Orthogonal variant moments features in image analysis

Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind o...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 180; no. 6; pp. 846 - 860
Main Authors Martín H., José Antonio, Santos, Matilde, de Lope, Javier
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.03.2010
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2009.08.032

Cover

Loading…
Abstract Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind of these statistical measures designed to remain constant after some transformations, such as object rotation, scaling, translation, or image illumination changes, in order to, e.g., improve the reliability of a pattern recognition system. The classical moment invariants methodology is based on the determination of a set of transformations (or perturbations) for which the system must remain unaltered. Although very well established, the classical moment invariants theory has been mainly used for processing single static images (i.e. snapshots) and the use of image moments to analyze images sequences or video, from a dynamic point of view, has not been sufficiently explored and is a subject of much interest nowadays. In this paper, we propose the use of variant moments as an alternative to the classical approach. This approach presents clear differences compared to the classical moment invariants approach, that in specific domains have important advantages. The difference between the classical invariant and the proposed variant approach is mainly (but not solely) conceptual: invariants are sensitive to any image change or perturbation for which they are not invariant, so any unexpected perturbation will affect the measurements (i.e. is subject to uncertainty); on the contrary, a variant moment is designed to be sensitive to a specific perturbation, i.e., to measure a transformation, not to be invariant to it, and thus if the specific perturbation occurs it will be measured; hence any unexpected disturbance will not affect the objective of the measurement confronting thus uncertainty. Furthermore, given the fact that the proposed variant moments are orthogonal (i.e. uncorrelated) it is possible to considerably reduce the total inherent uncertainty. The presented approach has been applied to interesting open problems in computer vision such as shape analysis, image segmentation, tracking object deformations and object motion tracking, obtaining encouraging results and proving the effectiveness of the proposed approach.
AbstractList Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind of these statistical measures designed to remain constant after some transformations, such as object rotation, scaling, translation, or image illumination changes, in order to, e.g., improve the reliability of a pattern recognition system. The classical moment invariants methodology is based on the determination of a set of transformations (or perturbations) for which the system must remain unaltered. Although very well established, the classical moment invariants theory has been mainly used for processing single static images (i.e. snapshots) and the use of image moments to analyze images sequences or video, from a dynamic point of view, has not been sufficiently explored and is a subject of much interest nowadays. In this paper, we propose the use of variant moments as an alternative to the classical approach. This approach presents clear differences compared to the classical moment invariants approach, that in specific domains have important advantages. The difference between the classical invariant and the proposed variant approach is mainly (but not solely) conceptual: invariants are sensitive to any image change or perturbation for which they are not invariant, so any unexpected perturbation will affect the measurements (i.e. is subject to uncertainty); on the contrary, a variant moment is designed to be sensitive to a specific perturbation, i.e., to measure a transformation, not to be invariant to it, and thus if the specific perturbation occurs it will be measured; hence any unexpected disturbance will not affect the objective of the measurement confronting thus uncertainty. Furthermore, given the fact that the proposed variant moments are orthogonal (i.e. uncorrelated) it is possible to considerably reduce the total inherent uncertainty. The presented approach has been applied to interesting open problems in computer vision such as shape analysis, image segmentation, tracking object deformations and object motion tracking, obtaining encouraging results and proving the effectiveness of the proposed approach.
Author de Lope, Javier
Santos, Matilde
Martín H., José Antonio
Author_xml – sequence: 1
  givenname: José Antonio
  surname: Martín H.
  fullname: Martín H., José Antonio
  email: jamartinh@fdi.ucm.es
  organization: Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Spain
– sequence: 2
  givenname: Matilde
  surname: Santos
  fullname: Santos, Matilde
  email: msantos@dacya.ucm.es
  organization: Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain
– sequence: 3
  givenname: Javier
  surname: de Lope
  fullname: de Lope, Javier
  email: javier.delope@upm.es
  organization: Sistemas Inteligentes Aplicados, Universidad Politécnica de Madrid, Spain
BookMark eNp9z81KAzEUhuEgFWyrF-BubmDGk2QmP7iS4h8UutF1CJkzNUObSBILvXun1JWLrs7mvB88CzILMSAh9xQaClQ8jI0PuWEAugHVAGdXZE6VZLVgms7IHIBBDazrbsgi5xEAWinEnHSbVL7iNga7qw42eRtKtY97DCVXA9rykzBXPlR-b7dY2entmH2-JdeD3WW8-7tL8vny_LF6q9eb1_fV07p2TMtS00H1IDqtkfcSKQjnOq4Fd7Qf0Gk5WMaZVUPLhHQKsW9bzVXLhUVtbdvzJZHnXZdizgkH43yxxcdQkvU7Q8Gc9GY0k96c9AaUmfRTSf-V32kypOPF5vHc4EQ6eEwmO4_BYe8TumL66C_Uv69QdUE
CitedBy_id crossref_primary_10_1016_j_ins_2010_12_024
crossref_primary_10_1016_j_ins_2011_04_029
crossref_primary_10_3390_app8091600
crossref_primary_10_1007_s13042_017_0687_3
crossref_primary_10_1007_s11042_017_4424_4
crossref_primary_10_1016_j_cageo_2020_104617
crossref_primary_10_1016_j_ins_2011_03_021
crossref_primary_10_1016_j_ins_2014_07_046
crossref_primary_10_31648_ts_10106
crossref_primary_10_3390_s110606015
crossref_primary_10_1364_AO_56_002863
crossref_primary_10_1007_s00138_015_0730_x
crossref_primary_10_1007_s00521_013_1372_4
crossref_primary_10_1364_OME_9_003567
crossref_primary_10_1142_S0129065712500190
crossref_primary_10_1016_j_amc_2012_07_055
crossref_primary_10_1179_1743131X12Y_0000000024
crossref_primary_10_1002_cpe_1793
crossref_primary_10_1016_j_ins_2014_03_037
crossref_primary_10_1016_j_ins_2010_02_006
crossref_primary_10_1007_s13042_012_0072_1
crossref_primary_10_1155_2014_875879
crossref_primary_10_3390_s110808164
crossref_primary_10_1007_s11554_018_0846_0
crossref_primary_10_1016_j_ins_2016_12_011
crossref_primary_10_1016_j_patrec_2015_08_015
crossref_primary_10_1016_j_ins_2010_04_030
Cites_doi 10.1109/TIT.1962.1057692
10.1109/34.3913
10.1145/1177352.1177355
10.1109/WIAMIS.2007.44
10.1016/j.imavis.2005.12.001
10.1016/S0262-8856(00)00038-X
10.1016/j.ins.2007.01.010
10.1016/j.ins.2005.01.017
10.1016/j.ins.2003.08.006
10.2307/2387224
10.1016/0167-8655(94)90069-8
10.1016/j.ins.2009.06.033
10.1109/34.485554
10.1016/j.ins.2005.10.005
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright_xml – notice: 2009 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2009.08.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 860
ExternalDocumentID 10_1016_j_ins_2009_08_032
S0020025509003831
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-1f8d06599e3d7e106cc53963c1dfec97fa232a8f4267c8eed44938436ae9aa4d3
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Tue Jul 01 04:16:16 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Feb 23 02:32:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computer vision
Moment invariants
Image moments
Object tracking
Modeling uncertainty
Orthogonal moments
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-1f8d06599e3d7e106cc53963c1dfec97fa232a8f4267c8eed44938436ae9aa4d3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2009_08_032
crossref_primary_10_1016_j_ins_2009_08_032
elsevier_sciencedirect_doi_10_1016_j_ins_2009_08_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-15
PublicationDateYYYYMMDD 2010-03-15
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shutler (bib15) 2002
J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
Zhang, Zhang, Wen (bib24) 2000; 18
Sookhanaphibarn, Lursinsap (bib17) 2006; 176
Zadeh (bib23) 2005; 172
Liao, Pawlak (bib6) 1996; 18
J.A. Martin H, M. Santos, Orthogonal variant moments in computer vision, in: International e-Conference of Computer Science, Lecture Series on Computer and Computational Science, vol. 8, VSP Brill, 2006, pp. 163–166.
J. Flusser, Moment invariants in image analysis, in: Proceedings of the World Academy of Science, Engineering and Technology, vol. 11, 2006, pp. 196–201.
Papakostas, Koulouriotis, Karakasis (bib12) 2009; 176
Hu (bib4) 1962; 8
G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis. Exact and speedy computation of legendre moments on binary images, in: WIAMIS ’07: Proceedings of the Eight International Workshop on Image Analysis for Multimedia Interactive Services, Washington, DC, USA, 2007, IEEE Computer Society, p. 48.
Papakostas, Boutalis, Karras, Mertzios (bib10) 2007; 177
Hartigan (bib2) 1975
G. Sansone, Orthogonal Functions, Dover Phoenix Editions, 2004.
Tuceryan (bib19) 1994; 15
Shutler, Nixon (bib16) 2006; 24
Yilmaz, Javed, Shah (bib22) 2006; 38
Prokop, Reeves (bib13) 1992; 54
(bib5) 1998
Teh, Chin (bib18) 1988; 10
M.-K. Hu, Pattern recognition by moment invariants, in: Proceedings of IRE (Correspondence) Trans. Inform. Theory, vol. 49, September 1961, pp. 14–28.
Martín H., Santos (bib8) 2008
Wee, Paramesran, Takeda (bib21) 2004; 159
Walsh (bib20) 1923; 45
Teh (10.1016/j.ins.2009.08.032_bib18) 1988; 10
Sookhanaphibarn (10.1016/j.ins.2009.08.032_bib17) 2006; 176
10.1016/j.ins.2009.08.032_bib7
Shutler (10.1016/j.ins.2009.08.032_bib16) 2006; 24
10.1016/j.ins.2009.08.032_bib9
Zadeh (10.1016/j.ins.2009.08.032_bib23) 2005; 172
Shutler (10.1016/j.ins.2009.08.032_bib15) 2002
Yilmaz (10.1016/j.ins.2009.08.032_bib22) 2006; 38
10.1016/j.ins.2009.08.032_bib11
10.1016/j.ins.2009.08.032_bib14
Zhang (10.1016/j.ins.2009.08.032_bib24) 2000; 18
10.1016/j.ins.2009.08.032_bib1
Papakostas (10.1016/j.ins.2009.08.032_bib10) 2007; 177
10.1016/j.ins.2009.08.032_bib3
(10.1016/j.ins.2009.08.032_bib5) 1998
Liao (10.1016/j.ins.2009.08.032_bib6) 1996; 18
Martín H. (10.1016/j.ins.2009.08.032_bib8) 2008
Walsh (10.1016/j.ins.2009.08.032_bib20) 1923; 45
Prokop (10.1016/j.ins.2009.08.032_bib13) 1992; 54
Papakostas (10.1016/j.ins.2009.08.032_bib12) 2009; 176
Tuceryan (10.1016/j.ins.2009.08.032_bib19) 1994; 15
Hartigan (10.1016/j.ins.2009.08.032_bib2) 1975
Wee (10.1016/j.ins.2009.08.032_bib21) 2004; 159
Hu (10.1016/j.ins.2009.08.032_bib4) 1962; 8
References_xml – volume: 18
  start-page: 959
  year: 2000
  end-page: 965
  ident: bib24
  article-title: A new focus measure method using moments
  publication-title: Image Vision Comput.
– reference: J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
– year: 1998
  ident: bib5
  publication-title: Orthogonal Functions, Moment Theory, and Continued Fractions: Theory and Applications
– reference: G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis. Exact and speedy computation of legendre moments on binary images, in: WIAMIS ’07: Proceedings of the Eight International Workshop on Image Analysis for Multimedia Interactive Services, Washington, DC, USA, 2007, IEEE Computer Society, p. 48.
– volume: 45
  start-page: 5
  year: 1923
  end-page: 24
  ident: bib20
  article-title: A closed set of normal orthogonal functions
  publication-title: Am. J. Math.
– year: 2002
  ident: bib15
  article-title: Statistical Moments
– volume: 176
  start-page: 2097
  year: 2006
  end-page: 2119
  ident: bib17
  article-title: A new feature extractor invariant to intensity, rotation, and scaling of color images
  publication-title: Inform. Sci.
– volume: 18
  start-page: 254
  year: 1996
  end-page: 266
  ident: bib6
  article-title: On image analysis by moments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 172
  start-page: 1
  year: 2005
  end-page: 40
  ident: bib23
  article-title: Toward a generalized theory of uncertainty (gtu): an outline
  publication-title: Inform. Sci.
– volume: 24
  start-page: 343
  year: 2006
  end-page: 356
  ident: bib16
  article-title: Zernike velocity moments for sequence-based description of moving features
  publication-title: Image Vision Comput.
– volume: 8
  start-page: 179
  year: 1962
  end-page: 187
  ident: bib4
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans. Inform. Theory
– volume: 15
  start-page: 659
  year: 1994
  end-page: 668
  ident: bib19
  article-title: Moment-based texture segmentation
  publication-title: Pattern Recogn. Lett.
– reference: G. Sansone, Orthogonal Functions, Dover Phoenix Editions, 2004.
– reference: M.-K. Hu, Pattern recognition by moment invariants, in: Proceedings of IRE (Correspondence) Trans. Inform. Theory, vol. 49, September 1961, pp. 14–28.
– volume: 54
  start-page: 438
  year: 1992
  end-page: 460
  ident: bib13
  article-title: A survey of moment-based techniques for unoccluded object representation and recognition
  publication-title: CVGIP: Graph. Models Image Process.
– volume: 176
  start-page: 3619
  year: 2009
  end-page: 3633
  ident: bib12
  article-title: A unified methodology for the efficient computation of discrete orthogonal image moments
  publication-title: Inform. Sci.
– year: 1975
  ident: bib2
  article-title: Clustering Algorithms
– volume: 177
  start-page: 2802
  year: 2007
  end-page: 2819
  ident: bib10
  article-title: A new class of zernike moments for computer vision applications
  publication-title: Inform. Sci.
– volume: 38
  year: 2006
  ident: bib22
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
– volume: 159
  start-page: 203
  year: 2004
  end-page: 220
  ident: bib21
  article-title: New computational methods for full and subset zernike moments
  publication-title: Inform. Sci.
– start-page: 441
  year: 2008
  end-page: 446
  ident: bib8
  article-title: Application of orthogonal variant moments to computer vision
  publication-title: Computational Intelligence in Decision and Control
– volume: 10
  start-page: 496
  year: 1988
  end-page: 513
  ident: bib18
  article-title: On image analysis by the methods of moments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Flusser, Moment invariants in image analysis, in: Proceedings of the World Academy of Science, Engineering and Technology, vol. 11, 2006, pp. 196–201.
– reference: J.A. Martin H, M. Santos, Orthogonal variant moments in computer vision, in: International e-Conference of Computer Science, Lecture Series on Computer and Computational Science, vol. 8, VSP Brill, 2006, pp. 163–166.
– ident: 10.1016/j.ins.2009.08.032_bib9
– ident: 10.1016/j.ins.2009.08.032_bib7
– volume: 8
  start-page: 179
  year: 1962
  ident: 10.1016/j.ins.2009.08.032_bib4
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans. Inform. Theory
  doi: 10.1109/TIT.1962.1057692
– volume: 10
  start-page: 496
  issue: 4
  year: 1988
  ident: 10.1016/j.ins.2009.08.032_bib18
  article-title: On image analysis by the methods of moments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.3913
– volume: 38
  issue: 4
  year: 2006
  ident: 10.1016/j.ins.2009.08.032_bib22
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1177352.1177355
– ident: 10.1016/j.ins.2009.08.032_bib11
  doi: 10.1109/WIAMIS.2007.44
– volume: 24
  start-page: 343
  issue: 4
  year: 2006
  ident: 10.1016/j.ins.2009.08.032_bib16
  article-title: Zernike velocity moments for sequence-based description of moving features
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2005.12.001
– volume: 18
  start-page: 959
  issue: 12
  year: 2000
  ident: 10.1016/j.ins.2009.08.032_bib24
  article-title: A new focus measure method using moments
  publication-title: Image Vision Comput.
  doi: 10.1016/S0262-8856(00)00038-X
– volume: 177
  start-page: 2802
  issue: 13
  year: 2007
  ident: 10.1016/j.ins.2009.08.032_bib10
  article-title: A new class of zernike moments for computer vision applications
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2007.01.010
– volume: 172
  start-page: 1
  issue: 1–2
  year: 2005
  ident: 10.1016/j.ins.2009.08.032_bib23
  article-title: Toward a generalized theory of uncertainty (gtu): an outline
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2005.01.017
– start-page: 441
  year: 2008
  ident: 10.1016/j.ins.2009.08.032_bib8
  article-title: Application of orthogonal variant moments to computer vision
– year: 1998
  ident: 10.1016/j.ins.2009.08.032_bib5
– ident: 10.1016/j.ins.2009.08.032_bib14
– volume: 159
  start-page: 203
  issue: 3–4
  year: 2004
  ident: 10.1016/j.ins.2009.08.032_bib21
  article-title: New computational methods for full and subset zernike moments
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2003.08.006
– year: 1975
  ident: 10.1016/j.ins.2009.08.032_bib2
– volume: 45
  start-page: 5
  year: 1923
  ident: 10.1016/j.ins.2009.08.032_bib20
  article-title: A closed set of normal orthogonal functions
  publication-title: Am. J. Math.
  doi: 10.2307/2387224
– volume: 54
  start-page: 438
  issue: 5
  year: 1992
  ident: 10.1016/j.ins.2009.08.032_bib13
  article-title: A survey of moment-based techniques for unoccluded object representation and recognition
  publication-title: CVGIP: Graph. Models Image Process.
– year: 2002
  ident: 10.1016/j.ins.2009.08.032_bib15
– ident: 10.1016/j.ins.2009.08.032_bib1
– volume: 15
  start-page: 659
  issue: 7
  year: 1994
  ident: 10.1016/j.ins.2009.08.032_bib19
  article-title: Moment-based texture segmentation
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(94)90069-8
– ident: 10.1016/j.ins.2009.08.032_bib3
– volume: 176
  start-page: 3619
  issue: 20
  year: 2009
  ident: 10.1016/j.ins.2009.08.032_bib12
  article-title: A unified methodology for the efficient computation of discrete orthogonal image moments
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.06.033
– volume: 18
  start-page: 254
  issue: 3
  year: 1996
  ident: 10.1016/j.ins.2009.08.032_bib6
  article-title: On image analysis by moments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.485554
– volume: 176
  start-page: 2097
  issue: 14
  year: 2006
  ident: 10.1016/j.ins.2009.08.032_bib17
  article-title: A new feature extractor invariant to intensity, rotation, and scaling of color images
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2005.10.005
SSID ssj0004766
Score 2.125589
Snippet Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 846
SubjectTerms Computer vision
Image moments
Modeling uncertainty
Moment invariants
Object tracking
Orthogonal moments
Title Orthogonal variant moments features in image analysis
URI https://dx.doi.org/10.1016/j.ins.2009.08.032
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gXPRgFDWiQvZgPJgUtu2W7h4JkaBGvEjCrVm2W62RQgA9-tudbbeKiXrw2nSS5nU6H915bwDOE-W6oVahQ2kiHBYH0hHMKGG6VDGqpGD5z5y7UXc4ZjeTYFKBfsmFMWOVNvYXMT2P1vZKx6LZWaSp4fh6eUVMzc84brjUNc8XXXTtWu_6djj6okeGxZGl6ZSMQXm4mY95pdnKqlbyNvW9n9PTRsoZ7MGurRVJr3icfajorA47GwqCdWha3gG5IJZYZIAm9os9gOB-uX6aP5pym7xhW4w4ktk8p7WRROeiniuSZiSdYVwh0iqUHMJ4cPXQHzp2U4KjPBGuHTfhsTkgFdqPQ41dnlIBQuErN060EmEisXCSPMF0HCqOaZHhK-DM70otpGSxfwTVbJ7pYyAy0NhDcaqUFzM0nioWxFPKMRJwJrhoAC0BipSVETfbLF6icl7sOUJMzXpLEZkNl77XgMtPk0WhofHXzaxEPfrmCBHG-N_NTv5ndgrbxTgAemdwBtX18lU3scpYT1uw1X53W9aXPgDHKdA0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VMAADggKiQMEDYkAKOInT2COqqAq0ZWkltsh1HAiiadUGRn4758SBIgEDa-STrMs9fXffAZwmynVDrUKH0kQ4LA6kI5hBwnSpYlRJwYrHnP6g1R2x24fgoQbtahbGtFVa21_a9MJa2y-XlpuXszQ1M75eERFT8xjHzSz1KkP1Ndp58f7V58HCsmBp8iRzvCptFk1eabawmJX8gvrez85pyeF0tmDTRorkqrzMNtR0VoeNJfzAOjTt1AE5I3asyLCZWH3dgeB-nj9NH02wTd4wKUYuksm0GGojiS4gPRckzUg6QatCpMUn2YVR53rY7jp2T4KjPBHmjpvw2JRHhfbjUGOOp1Tgo2IpN060EmEiMWySPEFnHCqOTpHhD-DMb0ktpGSxvwcr2TTT-0BkoDGD4lQpL2ZIPFYsiMeUox3gTHDRAFoxKFIWRNzssniJqm6x5wh5apZbisjst_S9Bpx_ksxKBI2_DrOK69E3MYjQwv9OdvA_shNY6w77vah3M7g7hPWyMQDlNDiClXz-qpsYb-Tj40KePgBz6ND4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+variant+moments+features+in+image+analysis&rft.jtitle=Information+sciences&rft.au=Mart%C3%ADn+H.%2C+Jos%C3%A9+Antonio&rft.au=Santos%2C+Matilde&rft.au=de+Lope%2C+Javier&rft.date=2010-03-15&rft.issn=0020-0255&rft.volume=180&rft.issue=6&rft.spage=846&rft.epage=860&rft_id=info:doi/10.1016%2Fj.ins.2009.08.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2009_08_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon