Bitcoin price prediction using machine learning: An approach to sample dimension engineering
After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine lear...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 365; p. 112395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine learning for more accurate Bitcoin price prediction, few have focused on the feasibility of applying different modeling techniques to samples with different data structures and dimensional features. To predict Bitcoin price at different frequencies using machine learning techniques, we first classify Bitcoin price by daily price and high-frequency price. A set of high-dimension features including property and network, trading and market, attention and gold spot price are used for Bitcoin daily price prediction, while the basic trading features acquired from a cryptocurrency exchange are used for 5-minute interval price prediction. Statistical methods including Logistic Regression and Linear Discriminant Analysis for Bitcoin daily price prediction with high-dimensional features achieve an accuracy of 66%, outperforming more complicated machine learning algorithms. Compared with benchmark results for daily price prediction, we achieve a better performance, with the highest accuracies of the statistical methods and machine learning algorithms of 66% and 65.3%, respectively. Machine learning models including Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector Machine and Long Short-term Memory for Bitcoin 5-minute interval price prediction are superior to statistical methods, with accuracy reaching 67.2%. Our investigation of Bitcoin price prediction can be considered a pilot study of the importance of the sample dimension in machine learning techniques. |
---|---|
AbstractList | After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine learning for more accurate Bitcoin price prediction, few have focused on the feasibility of applying different modeling techniques to samples with different data structures and dimensional features. To predict Bitcoin price at different frequencies using machine learning techniques, we first classify Bitcoin price by daily price and high-frequency price. A set of high-dimension features including property and network, trading and market, attention and gold spot price are used for Bitcoin daily price prediction, while the basic trading features acquired from a cryptocurrency exchange are used for 5-minute interval price prediction. Statistical methods including Logistic Regression and Linear Discriminant Analysis for Bitcoin daily price prediction with high-dimensional features achieve an accuracy of 66%, outperforming more complicated machine learning algorithms. Compared with benchmark results for daily price prediction, we achieve a better performance, with the highest accuracies of the statistical methods and machine learning algorithms of 66% and 65.3%, respectively. Machine learning models including Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector Machine and Long Short-term Memory for Bitcoin 5-minute interval price prediction are superior to statistical methods, with accuracy reaching 67.2%. Our investigation of Bitcoin price prediction can be considered a pilot study of the importance of the sample dimension in machine learning techniques. |
ArticleNumber | 112395 |
Author | Sun, Wenjun Li, Chunhong Chen, Zheshi |
Author_xml | – sequence: 1 givenname: Zheshi surname: Chen fullname: Chen, Zheshi email: chenjessie08@163.com – sequence: 2 givenname: Chunhong surname: Li fullname: Li, Chunhong email: lichunhong2010@163.com – sequence: 3 givenname: Wenjun surname: Sun fullname: Sun, Wenjun email: wjsun@hit.edu.cn |
BookMark | eNp9kM9OwzAMhyM0JLbBA3DLC7TEWZs0cBoT_6RJXOCGFGWpOzK1aZUUJN6eVOPEYRdbsv1Z-n0LMvO9R0KugeXAQNwccmu6nDNQOQBfqfKMzKGSKgMpqxmZs5WUGSu4vCCLGA-MMaGgmJOPezfa3nk6BGcxVaydHV3v6Vd0fk87Yz-dR9qiCT4NbunaUzMMoU8LOvY0mm5okdauQx8nDv0-ARjS8SU5b0wb8eqvL8n748Pb5jnbvj69bNbbzHIlxwzqHUKxk0UhFK-UVbUpG2ME46LmEnYgRVPZ0hbMoGA1r4BXXFU7sRIcuSxXSyKPf23oYwzYaOtGM6UYg3GtBqYnSfqgkyQ9SdJHSYmEf2Ty0Jnwc5K5OzKYIn07DDpah94mcwHtqOvenaB_AZp2geE |
CitedBy_id | crossref_primary_10_1016_j_irfa_2023_102914 crossref_primary_10_1109_ACCESS_2023_3285082 crossref_primary_10_4018_JOEUC_338215 crossref_primary_10_14201_adcaij_31490 crossref_primary_10_2139_ssrn_4796336 crossref_primary_10_3390_su16051789 crossref_primary_10_1016_j_jbusres_2022_113522 crossref_primary_10_1007_s10614_023_10380_9 crossref_primary_10_14254_2071_8330_2023_17_3_4 crossref_primary_10_1016_j_dss_2023_113955 crossref_primary_10_1016_j_eswa_2022_119233 crossref_primary_10_1093_qje_qjac015 crossref_primary_10_3390_math11061335 crossref_primary_10_1109_ACCESS_2023_3321428 crossref_primary_10_1016_j_technovation_2023_102711 crossref_primary_10_1016_j_jfds_2021_03_001 crossref_primary_10_1002_for_2886 crossref_primary_10_3390_math11041054 crossref_primary_10_3390_sym16040500 crossref_primary_10_3390_e24101487 crossref_primary_10_4018_IJDST_296251 crossref_primary_10_1016_j_engappai_2023_106770 crossref_primary_10_1016_j_mlwa_2022_100355 crossref_primary_10_4018_JGIM_323656 crossref_primary_10_1016_j_jbusres_2022_01_055 crossref_primary_10_1145_3582270 crossref_primary_10_1016_j_jafr_2024_101340 crossref_primary_10_35377_saucis_03_03_774276 crossref_primary_10_1002_for_3190 crossref_primary_10_1016_j_jeca_2022_e00270 crossref_primary_10_1007_s43069_024_00302_2 crossref_primary_10_29130_dubited_792909 crossref_primary_10_1038_s41598_023_47177_7 crossref_primary_10_2139_ssrn_4826066 crossref_primary_10_1109_TITS_2022_3228293 crossref_primary_10_1016_j_eswa_2023_119640 crossref_primary_10_3390_a16090423 crossref_primary_10_1038_s41598_024_51408_w crossref_primary_10_1080_01969722_2022_2129376 crossref_primary_10_1016_j_asoc_2023_110568 crossref_primary_10_3390_electronics11152349 crossref_primary_10_35784_iapgos_5657 crossref_primary_10_1007_s00500_024_10301_4 crossref_primary_10_3390_joitmc6040197 crossref_primary_10_1007_s00500_023_08484_3 crossref_primary_10_1016_j_gfj_2023_100904 crossref_primary_10_1080_10106049_2020_1831623 crossref_primary_10_1002_isaf_1488 crossref_primary_10_1002_sta4_70001 crossref_primary_10_1016_j_aej_2023_12_060 crossref_primary_10_1007_s10614_022_10325_8 crossref_primary_10_1088_1742_6596_1550_3_032087 crossref_primary_10_3390_jrfm13020023 crossref_primary_10_1016_j_compeleceng_2020_106905 crossref_primary_10_1108_BAJ_05_2024_0027 crossref_primary_10_2139_ssrn_4128509 crossref_primary_10_1007_s10614_023_10466_4 crossref_primary_10_1140_epjds_s13688_023_00446_x crossref_primary_10_7717_peerj_cs_2626 crossref_primary_10_1016_j_frl_2023_104178 crossref_primary_10_1016_j_asoc_2024_111469 crossref_primary_10_9728_dcs_2023_24_1_141 crossref_primary_10_1108_IJCHM_10_2020_1170 crossref_primary_10_1016_j_sasc_2025_200209 crossref_primary_10_1016_j_irfa_2024_103793 crossref_primary_10_52566_msu_econ_7_2__2020_75_86 crossref_primary_10_1016_j_eswa_2023_121012 crossref_primary_10_2298_TSCI2406019B crossref_primary_10_1109_ACCESS_2021_3124629 crossref_primary_10_3390_fi14090252 crossref_primary_10_51537_chaos_1199241 crossref_primary_10_1080_14697688_2022_2130085 crossref_primary_10_1049_blc2_12014 crossref_primary_10_1109_ACCESS_2020_2990659 crossref_primary_10_1109_ACCESS_2022_3195942 crossref_primary_10_1186_s40854_020_00217_x crossref_primary_10_1080_17509653_2022_2032442 crossref_primary_10_1016_j_ribaf_2021_101554 crossref_primary_10_1051_shsconf_202418102015 crossref_primary_10_1016_j_eswa_2022_118873 crossref_primary_10_7717_peerj_cs_413 crossref_primary_10_1108_K_09_2023_1802 crossref_primary_10_1080_10106049_2021_1973115 crossref_primary_10_1145_3597309 crossref_primary_10_1007_s10878_022_00949_9 crossref_primary_10_31590_ejosat_1039890 crossref_primary_10_2174_1872212118666230303154251 crossref_primary_10_1016_j_asoc_2022_109584 crossref_primary_10_1016_j_frl_2020_101655 crossref_primary_10_1016_j_techfore_2023_122938 crossref_primary_10_1007_s10614_024_10784_1 crossref_primary_10_3390_e25050777 crossref_primary_10_1109_ACCESS_2020_3004284 crossref_primary_10_1109_TNSE_2022_3210537 crossref_primary_10_25046_aj080321 crossref_primary_10_1016_j_intfin_2024_102011 crossref_primary_10_1002_cpe_7384 crossref_primary_10_1016_j_techfore_2024_123746 crossref_primary_10_1080_1540496X_2022_2140573 crossref_primary_10_1016_j_jfds_2022_12_001 crossref_primary_10_3390_jtaer17030048 crossref_primary_10_1051_bioconf_20249700053 crossref_primary_10_1016_j_cam_2023_115091 crossref_primary_10_1109_ACCESS_2024_3367129 crossref_primary_10_3390_app10144872 crossref_primary_10_1007_s42979_024_03112_9 crossref_primary_10_3390_su142114659 crossref_primary_10_18267_j_polek_1397 crossref_primary_10_1007_s10614_025_10919_y crossref_primary_10_1007_s11135_022_01463_0 crossref_primary_10_1016_j_scs_2022_103723 crossref_primary_10_1177_09721509241226575 crossref_primary_10_1109_TCE_2023_3321653 crossref_primary_10_1007_s10614_022_10310_1 crossref_primary_10_1016_j_jjimei_2024_100251 crossref_primary_10_2139_ssrn_4202271 crossref_primary_10_3390_systems12110498 crossref_primary_10_3390_jrfm15030128 crossref_primary_10_1016_j_engappai_2024_108857 crossref_primary_10_1016_j_physa_2021_126613 crossref_primary_10_1007_s00521_020_05129_6 crossref_primary_10_1007_s10100_020_00708_3 crossref_primary_10_54691_bcpbm_v38i_3698 crossref_primary_10_7717_peerj_cs_2675 crossref_primary_10_2478_ausi_2021_0012 crossref_primary_10_1016_j_eswa_2023_121401 crossref_primary_10_1109_ACCESS_2024_3520670 crossref_primary_10_2139_ssrn_3733398 crossref_primary_10_1016_j_asoc_2020_107065 crossref_primary_10_1016_j_eswa_2024_125457 crossref_primary_10_1186_s40537_022_00601_7 crossref_primary_10_18493_kmusekad_1459230 crossref_primary_10_1016_j_irfa_2020_101567 crossref_primary_10_1016_j_eswa_2024_124404 crossref_primary_10_1016_j_heliyon_2024_e28415 crossref_primary_10_1007_s42979_023_01941_8 crossref_primary_10_1016_j_qref_2022_04_003 crossref_primary_10_3390_a15110428 crossref_primary_10_3390_ai2040030 crossref_primary_10_1016_j_dss_2021_113650 crossref_primary_10_1080_00036846_2022_2097194 crossref_primary_10_3390_jrfm16070324 crossref_primary_10_1080_23322039_2022_2087287 crossref_primary_10_3390_s22051740 crossref_primary_10_1109_ACCESS_2023_3287888 crossref_primary_10_2139_ssrn_4094652 crossref_primary_10_1109_ACCESS_2021_3133937 crossref_primary_10_2139_ssrn_5023669 crossref_primary_10_15388_24_INFOR561 crossref_primary_10_3390_computation11050099 crossref_primary_10_1109_ACCESS_2022_3191668 crossref_primary_10_1007_s10614_024_10710_5 crossref_primary_10_1016_j_techfore_2022_121933 crossref_primary_10_3390_electronics13071277 crossref_primary_10_1109_ACCESS_2021_3062652 crossref_primary_10_54105_ijef_B1429_04021124 crossref_primary_10_3390_app13042692 crossref_primary_10_3390_en18061387 crossref_primary_10_1007_s10614_022_10262_6 crossref_primary_10_1063_5_0002759 crossref_primary_10_1109_ACCESS_2022_3177888 crossref_primary_10_1007_s42979_022_01291_x crossref_primary_10_1109_ACCESS_2023_3240103 crossref_primary_10_1140_epjds_s13688_020_00239_6 crossref_primary_10_54392_irjmt2443 |
Cites_doi | 10.1038/srep03415 10.1080/00036846.2015.1109038 10.1016/j.cam.2017.11.018 10.1016/j.cam.2017.02.031 10.2307/2231404 10.1371/journal.pone.0212137 10.1016/j.engappai.2017.04.006 10.1016/j.jocs.2017.07.018 10.1016/j.frl.2015.10.008 10.1007/s10822-018-0155-5 10.2139/ssrn.3142022 10.2139/ssrn.2607167 10.2139/ssrn.2579445 10.1016/j.econmod.2017.03.019 10.1023/A:1009868929893 10.1007/s11227-017-2046-2 10.1016/j.jocs.2016.07.006 10.1371/journal.pone.0161197 10.1371/journal.pone.0123923 10.1007/s10994-010-5227-2 10.1016/j.ribaf.2017.07.104 10.1016/j.ijepes.2019.02.022 10.1080/07421222.2018.1440774 10.1016/j.asoc.2017.06.059 10.1007/s10489-018-1190-6 10.1023/A:1022806918936 10.2478/saeb-2018-0013 10.1007/BF00116251 10.1016/j.cam.2016.02.009 10.1016/j.cam.2018.07.008 10.1016/j.engappai.2018.05.003 10.1016/j.najef.2018.06.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cam.2019.112395 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
ExternalDocumentID | 10_1016_j_cam_2019_112395 S037704271930398X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-1dbe14b74469289c9da5faa6026d271b176f8c5c40ae60d28128298b6362e2753 |
IEDL.DBID | .~1 |
ISSN | 0377-0427 |
IngestDate | Tue Jul 01 04:27:10 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:31:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Machine learning algorithms Sample dimension engineering Occam’s Razor principle Bitcoin price prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-1dbe14b74469289c9da5faa6026d271b176f8c5c40ae60d28128298b6362e2753 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2019_112395 crossref_primary_10_1016_j_cam_2019_112395 elsevier_sciencedirect_doi_10_1016_j_cam_2019_112395 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ordóñez (b7) 2019; 346 Tong (b34) 2017 E. Pagnotta, A. Buraschi, An equilibrium valuation of bitcoin and decentralized network assets, 2018. McNally, Roche, Caton (b15) 2018 I. Madan, S. Saluja, A. Zhao, Automated bitcoin trading via machine learning algorithms, vol. 20. URL Abualigah, Khader, Hanandeh (b17) 2018; 25 Le, Viviani (b9) 2018; 44 Shah, Zhang (b27) 2014 Bacao (b40) 2018; 65 Zahálka, Železný (b32) 2011; 82 Freund (b36) 1998 S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. Abualigah, Khader, Hanandeh (b12) 2018; 73 Dyhrberg (b41) 2016; 16 Mai (b3) 2018; 35 Kristoufek (b20) 2015; 10 Brentan (b6) 2017; 309 A. Greaves, B. Au, Using the bitcoin transaction graph to predict the price of bitcoin, stanford.edu, 2015. Yermack (b2) 2015 2015. Abualigah, Hanandeh (b11) 2015; 5 Balcilar (b24) 2017; 64 I. Georgoula, et al. Using time-series and sentiment analysis to detect the determinants of bitcoin prices, SSRN 2607167, 2015. Gamberger, Lavrač (b31) 1997 Ebrahimpour (b37) 2017; 62 Kumar, Meghwani, Thakur (b45) 2016; 17 Wang (b46) 2019; 109 Kristoufek (b19) 2013; 3 Abualigah (b14) 2017; 60 Quinlan (b42) 1986; 1 P. Geurts, G. Louppe, Learning to rank with extremely randomized trees, in: JMLR: Workshop and Conference Proceedings, 2011. Stefanescu, Moosavi, Sandu (b8) 2018; 340 Lv (b10) 2019; 14 G.H. Chen, S. Nikolov, D. Shah, A latent source model for nonparametric time series classification, in: Conference on Advances in Neural Information Processing Systems, 2013. Abualigah, Khader (b16) 2017; 73 A. Hayes, What factors give cryptocurrencies their value: An empirical analysis, 2015. Ciaian, Rajcaniova, d.A. Kancs (b22) 2016; 48 J. Bukovina, M. Martiček, Sentiment and bitcoin volatility, Mendel University in Brno, Faculty of Business and Economics, 2016. Wang, Acm (b39) 2018 Zhenin (b38) 2018; 32 Abualigah, Khader, Hanandeh (b13) 2018; 48 Kim (b26) 2016; 11 Domingos (b33) 1999; 3 Langford, Blum (b35) 2003; 51 Barro (b23) 1979; 89 Basak (b44) 2019; 47 Nieto (b5) 2018; 330 10.1016/j.cam.2019.112395_b21 10.1016/j.cam.2019.112395_b43 Kristoufek (10.1016/j.cam.2019.112395_b20) 2015; 10 Gamberger (10.1016/j.cam.2019.112395_b31) 1997 Tong (10.1016/j.cam.2019.112395_b34) 2017 Abualigah (10.1016/j.cam.2019.112395_b17) 2018; 25 10.1016/j.cam.2019.112395_b25 10.1016/j.cam.2019.112395_b28 Ebrahimpour (10.1016/j.cam.2019.112395_b37) 2017; 62 Balcilar (10.1016/j.cam.2019.112395_b24) 2017; 64 Brentan (10.1016/j.cam.2019.112395_b6) 2017; 309 Abualigah (10.1016/j.cam.2019.112395_b11) 2015; 5 Abualigah (10.1016/j.cam.2019.112395_b16) 2017; 73 Abualigah (10.1016/j.cam.2019.112395_b12) 2018; 73 Quinlan (10.1016/j.cam.2019.112395_b42) 1986; 1 Shah (10.1016/j.cam.2019.112395_b27) 2014 Zhenin (10.1016/j.cam.2019.112395_b38) 2018; 32 McNally (10.1016/j.cam.2019.112395_b15) 2018 Mai (10.1016/j.cam.2019.112395_b3) 2018; 35 Ciaian (10.1016/j.cam.2019.112395_b22) 2016; 48 10.1016/j.cam.2019.112395_b29 Langford (10.1016/j.cam.2019.112395_b35) 2003; 51 Freund (10.1016/j.cam.2019.112395_b36) 1998 Dyhrberg (10.1016/j.cam.2019.112395_b41) 2016; 16 Wang (10.1016/j.cam.2019.112395_b46) 2019; 109 10.1016/j.cam.2019.112395_b1 10.1016/j.cam.2019.112395_b4 Domingos (10.1016/j.cam.2019.112395_b33) 1999; 3 Kumar (10.1016/j.cam.2019.112395_b45) 2016; 17 Nieto (10.1016/j.cam.2019.112395_b5) 2018; 330 Yermack (10.1016/j.cam.2019.112395_b2) 2015 Lv (10.1016/j.cam.2019.112395_b10) 2019; 14 Zahálka (10.1016/j.cam.2019.112395_b32) 2011; 82 Wang (10.1016/j.cam.2019.112395_b39) 2018 Bacao (10.1016/j.cam.2019.112395_b40) 2018; 65 Kim (10.1016/j.cam.2019.112395_b26) 2016; 11 Le (10.1016/j.cam.2019.112395_b9) 2018; 44 10.1016/j.cam.2019.112395_b30 Abualigah (10.1016/j.cam.2019.112395_b13) 2018; 48 Barro (10.1016/j.cam.2019.112395_b23) 1979; 89 10.1016/j.cam.2019.112395_b18 Kristoufek (10.1016/j.cam.2019.112395_b19) 2013; 3 Abualigah (10.1016/j.cam.2019.112395_b14) 2017; 60 Basak (10.1016/j.cam.2019.112395_b44) 2019; 47 Ordóñez (10.1016/j.cam.2019.112395_b7) 2019; 346 Stefanescu (10.1016/j.cam.2019.112395_b8) 2018; 340 |
References_xml | – volume: 89 start-page: 13 year: 1979 end-page: 33 ident: b23 article-title: Money and the price level under the gold standard publication-title: Econ. J. – volume: 340 start-page: 629 year: 2018 end-page: 644 ident: b8 article-title: Parametric domain decomposition for accurate reduced order models: applications of MP-LROM methodology publication-title: J. Comput. Appl. Math. – volume: 25 start-page: 456 year: 2018 end-page: 466 ident: b17 article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm publication-title: J. Comput. Sci. – volume: 48 start-page: 4047 year: 2018 end-page: 4071 ident: b13 article-title: Hybrid clustering analysis using improved krill herd algorithm publication-title: Appl. Intell. – volume: 73 start-page: 111 year: 2018 end-page: 125 ident: b12 article-title: A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis publication-title: Eng. Appl. Artif. Intell. – volume: 109 start-page: 470 year: 2019 end-page: 479 ident: b46 article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. – volume: 48 start-page: 1799 year: 2016 end-page: 1815 ident: b22 article-title: The economics of bitcoin price formation publication-title: Appl. Econ. – reference: P. Geurts, G. Louppe, Learning to rank with extremely randomized trees, in: JMLR: Workshop and Conference Proceedings, 2011. – volume: 17 start-page: 1 year: 2016 end-page: 13 ident: b45 article-title: Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets publication-title: J. Comput. Sci. – volume: 346 start-page: 184 year: 2019 end-page: 191 ident: b7 article-title: A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines publication-title: J. Comput. Appl. Math. – volume: 65 start-page: 97 year: 2018 end-page: 117 ident: b40 article-title: Information transmission between cryptocurrencies: does bitcoin rule the cryptocurrency world? publication-title: Sci. Ann. Econ. Bus. – volume: 35 start-page: 19 year: 2018 end-page: 52 ident: b3 article-title: How does social media impact bitcoin value? a test of the silent majority hypothesis publication-title: J. Manage. Inf. Syst. – reference: E. Pagnotta, A. Buraschi, An equilibrium valuation of bitcoin and decentralized network assets, 2018. – reference: J. Bukovina, M. Martiček, Sentiment and bitcoin volatility, Mendel University in Brno, Faculty of Business and Economics, 2016. – volume: 82 start-page: 475 year: 2011 end-page: 481 ident: b32 article-title: An experimental test of Occam’s razor in classification publication-title: Mach. Learn. – start-page: 31 year: 2015 end-page: 43 ident: b2 article-title: Is bitcoin a real currency? an economic appraisal publication-title: Handbook of Digital Currency – reference: I. Madan, S. Saluja, A. Zhao, Automated bitcoin trading via machine learning algorithms, vol. 20. URL: – volume: 14 year: 2019 ident: b10 article-title: Selection of the optimal trading model for stock investment in different industries publication-title: PLoS One – reference: I. Georgoula, et al. Using time-series and sentiment analysis to detect the determinants of bitcoin prices, SSRN 2607167, 2015. – year: 1998 ident: b36 article-title: Self bounding learning algorithms publication-title: COLT – volume: 3 start-page: 3415 year: 2013 ident: b19 article-title: Bitcoin meets google trends and wikipedia: quantifying the relationship between phenomena of the internet era publication-title: Sci. Rep. – reference: , 2015. – volume: 73 start-page: 4773 year: 2017 end-page: 4795 ident: b16 article-title: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering publication-title: J. Supercomput. – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: b42 article-title: Induction of decision trees publication-title: Mach. Learn. – volume: 47 start-page: 552 year: 2019 end-page: 567 ident: b44 article-title: Predicting the direction of stock market prices using tree-based classifiers publication-title: North American J. Econ. Finance – reference: G.H. Chen, S. Nikolov, D. Shah, A latent source model for nonparametric time series classification, in: Conference on Advances in Neural Information Processing Systems, 2013. – volume: 51 start-page: 165 year: 2003 end-page: 179 ident: b35 article-title: Microchoice bounds and self bounding learning algorithms publication-title: Mach. Learn. – volume: 62 start-page: 214 year: 2017 end-page: 221 ident: b37 article-title: Occam’s razor in dimension reduction: using reduced row echelon form for finding linear independent features in high dimensional microarray datasets publication-title: Eng. Appl. Artif. Intell. – year: 2018 ident: b15 article-title: Predicting the price of bitcoin using machine learning publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, PDP – volume: 32 start-page: 877 year: 2018 end-page: 888 ident: b38 article-title: Rescoring of docking poses under occam’s razor: are there simpler solutions? publication-title: J. Comput. Aid. Mol. Des. – volume: 60 start-page: 423 year: 2017 end-page: 435 ident: b14 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl. Soft Comput. – volume: 5 start-page: 19 year: 2015 ident: b11 article-title: Applying genetic algorithms to information retrieval using vector space model publication-title: Int. J. Comput. Sci. Eng. Appl. – volume: 11 year: 2016 ident: b26 article-title: Predicting fluctuations in cryptocurrency transactions based on user comments and replies publication-title: Plos One – volume: 64 start-page: 74 year: 2017 end-page: 81 ident: b24 article-title: Can volume predict bitcoin returns and volatility? a quantiles-based approach publication-title: Econ. Model. – volume: 330 start-page: 877 year: 2018 end-page: 895 ident: b5 article-title: A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance publication-title: J. Comput. Appl. Math. – start-page: 74 year: 2018 end-page: 81 ident: b39 article-title: Machine learning for feature-based analytics publication-title: Proceedings of the 2018 International Symposium on Physical Design – volume: 10 year: 2015 ident: b20 article-title: What are the main drivers of the Bitcoin price? evidence from wavelet coherence analysis publication-title: PLoS One – year: 2017 ident: b34 article-title: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 1997 ident: b31 article-title: Conditions for occam’s razor applicability and noise elimination publication-title: European Conference on Machine Learning – volume: 3 start-page: 409 year: 1999 end-page: 425 ident: b33 article-title: The role of occam’s razor in knowledge discovery publication-title: Data Min. Knowl. Discov. – volume: 16 start-page: 85 year: 2016 end-page: 92 ident: b41 article-title: Bitcoin, gold and the dollar–a garch volatility analysis publication-title: Finance Res. Lett. – volume: 309 start-page: 532 year: 2017 end-page: 541 ident: b6 article-title: Hybrid regression model for near real-time urban water demand forecasting publication-title: J. Comput. Appl. Math. – reference: A. Hayes, What factors give cryptocurrencies their value: An empirical analysis, 2015. – reference: S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. – volume: 44 start-page: 16 year: 2018 end-page: 25 ident: b9 article-title: Predicting bank failure: an improvement by implementing a machine-learning approach to classical financial ratios publication-title: Res. Int. Bus. Finance – year: 2014 ident: b27 article-title: Bayesian regression and bitcoin publication-title: Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on – reference: A. Greaves, B. Au, Using the bitcoin transaction graph to predict the price of bitcoin, stanford.edu, 2015. – ident: 10.1016/j.cam.2019.112395_b4 – volume: 3 start-page: 3415 year: 2013 ident: 10.1016/j.cam.2019.112395_b19 article-title: Bitcoin meets google trends and wikipedia: quantifying the relationship between phenomena of the internet era publication-title: Sci. Rep. doi: 10.1038/srep03415 – volume: 48 start-page: 1799 issue: 19 year: 2016 ident: 10.1016/j.cam.2019.112395_b22 article-title: The economics of bitcoin price formation publication-title: Appl. Econ. doi: 10.1080/00036846.2015.1109038 – ident: 10.1016/j.cam.2019.112395_b43 – volume: 340 start-page: 629 year: 2018 ident: 10.1016/j.cam.2019.112395_b8 article-title: Parametric domain decomposition for accurate reduced order models: applications of MP-LROM methodology publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.11.018 – volume: 330 start-page: 877 year: 2018 ident: 10.1016/j.cam.2019.112395_b5 article-title: A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.02.031 – volume: 89 start-page: 13 issue: 353 year: 1979 ident: 10.1016/j.cam.2019.112395_b23 article-title: Money and the price level under the gold standard publication-title: Econ. J. doi: 10.2307/2231404 – year: 1998 ident: 10.1016/j.cam.2019.112395_b36 article-title: Self bounding learning algorithms – volume: 14 issue: 2 year: 2019 ident: 10.1016/j.cam.2019.112395_b10 article-title: Selection of the optimal trading model for stock investment in different industries publication-title: PLoS One doi: 10.1371/journal.pone.0212137 – volume: 62 start-page: 214 year: 2017 ident: 10.1016/j.cam.2019.112395_b37 article-title: Occam’s razor in dimension reduction: using reduced row echelon form for finding linear independent features in high dimensional microarray datasets publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.04.006 – ident: 10.1016/j.cam.2019.112395_b30 – ident: 10.1016/j.cam.2019.112395_b28 – volume: 25 start-page: 456 year: 2018 ident: 10.1016/j.cam.2019.112395_b17 article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.018 – volume: 16 start-page: 85 year: 2016 ident: 10.1016/j.cam.2019.112395_b41 article-title: Bitcoin, gold and the dollar–a garch volatility analysis publication-title: Finance Res. Lett. doi: 10.1016/j.frl.2015.10.008 – year: 1997 ident: 10.1016/j.cam.2019.112395_b31 article-title: Conditions for occam’s razor applicability and noise elimination – year: 2018 ident: 10.1016/j.cam.2019.112395_b15 article-title: Predicting the price of bitcoin using machine learning – volume: 32 start-page: 877 issue: 9 year: 2018 ident: 10.1016/j.cam.2019.112395_b38 article-title: Rescoring of docking poses under occam’s razor: are there simpler solutions? publication-title: J. Comput. Aid. Mol. Des. doi: 10.1007/s10822-018-0155-5 – ident: 10.1016/j.cam.2019.112395_b18 doi: 10.2139/ssrn.3142022 – ident: 10.1016/j.cam.2019.112395_b29 doi: 10.2139/ssrn.2607167 – volume: 5 start-page: 19 issue: 1 year: 2015 ident: 10.1016/j.cam.2019.112395_b11 article-title: Applying genetic algorithms to information retrieval using vector space model publication-title: Int. J. Comput. Sci. Eng. Appl. – ident: 10.1016/j.cam.2019.112395_b21 doi: 10.2139/ssrn.2579445 – volume: 64 start-page: 74 year: 2017 ident: 10.1016/j.cam.2019.112395_b24 article-title: Can volume predict bitcoin returns and volatility? a quantiles-based approach publication-title: Econ. Model. doi: 10.1016/j.econmod.2017.03.019 – volume: 3 start-page: 409 issue: 4 year: 1999 ident: 10.1016/j.cam.2019.112395_b33 article-title: The role of occam’s razor in knowledge discovery publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009868929893 – year: 2014 ident: 10.1016/j.cam.2019.112395_b27 article-title: Bayesian regression and bitcoin – start-page: 74 year: 2018 ident: 10.1016/j.cam.2019.112395_b39 article-title: Machine learning for feature-based analytics – ident: 10.1016/j.cam.2019.112395_b1 – volume: 73 start-page: 4773 issue: 11 year: 2017 ident: 10.1016/j.cam.2019.112395_b16 article-title: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering publication-title: J. Supercomput. doi: 10.1007/s11227-017-2046-2 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.cam.2019.112395_b45 article-title: Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.07.006 – year: 2017 ident: 10.1016/j.cam.2019.112395_b34 article-title: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.cam.2019.112395_b26 article-title: Predicting fluctuations in cryptocurrency transactions based on user comments and replies publication-title: Plos One doi: 10.1371/journal.pone.0161197 – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.cam.2019.112395_b20 article-title: What are the main drivers of the Bitcoin price? evidence from wavelet coherence analysis publication-title: PLoS One doi: 10.1371/journal.pone.0123923 – volume: 82 start-page: 475 issue: 3 year: 2011 ident: 10.1016/j.cam.2019.112395_b32 article-title: An experimental test of Occam’s razor in classification publication-title: Mach. Learn. doi: 10.1007/s10994-010-5227-2 – volume: 44 start-page: 16 year: 2018 ident: 10.1016/j.cam.2019.112395_b9 article-title: Predicting bank failure: an improvement by implementing a machine-learning approach to classical financial ratios publication-title: Res. Int. Bus. Finance doi: 10.1016/j.ribaf.2017.07.104 – volume: 109 start-page: 470 year: 2019 ident: 10.1016/j.cam.2019.112395_b46 article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.02.022 – volume: 35 start-page: 19 issue: 1 year: 2018 ident: 10.1016/j.cam.2019.112395_b3 article-title: How does social media impact bitcoin value? a test of the silent majority hypothesis publication-title: J. Manage. Inf. Syst. doi: 10.1080/07421222.2018.1440774 – volume: 60 start-page: 423 year: 2017 ident: 10.1016/j.cam.2019.112395_b14 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.059 – volume: 48 start-page: 4047 issue: 11 year: 2018 ident: 10.1016/j.cam.2019.112395_b13 article-title: Hybrid clustering analysis using improved krill herd algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-018-1190-6 – start-page: 31 year: 2015 ident: 10.1016/j.cam.2019.112395_b2 article-title: Is bitcoin a real currency? an economic appraisal – volume: 51 start-page: 165 issue: 2 year: 2003 ident: 10.1016/j.cam.2019.112395_b35 article-title: Microchoice bounds and self bounding learning algorithms publication-title: Mach. Learn. doi: 10.1023/A:1022806918936 – volume: 65 start-page: 97 issue: 2 year: 2018 ident: 10.1016/j.cam.2019.112395_b40 article-title: Information transmission between cryptocurrencies: does bitcoin rule the cryptocurrency world? publication-title: Sci. Ann. Econ. Bus. doi: 10.2478/saeb-2018-0013 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.cam.2019.112395_b42 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – ident: 10.1016/j.cam.2019.112395_b25 – volume: 309 start-page: 532 year: 2017 ident: 10.1016/j.cam.2019.112395_b6 article-title: Hybrid regression model for near real-time urban water demand forecasting publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.02.009 – volume: 346 start-page: 184 year: 2019 ident: 10.1016/j.cam.2019.112395_b7 article-title: A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.07.008 – volume: 73 start-page: 111 year: 2018 ident: 10.1016/j.cam.2019.112395_b12 article-title: A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.05.003 – volume: 47 start-page: 552 year: 2019 ident: 10.1016/j.cam.2019.112395_b44 article-title: Predicting the direction of stock market prices using tree-based classifiers publication-title: North American J. Econ. Finance doi: 10.1016/j.najef.2018.06.013 |
SSID | ssj0006914 |
Score | 2.6643014 |
Snippet | After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112395 |
SubjectTerms | Bitcoin price prediction Machine learning algorithms Occam’s Razor principle Sample dimension engineering |
Title | Bitcoin price prediction using machine learning: An approach to sample dimension engineering |
URI | https://dx.doi.org/10.1016/j.cam.2019.112395 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuqaNm0ab9twbOqGqIMehJIm6ahoN1y9-reb14-poB68tBASKD8e76P5vd9D6NRJpB_YTFge1cKiRFArplJYghKtPBMCEw3dyOOJP5zSq9ALG6hf98IArbLy_aVPL7x1tdKp0Ows0rRzb7uMwaQIk4LYLg9C6GCnDKz8_P2T5uHzUt_bbLZgd32zWXC8pIBmdMKhkcaFERM_xaYv8WawhTarRBF3y2_ZRg2d7aCN8UpldbmLHntpLudphhegDGSecOkCQGNgs8_wS0GU1LiaDDG7wN0M1yLiOJ_jpQBtYKxA4R_-mmH9qU64h6aDy4f-0KqmJVjS4Sy3iIo1oTEz9R03VZTkSniJEDBiShmQYsL8JJCepLbQvq0cE9kDhwexb0KYdkzVso-a2TzTBwhLlnhME-EoA57igvtCuSIm0g1MgiJlC9k1TpGspMRhosVzVHPGniIDbQTQRiW0LXS2OrIodTT-2kxr8KNvxhAZP__7scP_HTtC6w4U0QUV-xg189c3fWIyjTxuF6bURmvd_t3NLbxH18OJWR2FvQ8YTtUP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA6iB_UgrjiuOehFqNOmadMIHlwZl_GiwhyEmiapjGhncCrixT_lH_S9Li6gHgQvPZSmpF_CW5rvvY-QNZbqMHKFcgJulcM9xZ2Ea-Uo7lkTgAtMLVYjt8_C1iU_7gSdIfJa18IgrbKy_aVNL6x1dadZodnsd7vNc9cXApUiIARxfRl1KmbliX1-grxtsH20D4u8ztjhwcVey6mkBRzNpMgdzyTW44mAZEhCyqGlUUGqFOoxGXhj4okwjXSguats6BoGbjBiMkpCsPeWCZSKALs_wsFcoGzC5ssHrySUZUNxmJ2D06uPUgtSmVZY_e5JrNzxUdPiO2f4ycEdTpKJKjKlO-XHT5Ehm02T8fZ7W9fBDLna7ea6181oH1sRwRVPeXBlKdLnb-h9wcy0tJKiuNmiOxmtu5bTvEcHCpsRU4OSAvibjtqPdoiz5PJfMJwjw1kvs_OEapEGwnqKGQDPSCVDZXyVeNqPICLSukHcGqdYV73LUULjLq5JarcxQBsjtHEJbYNsvA_pl407fnuY1-DHX3ZfDI7l52ELfxu2SkZbF-3T-PTo7GSRjDHM4Ase-BIZzh8e7TKEOXmyUmwrSq7_ex-_AdiODH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bitcoin+price+prediction+using+machine+learning%3A+An+approach+to+sample+dimension+engineering&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Chen%2C+Zheshi&rft.au=Li%2C+Chunhong&rft.au=Sun%2C+Wenjun&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=365&rft_id=info:doi/10.1016%2Fj.cam.2019.112395&rft.externalDocID=S037704271930398X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |