The double almost-Riordan group
In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double...
Saved in:
Published in | Linear algebra and its applications Vol. 705; pp. 50 - 88 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double almost-Riordan arrays. In addition, we discuss the algebraic properties of the double almost-Riordan group, and finally give the compression of double almost-Riordan arrays and their sequence characteristics. |
---|---|
AbstractList | In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double almost-Riordan arrays. In addition, we discuss the algebraic properties of the double almost-Riordan group, and finally give the compression of double almost-Riordan arrays and their sequence characteristics. |
Author | He, Tian-Xiao |
Author_xml | – sequence: 1 givenname: Tian-Xiao orcidid: 0000-0002-9405-5808 surname: He fullname: He, Tian-Xiao email: the@iwu.edu organization: Department of Mathematics, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA |
BookMark | eNp9j8tKAzEUhrOoYFt9AFfOC8yYpJNkBldSvEFBkLoOuZxohumkJKng25tSVy66OvyH_zuHb4FmU5gAoRuCG4IJvxuaUamGYtqW3GAqZmiOS6pXomeXaJHSgDFuBaZzdLv9gsqGgx6hUuMupFy_-xCtmqrPGA77K3Th1Jjg-m8u0cfT43b9Um_enl_XD5va0F7kmvbcsc6qrvwhrCO8Z9YwajCnXHPVCdIBGO1053RvwGnrWig1sE5owcRqicTprokhpQhOGp9V9mHKUflREiyPbnKQxU0e3Y6r4lZI8o_cR79T8ecsc39ioCh9e4gyGQ-TAesjmCxt8GfoX5xuanM |
CitedBy_id | crossref_primary_10_3390_math13020242 |
Cites_doi | 10.1016/S0012-365X(96)83023-8 10.1016/j.laa.2018.03.029 10.1080/10236199908808200 10.4153/CJM-1997-015-x 10.1007/s00026-009-0013-1 10.1006/aama.2001.0751 10.1016/j.dam.2014.03.005 10.37236/2034 10.1016/j.laa.2014.09.008 10.1080/00150517.1983.12429957 10.1016/j.aam.2004.05.002 10.1016/j.laa.2020.05.027 10.1016/0166-218X(91)90088-E 10.1016/0097-3165(78)90068-7 10.1016/S0304-3975(02)00020-8 10.1016/j.laa.2023.01.012 10.1006/jcta.1996.0094 10.1016/j.laa.2023.09.009 10.1016/0012-365X(78)90063-8 10.1016/j.disc.2008.11.021 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.laa.2024.10.027 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 88 |
ExternalDocumentID | 10_1016_j_laa_2024_10_027 S0024379524004129 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIKJ AAKOC AAOAW AAQFI AASFE AAXKI AAXUO ABAOU ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AALRI AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AEXQZ AFFNX AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FA8 FGOYB G-2 HZ~ M26 MVM OHT R2- SSH SSZ T9H WUQ |
ID | FETCH-LOGICAL-c297t-296f58da80021581695dc52c0626b6a8718eecbfb8fb9cefbdf4e816edf7b7573 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Thu Apr 24 22:56:51 EDT 2025 Tue Jul 01 02:46:03 EDT 2025 Sat Nov 23 15:55:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 11B39 Generating function Production matrix or Stieltjes matrix Succession rule 15A06 15B36 The double almost-Riordan group Double almost-Riordan arrays 11B83 11B73 05A19 Sequence characterization 05A05 05A15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-296f58da80021581695dc52c0626b6a8718eecbfb8fb9cefbdf4e816edf7b7573 |
ORCID | 0000-0002-9405-5808 |
PageCount | 39 |
ParticipantIDs | crossref_citationtrail_10_1016_j_laa_2024_10_027 crossref_primary_10_1016_j_laa_2024_10_027 elsevier_sciencedirect_doi_10_1016_j_laa_2024_10_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | He, Slowik (br0160) He, Slowik (br0170) Alp, Kocer (br0010) 2023; 664 Deutsch, Ferrari, Rinaldi (br0100) 2009; 13 Kuznetkov, Pak, Postnikov (br0200) 1996; 76 Davenport, Frankson, Shapiro, Woodson (br0080) 2024; 4 Zhang, Zhao (br0290) 2020; 603 Luzón, Merlini, Morón, Sprugnoli (br0210) 2014; 172 Branch, Davenport, Frankson, Jones, Thorpe (br0060) 2022; 388 Alp, Kocer (br0020) 2024; vol. 79 Davenport, Shapiro, Woodson (br0110) 2012; 18 He, Sprugnoli (br0180) 2009; 309 Shapiro (br0240) 2001; 27 P. Barry, T.-X. He, N. Pantelidis, The quasi-Riordan group and the almost-Riordan group, manuscript in preparation. Rogers (br0230) 1978; 22 Deutsch, Ferrari, Rinaldi (br0090) 2005; 34 Barry (br0040) 2016 He (br0150) 2022; 25 He (br0130) 2015; 465 Sun, Sun (br0270) 2023; 679 He (br0140) 2018; 549 Chung, Graham, Hoggatt, Kleiman (br0070) 1978; 24 Horibe (br0190) 1983; 21 Ferrari, Pergola, Pinzani, Rinaldi (br0120) 2002; 281 West (br0280) 1996; 157 Shapiro, Getu, Woan, Woodson (br0250) 1991; 34 Barcucci, Del Lungo, Pergola, Pinzani (br0030) 1999; 5 Merlini, Rogers, Sprugnoli, Verri (br0220) 1997; 49 Stanley (br0260) 2015 Ferrari (10.1016/j.laa.2024.10.027_br0120) 2002; 281 He (10.1016/j.laa.2024.10.027_br0140) 2018; 549 Luzón (10.1016/j.laa.2024.10.027_br0210) 2014; 172 He (10.1016/j.laa.2024.10.027_br0180) 2009; 309 Stanley (10.1016/j.laa.2024.10.027_br0260) 2015 He (10.1016/j.laa.2024.10.027_br0130) 2015; 465 He (10.1016/j.laa.2024.10.027_br0160) He (10.1016/j.laa.2024.10.027_br0170) Shapiro (10.1016/j.laa.2024.10.027_br0240) 2001; 27 Sun (10.1016/j.laa.2024.10.027_br0270) 2023; 679 Merlini (10.1016/j.laa.2024.10.027_br0220) 1997; 49 Horibe (10.1016/j.laa.2024.10.027_br0190) 1983; 21 Barcucci (10.1016/j.laa.2024.10.027_br0030) 1999; 5 Davenport (10.1016/j.laa.2024.10.027_br0080) 2024; 4 He (10.1016/j.laa.2024.10.027_br0150) 2022; 25 Shapiro (10.1016/j.laa.2024.10.027_br0250) 1991; 34 Alp (10.1016/j.laa.2024.10.027_br0020) 2024; vol. 79 Zhang (10.1016/j.laa.2024.10.027_br0290) 2020; 603 Deutsch (10.1016/j.laa.2024.10.027_br0100) 2009; 13 Rogers (10.1016/j.laa.2024.10.027_br0230) 1978; 22 Davenport (10.1016/j.laa.2024.10.027_br0110) 2012; 18 Alp (10.1016/j.laa.2024.10.027_br0010) 2023; 664 Chung (10.1016/j.laa.2024.10.027_br0070) 1978; 24 Kuznetkov (10.1016/j.laa.2024.10.027_br0200) 1996; 76 Branch (10.1016/j.laa.2024.10.027_br0060) 2022; 388 Deutsch (10.1016/j.laa.2024.10.027_br0090) 2005; 34 West (10.1016/j.laa.2024.10.027_br0280) 1996; 157 Barry (10.1016/j.laa.2024.10.027_br0040) 10.1016/j.laa.2024.10.027_br0050 |
References_xml | – volume: 157 start-page: 363 year: 1996 end-page: 374 ident: br0280 article-title: Generating trees and forbidden subsequences publication-title: Discrete Math. – volume: 13 start-page: 65 year: 2009 end-page: 85 ident: br0100 article-title: Production matrices and Riordan arrays publication-title: Ann. Comb. – volume: 549 start-page: 176 year: 2018 end-page: 202 ident: br0140 article-title: Sequence characterizations of double Riordan arrays and their compressions publication-title: Linear Algebra Appl. – year: 2015 ident: br0260 article-title: Catalan Numbers – volume: 76 start-page: 145 year: 1996 end-page: 147 ident: br0200 article-title: Trees associated with the Motzkin numbers publication-title: J. Comb. Theory, Ser. A – volume: 388 start-page: 33 year: 2022 end-page: 46 ident: br0060 article-title: A and Z sequences for double Riordan arrays publication-title: Springer Proc. Math. Stat. – volume: 25 year: 2022 ident: br0150 article-title: The vertical recursive relation of Riordan arrays and its matrix representation publication-title: J. Integer Seq. – volume: vol. 79 start-page: 173 year: 2024 ident: br0020 article-title: Exponential Almost-Riordan Arrays publication-title: Results Math. – volume: 34 start-page: 101 year: 2005 end-page: 122 ident: br0090 article-title: Production matrices publication-title: Adv. Appl. Math. – volume: 172 start-page: 75 year: 2014 end-page: 87 ident: br0210 article-title: Complementary Riordan arrays publication-title: Discrete Appl. Math. – reference: P. Barry, T.-X. He, N. Pantelidis, The quasi-Riordan group and the almost-Riordan group, manuscript in preparation. – ident: br0170 article-title: Total positivity of almost-Riordan arrays and Riordan arrays – volume: 49 start-page: 301 year: 1997 end-page: 320 ident: br0220 article-title: On some alternative characterizations of Riordan arrays publication-title: Can. J. Math. – volume: 679 start-page: 194 year: 2023 end-page: 219 ident: br0270 article-title: On the halves of double and 3-dimensional Riordan arrays publication-title: Linear Algebra Appl. – volume: 603 start-page: 212 year: 2020 end-page: 225 ident: br0290 article-title: -double Riordan matrices publication-title: Linear Algebra Appl. – volume: 309 start-page: 3962 year: 2009 end-page: 3974 ident: br0180 article-title: Sequence characterization of Riordan arrays publication-title: Discrete Math. – volume: 281 start-page: 351 year: 2002 end-page: 367 ident: br0120 article-title: An algebraic characterization of the set of succession rules publication-title: Theoret. Comput. Sci. – ident: br0160 article-title: Total positivity of quasi-Riordan arrays and Riordan arrays – volume: 465 start-page: 15 year: 2015 end-page: 42 ident: br0130 article-title: Matrix characterizations of Riordan arrays publication-title: Linear Algebra Appl. – volume: 34 start-page: 229 year: 1991 end-page: 239 ident: br0250 article-title: The Riordan group publication-title: Discrete Appl. Math. – volume: 4 year: 2024 ident: br0080 article-title: An invitation to the Riordan group publication-title: Enumer. Comb. Appl. – volume: 27 start-page: 585 year: 2001 end-page: 596 ident: br0240 article-title: Some open questions about random walks, involutions, limiting distributions and generating functions publication-title: Adv. Appl. Math. – volume: 21 start-page: 118 year: 1983 end-page: 128 ident: br0190 article-title: Notes on Fibonacci trees and their optimality publication-title: Fibonacci Q. – year: 2016 ident: br0040 article-title: On the group of almost-Riordan arrays – volume: 5 start-page: 435 year: 1999 end-page: 490 ident: br0030 article-title: ECO: a methodology for the enumeration of combinatorial objects publication-title: J. Differ. Equ. Appl. – volume: 664 start-page: 1 year: 2023 end-page: 23 ident: br0010 article-title: Sequence characterization of almost-Riordan arrays publication-title: Linear Algebra Appl. – volume: 22 start-page: 301 year: 1978 end-page: 310 ident: br0230 article-title: Pascal triangles, Catalan numbers and renewal arrays publication-title: Discrete Math. – volume: 24 start-page: 382 year: 1978 end-page: 394 ident: br0070 article-title: The number of Baxter permutations publication-title: J. Comb. Theory, Ser. A – volume: 18 start-page: P33 year: 2012 ident: br0110 article-title: The double Riordan group publication-title: Electron. J. Comb. – volume: 157 start-page: 363 issue: 1–3 year: 1996 ident: 10.1016/j.laa.2024.10.027_br0280 article-title: Generating trees and forbidden subsequences publication-title: Discrete Math. doi: 10.1016/S0012-365X(96)83023-8 – volume: 549 start-page: 176 year: 2018 ident: 10.1016/j.laa.2024.10.027_br0140 article-title: Sequence characterizations of double Riordan arrays and their compressions publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.03.029 – volume: 4 issue: 3 year: 2024 ident: 10.1016/j.laa.2024.10.027_br0080 article-title: An invitation to the Riordan group publication-title: Enumer. Comb. Appl. – volume: 5 start-page: 435 year: 1999 ident: 10.1016/j.laa.2024.10.027_br0030 article-title: ECO: a methodology for the enumeration of combinatorial objects publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236199908808200 – volume: 49 start-page: 301 year: 1997 ident: 10.1016/j.laa.2024.10.027_br0220 article-title: On some alternative characterizations of Riordan arrays publication-title: Can. J. Math. doi: 10.4153/CJM-1997-015-x – volume: 13 start-page: 65 year: 2009 ident: 10.1016/j.laa.2024.10.027_br0100 article-title: Production matrices and Riordan arrays publication-title: Ann. Comb. doi: 10.1007/s00026-009-0013-1 – volume: 27 start-page: 585 year: 2001 ident: 10.1016/j.laa.2024.10.027_br0240 article-title: Some open questions about random walks, involutions, limiting distributions and generating functions publication-title: Adv. Appl. Math. doi: 10.1006/aama.2001.0751 – volume: 172 start-page: 75 year: 2014 ident: 10.1016/j.laa.2024.10.027_br0210 article-title: Complementary Riordan arrays publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2014.03.005 – volume: 18 start-page: P33 issue: 2 year: 2012 ident: 10.1016/j.laa.2024.10.027_br0110 article-title: The double Riordan group publication-title: Electron. J. Comb. doi: 10.37236/2034 – volume: 465 start-page: 15 year: 2015 ident: 10.1016/j.laa.2024.10.027_br0130 article-title: Matrix characterizations of Riordan arrays publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2014.09.008 – volume: 21 start-page: 118 issue: 2 year: 1983 ident: 10.1016/j.laa.2024.10.027_br0190 article-title: Notes on Fibonacci trees and their optimality publication-title: Fibonacci Q. doi: 10.1080/00150517.1983.12429957 – volume: 25 issue: 9 year: 2022 ident: 10.1016/j.laa.2024.10.027_br0150 article-title: The vertical recursive relation of Riordan arrays and its matrix representation publication-title: J. Integer Seq. – volume: 34 start-page: 101 issue: 1 year: 2005 ident: 10.1016/j.laa.2024.10.027_br0090 article-title: Production matrices publication-title: Adv. Appl. Math. doi: 10.1016/j.aam.2004.05.002 – volume: 603 start-page: 212 year: 2020 ident: 10.1016/j.laa.2024.10.027_br0290 article-title: q-double Riordan matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2020.05.027 – volume: 34 start-page: 229 year: 1991 ident: 10.1016/j.laa.2024.10.027_br0250 article-title: The Riordan group publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(91)90088-E – ident: 10.1016/j.laa.2024.10.027_br0040 – ident: 10.1016/j.laa.2024.10.027_br0050 – volume: 388 start-page: 33 year: 2022 ident: 10.1016/j.laa.2024.10.027_br0060 article-title: A and Z sequences for double Riordan arrays publication-title: Springer Proc. Math. Stat. – volume: 24 start-page: 382 year: 1978 ident: 10.1016/j.laa.2024.10.027_br0070 article-title: The number of Baxter permutations publication-title: J. Comb. Theory, Ser. A doi: 10.1016/0097-3165(78)90068-7 – volume: 281 start-page: 351 issue: 1–2 year: 2002 ident: 10.1016/j.laa.2024.10.027_br0120 article-title: An algebraic characterization of the set of succession rules publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00020-8 – year: 2015 ident: 10.1016/j.laa.2024.10.027_br0260 – volume: 664 start-page: 1 year: 2023 ident: 10.1016/j.laa.2024.10.027_br0010 article-title: Sequence characterization of almost-Riordan arrays publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2023.01.012 – volume: 76 start-page: 145 year: 1996 ident: 10.1016/j.laa.2024.10.027_br0200 article-title: Trees associated with the Motzkin numbers publication-title: J. Comb. Theory, Ser. A doi: 10.1006/jcta.1996.0094 – volume: 679 start-page: 194 year: 2023 ident: 10.1016/j.laa.2024.10.027_br0270 article-title: On the halves of double and 3-dimensional Riordan arrays publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2023.09.009 – ident: 10.1016/j.laa.2024.10.027_br0170 – volume: 22 start-page: 301 year: 1978 ident: 10.1016/j.laa.2024.10.027_br0230 article-title: Pascal triangles, Catalan numbers and renewal arrays publication-title: Discrete Math. doi: 10.1016/0012-365X(78)90063-8 – volume: 309 start-page: 3962 year: 2009 ident: 10.1016/j.laa.2024.10.027_br0180 article-title: Sequence characterization of Riordan arrays publication-title: Discrete Math. doi: 10.1016/j.disc.2008.11.021 – ident: 10.1016/j.laa.2024.10.027_br0160 – volume: vol. 79 start-page: 173 year: 2024 ident: 10.1016/j.laa.2024.10.027_br0020 article-title: Exponential Almost-Riordan Arrays |
SSID | ssj0004702 |
Score | 2.4168506 |
Snippet | In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 50 |
SubjectTerms | Double almost-Riordan arrays Generating function Production matrix or Stieltjes matrix Sequence characterization Succession rule The double almost-Riordan group |
Title | The double almost-Riordan group |
URI | https://dx.doi.org/10.1016/j.laa.2024.10.027 |
Volume | 705 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsMCAeIryKBmYkNwmrh07Y1VRFVA7UalbZDuOVBTSirYrvx1f6hSQgIHVuovis3UP-bvvAG4t5wbrBsITK4nLbxWRMjJEMpnHNrKKV0P7RuN4OGGPUz5tQL_uhUFYpff9G59eeWu_0vHW7CxmM-zxrcj0OKIgmQtb2MHOBN7y9vsnzIOJ0DOGM4LS9ctmhfEqFFIPUdZGgBcOlvkpNn2JN4NDOPCJYtDb_MsRNGx5DPujLcvq8gRu3BkH2XytCxuo4nW-REYQV0yqMqiaNU5hMrh_7g-JH3hADE3EitAkzrnMlKwisYzihGeGUxO6qkPHytU20lqjcy1znRib6yxn1onZLBdacNE9g51yXtpzCEKXWGQi5lRJxjLpvky1k-vGBinntWlCWG81NZ4NHIdSFGkN-3pJnXVStA4uOes04W6rsthQYfwlzGr7pd_OM3Wu-ne1i_-pXcIexbm8YUQifgU7q7e1vXbJwkq3qtvQgt3ew9Nw_AGiJrsK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inKqxlgQXJJXDtxBgYEVC19TK3ULcSOIxWFtqKtEAt_ij_IOU0KSMCA1NWyrfjz6e6sfPcdwJnmXJl3A-G-FgTz25AI4SgimIhd7eiQp0372h233mP3fd4vwHteC2NolZnvn_v01FtnI5cZmpfjwcDU-KZietywIBmGrYxZ2dSvL_hum1w1bvGSzymt3XVv6iRrLUAU9b0pob4bcxGFIo15wnF9HilOlY35vXRDfEUIrZWMpYilr3Qso5hpnKaj2JMe96q47wqsMnQXpm1C5e2TV8I8O5MoZ8R8Xv4rNSWVJaHROqKsYhhlppPNT8HwS4CrbcFmlpla1_PDb0NBD3dgo72QdZ3sQhmNyopGM5loK0yeRhMjQYIohEMrrQ7Zg95SYNiH4nA01Adg2ZjJRJ7LaSgYiwTuTCXOq7rKaNxLVQI7P2qgMvlx0wUjCXKe2WOA6AQGHTOE6JTgYrFkPNfe-Gsyy_ELvhlQgLHh92WH_1tWhrV6t90KWo1O8wjWqWkKbDvE4cdQnD7P9AlmKlN5mlqGBQ_LNsUPIqn32A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+double+almost-Riordan+group&rft.jtitle=Linear+algebra+and+its+applications&rft.au=He%2C+Tian-Xiao&rft.date=2025-01-15&rft.issn=0024-3795&rft.volume=705&rft.spage=50&rft.epage=88&rft_id=info:doi/10.1016%2Fj.laa.2024.10.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2024_10_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |