The double almost-Riordan group

In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 705; pp. 50 - 88
Main Author He, Tian-Xiao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double almost-Riordan arrays. In addition, we discuss the algebraic properties of the double almost-Riordan group, and finally give the compression of double almost-Riordan arrays and their sequence characteristics.
AbstractList In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan group. We also obtain the sequence characteristics of double almost-Riordan arrays and give the production matrices of two types for double almost-Riordan arrays. In addition, we discuss the algebraic properties of the double almost-Riordan group, and finally give the compression of double almost-Riordan arrays and their sequence characteristics.
Author He, Tian-Xiao
Author_xml – sequence: 1
  givenname: Tian-Xiao
  orcidid: 0000-0002-9405-5808
  surname: He
  fullname: He, Tian-Xiao
  email: the@iwu.edu
  organization: Department of Mathematics, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA
BookMark eNp9j8tKAzEUhrOoYFt9AFfOC8yYpJNkBldSvEFBkLoOuZxohumkJKng25tSVy66OvyH_zuHb4FmU5gAoRuCG4IJvxuaUamGYtqW3GAqZmiOS6pXomeXaJHSgDFuBaZzdLv9gsqGgx6hUuMupFy_-xCtmqrPGA77K3Th1Jjg-m8u0cfT43b9Um_enl_XD5va0F7kmvbcsc6qrvwhrCO8Z9YwajCnXHPVCdIBGO1053RvwGnrWig1sE5owcRqicTprokhpQhOGp9V9mHKUflREiyPbnKQxU0e3Y6r4lZI8o_cR79T8ecsc39ioCh9e4gyGQ-TAesjmCxt8GfoX5xuanM
CitedBy_id crossref_primary_10_3390_math13020242
Cites_doi 10.1016/S0012-365X(96)83023-8
10.1016/j.laa.2018.03.029
10.1080/10236199908808200
10.4153/CJM-1997-015-x
10.1007/s00026-009-0013-1
10.1006/aama.2001.0751
10.1016/j.dam.2014.03.005
10.37236/2034
10.1016/j.laa.2014.09.008
10.1080/00150517.1983.12429957
10.1016/j.aam.2004.05.002
10.1016/j.laa.2020.05.027
10.1016/0166-218X(91)90088-E
10.1016/0097-3165(78)90068-7
10.1016/S0304-3975(02)00020-8
10.1016/j.laa.2023.01.012
10.1006/jcta.1996.0094
10.1016/j.laa.2023.09.009
10.1016/0012-365X(78)90063-8
10.1016/j.disc.2008.11.021
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.laa.2024.10.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 88
ExternalDocumentID 10_1016_j_laa_2024_10_027
S0024379524004129
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AASFE
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AEXQZ
AFFNX
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FGOYB
G-2
HZ~
M26
MVM
OHT
R2-
SSH
SSZ
T9H
WUQ
ID FETCH-LOGICAL-c297t-296f58da80021581695dc52c0626b6a8718eecbfb8fb9cefbdf4e816edf7b7573
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Thu Apr 24 22:56:51 EDT 2025
Tue Jul 01 02:46:03 EDT 2025
Sat Nov 23 15:55:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 11B39
Generating function
Production matrix or Stieltjes matrix
Succession rule
15A06
15B36
The double almost-Riordan group
Double almost-Riordan arrays
11B83
11B73
05A19
Sequence characterization
05A05
05A15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-296f58da80021581695dc52c0626b6a8718eecbfb8fb9cefbdf4e816edf7b7573
ORCID 0000-0002-9405-5808
PageCount 39
ParticipantIDs crossref_citationtrail_10_1016_j_laa_2024_10_027
crossref_primary_10_1016_j_laa_2024_10_027
elsevier_sciencedirect_doi_10_1016_j_laa_2024_10_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Linear algebra and its applications
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References He, Slowik (br0160)
He, Slowik (br0170)
Alp, Kocer (br0010) 2023; 664
Deutsch, Ferrari, Rinaldi (br0100) 2009; 13
Kuznetkov, Pak, Postnikov (br0200) 1996; 76
Davenport, Frankson, Shapiro, Woodson (br0080) 2024; 4
Zhang, Zhao (br0290) 2020; 603
Luzón, Merlini, Morón, Sprugnoli (br0210) 2014; 172
Branch, Davenport, Frankson, Jones, Thorpe (br0060) 2022; 388
Alp, Kocer (br0020) 2024; vol. 79
Davenport, Shapiro, Woodson (br0110) 2012; 18
He, Sprugnoli (br0180) 2009; 309
Shapiro (br0240) 2001; 27
P. Barry, T.-X. He, N. Pantelidis, The quasi-Riordan group and the almost-Riordan group, manuscript in preparation.
Rogers (br0230) 1978; 22
Deutsch, Ferrari, Rinaldi (br0090) 2005; 34
Barry (br0040) 2016
He (br0150) 2022; 25
He (br0130) 2015; 465
Sun, Sun (br0270) 2023; 679
He (br0140) 2018; 549
Chung, Graham, Hoggatt, Kleiman (br0070) 1978; 24
Horibe (br0190) 1983; 21
Ferrari, Pergola, Pinzani, Rinaldi (br0120) 2002; 281
West (br0280) 1996; 157
Shapiro, Getu, Woan, Woodson (br0250) 1991; 34
Barcucci, Del Lungo, Pergola, Pinzani (br0030) 1999; 5
Merlini, Rogers, Sprugnoli, Verri (br0220) 1997; 49
Stanley (br0260) 2015
Ferrari (10.1016/j.laa.2024.10.027_br0120) 2002; 281
He (10.1016/j.laa.2024.10.027_br0140) 2018; 549
Luzón (10.1016/j.laa.2024.10.027_br0210) 2014; 172
He (10.1016/j.laa.2024.10.027_br0180) 2009; 309
Stanley (10.1016/j.laa.2024.10.027_br0260) 2015
He (10.1016/j.laa.2024.10.027_br0130) 2015; 465
He (10.1016/j.laa.2024.10.027_br0160)
He (10.1016/j.laa.2024.10.027_br0170)
Shapiro (10.1016/j.laa.2024.10.027_br0240) 2001; 27
Sun (10.1016/j.laa.2024.10.027_br0270) 2023; 679
Merlini (10.1016/j.laa.2024.10.027_br0220) 1997; 49
Horibe (10.1016/j.laa.2024.10.027_br0190) 1983; 21
Barcucci (10.1016/j.laa.2024.10.027_br0030) 1999; 5
Davenport (10.1016/j.laa.2024.10.027_br0080) 2024; 4
He (10.1016/j.laa.2024.10.027_br0150) 2022; 25
Shapiro (10.1016/j.laa.2024.10.027_br0250) 1991; 34
Alp (10.1016/j.laa.2024.10.027_br0020) 2024; vol. 79
Zhang (10.1016/j.laa.2024.10.027_br0290) 2020; 603
Deutsch (10.1016/j.laa.2024.10.027_br0100) 2009; 13
Rogers (10.1016/j.laa.2024.10.027_br0230) 1978; 22
Davenport (10.1016/j.laa.2024.10.027_br0110) 2012; 18
Alp (10.1016/j.laa.2024.10.027_br0010) 2023; 664
Chung (10.1016/j.laa.2024.10.027_br0070) 1978; 24
Kuznetkov (10.1016/j.laa.2024.10.027_br0200) 1996; 76
Branch (10.1016/j.laa.2024.10.027_br0060) 2022; 388
Deutsch (10.1016/j.laa.2024.10.027_br0090) 2005; 34
West (10.1016/j.laa.2024.10.027_br0280) 1996; 157
Barry (10.1016/j.laa.2024.10.027_br0040)
10.1016/j.laa.2024.10.027_br0050
References_xml – volume: 157
  start-page: 363
  year: 1996
  end-page: 374
  ident: br0280
  article-title: Generating trees and forbidden subsequences
  publication-title: Discrete Math.
– volume: 13
  start-page: 65
  year: 2009
  end-page: 85
  ident: br0100
  article-title: Production matrices and Riordan arrays
  publication-title: Ann. Comb.
– volume: 549
  start-page: 176
  year: 2018
  end-page: 202
  ident: br0140
  article-title: Sequence characterizations of double Riordan arrays and their compressions
  publication-title: Linear Algebra Appl.
– year: 2015
  ident: br0260
  article-title: Catalan Numbers
– volume: 76
  start-page: 145
  year: 1996
  end-page: 147
  ident: br0200
  article-title: Trees associated with the Motzkin numbers
  publication-title: J. Comb. Theory, Ser. A
– volume: 388
  start-page: 33
  year: 2022
  end-page: 46
  ident: br0060
  article-title: A and Z sequences for double Riordan arrays
  publication-title: Springer Proc. Math. Stat.
– volume: 25
  year: 2022
  ident: br0150
  article-title: The vertical recursive relation of Riordan arrays and its matrix representation
  publication-title: J. Integer Seq.
– volume: vol. 79
  start-page: 173
  year: 2024
  ident: br0020
  article-title: Exponential Almost-Riordan Arrays
  publication-title: Results Math.
– volume: 34
  start-page: 101
  year: 2005
  end-page: 122
  ident: br0090
  article-title: Production matrices
  publication-title: Adv. Appl. Math.
– volume: 172
  start-page: 75
  year: 2014
  end-page: 87
  ident: br0210
  article-title: Complementary Riordan arrays
  publication-title: Discrete Appl. Math.
– reference: P. Barry, T.-X. He, N. Pantelidis, The quasi-Riordan group and the almost-Riordan group, manuscript in preparation.
– ident: br0170
  article-title: Total positivity of almost-Riordan arrays and Riordan arrays
– volume: 49
  start-page: 301
  year: 1997
  end-page: 320
  ident: br0220
  article-title: On some alternative characterizations of Riordan arrays
  publication-title: Can. J. Math.
– volume: 679
  start-page: 194
  year: 2023
  end-page: 219
  ident: br0270
  article-title: On the halves of double and 3-dimensional Riordan arrays
  publication-title: Linear Algebra Appl.
– volume: 603
  start-page: 212
  year: 2020
  end-page: 225
  ident: br0290
  article-title: -double Riordan matrices
  publication-title: Linear Algebra Appl.
– volume: 309
  start-page: 3962
  year: 2009
  end-page: 3974
  ident: br0180
  article-title: Sequence characterization of Riordan arrays
  publication-title: Discrete Math.
– volume: 281
  start-page: 351
  year: 2002
  end-page: 367
  ident: br0120
  article-title: An algebraic characterization of the set of succession rules
  publication-title: Theoret. Comput. Sci.
– ident: br0160
  article-title: Total positivity of quasi-Riordan arrays and Riordan arrays
– volume: 465
  start-page: 15
  year: 2015
  end-page: 42
  ident: br0130
  article-title: Matrix characterizations of Riordan arrays
  publication-title: Linear Algebra Appl.
– volume: 34
  start-page: 229
  year: 1991
  end-page: 239
  ident: br0250
  article-title: The Riordan group
  publication-title: Discrete Appl. Math.
– volume: 4
  year: 2024
  ident: br0080
  article-title: An invitation to the Riordan group
  publication-title: Enumer. Comb. Appl.
– volume: 27
  start-page: 585
  year: 2001
  end-page: 596
  ident: br0240
  article-title: Some open questions about random walks, involutions, limiting distributions and generating functions
  publication-title: Adv. Appl. Math.
– volume: 21
  start-page: 118
  year: 1983
  end-page: 128
  ident: br0190
  article-title: Notes on Fibonacci trees and their optimality
  publication-title: Fibonacci Q.
– year: 2016
  ident: br0040
  article-title: On the group of almost-Riordan arrays
– volume: 5
  start-page: 435
  year: 1999
  end-page: 490
  ident: br0030
  article-title: ECO: a methodology for the enumeration of combinatorial objects
  publication-title: J. Differ. Equ. Appl.
– volume: 664
  start-page: 1
  year: 2023
  end-page: 23
  ident: br0010
  article-title: Sequence characterization of almost-Riordan arrays
  publication-title: Linear Algebra Appl.
– volume: 22
  start-page: 301
  year: 1978
  end-page: 310
  ident: br0230
  article-title: Pascal triangles, Catalan numbers and renewal arrays
  publication-title: Discrete Math.
– volume: 24
  start-page: 382
  year: 1978
  end-page: 394
  ident: br0070
  article-title: The number of Baxter permutations
  publication-title: J. Comb. Theory, Ser. A
– volume: 18
  start-page: P33
  year: 2012
  ident: br0110
  article-title: The double Riordan group
  publication-title: Electron. J. Comb.
– volume: 157
  start-page: 363
  issue: 1–3
  year: 1996
  ident: 10.1016/j.laa.2024.10.027_br0280
  article-title: Generating trees and forbidden subsequences
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)83023-8
– volume: 549
  start-page: 176
  year: 2018
  ident: 10.1016/j.laa.2024.10.027_br0140
  article-title: Sequence characterizations of double Riordan arrays and their compressions
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.03.029
– volume: 4
  issue: 3
  year: 2024
  ident: 10.1016/j.laa.2024.10.027_br0080
  article-title: An invitation to the Riordan group
  publication-title: Enumer. Comb. Appl.
– volume: 5
  start-page: 435
  year: 1999
  ident: 10.1016/j.laa.2024.10.027_br0030
  article-title: ECO: a methodology for the enumeration of combinatorial objects
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236199908808200
– volume: 49
  start-page: 301
  year: 1997
  ident: 10.1016/j.laa.2024.10.027_br0220
  article-title: On some alternative characterizations of Riordan arrays
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1997-015-x
– volume: 13
  start-page: 65
  year: 2009
  ident: 10.1016/j.laa.2024.10.027_br0100
  article-title: Production matrices and Riordan arrays
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-009-0013-1
– volume: 27
  start-page: 585
  year: 2001
  ident: 10.1016/j.laa.2024.10.027_br0240
  article-title: Some open questions about random walks, involutions, limiting distributions and generating functions
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.2001.0751
– volume: 172
  start-page: 75
  year: 2014
  ident: 10.1016/j.laa.2024.10.027_br0210
  article-title: Complementary Riordan arrays
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2014.03.005
– volume: 18
  start-page: P33
  issue: 2
  year: 2012
  ident: 10.1016/j.laa.2024.10.027_br0110
  article-title: The double Riordan group
  publication-title: Electron. J. Comb.
  doi: 10.37236/2034
– volume: 465
  start-page: 15
  year: 2015
  ident: 10.1016/j.laa.2024.10.027_br0130
  article-title: Matrix characterizations of Riordan arrays
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2014.09.008
– volume: 21
  start-page: 118
  issue: 2
  year: 1983
  ident: 10.1016/j.laa.2024.10.027_br0190
  article-title: Notes on Fibonacci trees and their optimality
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1983.12429957
– volume: 25
  issue: 9
  year: 2022
  ident: 10.1016/j.laa.2024.10.027_br0150
  article-title: The vertical recursive relation of Riordan arrays and its matrix representation
  publication-title: J. Integer Seq.
– volume: 34
  start-page: 101
  issue: 1
  year: 2005
  ident: 10.1016/j.laa.2024.10.027_br0090
  article-title: Production matrices
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2004.05.002
– volume: 603
  start-page: 212
  year: 2020
  ident: 10.1016/j.laa.2024.10.027_br0290
  article-title: q-double Riordan matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.05.027
– volume: 34
  start-page: 229
  year: 1991
  ident: 10.1016/j.laa.2024.10.027_br0250
  article-title: The Riordan group
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(91)90088-E
– ident: 10.1016/j.laa.2024.10.027_br0040
– ident: 10.1016/j.laa.2024.10.027_br0050
– volume: 388
  start-page: 33
  year: 2022
  ident: 10.1016/j.laa.2024.10.027_br0060
  article-title: A and Z sequences for double Riordan arrays
  publication-title: Springer Proc. Math. Stat.
– volume: 24
  start-page: 382
  year: 1978
  ident: 10.1016/j.laa.2024.10.027_br0070
  article-title: The number of Baxter permutations
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1016/0097-3165(78)90068-7
– volume: 281
  start-page: 351
  issue: 1–2
  year: 2002
  ident: 10.1016/j.laa.2024.10.027_br0120
  article-title: An algebraic characterization of the set of succession rules
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00020-8
– year: 2015
  ident: 10.1016/j.laa.2024.10.027_br0260
– volume: 664
  start-page: 1
  year: 2023
  ident: 10.1016/j.laa.2024.10.027_br0010
  article-title: Sequence characterization of almost-Riordan arrays
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2023.01.012
– volume: 76
  start-page: 145
  year: 1996
  ident: 10.1016/j.laa.2024.10.027_br0200
  article-title: Trees associated with the Motzkin numbers
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1006/jcta.1996.0094
– volume: 679
  start-page: 194
  year: 2023
  ident: 10.1016/j.laa.2024.10.027_br0270
  article-title: On the halves of double and 3-dimensional Riordan arrays
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2023.09.009
– ident: 10.1016/j.laa.2024.10.027_br0170
– volume: 22
  start-page: 301
  year: 1978
  ident: 10.1016/j.laa.2024.10.027_br0230
  article-title: Pascal triangles, Catalan numbers and renewal arrays
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(78)90063-8
– volume: 309
  start-page: 3962
  year: 2009
  ident: 10.1016/j.laa.2024.10.027_br0180
  article-title: Sequence characterization of Riordan arrays
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.11.021
– ident: 10.1016/j.laa.2024.10.027_br0160
– volume: vol. 79
  start-page: 173
  year: 2024
  ident: 10.1016/j.laa.2024.10.027_br0020
  article-title: Exponential Almost-Riordan Arrays
SSID ssj0004702
Score 2.4168506
Snippet In this paper, we define double almost-Riordan arrays and find that the set of all double almost-Riordan arrays forms a group, called the double almost-Riordan...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Double almost-Riordan arrays
Generating function
Production matrix or Stieltjes matrix
Sequence characterization
Succession rule
The double almost-Riordan group
Title The double almost-Riordan group
URI https://dx.doi.org/10.1016/j.laa.2024.10.027
Volume 705
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsMCAeIryKBmYkNwmrh07Y1VRFVA7UalbZDuOVBTSirYrvx1f6hSQgIHVuovis3UP-bvvAG4t5wbrBsITK4nLbxWRMjJEMpnHNrKKV0P7RuN4OGGPUz5tQL_uhUFYpff9G59eeWu_0vHW7CxmM-zxrcj0OKIgmQtb2MHOBN7y9vsnzIOJ0DOGM4LS9ctmhfEqFFIPUdZGgBcOlvkpNn2JN4NDOPCJYtDb_MsRNGx5DPujLcvq8gRu3BkH2XytCxuo4nW-REYQV0yqMqiaNU5hMrh_7g-JH3hADE3EitAkzrnMlKwisYzihGeGUxO6qkPHytU20lqjcy1znRib6yxn1onZLBdacNE9g51yXtpzCEKXWGQi5lRJxjLpvky1k-vGBinntWlCWG81NZ4NHIdSFGkN-3pJnXVStA4uOes04W6rsthQYfwlzGr7pd_OM3Wu-ne1i_-pXcIexbm8YUQifgU7q7e1vXbJwkq3qtvQgt3ew9Nw_AGiJrsK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inKqxlgQXJJXDtxBgYEVC19TK3ULcSOIxWFtqKtEAt_ij_IOU0KSMCA1NWyrfjz6e6sfPcdwJnmXJl3A-G-FgTz25AI4SgimIhd7eiQp0372h233mP3fd4vwHteC2NolZnvn_v01FtnI5cZmpfjwcDU-KZietywIBmGrYxZ2dSvL_hum1w1bvGSzymt3XVv6iRrLUAU9b0pob4bcxGFIo15wnF9HilOlY35vXRDfEUIrZWMpYilr3Qso5hpnKaj2JMe96q47wqsMnQXpm1C5e2TV8I8O5MoZ8R8Xv4rNSWVJaHROqKsYhhlppPNT8HwS4CrbcFmlpla1_PDb0NBD3dgo72QdZ3sQhmNyopGM5loK0yeRhMjQYIohEMrrQ7Zg95SYNiH4nA01Adg2ZjJRJ7LaSgYiwTuTCXOq7rKaNxLVQI7P2qgMvlx0wUjCXKe2WOA6AQGHTOE6JTgYrFkPNfe-Gsyy_ELvhlQgLHh92WH_1tWhrV6t90KWo1O8wjWqWkKbDvE4cdQnD7P9AlmKlN5mlqGBQ_LNsUPIqn32A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+double+almost-Riordan+group&rft.jtitle=Linear+algebra+and+its+applications&rft.au=He%2C+Tian-Xiao&rft.date=2025-01-15&rft.issn=0024-3795&rft.volume=705&rft.spage=50&rft.epage=88&rft_id=info:doi/10.1016%2Fj.laa.2024.10.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2024_10_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon