Lotfi (bb0030) 2018; 212 Atalay, Sheikh, Mariani (bb0045) 2020; 478 Petzl, Danzer (bb0150) 2014; 254 Timoshenko, Goodier (bb0175) 1970 Han, Lu, Zheng (bb0020) 2019; 1 Ouyang, Feng, Han (bb0120) 2016; 165 Chen, Wang (bb0085) 2020; 6 Jin, Vora, Hoshing (bb0125) 2017; 342 Li, Wang, Deng (bb0135) 2020; 31 Xue, Zhang, Cheng (bb0080) 2020; 376 Xiong, Yu, Shen (bb0010) 2019; 34 Schuster, Bach, Fleder (bb0040) 2015; 1 Anderson (bb0160) 2017 Zhang, Zhai, Guo (bb0075) 2019; 26 Xiong, Yang, Chen (bb0015) 2019; 67 Zhang, Wei, Sastry (bb0170) 2007; 154 Kennedy, Eberhart (bb0185) 1995; 4 Xiong, Chen, Wang (bb0005) 2018; 202 Zhu, Knapp, Sørensen (bb0035) 2021; 489 Tang, Liu, Lv (bb0100) 2017; 204 Phul, Deshpande, Krishnamurthy (bb0095) 2015; 164 Bach, Schuster, Fleder (bb0050) 2016; 5 Xu, Peng, Liu (bb0090) 2022; 8 Tahmasbi, Eikerling (bb0165) 2018; 283 Chang, Fang, Zhang (bb0055) 2017; 206 Li (10.1016/j.est.2023.106788_bb0070) 2019; 21 Rahimian (10.1016/j.est.2023.106788_bb0105) 2012; 159 Xiong (10.1016/j.est.2023.106788_bb0115) 2018; 219 Chang (10.1016/j.est.2023.106788_bb0055) 2017; 206 Atalay (10.1016/j.est.2023.106788_bb0045) 2020; 478 Zhu (10.1016/j.est.2023.106788_bb0035) 2021; 489 Schuster (10.1016/j.est.2023.106788_bb0040) 2015; 1 Yang (10.1016/j.est.2023.106788_bb0065) 2020; 476 Xue (10.1016/j.est.2023.106788_bb0080) 2020; 376 Phul (10.1016/j.est.2023.106788_bb0095) 2015; 164 Xu (10.1016/j.est.2023.106788_bb0090) 2022; 8 Arora (10.1016/j.est.2023.106788_bb0155) 1998; 145 Li (10.1016/j.est.2023.106788_bb0130) 2018; 275 Timoshenko (10.1016/j.est.2023.106788_bb0175) 1970 Li (10.1016/j.est.2023.106788_bb0135) 2020; 31 Hendricks (10.1016/j.est.2023.106788_bb0025) 2015; 297 Broussely (10.1016/j.est.2023.106788_bb0145) 2001; 97 Li (10.1016/j.est.2023.106788_bb0030) 2018; 212 Tanim (10.1016/j.est.2023.106788_bb0110) 2015; 294 Xiong (10.1016/j.est.2023.106788_bb0015) 2019; 67 Bach (10.1016/j.est.2023.106788_bb0050) 2016; 5 Tahmasbi (10.1016/j.est.2023.106788_bb0165) 2018; 283 Cheng (10.1016/j.est.2023.106788_bb0180) 2010; 13 Han (10.1016/j.est.2023.106788_bb0020) 2019; 1 Jin (10.1016/j.est.2023.106788_bb0125) 2017; 342 Ma (10.1016/j.est.2023.106788_bb0060) 2020; 476 Zhang (10.1016/j.est.2023.106788_bb0170) 2007; 154 Deshpande (10.1016/j.est.2023.106788_bb0140) 2012; 159 Kennedy (10.1016/j.est.2023.106788_bb0185) 1995; 4 Petzl (10.1016/j.est.2023.106788_bb0150) 2014; 254 Chen (10.1016/j.est.2023.106788_bb0085) 2020; 6 Ouyang (10.1016/j.est.2023.106788_bb0120) 2016; 165 Xiong (10.1016/j.est.2023.106788_bb0005) 2018; 202 Anderson (10.1016/j.est.2023.106788_bb0160) 2017 Xiong (10.1016/j.est.2023.106788_bb0010) 2019; 34 Tang (10.1016/j.est.2023.106788_bb0100) 2017; 204 Zhang (10.1016/j.est.2023.106788_bb0075) 2019; 26 |
References_xml | – volume: 294 start-page: 239 year: 2015 end-page: 247 ident: bb0110 article-title: Aging formula for lithium-ion batteries with solid electrolyte interphase layer growth publication-title: J. Power Sources – volume: 34 start-page: 9709 year: 2019 end-page: 9718 ident: bb0010 article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles publication-title: IEEE Trans. Power Electron. – volume: 297 start-page: 113 year: 2015 end-page: 120 ident: bb0025 article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries publication-title: J. Power Sources – volume: 21 start-page: 510 year: 2019 end-page: 518 ident: bb0070 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and elman neural networks publication-title: J.Energy Storage – volume: 67 start-page: 1081 year: 2019 end-page: 1091 ident: bb0015 article-title: Online fault diagnosis of external short circuit for lithium-ion battery pack publication-title: IEEE Trans. Ind. Electron. – volume: 476 year: 2020 ident: bb0065 article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model publication-title: J. Power Sources – volume: 13 start-page: A128 year: 2010 ident: bb0180 article-title: Application of Hasselman's crack propagation model to insertion electrodes publication-title: Electrochem.Solid State Lett. – volume: 5 start-page: 212 year: 2016 end-page: 223 ident: bb0050 article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression publication-title: J.Energy Storage – volume: 219 start-page: 264 year: 2018 end-page: 275 ident: bb0115 article-title: An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application publication-title: Appl. Energy – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bb0185 article-title: Particle swarm optimization publication-title: Proceedings of ICNN'95-International Conference on Neural Networks – volume: 1 start-page: 44 year: 2015 end-page: 53 ident: bb0040 article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions publication-title: J.Energy Storage – volume: 212 start-page: 1178 year: 2018 end-page: 1190 ident: bb0030 article-title: A single particle model with chemical/mechanical degradation physics for lithium-ion battery state of health (SOH) estimation publication-title: Appl. Energy – volume: 489 year: 2021 ident: bb0035 article-title: Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges publication-title: J. Power Sources – volume: 376 start-page: 95 year: 2020 end-page: 102 ident: bb0080 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression publication-title: Neurocomputing – volume: 283 start-page: 75 year: 2018 end-page: 87 ident: bb0165 article-title: Statistical physics-based model of mechanical degradation in lithium-ion batteries publication-title: Electrochim. Acta – volume: 478 year: 2020 ident: bb0045 article-title: Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction publication-title: J. Power Sources – volume: 97 start-page: 13 year: 2001 end-page: 21 ident: bb0145 article-title: Aging mechanism in Li ion cells and calendar life predictions publication-title: J. Power Sources – volume: 31 year: 2020 ident: bb0135 article-title: Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries publication-title: J.Energy Storage – volume: 26 year: 2019 ident: bb0075 article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks publication-title: J.Energy Storage – volume: 159 start-page: A1730 year: 2012 ident: bb0140 article-title: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics publication-title: J. Electrochem. Soc. – volume: 145 start-page: 3647 year: 1998 ident: bb0155 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J. Electrochem. Soc. – year: 2017 ident: bb0160 article-title: Fracture Mechanics: Fundamentals And Applications – volume: 342 start-page: 750 year: 2017 end-page: 761 ident: bb0125 article-title: Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells publication-title: J. Power Sources – volume: 476 year: 2020 ident: bb0060 article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach publication-title: J. Power Sources – volume: 6 start-page: 2086 year: 2020 end-page: 2093 ident: bb0085 article-title: Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model publication-title: Energy Rep. – volume: 1 year: 2019 ident: bb0020 article-title: A review on the key issues of the lithium-ion battery degradation among the whole life cycle publication-title: ETransportation – volume: 164 start-page: 281 year: 2015 end-page: 287 ident: bb0095 article-title: A mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium-ion battery publication-title: Electrochim. Acta – volume: 165 start-page: 48 year: 2016 end-page: 59 ident: bb0120 article-title: A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery publication-title: Appl. Energy – volume: 159 start-page: A860 year: 2012 ident: bb0105 article-title: State of charge and loss of active material estimation of a lithium-ion cell under low earth orbit condition using Kalman filtering approaches publication-title: J. Electrochem. Soc. – volume: 275 start-page: 50 year: 2018 end-page: 58 ident: bb0130 article-title: A parameter estimation method for a simplified electrochemical model for Li-ion batteries publication-title: Electrochim. Acta – volume: 254 start-page: 80 year: 2014 end-page: 87 ident: bb0150 article-title: Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries publication-title: J. Power Sources – year: 1970 ident: bb0175 article-title: Theory of Elasticity – volume: 206 start-page: 1564 year: 2017 end-page: 1578 ident: bb0055 article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery publication-title: Appl. Energy – volume: 8 start-page: 1000 year: 2022 end-page: 1012 ident: bb0090 article-title: A hybrid drive method for capacity prediction of lithium-ion batteries publication-title: IEEE Trans.Transp.Electrificat. – volume: 202 start-page: 1228 year: 2018 end-page: 1240 ident: bb0005 article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management publication-title: J. Clean. Prod. – volume: 204 start-page: 1275 year: 2017 end-page: 1283 ident: bb0100 article-title: Observer based battery SOC estimation: using multi-gain-switching approach publication-title: Appl. Energy – volume: 154 start-page: A910 year: 2007 end-page: A916 ident: bb0170 article-title: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles publication-title: J. Electrochem. Soc. – volume: 206 start-page: 1564 year: 2017 ident: 10.1016/j.est.2023.106788_bb0055 article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.09.106 – volume: 164 start-page: 281 year: 2015 ident: 10.1016/j.est.2023.106788_bb0095 article-title: A mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium-ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.189 – year: 2017 ident: 10.1016/j.est.2023.106788_bb0160 – volume: 275 start-page: 50 year: 2018 ident: 10.1016/j.est.2023.106788_bb0130 article-title: A parameter estimation method for a simplified electrochemical model for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.098 – volume: 34 start-page: 9709 issue: 10 year: 2019 ident: 10.1016/j.est.2023.106788_bb0010 article-title: A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2893622 – volume: 1 start-page: 44 year: 2015 ident: 10.1016/j.est.2023.106788_bb0040 article-title: Nonlinear aging characteristics of lithium-ion cells under different operational conditions publication-title: J.Energy Storage doi: 10.1016/j.est.2015.05.003 – year: 1970 ident: 10.1016/j.est.2023.106788_bb0175 – volume: 204 start-page: 1275 year: 2017 ident: 10.1016/j.est.2023.106788_bb0100 article-title: Observer based battery SOC estimation: using multi-gain-switching approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.079 – volume: 219 start-page: 264 year: 2018 ident: 10.1016/j.est.2023.106788_bb0115 article-title: An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.053 – volume: 159 start-page: A860 issue: 6 year: 2012 ident: 10.1016/j.est.2023.106788_bb0105 article-title: State of charge and loss of active material estimation of a lithium-ion cell under low earth orbit condition using Kalman filtering approaches publication-title: J. Electrochem. Soc. doi: 10.1149/2.098206jes – volume: 297 start-page: 113 year: 2015 ident: 10.1016/j.est.2023.106788_bb0025 article-title: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.100 – volume: 31 year: 2020 ident: 10.1016/j.est.2023.106788_bb0135 article-title: Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries publication-title: J.Energy Storage doi: 10.1016/j.est.2020.101538 – volume: 21 start-page: 510 year: 2019 ident: 10.1016/j.est.2023.106788_bb0070 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and elman neural networks publication-title: J.Energy Storage doi: 10.1016/j.est.2018.12.011 – volume: 376 start-page: 95 issue: 2 year: 2020 ident: 10.1016/j.est.2023.106788_bb0080 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression publication-title: Neurocomputing – volume: 145 start-page: 3647 issue: 10 year: 1998 ident: 10.1016/j.est.2023.106788_bb0155 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838857 – volume: 1 year: 2019 ident: 10.1016/j.est.2023.106788_bb0020 article-title: A review on the key issues of the lithium-ion battery degradation among the whole life cycle publication-title: ETransportation doi: 10.1016/j.etran.2019.100005 – volume: 5 start-page: 212 year: 2016 ident: 10.1016/j.est.2023.106788_bb0050 article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression publication-title: J.Energy Storage doi: 10.1016/j.est.2016.01.003 – volume: 202 start-page: 1228 year: 2018 ident: 10.1016/j.est.2023.106788_bb0005 article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-a critical review on topology and energy management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.134 – volume: 478 year: 2020 ident: 10.1016/j.est.2023.106788_bb0045 article-title: Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229026 – volume: 97 start-page: 13 year: 2001 ident: 10.1016/j.est.2023.106788_bb0145 article-title: Aging mechanism in Li ion cells and calendar life predictions publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00722-4 – volume: 489 year: 2021 ident: 10.1016/j.est.2023.106788_bb0035 article-title: Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229422 – volume: 26 year: 2019 ident: 10.1016/j.est.2023.106788_bb0075 article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks publication-title: J.Energy Storage doi: 10.1016/j.est.2019.100951 – volume: 67 start-page: 1081 issue: 2 year: 2019 ident: 10.1016/j.est.2023.106788_bb0015 article-title: Online fault diagnosis of external short circuit for lithium-ion battery pack publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2899565 – volume: 8 start-page: 1000 issue: 1 year: 2022 ident: 10.1016/j.est.2023.106788_bb0090 article-title: A hybrid drive method for capacity prediction of lithium-ion batteries publication-title: IEEE Trans.Transp.Electrificat. doi: 10.1109/TTE.2021.3118813 – volume: 476 year: 2020 ident: 10.1016/j.est.2023.106788_bb0060 article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228581 – volume: 283 start-page: 75 year: 2018 ident: 10.1016/j.est.2023.106788_bb0165 article-title: Statistical physics-based model of mechanical degradation in lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.119 – volume: 165 start-page: 48 year: 2016 ident: 10.1016/j.est.2023.106788_bb0120 article-title: A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.063 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.est.2023.106788_bb0185 article-title: Particle swarm optimization – volume: 13 start-page: A128 issue: 9 year: 2010 ident: 10.1016/j.est.2023.106788_bb0180 article-title: Application of Hasselman's crack propagation model to insertion electrodes publication-title: Electrochem.Solid State Lett. doi: 10.1149/1.3455179 – volume: 294 start-page: 239 year: 2015 ident: 10.1016/j.est.2023.106788_bb0110 article-title: Aging formula for lithium-ion batteries with solid electrolyte interphase layer growth publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.014 – volume: 6 start-page: 2086 year: 2020 ident: 10.1016/j.est.2023.106788_bb0085 article-title: Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.07.026 – volume: 212 start-page: 1178 year: 2018 ident: 10.1016/j.est.2023.106788_bb0030 article-title: A single particle model with chemical/mechanical degradation physics for lithium-ion battery state of health (SOH) estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.01.011 – volume: 159 start-page: A1730 issue: 10 year: 2012 ident: 10.1016/j.est.2023.106788_bb0140 article-title: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics publication-title: J. Electrochem. Soc. doi: 10.1149/2.049210jes – volume: 254 start-page: 80 year: 2014 ident: 10.1016/j.est.2023.106788_bb0150 article-title: Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.060 – volume: 342 start-page: 750 year: 2017 ident: 10.1016/j.est.2023.106788_bb0125 article-title: Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.099 – volume: 476 year: 2020 ident: 10.1016/j.est.2023.106788_bb0065 article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228654 – volume: 154 start-page: A910 issue: 12 year: 2007 ident: 10.1016/j.est.2023.106788_bb0170 article-title: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles publication-title: J. Electrochem. Soc. doi: 10.1149/1.2759840 |
SSID | ssj0001651196 |
Score | 2.4095402 |
Snippet | Obtaining the State of Health of lithium-ion batteries and mastering its degradation laws are crucial for the utilization of Electric Vehicles. However, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106788 |
SubjectTerms | Aging mechanisms Capacity prediction Lithium-ion batteries Particle volume expansion Simplified electrochemical model Solid electrolyte interphase layer growth |
Title | A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.est.2023.106788 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKe4EDYhW7fOCEZBpSL_GxqkAFRC-A1FvkOLYIgrSiLT_AjzOTOCwScOCYyGNFGWvesz0zj5DjODZScZEwLs4s49znLHH5GRPYrk4miZQOzyFvRnJ4z6_GYtwig6YWBtMqQ-yvY3oVrcObbvib3WlRdG9j4A6APmMg0RGgTrJEOjGga9Qmnf7l9XD0edQi8bKslpkTMUOb5n6zyvSC8HuKKuKn2E6tkmD5AaG-oM7FGlkNdJH26y9aJy1XbpCVL00EN8lbn5aTV_dEazFoOvEUS22xA5KjFrDQAtGm0xe8kUEvUAQuGFbSWYHp5B5IKA1qODa0D6CVQA6rFIxgXqwOLmbPFAguBdr-UCyeWT0T1gLBXnuL3F-c3w2GLEgrMBtrNWexl5GHzWmuYYcURbngRnkV6RgQ3zue9KzSXkgDG7JMWyV0L88yFSXacp8Y4HDbpF1OSrdDKBDKDNva-Z7x3DhvtBQZV14Yr50yZpdEze9Mbeg7jvIXT2mTYPaYggdS9EBae2CXnHyYTOumG38N5o2P0m8rJwVQ-N1s739m-2QZn-qUxwPSnr8s3CHQknl2FJbdO5qV4SM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE9Rnj7ABcnd1OtHfOCwAqpdtt0LrbS34Di2GtRmV91tK878JP4gM4kDRQIOSL0mthV5nJlv7PH3AbwSwmkjVc6l2vVcyljxPFS7XBFdnc5zrQPtQx7M9PhIfpyr-QZ87-_CUFll8v2dT2-9dXoySLM5WNb14JNA7IDRZ44gOsOok6fKymn4eol52-rt5D0a-bUQex8O3415khbgXliz5iLqLGJyVlnMELKsUtKZaDIrMOLFIPOhNzYq7TAhKa03yg6rsjRZbr2MuUMMg-PegC1iw8Lfams0mY5nv7Z2NB3OdbJ2SnD6xv48ta0sQ3e_Q6rlO0Tf1kq-_CEiXolye3fhToKnbNTNwD3YCM19uH2FtPABfBuxZnERTlgnPs0WkdHVXmJcCsxj7PUI7NnyjE6AyOqMAiU2a9iqpvL1iKCXJfUdn-gKWCvIw1vFJByXbiPXq1OGgJphmnBcn5_ybiS6e4S5_UM4upb5fgSbzaIJj4EhgC2JRi8OXZQuRGe1KqWJykUbjHPbkPXTWfjEc05yGydFX9D2pUALFGSBorPANrz52WXZkXz8q7HsbVT8tlILDEJ_7_bk_7q9hJvjw4P9Yn8ymz6FW_SmK7d8Bpvrs_PwHCHRunyRliCDz9e96n8AZ40cYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+of+discharge+capacity+prediction+based+on+simplified+electrochemical+model-aging+mechanism+for+lithium-ion+batteries&rft.jtitle=Journal+of+energy+storage&rft.au=Shao%2C+Junya&rft.au=Li%2C+Junfu&rft.au=Yuan%2C+Weizhe&rft.au=Dai%2C+Changsong&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=61&rft_id=info:doi/10.1016%2Fj.est.2023.106788&rft.externalDocID=S2352152X23001858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |