Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
The maximization of non-negative monotone submodular functions under a certain constraint is intensively studied. However, there are few works considering the maximization of non-monotone non-submodular functions, which even might be negative. These functions also have many applications, such as opt...
Saved in:
Published in | Theoretical computer science Vol. 990; p. 114409 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3975 1879-2294 |
DOI | 10.1016/j.tcs.2024.114409 |
Cover
Loading…
Abstract | The maximization of non-negative monotone submodular functions under a certain constraint is intensively studied. However, there are few works considering the maximization of non-monotone non-submodular functions, which even might be negative. These functions also have many applications, such as optimal marketing for revenue maximization over social networks, budget allocation problems, and Epidemic transmission, etc. In our paper, we discuss the maximization of the non-monotone non-submodular functions under a knapsack constraint, which even might be negative, and explore the performance under the greedy algorithm. We obtain some improved approximate ratios, for the functions with different properties, such as the non-negative weak-monotone weak-submodular functions, and the weak-submodular weak-supermodular functions that might be negative. Moreover, we generalize the results to the functions with weak subadditivity and curvature. |
---|---|
AbstractList | The maximization of non-negative monotone submodular functions under a certain constraint is intensively studied. However, there are few works considering the maximization of non-monotone non-submodular functions, which even might be negative. These functions also have many applications, such as optimal marketing for revenue maximization over social networks, budget allocation problems, and Epidemic transmission, etc. In our paper, we discuss the maximization of the non-monotone non-submodular functions under a knapsack constraint, which even might be negative, and explore the performance under the greedy algorithm. We obtain some improved approximate ratios, for the functions with different properties, such as the non-negative weak-monotone weak-submodular functions, and the weak-submodular weak-supermodular functions that might be negative. Moreover, we generalize the results to the functions with weak subadditivity and curvature. |
ArticleNumber | 114409 |
Author | Shi, Yishuo Lai, Xiaoyan |
Author_xml | – sequence: 1 givenname: Yishuo orcidid: 0000-0002-5604-688X surname: Shi fullname: Shi, Yishuo email: yishuo@wzu.edu.cn – sequence: 2 givenname: Xiaoyan surname: Lai fullname: Lai, Xiaoyan email: 1972906484@qq.com |
BookMark | eNp9kMlOwzAQQC1UJNrCB3DLDyTYiV0n4lRVbFIlLnC2HC_FbWJHtoOAr8dpOXHoXEYz0pvlLcDMOqsAuEWwQBCt7vZFFKEoYYkLhDCGzQWYo5o2eVk2eAbmsII4rxpKrsAihD1MQehqDtR6GLz7Mj2PxtmMdzvnTfzoM6eznqe--TF2l6Vtee-si2nrsQhj2zs5dtxnerRigkM2Wql8drB8CFwcMpF60XNj4zW41LwL6uYvL8H748Pb5jnfvj69bNbbXJQNjelWhARSsuaYUIwbiWALK6WJ5ERLTuuSNFgTQWFJ20ojXleCrGSNCK1boWi1BPQ0V3gXgleaCROPn013dAxBNtlie5ZssckWO9lKJPpHDj5J8d9nmfsTo9JLn0Z5FoRRVihpvBKRSWfO0L-Mnoeg |
CitedBy_id | crossref_primary_10_1016_j_dam_2024_09_022 |
Cites_doi | 10.1145/502090.502098 10.1007/s10878-021-00719-z 10.1007/BF01588971 10.1016/j.tcs.2020.12.002 10.1287/ijoc.2015.0660 10.1016/j.stamet.2006.11.004 10.1016/S0167-6377(03)00062-2 10.1016/j.orl.2011.10.002 10.1109/MCS.2017.2743518 10.1287/moor.2016.0842 10.1007/s10878-019-00449-3 10.1002/jmv.27506 10.1016/S0020-0190(99)00031-9 10.1016/j.jcss.2021.08.003 10.1007/s10107-018-1324-y 10.1137/090779346 10.1007/s10878-020-00558-4 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tcs.2024.114409 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1879-2294 |
ExternalDocumentID | 10_1016_j_tcs_2024_114409 S0304397524000240 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB G-2 HZ~ LG9 M26 M41 R2- RIG SSH SSZ TAE WUQ XJT ZY4 |
ID | FETCH-LOGICAL-c297t-2211c1ed8a457449d10b03ef5da5fda782594f5c7027b3f1a83c56d81578bce73 |
IEDL.DBID | .~1 |
ISSN | 0304-3975 |
IngestDate | Tue Jul 01 03:43:14 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Sat Feb 24 15:49:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Greedy algorithm Non-submodular Non-monotone Knapsack constraint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-2211c1ed8a457449d10b03ef5da5fda782594f5c7027b3f1a83c56d81578bce73 |
ORCID | 0000-0002-5604-688X |
ParticipantIDs | crossref_citationtrail_10_1016_j_tcs_2024_114409 crossref_primary_10_1016_j_tcs_2024_114409 elsevier_sciencedirect_doi_10_1016_j_tcs_2024_114409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Xu, Du, Ma (br0330) 2021 Gupta, Pequito, Bogdan (br0240) 2018 Bian, Buhmann, Krause, Tschiatschek (br0160) 2017 Nong, Fang, Gong (br0270) 2020; 39 Clark, Alomair, Bushnell, Poovendran (br0090) 2017; 37 Shioura, Shakhlevich, Strusevich (br0100) 2016; 28 Kazemi, Minaee, Feldman, Karbasi (br0300) 2021 Zhang (br0390) 2022; 123 Soma, Yoshida (br0080) 2018; 172 Harshaw, Feldman, Ward, Karbasi (br0290) 2019 Wang, Xu, Du, Jiang (br0340) 2021 Iyer, Jegelka, Bilmes (br0140) 2013; 26 Cui, Xu, Guo (br0170) 2022; 43 Håstad (br0020) 2001; 48 Sviridenko, Vondrák, Ward (br0070) 2017; 42 Summers, Kamgarpour (br0130) 2019 Kuhnle, Smith, Crawford, Thai (br0180) 2018 Khuller, Moss, Naor (br0360) 1999; 70 Lee, Mirrokni, Nagarjan, Sviridenko (br0210) 2009 Nemhuaser, Wolsey (br0110) 1978; 14 Kempe, Kleinberg, Tardos (br0010) 2003 Sviridenko (br0120) 2004; 32 Sakaue, Nishino, Yasuda (br0050) 2018; vol. 32 Hartline, Mirrokni, Sundararajan (br0190) 2008 Chao (br0310) 2021 Soma, Yoshida (br0060) 2015; 28 Soma, Yoshida (br0260) 2017; vol. 31 Khan, Arshad, Azam, Al-marshadi (br0370) 2021; 94 Krause, Guestrin (br0350) 2005 Balkanski, Singer (br0040) 2018 Fadaei, Fazli, Safari (br0230) 2011; 39 Jegelka, Bilmes (br0030) 2011 Teng, Shi, Yang, Lee, Philip, Lu, Chen (br0200) 2022 Bian, Levy, Krause, Buhmann (br0250) 2018; 30 Santiago, Yoshida (br0280) 2020 Rousson, Goşoniu (br0380) 2007; 4 De, Okati, Zarezade, Rodriguez (br0320) 2021; vol. 35 Iyer, Bilmes (br0150) 2013; 26 Feige, Mirrokni, Vondrák (br0220) 2011; 40 Zhang, Liu, Wang, Xu, Zhang (br0400) 2020 Bian (10.1016/j.tcs.2024.114409_br0160) Wang (10.1016/j.tcs.2024.114409_br0330) 2021 Harshaw (10.1016/j.tcs.2024.114409_br0290) 2019 Wang (10.1016/j.tcs.2024.114409_br0340) 2021 Clark (10.1016/j.tcs.2024.114409_br0090) 2017; 37 Gupta (10.1016/j.tcs.2024.114409_br0240) Nong (10.1016/j.tcs.2024.114409_br0270) 2020; 39 Soma (10.1016/j.tcs.2024.114409_br0080) 2018; 172 Khuller (10.1016/j.tcs.2024.114409_br0360) 1999; 70 Jegelka (10.1016/j.tcs.2024.114409_br0030) 2011 Cui (10.1016/j.tcs.2024.114409_br0170) 2022; 43 Feige (10.1016/j.tcs.2024.114409_br0220) 2011; 40 Zhang (10.1016/j.tcs.2024.114409_br0390) 2022; 123 Iyer (10.1016/j.tcs.2024.114409_br0140) 2013; 26 Teng (10.1016/j.tcs.2024.114409_br0200) 2022 Fadaei (10.1016/j.tcs.2024.114409_br0230) 2011; 39 Nemhuaser (10.1016/j.tcs.2024.114409_br0110) 1978; 14 Zhang (10.1016/j.tcs.2024.114409_br0400) 2020 Kempe (10.1016/j.tcs.2024.114409_br0010) 2003 Bian (10.1016/j.tcs.2024.114409_br0250) 2018; 30 Santiago (10.1016/j.tcs.2024.114409_br0280) 2020 Krause (10.1016/j.tcs.2024.114409_br0350) 2005 Summers (10.1016/j.tcs.2024.114409_br0130) 2019 Soma (10.1016/j.tcs.2024.114409_br0060) 2015; 28 Balkanski (10.1016/j.tcs.2024.114409_br0040) 2018 Lee (10.1016/j.tcs.2024.114409_br0210) 2009 Sviridenko (10.1016/j.tcs.2024.114409_br0120) 2004; 32 Soma (10.1016/j.tcs.2024.114409_br0260) 2017; vol. 31 Hartline (10.1016/j.tcs.2024.114409_br0190) 2008 Rousson (10.1016/j.tcs.2024.114409_br0380) 2007; 4 Khan (10.1016/j.tcs.2024.114409_br0370) 2021; 94 Håstad (10.1016/j.tcs.2024.114409_br0020) 2001; 48 Iyer (10.1016/j.tcs.2024.114409_br0150) 2013; 26 Kuhnle (10.1016/j.tcs.2024.114409_br0180) 2018 De (10.1016/j.tcs.2024.114409_br0320) 2021; vol. 35 Shioura (10.1016/j.tcs.2024.114409_br0100) 2016; 28 Sviridenko (10.1016/j.tcs.2024.114409_br0070) 2017; 42 Chao (10.1016/j.tcs.2024.114409_br0310) 2021 Sakaue (10.1016/j.tcs.2024.114409_br0050) 2018; vol. 32 Kazemi (10.1016/j.tcs.2024.114409_br0300) 2021 |
References_xml | – start-page: 1 year: 2020 end-page: 24 ident: br0400 article-title: Maximizing a monotone non-submodular function under a knapsack constraint publication-title: J. Comb. Optim. – start-page: 2786 year: 2018 end-page: 2795 ident: br0180 article-title: Fast maximization of non-submodular, monotonic functions on the integer lattice publication-title: International Conference on Machine Learning – year: 2020 ident: br0280 article-title: Weakly submodular function maximization using local submodularity ratio publication-title: Comput. Sci. – volume: 43 start-page: 1671 year: 2022 end-page: 1690 ident: br0170 article-title: Approximation guarantees for parallelized maximization of monotone non-submodular function with acardinality constraint publication-title: J. Comb. Optim. – year: 2021 ident: br0340 article-title: Bicriteria streaming algorithms to balance gain and cost with cardinality constraint publication-title: J. Comb. Optim. – volume: 94 start-page: 1592 year: 2021 end-page: 1605 ident: br0370 article-title: Modeling and forecasting the total number of cases and deaths due to pandemic publication-title: J. Med. Virol. – volume: 14 start-page: 265 year: 1978 end-page: 294 ident: br0110 article-title: An analysis of the approximation for maximizating submodular set function publication-title: Math. Program. – start-page: 323 year: 2009 end-page: 332 ident: br0210 article-title: Non-monotone submodular maximization under matroid and knapsack constraints publication-title: Comput. Complex. – volume: 123 start-page: 143 year: 2022 end-page: 156 ident: br0390 article-title: Improved prophet inequalities for combinatorial welfare maximization with (approximately) subadditive agents publication-title: J. Comput. Syst. Sci. – start-page: 2796 year: 2019 end-page: 2801 ident: br0130 article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics publication-title: 2019 18th European Control Conference – volume: vol. 31 year: 2017 ident: br0260 article-title: Non-monotone DR-submodular function maximization publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 39 start-page: 1208 year: 2020 end-page: 1220 ident: br0270 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. – volume: 42 start-page: 1197 year: 2017 end-page: 1218 ident: br0070 article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature publication-title: Math. Oper. Res. – start-page: 68 year: 2021 end-page: 76 ident: br0330 article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model publication-title: Theor. Comput. Sci. – volume: 70 start-page: 39 year: 1999 end-page: 45 ident: br0360 article-title: The budgeted maximum coverage problem publication-title: Inf. Process. Lett. – year: 2005 ident: br0350 article-title: A note on the budgeted maximization of submodular functions publication-title: Citeseer – volume: vol. 32 year: 2018 ident: br0050 article-title: Submodular function maximization over graphs via zero-suppressed binary decision diagrams publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 189 year: 2008 end-page: 198 ident: br0190 article-title: Optimal marketing strategies over social networks publication-title: Proceedings of the 17th International Conference on World Wide Web – volume: 40 start-page: 1133 year: 2011 end-page: 1153 ident: br0220 article-title: Maximizing non-monotone submodular functions publication-title: SIAM J. Comput. – start-page: 2634 year: 2019 end-page: 2643 ident: br0290 article-title: Submodular maximization beyond non-negativity: guarantees, fast algorithms, and applications publication-title: International Conference on Machine Learning – volume: 37 start-page: 52 year: 2017 end-page: 74 ident: br0090 article-title: Submodularity in input node selection for networked linear systems: efficient algorithms for performance and controllability publication-title: IEEE Control Syst. Mag. – volume: 28 start-page: 148 year: 2016 end-page: 161 ident: br0100 article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines publication-title: INFORMS J. Comput. – volume: 32 start-page: 41 year: 2004 end-page: 43 ident: br0120 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. – start-page: 2845 year: 2022 end-page: 2858 ident: br0200 article-title: Epidemic spread optimization for disease containment with NPIs and vaccination publication-title: 2022 IEEE 38th International Conference on Data Engineering – volume: 39 start-page: 447 year: 2011 end-page: 451 ident: br0230 article-title: Maximizing non-monotone submodular set functions subject to different constraints: combined algorithms publication-title: Oper. Res. Lett. – start-page: 384 year: 2018 end-page: 393 ident: br0040 article-title: Approximation guarantees for adaptive sampling publication-title: International Conference on Machine Learning – year: 2017 ident: br0160 article-title: Guarantees for greedy maximization of non-submodular functions with applications – volume: 30 start-page: 487 year: 2018 end-page: 497 ident: br0250 article-title: Non-monotone continuous DR-submodular maximization: structure and algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 35 start-page: 5905 year: 2021 end-page: 5913 ident: br0320 article-title: Classification under human assistance publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 28 year: 2015 ident: br0060 article-title: A generalization of submodular cover via the diminishing return property on the integer lattice publication-title: Adv. Neural Inf. Process. Syst. – start-page: 137 year: 2003 end-page: 146 ident: br0010 article-title: Maximizing the spread of influence through a social network publication-title: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 463 year: 2021 end-page: 490 ident: br0310 article-title: Multiobjective evolutionary algorithms are still good: maximizing monotone approximately submodular minus modular functions publication-title: Evol. Comput. – volume: 26 year: 2013 ident: br0140 article-title: Curvature and optimal algorithms for learning and minimizing submodular functions publication-title: Adv. Neural Inf. Process. Syst. – volume: 48 start-page: 798 year: 2001 end-page: 859 ident: br0020 article-title: Some optimal inapproximability results publication-title: J. ACM – volume: 172 start-page: 539 year: 2018 end-page: 563 ident: br0080 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math. Program. – volume: 26 year: 2013 ident: br0150 article-title: Submodular optimization with submodular cover and submodular knapsack constraints publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5356 year: 2021 end-page: 5366 ident: br0300 article-title: Regularized submodular maximization at scale publication-title: International Conference on Machine Learning – start-page: 1897 year: 2011 end-page: 1904 ident: br0030 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts publication-title: CVPR 2011 – year: 2018 ident: br0240 article-title: Approximate submodular functions and performance guarantees – volume: 4 start-page: 331 year: 2007 end-page: 340 ident: br0380 article-title: An r-square coefficient based on final prediction error publication-title: Stat. Methodol. – volume: vol. 31 year: 2017 ident: 10.1016/j.tcs.2024.114409_br0260 article-title: Non-monotone DR-submodular function maximization – volume: 48 start-page: 798 issue: 4 year: 2001 ident: 10.1016/j.tcs.2024.114409_br0020 article-title: Some optimal inapproximability results publication-title: J. ACM doi: 10.1145/502090.502098 – volume: 28 year: 2015 ident: 10.1016/j.tcs.2024.114409_br0060 article-title: A generalization of submodular cover via the diminishing return property on the integer lattice publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 1671 year: 2022 ident: 10.1016/j.tcs.2024.114409_br0170 article-title: Approximation guarantees for parallelized maximization of monotone non-submodular function with acardinality constraint publication-title: J. Comb. Optim. doi: 10.1007/s10878-021-00719-z – volume: 14 start-page: 265 year: 1978 ident: 10.1016/j.tcs.2024.114409_br0110 article-title: An analysis of the approximation for maximizating submodular set function publication-title: Math. Program. doi: 10.1007/BF01588971 – start-page: 68 year: 2021 ident: 10.1016/j.tcs.2024.114409_br0330 article-title: Bicriteria algorithms to balance coverage and cost in team formation under online model publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.12.002 – start-page: 189 year: 2008 ident: 10.1016/j.tcs.2024.114409_br0190 article-title: Optimal marketing strategies over social networks – start-page: 5356 year: 2021 ident: 10.1016/j.tcs.2024.114409_br0300 article-title: Regularized submodular maximization at scale – volume: 28 start-page: 148 year: 2016 ident: 10.1016/j.tcs.2024.114409_br0100 article-title: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2015.0660 – volume: 30 start-page: 487 issue: 1 year: 2018 ident: 10.1016/j.tcs.2024.114409_br0250 article-title: Non-monotone continuous DR-submodular maximization: structure and algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 331 issue: 3 year: 2007 ident: 10.1016/j.tcs.2024.114409_br0380 article-title: An r-square coefficient based on final prediction error publication-title: Stat. Methodol. doi: 10.1016/j.stamet.2006.11.004 – year: 2021 ident: 10.1016/j.tcs.2024.114409_br0340 article-title: Bicriteria streaming algorithms to balance gain and cost with cardinality constraint publication-title: J. Comb. Optim. – start-page: 323 year: 2009 ident: 10.1016/j.tcs.2024.114409_br0210 article-title: Non-monotone submodular maximization under matroid and knapsack constraints publication-title: Comput. Complex. – volume: vol. 35 start-page: 5905 year: 2021 ident: 10.1016/j.tcs.2024.114409_br0320 article-title: Classification under human assistance – volume: 32 start-page: 41 year: 2004 ident: 10.1016/j.tcs.2024.114409_br0120 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – start-page: 1897 year: 2011 ident: 10.1016/j.tcs.2024.114409_br0030 article-title: Submodularity beyond submodular energies: coupling edges in graph cuts – start-page: 463 year: 2021 ident: 10.1016/j.tcs.2024.114409_br0310 article-title: Multiobjective evolutionary algorithms are still good: maximizing monotone approximately submodular minus modular functions publication-title: Evol. Comput. – volume: 39 start-page: 447 year: 2011 ident: 10.1016/j.tcs.2024.114409_br0230 article-title: Maximizing non-monotone submodular set functions subject to different constraints: combined algorithms publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2011.10.002 – start-page: 2845 year: 2022 ident: 10.1016/j.tcs.2024.114409_br0200 article-title: Epidemic spread optimization for disease containment with NPIs and vaccination – start-page: 384 year: 2018 ident: 10.1016/j.tcs.2024.114409_br0040 article-title: Approximation guarantees for adaptive sampling – volume: 37 start-page: 52 issue: 6 year: 2017 ident: 10.1016/j.tcs.2024.114409_br0090 article-title: Submodularity in input node selection for networked linear systems: efficient algorithms for performance and controllability publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2017.2743518 – start-page: 137 year: 2003 ident: 10.1016/j.tcs.2024.114409_br0010 article-title: Maximizing the spread of influence through a social network – start-page: 2786 year: 2018 ident: 10.1016/j.tcs.2024.114409_br0180 article-title: Fast maximization of non-submodular, monotonic functions on the integer lattice – year: 2005 ident: 10.1016/j.tcs.2024.114409_br0350 article-title: A note on the budgeted maximization of submodular functions publication-title: Citeseer – volume: 26 year: 2013 ident: 10.1016/j.tcs.2024.114409_br0140 article-title: Curvature and optimal algorithms for learning and minimizing submodular functions publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 start-page: 1197 issue: 4 year: 2017 ident: 10.1016/j.tcs.2024.114409_br0070 article-title: Optimal approximation for submodular and supermodular optimization with bounded curvature publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0842 – start-page: 2634 year: 2019 ident: 10.1016/j.tcs.2024.114409_br0290 article-title: Submodular maximization beyond non-negativity: guarantees, fast algorithms, and applications – start-page: 1 year: 2020 ident: 10.1016/j.tcs.2024.114409_br0400 article-title: Maximizing a monotone non-submodular function under a knapsack constraint publication-title: J. Comb. Optim. doi: 10.1007/s10878-019-00449-3 – start-page: 2796 year: 2019 ident: 10.1016/j.tcs.2024.114409_br0130 article-title: Performance guarantees for greedy maximization of non-submodular controllability metrics – ident: 10.1016/j.tcs.2024.114409_br0160 – volume: 94 start-page: 1592 year: 2021 ident: 10.1016/j.tcs.2024.114409_br0370 article-title: Modeling and forecasting the total number of cases and deaths due to pandemic publication-title: J. Med. Virol. doi: 10.1002/jmv.27506 – ident: 10.1016/j.tcs.2024.114409_br0240 – year: 2020 ident: 10.1016/j.tcs.2024.114409_br0280 article-title: Weakly submodular function maximization using local submodularity ratio publication-title: Comput. Sci. – volume: 70 start-page: 39 year: 1999 ident: 10.1016/j.tcs.2024.114409_br0360 article-title: The budgeted maximum coverage problem publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(99)00031-9 – volume: 123 start-page: 143 year: 2022 ident: 10.1016/j.tcs.2024.114409_br0390 article-title: Improved prophet inequalities for combinatorial welfare maximization with (approximately) subadditive agents publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2021.08.003 – volume: 172 start-page: 539 year: 2018 ident: 10.1016/j.tcs.2024.114409_br0080 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math. Program. doi: 10.1007/s10107-018-1324-y – volume: 40 start-page: 1133 issue: 4 year: 2011 ident: 10.1016/j.tcs.2024.114409_br0220 article-title: Maximizing non-monotone submodular functions publication-title: SIAM J. Comput. doi: 10.1137/090779346 – volume: 39 start-page: 1208 year: 2020 ident: 10.1016/j.tcs.2024.114409_br0270 article-title: A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice publication-title: J. Comb. Optim. doi: 10.1007/s10878-020-00558-4 – volume: vol. 32 year: 2018 ident: 10.1016/j.tcs.2024.114409_br0050 article-title: Submodular function maximization over graphs via zero-suppressed binary decision diagrams – volume: 26 year: 2013 ident: 10.1016/j.tcs.2024.114409_br0150 article-title: Submodular optimization with submodular cover and submodular knapsack constraints publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0000576 |
Score | 2.4132266 |
Snippet | The maximization of non-negative monotone submodular functions under a certain constraint is intensively studied. However, there are few works considering the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114409 |
SubjectTerms | Greedy algorithm Knapsack constraint Non-monotone Non-submodular |
Title | Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint |
URI | https://dx.doi.org/10.1016/j.tcs.2024.114409 |
Volume | 990 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvTgoyrWR8nBk7C2u5vs41iKpT5aRC30tuS1WvukXUE8-Nud2UdVUA-eliwJhMkkM8N88w0hp572Y6UC2xINxS0mpWOFHlOWJ5VxmTbKSzOm3Z7X6bOrAR-USKuohUFYZf72Z296-lrnf-q5NOvz4bB-j0k9sKYcUZDI1IUV7MxHWN_5-yfMA_yRLF-JGQCYXWQ2U4xXopCx22HImMsQk_iTbfpib9rbZDN3FGkz28sOKZlphWwVTRhoficrZKO7Il5d7hLTRI7w12FWkEjF-HEG0f_ThM5iOhHwf_gGtopCzG-B_s2QiTsdLMEszjRCUilaulQZKdaXLehoKuZLoUZUoSuJHSWSPdJvXzy0OlbeScFSTugnlgNhnrKNDgTjPmOhthuy4ZqYa8FjLcBL4CGLufIhSJVubIvAVdzTgQ33GQ7Nd_dJGTZjDghF_82WdhgYIVmsHKm0Ri8PO3YEbsyqpFHIMFI5zTjubRwVeLLnCMQeodijTOxVcrZaMs84Nv6azIqDib4pSgQ24Pdlh_9bdkTWcZRBdY5JOVm8mBPwQhJZS9WsRtaarbubW_xeXnd6H78J34E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADjwHiTQ6ckKqtbdLHcUJMHbBd2KTdqrwKZYNOW5EQv564Dx4ScODYNJYix7Ed-ctngHNP-YmUgW3xtmQWFcKxQo9KyxNSu1Rp6RUV0_7Ai0b0eszGS3BZv4VBWGXl-0ufXnjraqRVabM1S9PWHRb1TDRliIJEpq5lWEF2KtqAlU7vJhp8OmTmlyVLLAIYgbq4WcC8comk3Q5F0lyKsMSfwtOXkNPdgo0qVySdcjnbsKSfm7BZ92Eg1bFswnr_g3t1sQO6gzThr2n5JpHw6X02T_OHJ5Il5Imb8fTNhCtirv2WMcEMybiLj4WJjJlCVCrBYFfYI8EnZnMyeeazBZcTIjGbxKYS-S6MulfDy8iqmilY0gn93HLMTU_aWgWcMp_SUNlt0XZ1whRnieImUWAhTZj0zT1VuInNA1cyTwW2OdJm33x3DxpmMXofCKZwtrDDQHNBE-kIqRQmeti0I3ATegDtWoexrJjGcW3TuIaUPcZG7TGqPS7VfgAXHyKzkmbjr8m03pj4m63EJgz8Lnb4P7EzWI2G_dv4tje4OYI1_FMid46hkc9f9IlJSnJxWhndO2zJ4J0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithm+of+maximizing+non-monotone+non-submodular+functions+under+knapsack+constraint&rft.jtitle=Theoretical+computer+science&rft.au=Shi%2C+Yishuo&rft.au=Lai%2C+Xiaoyan&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=990&rft_id=info:doi/10.1016%2Fj.tcs.2024.114409&rft.externalDocID=S0304397524000240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |