CuO–SnO2 sensor for room-temperature CO detection: Experiments and DFT calculations
Constructing heterostructures composed of different components is an emerging strategy to develop high–performance gas sensors with low operation temperatures, high sensitivity and reliable selectivity. Herein, a CuO–SnO2 sensor for ultra-sensitive CO detection at room temperature is designed. Gas s...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 420; p. 136427 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing heterostructures composed of different components is an emerging strategy to develop high–performance gas sensors with low operation temperatures, high sensitivity and reliable selectivity. Herein, a CuO–SnO2 sensor for ultra-sensitive CO detection at room temperature is designed. Gas sensing properties of CuO–SnO2 sensors are investigated with changing CO gas concentration, and each CuO–SnO2 sensor exhibits better sensing performances than SnO2 and CuO sensors. At 20 °C, the optimal CuO–SnO2 sensor has an excellent response of 39.56 % to 300 ppm CO gas with rapid response/recovery times (56/23 s), an ultralow detection limit of 159 ppb, and a high sensitivity of 0.127 % ppm−1. Additionally, the optimal CuO–SnO2 sensor exhibit good long-term stability, excellent reproductivity, and marked selectivity for CO molecules. The enhanced sensing mechanisms of the CuO–SnO2 heterostructure are attributed to the large specific surface area, abundant oxygen vacancies, and modulation effects of potential barrier created at the CuO–SnO2 heterojunction. Finally, first-principles calculations are implemented to investigate the adsorption ability and charge transfer of CO molecule on the CuO–SnO2 surface, further revealing the improved electron interactions between the CO molecule and CuO–SnO2 heterostructure at the molecular level. These new discoveries and insights aim to promote the research of heterostructures in chemical sensors through comprehensive theoretical and experimental studies.
[Display omitted]
•CuO–SnO2 heterostructures were prepared by the template sacrificial method.•CuO–SnO2 heterostructures exhibited an improved response to CO at room temperature.•DFT results show the enhanced adsorption effects of CuO–SnO2 heterostructures for CO. |
---|---|
AbstractList | Constructing heterostructures composed of different components is an emerging strategy to develop high–performance gas sensors with low operation temperatures, high sensitivity and reliable selectivity. Herein, a CuO–SnO2 sensor for ultra-sensitive CO detection at room temperature is designed. Gas sensing properties of CuO–SnO2 sensors are investigated with changing CO gas concentration, and each CuO–SnO2 sensor exhibits better sensing performances than SnO2 and CuO sensors. At 20 °C, the optimal CuO–SnO2 sensor has an excellent response of 39.56 % to 300 ppm CO gas with rapid response/recovery times (56/23 s), an ultralow detection limit of 159 ppb, and a high sensitivity of 0.127 % ppm−1. Additionally, the optimal CuO–SnO2 sensor exhibit good long-term stability, excellent reproductivity, and marked selectivity for CO molecules. The enhanced sensing mechanisms of the CuO–SnO2 heterostructure are attributed to the large specific surface area, abundant oxygen vacancies, and modulation effects of potential barrier created at the CuO–SnO2 heterojunction. Finally, first-principles calculations are implemented to investigate the adsorption ability and charge transfer of CO molecule on the CuO–SnO2 surface, further revealing the improved electron interactions between the CO molecule and CuO–SnO2 heterostructure at the molecular level. These new discoveries and insights aim to promote the research of heterostructures in chemical sensors through comprehensive theoretical and experimental studies.
[Display omitted]
•CuO–SnO2 heterostructures were prepared by the template sacrificial method.•CuO–SnO2 heterostructures exhibited an improved response to CO at room temperature.•DFT results show the enhanced adsorption effects of CuO–SnO2 heterostructures for CO. |
ArticleNumber | 136427 |
Author | Wang, Weiqi Zhang, Yufeng Wang, Shimin Zhang, Rongji Cao, Jiamu |
Author_xml | – sequence: 1 givenname: Weiqi surname: Wang fullname: Wang, Weiqi organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Jiamu surname: Cao fullname: Cao, Jiamu email: caojiamu@hit.edu.cn organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 3 givenname: Shimin surname: Wang fullname: Wang, Shimin organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Rongji surname: Zhang fullname: Zhang, Rongji organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng organization: School of Astronautics, Harbin Institute of Technology, Harbin 150001, China |
BookMark | eNp9kLFOwzAQhj0UibbwAGx-gYSL7SQ1TKi0gFQpA-1sOc5FcpU6le0i2HgH3pAnIaVMDB1ON9x9p_u_CRm53iEhNxmkGWTF7TYNrk4ZMJFmvBCsHJExSJYnAiC_JJMQtgAgeAFjspkfqu_Pr1dXMRrQhd7Tdijf97sk4m6PXseDRzqvaIMRTbS9u6OL92Fgd-hioNo19HG5pkZ35tDp40K4Ihet7gJe__Up2SwX6_lzsqqeXuYPq8QwWcaECSxN0coauGQCasmN5KItEfN8ltczLeoml0y3QvIWMmAStBa8zDPUdSM1n5LydNf4PgSPrTI2_r4QvbadykAdjaitGoyooxF1MjKQ2T9yPwTS_uMsc39icIj0ZtGrYCw6g431gxnV9PYM_QO0eX4Z |
CitedBy_id | crossref_primary_10_1007_s11144_025_02830_2 crossref_primary_10_1016_j_cplett_2024_141639 crossref_primary_10_1016_j_ccr_2025_216624 crossref_primary_10_3390_molecules29194625 crossref_primary_10_1016_j_jece_2024_114391 crossref_primary_10_3390_s25030867 |
Cites_doi | 10.1021/acssensors.2c02291 10.1039/C6RA06538D 10.1179/1743676113Y.0000000128 10.3866/PKU.WHXB201602224 10.1021/acs.analchem.2c03596 10.1016/j.snb.2023.134751 10.1109/JSEN.2023.3294409 10.1021/acsami.9b13001 10.1016/j.snb.2023.133952 10.1016/j.materresbull.2013.08.019 10.1016/j.snb.2022.131486 10.1016/j.materresbull.2019.110496 10.1016/j.snb.2022.132481 10.1016/j.snb.2023.134018 10.1016/j.snb.2021.130863 10.1016/j.snb.2023.135257 10.1016/j.snb.2022.132984 10.1021/acsnano.3c07074 10.1016/j.snb.2022.132966 10.1021/acssensors.2c00228 10.1038/ncomms2066 10.1016/j.jhazmat.2021.125830 10.1016/j.apsusc.2020.146590 10.1016/j.cplett.2014.01.043 10.1016/j.aca.2023.340825 10.1016/j.snb.2024.135803 10.1021/acssensors.2c02739 10.1016/j.snb.2019.127179 10.1016/j.snb.2015.12.065 10.1016/j.snb.2019.03.092 10.1016/j.matlet.2021.130831 10.1016/j.jallcom.2021.161299 10.1016/j.ceramint.2022.08.215 10.1016/j.snb.2017.11.063 10.1016/j.apsusc.2019.07.218 10.1016/j.snb.2022.131414 10.1002/eem2.12570 10.1021/acsami.1c15564 10.1021/acsanm.2c04581 10.1016/j.nanoms.2021.05.006 10.1039/C8NA00233A 10.1016/j.snb.2022.131427 10.1016/j.apsusc.2020.145759 10.1016/j.snb.2023.133550 10.1016/j.snb.2023.133928 10.1016/j.jallcom.2019.03.364 10.1007/s10854-020-04387-3 10.1016/j.snb.2015.11.028 10.1016/j.sna.2019.111755 10.1021/acsami.9b11891 10.1021/acsami.2c18097 10.1016/j.snb.2023.133461 10.1016/j.snb.2024.135629 10.1016/j.jhazmat.2021.126414 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.snb.2024.136427 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_snb_2024_136427 S0925400524011572 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ M36 M41 R2- SCB SCH SSH WUQ |
ID | FETCH-LOGICAL-c297t-24e7c6f9b039240b93c934f7ee5585b8a4bd592af493f010290aa43751eabd9a3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Tue Jul 01 02:06:18 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 Sat Sep 07 15:50:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO sensing First-principles calculations Tin dioxide Cupric oxide Heterostructures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-24e7c6f9b039240b93c934f7ee5585b8a4bd592af493f010290aa43751eabd9a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_snb_2024_136427 crossref_primary_10_1016_j_snb_2024_136427 elsevier_sciencedirect_doi_10_1016_j_snb_2024_136427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sardana, Mahajan (bib44) 2023; 6 Nguyen, Taylor, Zavabeti, Alluhaybi, Almalki, Guo, Irfan, Kobaisi, Ippolito, Spencer, Balendhran, Roberts, Daeneke, Crozier, Sabri, Syed (bib9) 2023 Ivanova, Frka-Petesic, Paul, Wagner, Jumabekov, Vilk, Weber, Günne, Vignolini, Tiemann, Fattakhova-Rohlfing, Bein (bib12) 2020; 12 Yu, Oum, Mirzaei, Shin, Kim, Kim, Kim, Kim (bib18) 2023; 392 Zhang, Zhu, Qin, Wang, Cao (bib3) 2023; 381 Bai, Guo, Sun, Li, Tian, Chen, Luo, Li (bib32) 2016; 226 Dhage, Patil, Patil, Ryu, Patil, Malghe (bib42) 2021; 305 Zhang, Ma, Wang, Pei (bib56) 2021; 886 Bai, Lv, Liu, Chen, Wang, Sun, Zhang, Wang, Shi (bib40) 2021; 416 Park, Cho, Lee, Song, Kim, Choa (bib59) 2020; 302 Zhou, Dastan, Yin, Nie, Wu, Wang, Li (bib31) 2020; 31 Chen, Li, Gan, Zeng (bib41) 2014; 113 Lee, Kim, Lee (bib24) 2024; 404 Zhao, Zhou, Zhang, Wang, Duan, Tan, Liu, Ouyang, Yuan, Tai, Jiang (bib22) 2022; 32 Bian, Dou, Wang, Li, Zhang, Gong, Sun, Liu, Li, Jing, Liu (bib50) 2023; 8 Zhu, Yuan, Yang, Ma, Wang, Ji, Feng, Devi, Lu (bib37) 2019; 290 Zhang, Wang, Fan, Li, Liu, Lv, Li, Zhou, Xie, Zhang (bib38) 2021; 13 Mahajan, Jagtap (bib5) 2020; 18 Tang, Wang (bib61) 2016; 32 Sun, Sun, Gao, Cheng, Liu, Piao, Yao, Wu, Hu, Wei, Xie (bib62) 2012; 3 Zang, Ma, Yano, Li, Yamahara, Seki, Iizuka, Tabata (bib39) 2023; 23 Javanmardi, Nasresfahani, Sheikhi (bib30) 2019; 118 Kim, Lee, Mirzaei, Kim, Kim (bib55) 2018; 258 Thomas, Prasanna Kumari, Deepa (bib11) 2020; 301 . Yuan, Aljneibi, Yuan, Wang, Liu, Fang, Tang, Yan, Cai, Gu, Pennycook, Tao, Zhao (bib54) 2019; 31 Kim, Cho, Chang, Lee, Kim, Park, Park (bib21) 2022; 358 Jeevanandam, Kaliyaperumal, Sundararam, Danquah (bib8) 2020 Yang, Wang, Zhu, Yin, Dong, Wu (bib43) 2023; 375 Bing, Zeng, Feng, Qiao, Wang, Zheng (bib13) 2016; 227 Hu, Yang, Hu, Zeng, Zhang, Wang (bib28) 2023; 376 Kim, Samani, Lee, Lee, Lee, Pi, Kim, Lee, Lee (bib15) 2024; 399 Yang, Deng, Yang, Liao, Cheng, Zou, Wu, Deng (bib58) 2023; 10 Baier, Priamushko, Weinberger, Kleitz, Tiemann (bib27) 2023; 8 Kim, Shin, Lee, Park, Ahn, Cho, Yuk, Kim, Lee, Kim (bib26) 2023; 17 Sun, Wang, Zhang, Liu, Li, Zhou, Ruan (bib53) 2022; 358 Zhou, Hu, Zhao, Wang, Li, Zou (bib20) 2023; 1245 D. Penney, V. Benignus, S. Kephalopoulos, D. Kotzias, M. Kleinman, A. Verrier, WHO guidelines for indoor air quality:selected pollutants, Carbon monoxide, WHO Regional Office for Europe, Copenhagen, 2010, pp. 55-86 Cai, Luo, Hu, Xue, Wang, Xu (bib63) 2022; 7 Jiang, Wang, Li, Li, Yang, Yu, Dong (bib36) 2023; 390 Zhang, Yu, Li, Zhao, Guo, Wang, Cao, Ding, Qiao (bib6) 2024; 409 Zhao, Xue, Kang (bib46) 2014; 595 Cui, Zhang, Zhang, Tang (bib52) 2019; 1 Li, Zhao, Wang, Zhang, Zou, Zhou (bib45) 2022; 94 Wei, Zhang, Tao, Xia, Bao, Lourenco, Homewood, Huang, Gao (bib35) 2023; 6 Cai, Dong, Wu, Sun, Chen, Wei, Zhu, Tian, Wang, Jing, Li, Liu (bib48) 2022; 351 Cui, Zhang, Li, Chen, Zhang (bib49) 2019; 494 Wang, Zhang, Pan, Wang, Chen (bib1) 2022; 371 Wang, Bai, Huang, Hu, Cheng, Li, Xie, Wang, Pan (bib60) 2019; 791 He, Sun, Huang, Li (bib33) 2023; 15 Tang, Zhang, Chen, Wang, Wang, Yang, Xu, Wang, Zhu, An (bib34) 2023; 390 Kumar, Sanger, Kumar, Chandra (bib29) 2016; 6 Liu, Wang, Dai, Li, Wang, Li, Zhang, Qin (bib57) 2019; 11 Kong, Li, Cui, Su, Ma, Lai, Yao, Xiao, Wang (bib10) 2022; 4 Opoku, Govender (bib51) 2020; 525 Li, Yang, Cheng, Zhang, Guo, Xu, Gao, Major, Zhao, Huo (bib16) 2021; 419 Sajjad, Feng (bib4) 2014; 49 Chen, Han, Wang, Gu (bib25) 2024; 16 Fan, Huo, Guan, Yu, Zhu, Han, Mo, Chen (bib7) 2024; 412 Gasso, Sohal, Mahajan (bib23) 2022; 357 Mamabolo, Tshabalala, Swart, Mphaphuli, Hillie, Motaung (bib14) 2022; 31 Mauraya, Mahana, Jhaa, Pradhan, Tomer, Singh, Kushvaha, Muthusamy, Kushvaha, Muthusamy (bib19) 2022; 48 Li, Zheng, Yang, Zhang, Cheng, Zhou, Gao, Xu, Huo (bib17) 2023; 382 Cui, Yan, Jia, Cao (bib47) 2020; 512 Jiang (10.1016/j.snb.2024.136427_bib36) 2023; 390 Sardana (10.1016/j.snb.2024.136427_bib44) 2023; 6 Kim (10.1016/j.snb.2024.136427_bib26) 2023; 17 Zhang (10.1016/j.snb.2024.136427_bib38) 2021; 13 Cai (10.1016/j.snb.2024.136427_bib48) 2022; 351 Zhou (10.1016/j.snb.2024.136427_bib31) 2020; 31 Tang (10.1016/j.snb.2024.136427_bib34) 2023; 390 Zhou (10.1016/j.snb.2024.136427_bib20) 2023; 1245 Bian (10.1016/j.snb.2024.136427_bib50) 2023; 8 Cai (10.1016/j.snb.2024.136427_bib63) 2022; 7 Cui (10.1016/j.snb.2024.136427_bib49) 2019; 494 Nguyen (10.1016/j.snb.2024.136427_bib9) 2023 Bai (10.1016/j.snb.2024.136427_bib32) 2016; 226 Chen (10.1016/j.snb.2024.136427_bib25) 2024; 16 Zhao (10.1016/j.snb.2024.136427_bib22) 2022; 32 Lee (10.1016/j.snb.2024.136427_bib24) 2024; 404 Opoku (10.1016/j.snb.2024.136427_bib51) 2020; 525 Kong (10.1016/j.snb.2024.136427_bib10) 2022; 4 Li (10.1016/j.snb.2024.136427_bib17) 2023; 382 Sajjad (10.1016/j.snb.2024.136427_bib4) 2014; 49 Yuan (10.1016/j.snb.2024.136427_bib54) 2019; 31 Zhao (10.1016/j.snb.2024.136427_bib46) 2014; 595 Dhage (10.1016/j.snb.2024.136427_bib42) 2021; 305 Gasso (10.1016/j.snb.2024.136427_bib23) 2022; 357 Javanmardi (10.1016/j.snb.2024.136427_bib30) 2019; 118 Zhang (10.1016/j.snb.2024.136427_bib3) 2023; 381 Sun (10.1016/j.snb.2024.136427_bib53) 2022; 358 Zhu (10.1016/j.snb.2024.136427_bib37) 2019; 290 Jeevanandam (10.1016/j.snb.2024.136427_bib8) 2020 10.1016/j.snb.2024.136427_bib2 Mauraya (10.1016/j.snb.2024.136427_bib19) 2022; 48 Ivanova (10.1016/j.snb.2024.136427_bib12) 2020; 12 Mahajan (10.1016/j.snb.2024.136427_bib5) 2020; 18 Li (10.1016/j.snb.2024.136427_bib45) 2022; 94 Kim (10.1016/j.snb.2024.136427_bib21) 2022; 358 Sun (10.1016/j.snb.2024.136427_bib62) 2012; 3 Yu (10.1016/j.snb.2024.136427_bib18) 2023; 392 Li (10.1016/j.snb.2024.136427_bib16) 2021; 419 Bai (10.1016/j.snb.2024.136427_bib40) 2021; 416 Hu (10.1016/j.snb.2024.136427_bib28) 2023; 376 Zhang (10.1016/j.snb.2024.136427_bib56) 2021; 886 Kumar (10.1016/j.snb.2024.136427_bib29) 2016; 6 Wei (10.1016/j.snb.2024.136427_bib35) 2023; 6 Wang (10.1016/j.snb.2024.136427_bib60) 2019; 791 Cui (10.1016/j.snb.2024.136427_bib47) 2020; 512 Thomas (10.1016/j.snb.2024.136427_bib11) 2020; 301 Liu (10.1016/j.snb.2024.136427_bib57) 2019; 11 Bing (10.1016/j.snb.2024.136427_bib13) 2016; 227 Zang (10.1016/j.snb.2024.136427_bib39) 2023; 23 Chen (10.1016/j.snb.2024.136427_bib41) 2014; 113 Kim (10.1016/j.snb.2024.136427_bib55) 2018; 258 Wang (10.1016/j.snb.2024.136427_bib1) 2022; 371 Cui (10.1016/j.snb.2024.136427_bib52) 2019; 1 Zhang (10.1016/j.snb.2024.136427_bib6) 2024; 409 Baier (10.1016/j.snb.2024.136427_bib27) 2023; 8 Kim (10.1016/j.snb.2024.136427_bib15) 2024; 399 Mamabolo (10.1016/j.snb.2024.136427_bib14) 2022; 31 Yang (10.1016/j.snb.2024.136427_bib58) 2023; 10 He (10.1016/j.snb.2024.136427_bib33) 2023; 15 Park (10.1016/j.snb.2024.136427_bib59) 2020; 302 Fan (10.1016/j.snb.2024.136427_bib7) 2024; 412 Yang (10.1016/j.snb.2024.136427_bib43) 2023; 375 Tang (10.1016/j.snb.2024.136427_bib61) 2016; 32 |
References_xml | – volume: 419 year: 2021 ident: bib16 article-title: Fast detection of NO publication-title: J. Hazard. Mater. – volume: 791 start-page: 1025 year: 2019 end-page: 1032 ident: bib60 article-title: Design of NiCo publication-title: J. Alloy. Compd. – volume: 32 year: 2022 ident: bib22 article-title: Edge-enriched Mo publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1616 year: 2023 end-page: 1623 ident: bib27 article-title: Selective discrimination between CO and H publication-title: ACS Sens. – volume: 375 year: 2023 ident: bib43 article-title: AgNWs@SnO publication-title: Sens. Actuator B Chem. – volume: 31 year: 2019 ident: bib54 article-title: ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing publication-title: Adv. Mater. – volume: 302 year: 2020 ident: bib59 article-title: Design of highly porous SnO publication-title: Sens. Actuator B Chem. – volume: 358 year: 2022 ident: bib21 article-title: Selective photoactive gas detection of CO and HCHO using highly porous SnO publication-title: Sens. Actuator B Chem. – volume: 512 year: 2020 ident: bib47 article-title: Adsorption and sensing behaviors of SF publication-title: Appl. Surf. Sci. – volume: 886 year: 2021 ident: bib56 article-title: Hydrothermal synthesis of SnO publication-title: J. Alloy. Compd. – volume: 404 year: 2024 ident: bib24 article-title: Synergetic crystal phases of SnO publication-title: Sens. Actuator B Chem. – volume: 390 year: 2023 ident: bib34 article-title: Heterostructure construction of SnS publication-title: Sens. Actuator B Chem. – volume: 412 year: 2024 ident: bib7 article-title: MnO publication-title: Sens. Actuator B Chem. – volume: 390 year: 2023 ident: bib36 article-title: Polyoxometalate as pivotal interface in SnO publication-title: Sens. Actuator B Chem. – volume: 1 start-page: 772 year: 2019 end-page: 780 ident: bib52 article-title: Rh-doped MoSe publication-title: Nanoscale Adv. – volume: 113 start-page: 139 year: 2014 end-page: 146 ident: bib41 article-title: Study of CuO-SnO publication-title: Adv. Appl. Ceram. – reference: D. Penney, V. Benignus, S. Kephalopoulos, D. Kotzias, M. Kleinman, A. Verrier, WHO guidelines for indoor air quality:selected pollutants, Carbon monoxide, WHO Regional Office for Europe, Copenhagen, 2010, pp. 55-86, – volume: 290 start-page: 233 year: 2019 end-page: 241 ident: bib37 article-title: Fabrication of heterostructured publication-title: Sens. Actuator B Chem. – volume: 305 year: 2021 ident: bib42 article-title: Synthesis and characterization of CuO-SnO publication-title: Mater. Lett. – volume: 16 start-page: 23553 year: 2024 end-page: 23566 ident: bib25 article-title: Interface defects and carrier regulation in MOF-derived Co publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1087 year: 2016 end-page: 1104 ident: bib61 article-title: Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors publication-title: Acta Phys. -Chim. Sin. – volume: 416 year: 2021 ident: bib40 article-title: Thin-layered MoS publication-title: J. Hazard. Mater. – volume: 595 start-page: 35 year: 2014 end-page: 42 ident: bib46 article-title: Gas adsorption on MoS publication-title: Chem. Phys. Lett. – volume: 371 year: 2022 ident: bib1 article-title: Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature publication-title: Sens. Actuator B Chem. – volume: 18 year: 2020 ident: bib5 article-title: Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review publication-title: Appl. Mater. Today – volume: 399 year: 2024 ident: bib15 article-title: Extrinsic oxygen defects in SnO/SnO publication-title: Sens. Actuator B Chem. – volume: 358 year: 2022 ident: bib53 article-title: g-C publication-title: Sens. Actuator B Chem. – volume: 301 year: 2020 ident: bib11 article-title: Microwave-enhanced pyrolysis grown nanostructured SnO publication-title: Sens. Actuator A Phys. – volume: 382 year: 2023 ident: bib17 article-title: Three-in-one Ni doped porous SnO publication-title: Sens. Actuator B Chem. – volume: 49 start-page: 35 year: 2014 end-page: 38 ident: bib4 article-title: Study the gas sensing properties of boron nitride nanosheets publication-title: Mater. Res. Bull. – volume: 4 start-page: 339 year: 2022 end-page: 350 ident: bib10 article-title: SnO publication-title: Nano Mater. Sci. – volume: 226 start-page: 96 year: 2016 end-page: 103 ident: bib32 article-title: Synthesis of SnO publication-title: Sens. Actuator B Chem. – volume: 6 year: 2023 ident: bib35 article-title: A CuO/TiO publication-title: Energy Environ. Mater. – volume: 6 start-page: 47178 year: 2016 end-page: 47184 ident: bib29 article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO publication-title: RSC Adv. – volume: 409 year: 2024 ident: bib6 article-title: Layer-tunable synthesis of tetragonal Pr-doped SnO publication-title: Sens. Actuator B Chem. – volume: 525 year: 2020 ident: bib51 article-title: Adsorption behaviour of Si anchored on g-C publication-title: Appl. Surf. Sci. – volume: 376 year: 2023 ident: bib28 article-title: CuO surface doped In publication-title: Sens. Actuator B Chem. – volume: 6 start-page: 469 year: 2023 end-page: 481 ident: bib44 article-title: Edge-site-enriched Ti publication-title: ACS Appl. Nano Mater. – volume: 12 start-page: 12639 year: 2020 end-page: 12647 ident: bib12 article-title: Cellulose nanocrystal-templated tin dioxide thin films for gas sensing publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1057 year: 2012 ident: bib62 article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers publication-title: Nat. Commun. – volume: 94 start-page: 16160 year: 2022 end-page: 16170 ident: bib45 article-title: Mesoporous WS publication-title: Anal. Chem. – volume: 8 start-page: 748 year: 2023 end-page: 756 ident: bib50 article-title: Fabrication and computational study of a chemiresistive NO publication-title: ACS Sens. – year: 2023 ident: bib9 article-title: Instant-in-air liquid metal printed ultrathin tin oxide for high-performance ammonia sensors publication-title: Adv. Funct. Mater. – volume: 351 year: 2022 ident: bib48 article-title: Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation publication-title: Sens. Actuator B Chem. – volume: 31 year: 2022 ident: bib14 article-title: Low temperature tunability on CO selectivity, low detection limit based on SnO publication-title: Surf. Interfaces – volume: 11 start-page: 44829 year: 2019 end-page: 44836 ident: bib57 article-title: In situ growth of NiO@SnO publication-title: ACS Appl. Mater. Interfaces – volume: 227 start-page: 362 year: 2016 end-page: 372 ident: bib13 article-title: Multistep assembly of Au-loaded SnO publication-title: Sens. Actuator B Chem. – volume: 31 start-page: 18412 year: 2020 end-page: 18426 ident: bib31 article-title: Optimization of gas sensing properties of publication-title: J. Mater. Sci. -Mater. Electron. – volume: 23 start-page: 17925 year: 2023 end-page: 17931 ident: bib39 article-title: SnO publication-title: IEEE Sens. J. – volume: 392 year: 2023 ident: bib18 article-title: Enhancement of xylene gas sensing by using Au core structures in regard to Au@SnO publication-title: Sens. Actuator B Chem. – start-page: 393 year: 2020 end-page: 395 ident: bib8 article-title: Nanosensor technologies for environmental monitoring publication-title: Nanomaterials as Toxic Gas Sensors and Biosensors – volume: 17 start-page: 19387 year: 2023 end-page: 19397 ident: bib26 article-title: Three-dimensional MoS publication-title: ACS Nano – volume: 118 year: 2019 ident: bib30 article-title: Facile synthesis of PdO/SnO publication-title: Mater. Res. Bull. – volume: 13 start-page: 52938 year: 2021 end-page: 52949 ident: bib38 article-title: Switching effect of publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 4194 year: 2023 end-page: 4207 ident: bib33 article-title: MXene/SnS publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2023 ident: bib58 article-title: Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges publication-title: Adv. Sci. – volume: 258 start-page: 204 year: 2018 end-page: 214 ident: bib55 article-title: SnO publication-title: Sens. Actuator B Chem. – volume: 48 start-page: 36556 year: 2022 end-page: 36569 ident: bib19 article-title: Heterostructure nanoarchitectonics with ZnO/SnO publication-title: Ceram. Int. – reference: . – volume: 381 year: 2023 ident: bib3 article-title: Bimetal PtPd functionalized Bi publication-title: Sens. Actuator B Chem. – volume: 357 year: 2022 ident: bib23 article-title: MXene modulated SnO publication-title: Sens. Actuator B Chem. – volume: 1245 year: 2023 ident: bib20 article-title: Two-dimensional black phosphorus/tin oxide heterojunctions for high-performance chemiresistive H publication-title: Anal. Chim. Acta – volume: 494 start-page: 859 year: 2019 end-page: 866 ident: bib49 article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1484 year: 2022 end-page: 1494 ident: bib63 article-title: Multishell SnO publication-title: ACS Sens. – volume: 8 start-page: 748 year: 2023 ident: 10.1016/j.snb.2024.136427_bib50 article-title: Fabrication and computational study of a chemiresistive NO2 gas sensor based on the carbon dots-WO3 heterostructure for operating below room temperature publication-title: ACS Sens. doi: 10.1021/acssensors.2c02291 – volume: 6 start-page: 47178 year: 2016 ident: 10.1016/j.snb.2024.136427_bib29 article-title: Highly sensitive and selective CO gas sensor based on a hydrophobic SnO2/CuO bilayer publication-title: RSC Adv. doi: 10.1039/C6RA06538D – volume: 113 start-page: 139 year: 2014 ident: 10.1016/j.snb.2024.136427_bib41 article-title: Study of CuO-SnO2 heterojunction nanostructures for enhanced CO gas sensing properties publication-title: Adv. Appl. Ceram. doi: 10.1179/1743676113Y.0000000128 – volume: 32 start-page: 1087 year: 2016 ident: 10.1016/j.snb.2024.136427_bib61 article-title: Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors publication-title: Acta Phys. -Chim. Sin. doi: 10.3866/PKU.WHXB201602224 – volume: 94 start-page: 16160 year: 2022 ident: 10.1016/j.snb.2024.136427_bib45 article-title: Mesoporous WS2-decorated cellulose nanofiber-templated CuO heterostructures for high-performance chemiresistive hydrogen sulfide sensors publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03596 – volume: 399 year: 2024 ident: 10.1016/j.snb.2024.136427_bib15 article-title: Extrinsic oxygen defects in SnO/SnO2 heterostructure for efficient NO2 gas detection publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.134751 – volume: 23 start-page: 17925 year: 2023 ident: 10.1016/j.snb.2024.136427_bib39 article-title: SnO2-CuO heterostructured nanofibers for enhanced NH3-gas-sensing performance and potential application in breath analysis publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3294409 – volume: 16 start-page: 23553 year: 2024 ident: 10.1016/j.snb.2024.136427_bib25 article-title: Interface defects and carrier regulation in MOF-derived Co3O4/In2O3 composite materials for enhanced selective detection of HCHO publication-title: ACS Appl. Mater. Interfaces – volume: 31 year: 2022 ident: 10.1016/j.snb.2024.136427_bib14 article-title: Low temperature tunability on CO selectivity, low detection limit based on SnO2-hollowspheres induced by various bases publication-title: Surf. Interfaces – volume: 11 start-page: 44829 year: 2019 ident: 10.1016/j.snb.2024.136427_bib57 article-title: In situ growth of NiO@SnO2 hierarchical nanostructures for high performance H2S sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13001 – volume: 390 year: 2023 ident: 10.1016/j.snb.2024.136427_bib34 article-title: Heterostructure construction of SnS2 Debye nanowires modified with ZnO nanorods for chemiresistive H2S detection in sulfur hexafluoride decomposition products publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.133952 – volume: 49 start-page: 35 year: 2014 ident: 10.1016/j.snb.2024.136427_bib4 article-title: Study the gas sensing properties of boron nitride nanosheets publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.08.019 – volume: 358 year: 2022 ident: 10.1016/j.snb.2024.136427_bib21 article-title: Selective photoactive gas detection of CO and HCHO using highly porous SnO2 and SnO2@TiO2 heterostructure publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.131486 – volume: 118 year: 2019 ident: 10.1016/j.snb.2024.136427_bib30 article-title: Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.110496 – volume: 371 year: 2022 ident: 10.1016/j.snb.2024.136427_bib1 article-title: Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.132481 – volume: 392 year: 2023 ident: 10.1016/j.snb.2024.136427_bib18 article-title: Enhancement of xylene gas sensing by using Au core structures in regard to Au@SnO2 core-shell nanocomposites publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.134018 – year: 2023 ident: 10.1016/j.snb.2024.136427_bib9 article-title: Instant-in-air liquid metal printed ultrathin tin oxide for high-performance ammonia sensors publication-title: Adv. Funct. Mater. – volume: 351 year: 2022 ident: 10.1016/j.snb.2024.136427_bib48 article-title: Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2021.130863 – volume: 404 year: 2024 ident: 10.1016/j.snb.2024.136427_bib24 article-title: Synergetic crystal phases of SnO2/NiO heterostructure in an interconnected morphology for chemiresistive formaldehyde sensors publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.135257 – volume: 376 year: 2023 ident: 10.1016/j.snb.2024.136427_bib28 article-title: CuO surface doped In2O3/CeO2 nanofibers for ppb-ppm level carbon monoxide gas detection in low-temperature publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.132984 – volume: 17 start-page: 19387 year: 2023 ident: 10.1016/j.snb.2024.136427_bib26 article-title: Three-dimensional MoS2/MXene heterostructure aerogel for chemical gas sensors with superior sensitivity and stability publication-title: ACS Nano doi: 10.1021/acsnano.3c07074 – volume: 375 year: 2023 ident: 10.1016/j.snb.2024.136427_bib43 article-title: AgNWs@SnO2/CuO nanocomposites for ultra-sensitive SO2 sensing based on surface acoustic wave with frequency-resistance dual-signal display publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.132966 – volume: 7 start-page: 1484 year: 2022 ident: 10.1016/j.snb.2024.136427_bib63 article-title: Multishell SnO2 hollow microspheres loaded with bimetal PdPt nanoparticles for ultrasensitive and rapid formaldehyde MEMS sensors publication-title: ACS Sens. doi: 10.1021/acssensors.2c00228 – volume: 3 start-page: 1057 year: 2012 ident: 10.1016/j.snb.2024.136427_bib62 article-title: Fabrication of flexible and freestanding zinc chalcogenide single layers publication-title: Nat. Commun. doi: 10.1038/ncomms2066 – volume: 416 year: 2021 ident: 10.1016/j.snb.2024.136427_bib40 article-title: Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125830 – volume: 525 year: 2020 ident: 10.1016/j.snb.2024.136427_bib51 article-title: Adsorption behaviour of Si anchored on g-C3N4/graphene van der Waals heterostructure for selective sensing of toxic gases: Insights from a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146590 – volume: 595 start-page: 35 year: 2014 ident: 10.1016/j.snb.2024.136427_bib46 article-title: Gas adsorption on MoS2 monolayer from first-principles calculations publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.01.043 – volume: 1245 year: 2023 ident: 10.1016/j.snb.2024.136427_bib20 article-title: Two-dimensional black phosphorus/tin oxide heterojunctions for high-performance chemiresistive H2S sensing publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.340825 – volume: 412 year: 2024 ident: 10.1016/j.snb.2024.136427_bib7 article-title: MnO2 enhanced low temperature HCHO sensing performance of SnO2 publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2024.135803 – volume: 8 start-page: 1616 year: 2023 ident: 10.1016/j.snb.2024.136427_bib27 article-title: Selective discrimination between CO and H2 with copper-ceria resistive gas sensors publication-title: ACS Sens. doi: 10.1021/acssensors.2c02739 – start-page: 393 year: 2020 ident: 10.1016/j.snb.2024.136427_bib8 article-title: Nanosensor technologies for environmental monitoring – volume: 302 year: 2020 ident: 10.1016/j.snb.2024.136427_bib59 article-title: Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2019.127179 – volume: 227 start-page: 362 year: 2016 ident: 10.1016/j.snb.2024.136427_bib13 article-title: Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2015.12.065 – volume: 290 start-page: 233 year: 2019 ident: 10.1016/j.snb.2024.136427_bib37 article-title: Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2019.03.092 – volume: 305 year: 2021 ident: 10.1016/j.snb.2024.136427_bib42 article-title: Synthesis and characterization of CuO-SnO2 nanocomposite for CO gas sensing application publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.130831 – volume: 31 year: 2019 ident: 10.1016/j.snb.2024.136427_bib54 article-title: ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing publication-title: Adv. Mater. – volume: 886 year: 2021 ident: 10.1016/j.snb.2024.136427_bib56 article-title: Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.161299 – volume: 48 start-page: 36556 year: 2022 ident: 10.1016/j.snb.2024.136427_bib19 article-title: Heterostructure nanoarchitectonics with ZnO/SnO2 for ultrafast and selective detection of CO gas at low ppm levels publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.08.215 – volume: 258 start-page: 204 year: 2018 ident: 10.1016/j.snb.2024.136427_bib55 article-title: SnO2(n)-NiO(p) composite nanowebs: Gas sensing properties and sensing mechanisms publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2017.11.063 – volume: 494 start-page: 859 year: 2019 ident: 10.1016/j.snb.2024.136427_bib49 article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.218 – volume: 358 year: 2022 ident: 10.1016/j.snb.2024.136427_bib53 article-title: g-C3N4/In2O3 composite for effective formaldehyde detection publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.131414 – volume: 6 year: 2023 ident: 10.1016/j.snb.2024.136427_bib35 article-title: A CuO/TiO2 heterojunction based CO sensor with high response and selectivity publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12570 – volume: 13 start-page: 52938 year: 2021 ident: 10.1016/j.snb.2024.136427_bib38 article-title: Switching effect of p-CuO nanotube/n-In2S3 nanosheet heterostructures for high-performance room-temperature H2S sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15564 – volume: 6 start-page: 469 year: 2023 ident: 10.1016/j.snb.2024.136427_bib44 article-title: Edge-site-enriched Ti3C2TX MXene/MoS2 nanosheet heterostructures for self-powered breath and environmental monitoring publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c04581 – volume: 18 year: 2020 ident: 10.1016/j.snb.2024.136427_bib5 article-title: Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review publication-title: Appl. Mater. Today – volume: 4 start-page: 339 year: 2022 ident: 10.1016/j.snb.2024.136427_bib10 article-title: SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: a review publication-title: Nano Mater. Sci. doi: 10.1016/j.nanoms.2021.05.006 – volume: 1 start-page: 772 year: 2019 ident: 10.1016/j.snb.2024.136427_bib52 article-title: Rh-doped MoSe2 as a toxic gas scavenger: a first-principles study publication-title: Nanoscale Adv. doi: 10.1039/C8NA00233A – volume: 32 year: 2022 ident: 10.1016/j.snb.2024.136427_bib22 article-title: Edge-enriched Mo2TiC2Tx/MoS2 heterostructure with coupling interface for selectively NO2 monitoring publication-title: Adv. Funct. Mater. – volume: 357 year: 2022 ident: 10.1016/j.snb.2024.136427_bib23 article-title: MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2 publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2022.131427 – volume: 512 year: 2020 ident: 10.1016/j.snb.2024.136427_bib47 article-title: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145759 – volume: 382 year: 2023 ident: 10.1016/j.snb.2024.136427_bib17 article-title: Three-in-one Ni doped porous SnO2 nanorods sensor: Controllable oxygen vacancies content, surface site activation and low power consumption for highly selective NO2 monitoring publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.133550 – volume: 390 year: 2023 ident: 10.1016/j.snb.2024.136427_bib36 article-title: Polyoxometalate as pivotal interface in SnO2@PW12@TiO2 coaxial nanofibers: From heterojunction design to photocatalytic and gas sensing applications publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.133928 – volume: 791 start-page: 1025 year: 2019 ident: 10.1016/j.snb.2024.136427_bib60 article-title: Design of NiCo2O4@SnO2 heterostructure nanofiber and their low temperature ethanol sensing properties publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.03.364 – volume: 31 start-page: 18412 year: 2020 ident: 10.1016/j.snb.2024.136427_bib31 article-title: Optimization of gas sensing properties of n-SnO2/p-xCuO sensors for homogenous gases and the sensing mechanism publication-title: J. Mater. Sci. -Mater. Electron. doi: 10.1007/s10854-020-04387-3 – volume: 226 start-page: 96 year: 2016 ident: 10.1016/j.snb.2024.136427_bib32 article-title: Synthesis of SnO2-CuO heterojunction using electrospinning and application in detecting of CO publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2015.11.028 – volume: 301 year: 2020 ident: 10.1016/j.snb.2024.136427_bib11 article-title: Microwave-enhanced pyrolysis grown nanostructured SnO2 thin films for near room temperature LPG detection and the impedance analysis publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2019.111755 – volume: 12 start-page: 12639 year: 2020 ident: 10.1016/j.snb.2024.136427_bib12 article-title: Cellulose nanocrystal-templated tin dioxide thin films for gas sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11891 – volume: 15 start-page: 4194 year: 2023 ident: 10.1016/j.snb.2024.136427_bib33 article-title: MXene/SnS2 heterojunction for detecting sub-ppm NH3 at room temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c18097 – ident: 10.1016/j.snb.2024.136427_bib2 – volume: 381 year: 2023 ident: 10.1016/j.snb.2024.136427_bib3 article-title: Bimetal PtPd functionalized Bi2MoO6 microspheres for conductometric detection of CO: a combined experimental and theoretical study publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2023.133461 – volume: 10 year: 2023 ident: 10.1016/j.snb.2024.136427_bib58 article-title: Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges publication-title: Adv. Sci. – volume: 409 year: 2024 ident: 10.1016/j.snb.2024.136427_bib6 article-title: Layer-tunable synthesis of tetragonal Pr-doped SnO2 nanoplates for enhanced sensitive SO2 sensor publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2024.135629 – volume: 419 year: 2021 ident: 10.1016/j.snb.2024.136427_bib16 article-title: Fast detection of NO2 by porous SnO2 nanotoast sensor at low temperature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126414 |
SSID | ssj0004360 |
Score | 2.5411832 |
Snippet | Constructing heterostructures composed of different components is an emerging strategy to develop high–performance gas sensors with low operation temperatures,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 136427 |
SubjectTerms | CO sensing Cupric oxide First-principles calculations Heterostructures Tin dioxide |
Title | CuO–SnO2 sensor for room-temperature CO detection: Experiments and DFT calculations |
URI | https://dx.doi.org/10.1016/j.snb.2024.136427 |
Volume | 420 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48CWvzmGSz3kpsqYrtoS30FnazG6hIWpr0Kv4H_6G_xN08agX14DFhFpbZYfab5JtvELqKfZZA4DOiHJkQkDYnzKE-8XwRaDgO1C06vJ8Gfn8CD1Nv2kBh3QtjaJVV7i9zepGtqzftypvtxWzWHllMFzfmsyYYWENNHgagJspvXr9oHuAWncLGmBjr-s9mwfHKUqFLRAcM2QvMYJmf7qaN-6a3j_YqoIg75V4OUEOlh2h3Qz7wCE3C1fDj7X2UDh2c6XJ0vsQagmKDhYmRnKr0knE4xFLlBecqvcXdtaZ_hnkq8V1vjPVBxdUcr-wYTXrdcdgn1ZgEEjuM5sQBRWM_YcLSWAcswdyYuZBQpTxdC4iAg5Aec3gCzE2MhByzOAeXerbiQjLunqCtdJ6qU8NzivWtRl3b9hVYsRQykUyfl8Wpn0gvaCKrdlAUVxriZpTFS1STxZ4j7dPI-DQqfdpE1-sli1JA4y9jqL0efYuCSCf435ed_W_ZOdoxTyU55QJt5cuVutQQIxetIoZaaLtz_9gffAKWQs66 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwcmJKtp4sQ1WxVapfQ1tJW6RXbsSEUorZp05z_wD_kl2IlTigQMrIlPss7W3XfJd98BcB95NMYtjyJpixhh0WSI2sRDrsdbCo5j4uQd3sORF8zw89ydV4Bf9sJoWqWJ_UVMz6O1edIw3mysFovGxKKquNGfNbGGNUTF4ZpWp3KroNbu9YPRV3ukkzcL6_VIG5Q_N3OaV5pwVSXaWPO9sJ4t81N62kk53SNwaLAibBfbOQYVmZyAgx0FwVMw8zfjj7f3STK2Yaoq0uUaKhQKNRxGWnXKSCZDfwyFzHLaVfIIO1tZ_xSyRMCn7hSqs4rMKK_0DMy6nakfIDMpAUU2JRmysSSRF1NuKbiDLU6diDo4JlK6qhzgLYa5cKnNYkydWKvIUYsx7BC3KRkXlDnnoJosE3mhqU6RSmzEaTY9ia1IcBELqo7MYsSLhduqA6t0UBgZGXE9zeI1LPliL6Hyaah9GhY-rYOHrcmq0ND4azEuvR5-uwihivG_m13-z-wO7AXT4SAc9Eb9K7Cv3xRclWtQzdYbeaMQR8ZvzY36BL-g0Ws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CuO%E2%80%93SnO2+sensor+for+room-temperature+CO+detection%3A+Experiments+and+DFT+calculations&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Wang%2C+Weiqi&rft.au=Cao%2C+Jiamu&rft.au=Wang%2C+Shimin&rft.au=Zhang%2C+Rongji&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.volume=420&rft_id=info:doi/10.1016%2Fj.snb.2024.136427&rft.externalDocID=S0925400524011572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |