Orthogonal variant moments features in image analysis
Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind o...
Saved in:
Published in | Information sciences Vol. 180; no. 6; pp. 846 - 860 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.03.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2009.08.032 |
Cover
Loading…
Abstract | Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind of these statistical measures designed to remain constant after some transformations, such as object rotation, scaling, translation, or image illumination changes, in order to, e.g., improve the reliability of a pattern recognition system. The classical moment invariants methodology is based on the determination of a set of transformations (or perturbations) for which the system must remain unaltered. Although very well established, the classical moment invariants theory has been mainly used for processing single static images (i.e. snapshots) and the use of image moments to analyze images sequences or video, from a dynamic point of view, has not been sufficiently explored and is a subject of much interest nowadays. In this paper, we propose the use of variant moments as an alternative to the classical approach. This approach presents clear differences compared to the classical moment invariants approach, that in specific domains have important advantages. The difference between the classical invariant and the proposed variant approach is mainly (but not solely) conceptual: invariants are sensitive to any image change or perturbation for which they are not invariant, so any unexpected perturbation will affect the measurements (i.e. is subject to uncertainty); on the contrary, a variant moment is designed to be sensitive to a specific perturbation, i.e., to measure a transformation, not to be invariant to it, and thus if the specific perturbation occurs it will be measured; hence any unexpected disturbance will not affect the objective of the measurement confronting thus uncertainty. Furthermore, given the fact that the proposed variant moments are orthogonal (i.e. uncorrelated) it is possible to considerably reduce the total inherent uncertainty. The presented approach has been applied to interesting open problems in computer vision such as shape analysis, image segmentation, tracking object deformations and object motion tracking, obtaining encouraging results and proving the effectiveness of the proposed approach. |
---|---|
AbstractList | Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe the shape of an object to be recognized by a pattern recognition system. Invariant moments (e.g., the Hu invariant set) are a special kind of these statistical measures designed to remain constant after some transformations, such as object rotation, scaling, translation, or image illumination changes, in order to, e.g., improve the reliability of a pattern recognition system. The classical moment invariants methodology is based on the determination of a set of transformations (or perturbations) for which the system must remain unaltered. Although very well established, the classical moment invariants theory has been mainly used for processing single static images (i.e. snapshots) and the use of image moments to analyze images sequences or video, from a dynamic point of view, has not been sufficiently explored and is a subject of much interest nowadays. In this paper, we propose the use of variant moments as an alternative to the classical approach. This approach presents clear differences compared to the classical moment invariants approach, that in specific domains have important advantages. The difference between the classical invariant and the proposed variant approach is mainly (but not solely) conceptual: invariants are sensitive to any image change or perturbation for which they are not invariant, so any unexpected perturbation will affect the measurements (i.e. is subject to uncertainty); on the contrary, a variant moment is designed to be sensitive to a specific perturbation, i.e., to measure a transformation, not to be invariant to it, and thus if the specific perturbation occurs it will be measured; hence any unexpected disturbance will not affect the objective of the measurement confronting thus uncertainty. Furthermore, given the fact that the proposed variant moments are orthogonal (i.e. uncorrelated) it is possible to considerably reduce the total inherent uncertainty. The presented approach has been applied to interesting open problems in computer vision such as shape analysis, image segmentation, tracking object deformations and object motion tracking, obtaining encouraging results and proving the effectiveness of the proposed approach. |
Author | de Lope, Javier Santos, Matilde Martín H., José Antonio |
Author_xml | – sequence: 1 givenname: José Antonio surname: Martín H. fullname: Martín H., José Antonio email: jamartinh@fdi.ucm.es organization: Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Spain – sequence: 2 givenname: Matilde surname: Santos fullname: Santos, Matilde email: msantos@dacya.ucm.es organization: Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain – sequence: 3 givenname: Javier surname: de Lope fullname: de Lope, Javier email: javier.delope@upm.es organization: Sistemas Inteligentes Aplicados, Universidad Politécnica de Madrid, Spain |
BookMark | eNp9z81KAzEUhuEgFWyrF-BubmDGk2QmP7iS4h8UutF1CJkzNUObSBILvXun1JWLrs7mvB88CzILMSAh9xQaClQ8jI0PuWEAugHVAGdXZE6VZLVgms7IHIBBDazrbsgi5xEAWinEnHSbVL7iNga7qw42eRtKtY97DCVXA9rykzBXPlR-b7dY2entmH2-JdeD3WW8-7tL8vny_LF6q9eb1_fV07p2TMtS00H1IDqtkfcSKQjnOq4Fd7Qf0Gk5WMaZVUPLhHQKsW9bzVXLhUVtbdvzJZHnXZdizgkH43yxxcdQkvU7Q8Gc9GY0k96c9AaUmfRTSf-V32kypOPF5vHc4EQ6eEwmO4_BYe8TumL66C_Uv69QdUE |
CitedBy_id | crossref_primary_10_1016_j_ins_2010_12_024 crossref_primary_10_1016_j_ins_2011_04_029 crossref_primary_10_3390_app8091600 crossref_primary_10_1007_s13042_017_0687_3 crossref_primary_10_1007_s11042_017_4424_4 crossref_primary_10_1016_j_cageo_2020_104617 crossref_primary_10_1016_j_ins_2011_03_021 crossref_primary_10_1016_j_ins_2014_07_046 crossref_primary_10_31648_ts_10106 crossref_primary_10_3390_s110606015 crossref_primary_10_1364_AO_56_002863 crossref_primary_10_1007_s00138_015_0730_x crossref_primary_10_1007_s00521_013_1372_4 crossref_primary_10_1364_OME_9_003567 crossref_primary_10_1142_S0129065712500190 crossref_primary_10_1016_j_amc_2012_07_055 crossref_primary_10_1179_1743131X12Y_0000000024 crossref_primary_10_1002_cpe_1793 crossref_primary_10_1016_j_ins_2014_03_037 crossref_primary_10_1016_j_ins_2010_02_006 crossref_primary_10_1007_s13042_012_0072_1 crossref_primary_10_1155_2014_875879 crossref_primary_10_3390_s110808164 crossref_primary_10_1007_s11554_018_0846_0 crossref_primary_10_1016_j_ins_2016_12_011 crossref_primary_10_1016_j_patrec_2015_08_015 crossref_primary_10_1016_j_ins_2010_04_030 |
Cites_doi | 10.1109/TIT.1962.1057692 10.1109/34.3913 10.1145/1177352.1177355 10.1109/WIAMIS.2007.44 10.1016/j.imavis.2005.12.001 10.1016/S0262-8856(00)00038-X 10.1016/j.ins.2007.01.010 10.1016/j.ins.2005.01.017 10.1016/j.ins.2003.08.006 10.2307/2387224 10.1016/0167-8655(94)90069-8 10.1016/j.ins.2009.06.033 10.1109/34.485554 10.1016/j.ins.2005.10.005 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. |
Copyright_xml | – notice: 2009 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2009.08.032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 860 |
ExternalDocumentID | 10_1016_j_ins_2009_08_032 S0020025509003831 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-1f8d06599e3d7e106cc53963c1dfec97fa232a8f4267c8eed44938436ae9aa4d3 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Tue Jul 01 04:16:16 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Feb 23 02:32:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Computer vision Moment invariants Image moments Object tracking Modeling uncertainty Orthogonal moments |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-1f8d06599e3d7e106cc53963c1dfec97fa232a8f4267c8eed44938436ae9aa4d3 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2009_08_032 crossref_primary_10_1016_j_ins_2009_08_032 elsevier_sciencedirect_doi_10_1016_j_ins_2009_08_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-15 |
PublicationDateYYYYMMDD | 2010-03-15 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shutler (bib15) 2002 J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. Zhang, Zhang, Wen (bib24) 2000; 18 Sookhanaphibarn, Lursinsap (bib17) 2006; 176 Zadeh (bib23) 2005; 172 Liao, Pawlak (bib6) 1996; 18 J.A. Martin H, M. Santos, Orthogonal variant moments in computer vision, in: International e-Conference of Computer Science, Lecture Series on Computer and Computational Science, vol. 8, VSP Brill, 2006, pp. 163–166. J. Flusser, Moment invariants in image analysis, in: Proceedings of the World Academy of Science, Engineering and Technology, vol. 11, 2006, pp. 196–201. Papakostas, Koulouriotis, Karakasis (bib12) 2009; 176 Hu (bib4) 1962; 8 G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis. Exact and speedy computation of legendre moments on binary images, in: WIAMIS ’07: Proceedings of the Eight International Workshop on Image Analysis for Multimedia Interactive Services, Washington, DC, USA, 2007, IEEE Computer Society, p. 48. Papakostas, Boutalis, Karras, Mertzios (bib10) 2007; 177 Hartigan (bib2) 1975 G. Sansone, Orthogonal Functions, Dover Phoenix Editions, 2004. Tuceryan (bib19) 1994; 15 Shutler, Nixon (bib16) 2006; 24 Yilmaz, Javed, Shah (bib22) 2006; 38 Prokop, Reeves (bib13) 1992; 54 (bib5) 1998 Teh, Chin (bib18) 1988; 10 M.-K. Hu, Pattern recognition by moment invariants, in: Proceedings of IRE (Correspondence) Trans. Inform. Theory, vol. 49, September 1961, pp. 14–28. Martín H., Santos (bib8) 2008 Wee, Paramesran, Takeda (bib21) 2004; 159 Walsh (bib20) 1923; 45 Teh (10.1016/j.ins.2009.08.032_bib18) 1988; 10 Sookhanaphibarn (10.1016/j.ins.2009.08.032_bib17) 2006; 176 10.1016/j.ins.2009.08.032_bib7 Shutler (10.1016/j.ins.2009.08.032_bib16) 2006; 24 10.1016/j.ins.2009.08.032_bib9 Zadeh (10.1016/j.ins.2009.08.032_bib23) 2005; 172 Shutler (10.1016/j.ins.2009.08.032_bib15) 2002 Yilmaz (10.1016/j.ins.2009.08.032_bib22) 2006; 38 10.1016/j.ins.2009.08.032_bib11 10.1016/j.ins.2009.08.032_bib14 Zhang (10.1016/j.ins.2009.08.032_bib24) 2000; 18 10.1016/j.ins.2009.08.032_bib1 Papakostas (10.1016/j.ins.2009.08.032_bib10) 2007; 177 10.1016/j.ins.2009.08.032_bib3 (10.1016/j.ins.2009.08.032_bib5) 1998 Liao (10.1016/j.ins.2009.08.032_bib6) 1996; 18 Martín H. (10.1016/j.ins.2009.08.032_bib8) 2008 Walsh (10.1016/j.ins.2009.08.032_bib20) 1923; 45 Prokop (10.1016/j.ins.2009.08.032_bib13) 1992; 54 Papakostas (10.1016/j.ins.2009.08.032_bib12) 2009; 176 Tuceryan (10.1016/j.ins.2009.08.032_bib19) 1994; 15 Hartigan (10.1016/j.ins.2009.08.032_bib2) 1975 Wee (10.1016/j.ins.2009.08.032_bib21) 2004; 159 Hu (10.1016/j.ins.2009.08.032_bib4) 1962; 8 |
References_xml | – volume: 18 start-page: 959 year: 2000 end-page: 965 ident: bib24 article-title: A new focus measure method using moments publication-title: Image Vision Comput. – reference: J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. – year: 1998 ident: bib5 publication-title: Orthogonal Functions, Moment Theory, and Continued Fractions: Theory and Applications – reference: G.A. Papakostas, E.G. Karakasis, D.E. Koulouriotis. Exact and speedy computation of legendre moments on binary images, in: WIAMIS ’07: Proceedings of the Eight International Workshop on Image Analysis for Multimedia Interactive Services, Washington, DC, USA, 2007, IEEE Computer Society, p. 48. – volume: 45 start-page: 5 year: 1923 end-page: 24 ident: bib20 article-title: A closed set of normal orthogonal functions publication-title: Am. J. Math. – year: 2002 ident: bib15 article-title: Statistical Moments – volume: 176 start-page: 2097 year: 2006 end-page: 2119 ident: bib17 article-title: A new feature extractor invariant to intensity, rotation, and scaling of color images publication-title: Inform. Sci. – volume: 18 start-page: 254 year: 1996 end-page: 266 ident: bib6 article-title: On image analysis by moments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 172 start-page: 1 year: 2005 end-page: 40 ident: bib23 article-title: Toward a generalized theory of uncertainty (gtu): an outline publication-title: Inform. Sci. – volume: 24 start-page: 343 year: 2006 end-page: 356 ident: bib16 article-title: Zernike velocity moments for sequence-based description of moving features publication-title: Image Vision Comput. – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: bib4 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inform. Theory – volume: 15 start-page: 659 year: 1994 end-page: 668 ident: bib19 article-title: Moment-based texture segmentation publication-title: Pattern Recogn. Lett. – reference: G. Sansone, Orthogonal Functions, Dover Phoenix Editions, 2004. – reference: M.-K. Hu, Pattern recognition by moment invariants, in: Proceedings of IRE (Correspondence) Trans. Inform. Theory, vol. 49, September 1961, pp. 14–28. – volume: 54 start-page: 438 year: 1992 end-page: 460 ident: bib13 article-title: A survey of moment-based techniques for unoccluded object representation and recognition publication-title: CVGIP: Graph. Models Image Process. – volume: 176 start-page: 3619 year: 2009 end-page: 3633 ident: bib12 article-title: A unified methodology for the efficient computation of discrete orthogonal image moments publication-title: Inform. Sci. – year: 1975 ident: bib2 article-title: Clustering Algorithms – volume: 177 start-page: 2802 year: 2007 end-page: 2819 ident: bib10 article-title: A new class of zernike moments for computer vision applications publication-title: Inform. Sci. – volume: 38 year: 2006 ident: bib22 article-title: Object tracking: a survey publication-title: ACM Comput. Surv. – volume: 159 start-page: 203 year: 2004 end-page: 220 ident: bib21 article-title: New computational methods for full and subset zernike moments publication-title: Inform. Sci. – start-page: 441 year: 2008 end-page: 446 ident: bib8 article-title: Application of orthogonal variant moments to computer vision publication-title: Computational Intelligence in Decision and Control – volume: 10 start-page: 496 year: 1988 end-page: 513 ident: bib18 article-title: On image analysis by the methods of moments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Flusser, Moment invariants in image analysis, in: Proceedings of the World Academy of Science, Engineering and Technology, vol. 11, 2006, pp. 196–201. – reference: J.A. Martin H, M. Santos, Orthogonal variant moments in computer vision, in: International e-Conference of Computer Science, Lecture Series on Computer and Computational Science, vol. 8, VSP Brill, 2006, pp. 163–166. – ident: 10.1016/j.ins.2009.08.032_bib9 – ident: 10.1016/j.ins.2009.08.032_bib7 – volume: 8 start-page: 179 year: 1962 ident: 10.1016/j.ins.2009.08.032_bib4 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inform. Theory doi: 10.1109/TIT.1962.1057692 – volume: 10 start-page: 496 issue: 4 year: 1988 ident: 10.1016/j.ins.2009.08.032_bib18 article-title: On image analysis by the methods of moments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.3913 – volume: 38 issue: 4 year: 2006 ident: 10.1016/j.ins.2009.08.032_bib22 article-title: Object tracking: a survey publication-title: ACM Comput. Surv. doi: 10.1145/1177352.1177355 – ident: 10.1016/j.ins.2009.08.032_bib11 doi: 10.1109/WIAMIS.2007.44 – volume: 24 start-page: 343 issue: 4 year: 2006 ident: 10.1016/j.ins.2009.08.032_bib16 article-title: Zernike velocity moments for sequence-based description of moving features publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2005.12.001 – volume: 18 start-page: 959 issue: 12 year: 2000 ident: 10.1016/j.ins.2009.08.032_bib24 article-title: A new focus measure method using moments publication-title: Image Vision Comput. doi: 10.1016/S0262-8856(00)00038-X – volume: 177 start-page: 2802 issue: 13 year: 2007 ident: 10.1016/j.ins.2009.08.032_bib10 article-title: A new class of zernike moments for computer vision applications publication-title: Inform. Sci. doi: 10.1016/j.ins.2007.01.010 – volume: 172 start-page: 1 issue: 1–2 year: 2005 ident: 10.1016/j.ins.2009.08.032_bib23 article-title: Toward a generalized theory of uncertainty (gtu): an outline publication-title: Inform. Sci. doi: 10.1016/j.ins.2005.01.017 – start-page: 441 year: 2008 ident: 10.1016/j.ins.2009.08.032_bib8 article-title: Application of orthogonal variant moments to computer vision – year: 1998 ident: 10.1016/j.ins.2009.08.032_bib5 – ident: 10.1016/j.ins.2009.08.032_bib14 – volume: 159 start-page: 203 issue: 3–4 year: 2004 ident: 10.1016/j.ins.2009.08.032_bib21 article-title: New computational methods for full and subset zernike moments publication-title: Inform. Sci. doi: 10.1016/j.ins.2003.08.006 – year: 1975 ident: 10.1016/j.ins.2009.08.032_bib2 – volume: 45 start-page: 5 year: 1923 ident: 10.1016/j.ins.2009.08.032_bib20 article-title: A closed set of normal orthogonal functions publication-title: Am. J. Math. doi: 10.2307/2387224 – volume: 54 start-page: 438 issue: 5 year: 1992 ident: 10.1016/j.ins.2009.08.032_bib13 article-title: A survey of moment-based techniques for unoccluded object representation and recognition publication-title: CVGIP: Graph. Models Image Process. – year: 2002 ident: 10.1016/j.ins.2009.08.032_bib15 – ident: 10.1016/j.ins.2009.08.032_bib1 – volume: 15 start-page: 659 issue: 7 year: 1994 ident: 10.1016/j.ins.2009.08.032_bib19 article-title: Moment-based texture segmentation publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(94)90069-8 – ident: 10.1016/j.ins.2009.08.032_bib3 – volume: 176 start-page: 3619 issue: 20 year: 2009 ident: 10.1016/j.ins.2009.08.032_bib12 article-title: A unified methodology for the efficient computation of discrete orthogonal image moments publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.06.033 – volume: 18 start-page: 254 issue: 3 year: 1996 ident: 10.1016/j.ins.2009.08.032_bib6 article-title: On image analysis by moments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.485554 – volume: 176 start-page: 2097 issue: 14 year: 2006 ident: 10.1016/j.ins.2009.08.032_bib17 article-title: A new feature extractor invariant to intensity, rotation, and scaling of color images publication-title: Inform. Sci. doi: 10.1016/j.ins.2005.10.005 |
SSID | ssj0004766 |
Score | 2.125589 |
Snippet | Moments are statistical measures used to obtain relevant information about a certain object under study (e.g., signals, images or waveforms), e.g., to describe... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 846 |
SubjectTerms | Computer vision Image moments Modeling uncertainty Moment invariants Object tracking Orthogonal moments |
Title | Orthogonal variant moments features in image analysis |
URI | https://dx.doi.org/10.1016/j.ins.2009.08.032 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gXPRgFDWiQvZgPJgUtu2W7h4JkaBGvEjCrVm2W62RQgA9-tudbbeKiXrw2nSS5nU6H915bwDOE-W6oVahQ2kiHBYH0hHMKGG6VDGqpGD5z5y7UXc4ZjeTYFKBfsmFMWOVNvYXMT2P1vZKx6LZWaSp4fh6eUVMzc84brjUNc8XXXTtWu_6djj6okeGxZGl6ZSMQXm4mY95pdnKqlbyNvW9n9PTRsoZ7MGurRVJr3icfajorA47GwqCdWha3gG5IJZYZIAm9os9gOB-uX6aP5pym7xhW4w4ktk8p7WRROeiniuSZiSdYVwh0iqUHMJ4cPXQHzp2U4KjPBGuHTfhsTkgFdqPQ41dnlIBQuErN060EmEisXCSPMF0HCqOaZHhK-DM70otpGSxfwTVbJ7pYyAy0NhDcaqUFzM0nioWxFPKMRJwJrhoAC0BipSVETfbLF6icl7sOUJMzXpLEZkNl77XgMtPk0WhofHXzaxEPfrmCBHG-N_NTv5ndgrbxTgAemdwBtX18lU3scpYT1uw1X53W9aXPgDHKdA0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VMAADggKiQMEDYkAKOInT2COqqAq0ZWkltsh1HAiiadUGRn4758SBIgEDa-STrMs9fXffAZwmynVDrUKH0kQ4LA6kI5hBwnSpYlRJwYrHnP6g1R2x24fgoQbtahbGtFVa21_a9MJa2y-XlpuXszQ1M75eERFT8xjHzSz1KkP1Ndp58f7V58HCsmBp8iRzvCptFk1eabawmJX8gvrez85pyeF0tmDTRorkqrzMNtR0VoeNJfzAOjTt1AE5I3asyLCZWH3dgeB-nj9NH02wTd4wKUYuksm0GGojiS4gPRckzUg6QatCpMUn2YVR53rY7jp2T4KjPBHmjpvw2JRHhfbjUGOOp1Tgo2IpN060EmEiMWySPEFnHCqOTpHhD-DMb0ktpGSxvwcr2TTT-0BkoDGD4lQpL2ZIPFYsiMeUox3gTHDRAFoxKFIWRNzssniJqm6x5wh5apZbisjst_S9Bpx_ksxKBI2_DrOK69E3MYjQwv9OdvA_shNY6w77vah3M7g7hPWyMQDlNDiClXz-qpsYb-Tj40KePgBz6ND4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+variant+moments+features+in+image+analysis&rft.jtitle=Information+sciences&rft.au=Mart%C3%ADn+H.%2C+Jos%C3%A9+Antonio&rft.au=Santos%2C+Matilde&rft.au=de+Lope%2C+Javier&rft.date=2010-03-15&rft.issn=0020-0255&rft.volume=180&rft.issue=6&rft.spage=846&rft.epage=860&rft_id=info:doi/10.1016%2Fj.ins.2009.08.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2009_08_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |