Bitcoin price prediction using machine learning: An approach to sample dimension engineering

After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine lear...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 365; p. 112395
Main Authors Chen, Zheshi, Li, Chunhong, Sun, Wenjun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine learning for more accurate Bitcoin price prediction, few have focused on the feasibility of applying different modeling techniques to samples with different data structures and dimensional features. To predict Bitcoin price at different frequencies using machine learning techniques, we first classify Bitcoin price by daily price and high-frequency price. A set of high-dimension features including property and network, trading and market, attention and gold spot price are used for Bitcoin daily price prediction, while the basic trading features acquired from a cryptocurrency exchange are used for 5-minute interval price prediction. Statistical methods including Logistic Regression and Linear Discriminant Analysis for Bitcoin daily price prediction with high-dimensional features achieve an accuracy of 66%, outperforming more complicated machine learning algorithms. Compared with benchmark results for daily price prediction, we achieve a better performance, with the highest accuracies of the statistical methods and machine learning algorithms of 66% and 65.3%, respectively. Machine learning models including Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector Machine and Long Short-term Memory for Bitcoin 5-minute interval price prediction are superior to statistical methods, with accuracy reaching 67.2%. Our investigation of Bitcoin price prediction can be considered a pilot study of the importance of the sample dimension in machine learning techniques.
AbstractList After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine learning for more accurate Bitcoin price prediction, few have focused on the feasibility of applying different modeling techniques to samples with different data structures and dimensional features. To predict Bitcoin price at different frequencies using machine learning techniques, we first classify Bitcoin price by daily price and high-frequency price. A set of high-dimension features including property and network, trading and market, attention and gold spot price are used for Bitcoin daily price prediction, while the basic trading features acquired from a cryptocurrency exchange are used for 5-minute interval price prediction. Statistical methods including Logistic Regression and Linear Discriminant Analysis for Bitcoin daily price prediction with high-dimensional features achieve an accuracy of 66%, outperforming more complicated machine learning algorithms. Compared with benchmark results for daily price prediction, we achieve a better performance, with the highest accuracies of the statistical methods and machine learning algorithms of 66% and 65.3%, respectively. Machine learning models including Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector Machine and Long Short-term Memory for Bitcoin 5-minute interval price prediction are superior to statistical methods, with accuracy reaching 67.2%. Our investigation of Bitcoin price prediction can be considered a pilot study of the importance of the sample dimension in machine learning techniques.
ArticleNumber 112395
Author Sun, Wenjun
Li, Chunhong
Chen, Zheshi
Author_xml – sequence: 1
  givenname: Zheshi
  surname: Chen
  fullname: Chen, Zheshi
  email: chenjessie08@163.com
– sequence: 2
  givenname: Chunhong
  surname: Li
  fullname: Li, Chunhong
  email: lichunhong2010@163.com
– sequence: 3
  givenname: Wenjun
  surname: Sun
  fullname: Sun, Wenjun
  email: wjsun@hit.edu.cn
BookMark eNp9kM9OwzAMhyM0JLbBA3DLC7TEWZs0cBoT_6RJXOCGFGWpOzK1aZUUJN6eVOPEYRdbsv1Z-n0LMvO9R0KugeXAQNwccmu6nDNQOQBfqfKMzKGSKgMpqxmZs5WUGSu4vCCLGA-MMaGgmJOPezfa3nk6BGcxVaydHV3v6Vd0fk87Yz-dR9qiCT4NbunaUzMMoU8LOvY0mm5okdauQx8nDv0-ARjS8SU5b0wb8eqvL8n748Pb5jnbvj69bNbbzHIlxwzqHUKxk0UhFK-UVbUpG2ME46LmEnYgRVPZ0hbMoGA1r4BXXFU7sRIcuSxXSyKPf23oYwzYaOtGM6UYg3GtBqYnSfqgkyQ9SdJHSYmEf2Ty0Jnwc5K5OzKYIn07DDpah94mcwHtqOvenaB_AZp2geE
CitedBy_id crossref_primary_10_1016_j_irfa_2023_102914
crossref_primary_10_1109_ACCESS_2023_3285082
crossref_primary_10_4018_JOEUC_338215
crossref_primary_10_14201_adcaij_31490
crossref_primary_10_2139_ssrn_4796336
crossref_primary_10_3390_su16051789
crossref_primary_10_1016_j_jbusres_2022_113522
crossref_primary_10_1007_s10614_023_10380_9
crossref_primary_10_14254_2071_8330_2023_17_3_4
crossref_primary_10_1016_j_dss_2023_113955
crossref_primary_10_1016_j_eswa_2022_119233
crossref_primary_10_1093_qje_qjac015
crossref_primary_10_3390_math11061335
crossref_primary_10_1109_ACCESS_2023_3321428
crossref_primary_10_1016_j_technovation_2023_102711
crossref_primary_10_1016_j_jfds_2021_03_001
crossref_primary_10_1002_for_2886
crossref_primary_10_3390_math11041054
crossref_primary_10_3390_sym16040500
crossref_primary_10_3390_e24101487
crossref_primary_10_4018_IJDST_296251
crossref_primary_10_1016_j_engappai_2023_106770
crossref_primary_10_1016_j_mlwa_2022_100355
crossref_primary_10_4018_JGIM_323656
crossref_primary_10_1016_j_jbusres_2022_01_055
crossref_primary_10_1145_3582270
crossref_primary_10_1016_j_jafr_2024_101340
crossref_primary_10_35377_saucis_03_03_774276
crossref_primary_10_1002_for_3190
crossref_primary_10_1016_j_jeca_2022_e00270
crossref_primary_10_1007_s43069_024_00302_2
crossref_primary_10_29130_dubited_792909
crossref_primary_10_1038_s41598_023_47177_7
crossref_primary_10_2139_ssrn_4826066
crossref_primary_10_1109_TITS_2022_3228293
crossref_primary_10_1016_j_eswa_2023_119640
crossref_primary_10_3390_a16090423
crossref_primary_10_1038_s41598_024_51408_w
crossref_primary_10_1080_01969722_2022_2129376
crossref_primary_10_1016_j_asoc_2023_110568
crossref_primary_10_3390_electronics11152349
crossref_primary_10_35784_iapgos_5657
crossref_primary_10_1007_s00500_024_10301_4
crossref_primary_10_3390_joitmc6040197
crossref_primary_10_1007_s00500_023_08484_3
crossref_primary_10_1016_j_gfj_2023_100904
crossref_primary_10_1080_10106049_2020_1831623
crossref_primary_10_1002_isaf_1488
crossref_primary_10_1002_sta4_70001
crossref_primary_10_1016_j_aej_2023_12_060
crossref_primary_10_1007_s10614_022_10325_8
crossref_primary_10_1088_1742_6596_1550_3_032087
crossref_primary_10_3390_jrfm13020023
crossref_primary_10_1016_j_compeleceng_2020_106905
crossref_primary_10_1108_BAJ_05_2024_0027
crossref_primary_10_2139_ssrn_4128509
crossref_primary_10_1007_s10614_023_10466_4
crossref_primary_10_1140_epjds_s13688_023_00446_x
crossref_primary_10_7717_peerj_cs_2626
crossref_primary_10_1016_j_frl_2023_104178
crossref_primary_10_1016_j_asoc_2024_111469
crossref_primary_10_9728_dcs_2023_24_1_141
crossref_primary_10_1108_IJCHM_10_2020_1170
crossref_primary_10_1016_j_sasc_2025_200209
crossref_primary_10_1016_j_irfa_2024_103793
crossref_primary_10_52566_msu_econ_7_2__2020_75_86
crossref_primary_10_1016_j_eswa_2023_121012
crossref_primary_10_2298_TSCI2406019B
crossref_primary_10_1109_ACCESS_2021_3124629
crossref_primary_10_3390_fi14090252
crossref_primary_10_51537_chaos_1199241
crossref_primary_10_1080_14697688_2022_2130085
crossref_primary_10_1049_blc2_12014
crossref_primary_10_1109_ACCESS_2020_2990659
crossref_primary_10_1109_ACCESS_2022_3195942
crossref_primary_10_1186_s40854_020_00217_x
crossref_primary_10_1080_17509653_2022_2032442
crossref_primary_10_1016_j_ribaf_2021_101554
crossref_primary_10_1051_shsconf_202418102015
crossref_primary_10_1016_j_eswa_2022_118873
crossref_primary_10_7717_peerj_cs_413
crossref_primary_10_1108_K_09_2023_1802
crossref_primary_10_1080_10106049_2021_1973115
crossref_primary_10_1145_3597309
crossref_primary_10_1007_s10878_022_00949_9
crossref_primary_10_31590_ejosat_1039890
crossref_primary_10_2174_1872212118666230303154251
crossref_primary_10_1016_j_asoc_2022_109584
crossref_primary_10_1016_j_frl_2020_101655
crossref_primary_10_1016_j_techfore_2023_122938
crossref_primary_10_1007_s10614_024_10784_1
crossref_primary_10_3390_e25050777
crossref_primary_10_1109_ACCESS_2020_3004284
crossref_primary_10_1109_TNSE_2022_3210537
crossref_primary_10_25046_aj080321
crossref_primary_10_1016_j_intfin_2024_102011
crossref_primary_10_1002_cpe_7384
crossref_primary_10_1016_j_techfore_2024_123746
crossref_primary_10_1080_1540496X_2022_2140573
crossref_primary_10_1016_j_jfds_2022_12_001
crossref_primary_10_3390_jtaer17030048
crossref_primary_10_1051_bioconf_20249700053
crossref_primary_10_1016_j_cam_2023_115091
crossref_primary_10_1109_ACCESS_2024_3367129
crossref_primary_10_3390_app10144872
crossref_primary_10_1007_s42979_024_03112_9
crossref_primary_10_3390_su142114659
crossref_primary_10_18267_j_polek_1397
crossref_primary_10_1007_s10614_025_10919_y
crossref_primary_10_1007_s11135_022_01463_0
crossref_primary_10_1016_j_scs_2022_103723
crossref_primary_10_1177_09721509241226575
crossref_primary_10_1109_TCE_2023_3321653
crossref_primary_10_1007_s10614_022_10310_1
crossref_primary_10_1016_j_jjimei_2024_100251
crossref_primary_10_2139_ssrn_4202271
crossref_primary_10_3390_systems12110498
crossref_primary_10_3390_jrfm15030128
crossref_primary_10_1016_j_engappai_2024_108857
crossref_primary_10_1016_j_physa_2021_126613
crossref_primary_10_1007_s00521_020_05129_6
crossref_primary_10_1007_s10100_020_00708_3
crossref_primary_10_54691_bcpbm_v38i_3698
crossref_primary_10_7717_peerj_cs_2675
crossref_primary_10_2478_ausi_2021_0012
crossref_primary_10_1016_j_eswa_2023_121401
crossref_primary_10_1109_ACCESS_2024_3520670
crossref_primary_10_2139_ssrn_3733398
crossref_primary_10_1016_j_asoc_2020_107065
crossref_primary_10_1016_j_eswa_2024_125457
crossref_primary_10_1186_s40537_022_00601_7
crossref_primary_10_18493_kmusekad_1459230
crossref_primary_10_1016_j_irfa_2020_101567
crossref_primary_10_1016_j_eswa_2024_124404
crossref_primary_10_1016_j_heliyon_2024_e28415
crossref_primary_10_1007_s42979_023_01941_8
crossref_primary_10_1016_j_qref_2022_04_003
crossref_primary_10_3390_a15110428
crossref_primary_10_3390_ai2040030
crossref_primary_10_1016_j_dss_2021_113650
crossref_primary_10_1080_00036846_2022_2097194
crossref_primary_10_3390_jrfm16070324
crossref_primary_10_1080_23322039_2022_2087287
crossref_primary_10_3390_s22051740
crossref_primary_10_1109_ACCESS_2023_3287888
crossref_primary_10_2139_ssrn_4094652
crossref_primary_10_1109_ACCESS_2021_3133937
crossref_primary_10_2139_ssrn_5023669
crossref_primary_10_15388_24_INFOR561
crossref_primary_10_3390_computation11050099
crossref_primary_10_1109_ACCESS_2022_3191668
crossref_primary_10_1007_s10614_024_10710_5
crossref_primary_10_1016_j_techfore_2022_121933
crossref_primary_10_3390_electronics13071277
crossref_primary_10_1109_ACCESS_2021_3062652
crossref_primary_10_54105_ijef_B1429_04021124
crossref_primary_10_3390_app13042692
crossref_primary_10_3390_en18061387
crossref_primary_10_1007_s10614_022_10262_6
crossref_primary_10_1063_5_0002759
crossref_primary_10_1109_ACCESS_2022_3177888
crossref_primary_10_1007_s42979_022_01291_x
crossref_primary_10_1109_ACCESS_2023_3240103
crossref_primary_10_1140_epjds_s13688_020_00239_6
crossref_primary_10_54392_irjmt2443
Cites_doi 10.1038/srep03415
10.1080/00036846.2015.1109038
10.1016/j.cam.2017.11.018
10.1016/j.cam.2017.02.031
10.2307/2231404
10.1371/journal.pone.0212137
10.1016/j.engappai.2017.04.006
10.1016/j.jocs.2017.07.018
10.1016/j.frl.2015.10.008
10.1007/s10822-018-0155-5
10.2139/ssrn.3142022
10.2139/ssrn.2607167
10.2139/ssrn.2579445
10.1016/j.econmod.2017.03.019
10.1023/A:1009868929893
10.1007/s11227-017-2046-2
10.1016/j.jocs.2016.07.006
10.1371/journal.pone.0161197
10.1371/journal.pone.0123923
10.1007/s10994-010-5227-2
10.1016/j.ribaf.2017.07.104
10.1016/j.ijepes.2019.02.022
10.1080/07421222.2018.1440774
10.1016/j.asoc.2017.06.059
10.1007/s10489-018-1190-6
10.1023/A:1022806918936
10.2478/saeb-2018-0013
10.1007/BF00116251
10.1016/j.cam.2016.02.009
10.1016/j.cam.2018.07.008
10.1016/j.engappai.2018.05.003
10.1016/j.najef.2018.06.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2019.112395
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2019_112395
S037704271930398X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-1dbe14b74469289c9da5faa6026d271b176f8c5c40ae60d28128298b6362e2753
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Tue Jul 01 04:27:10 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:31:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Machine learning algorithms
Sample dimension engineering
Occam’s Razor principle
Bitcoin price prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-1dbe14b74469289c9da5faa6026d271b176f8c5c40ae60d28128298b6362e2753
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2019_112395
crossref_primary_10_1016_j_cam_2019_112395
elsevier_sciencedirect_doi_10_1016_j_cam_2019_112395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ordóñez (b7) 2019; 346
Tong (b34) 2017
E. Pagnotta, A. Buraschi, An equilibrium valuation of bitcoin and decentralized network assets, 2018.
McNally, Roche, Caton (b15) 2018
I. Madan, S. Saluja, A. Zhao, Automated bitcoin trading via machine learning algorithms, vol. 20. URL
Abualigah, Khader, Hanandeh (b17) 2018; 25
Le, Viviani (b9) 2018; 44
Shah, Zhang (b27) 2014
Bacao (b40) 2018; 65
Zahálka, Železný (b32) 2011; 82
Freund (b36) 1998
S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.
Abualigah, Khader, Hanandeh (b12) 2018; 73
Dyhrberg (b41) 2016; 16
Mai (b3) 2018; 35
Kristoufek (b20) 2015; 10
Brentan (b6) 2017; 309
A. Greaves, B. Au, Using the bitcoin transaction graph to predict the price of bitcoin, stanford.edu, 2015.
Yermack (b2) 2015
2015.
Abualigah, Hanandeh (b11) 2015; 5
Balcilar (b24) 2017; 64
I. Georgoula, et al. Using time-series and sentiment analysis to detect the determinants of bitcoin prices, SSRN 2607167, 2015.
Gamberger, Lavrač (b31) 1997
Ebrahimpour (b37) 2017; 62
Kumar, Meghwani, Thakur (b45) 2016; 17
Wang (b46) 2019; 109
Kristoufek (b19) 2013; 3
Abualigah (b14) 2017; 60
Quinlan (b42) 1986; 1
P. Geurts, G. Louppe, Learning to rank with extremely randomized trees, in: JMLR: Workshop and Conference Proceedings, 2011.
Stefanescu, Moosavi, Sandu (b8) 2018; 340
Lv (b10) 2019; 14
G.H. Chen, S. Nikolov, D. Shah, A latent source model for nonparametric time series classification, in: Conference on Advances in Neural Information Processing Systems, 2013.
Abualigah, Khader (b16) 2017; 73
A. Hayes, What factors give cryptocurrencies their value: An empirical analysis, 2015.
Ciaian, Rajcaniova, d.A. Kancs (b22) 2016; 48
J. Bukovina, M. Martiček, Sentiment and bitcoin volatility, Mendel University in Brno, Faculty of Business and Economics, 2016.
Wang, Acm (b39) 2018
Zhenin (b38) 2018; 32
Abualigah, Khader, Hanandeh (b13) 2018; 48
Kim (b26) 2016; 11
Domingos (b33) 1999; 3
Langford, Blum (b35) 2003; 51
Barro (b23) 1979; 89
Basak (b44) 2019; 47
Nieto (b5) 2018; 330
10.1016/j.cam.2019.112395_b21
10.1016/j.cam.2019.112395_b43
Kristoufek (10.1016/j.cam.2019.112395_b20) 2015; 10
Gamberger (10.1016/j.cam.2019.112395_b31) 1997
Tong (10.1016/j.cam.2019.112395_b34) 2017
Abualigah (10.1016/j.cam.2019.112395_b17) 2018; 25
10.1016/j.cam.2019.112395_b25
10.1016/j.cam.2019.112395_b28
Ebrahimpour (10.1016/j.cam.2019.112395_b37) 2017; 62
Balcilar (10.1016/j.cam.2019.112395_b24) 2017; 64
Brentan (10.1016/j.cam.2019.112395_b6) 2017; 309
Abualigah (10.1016/j.cam.2019.112395_b11) 2015; 5
Abualigah (10.1016/j.cam.2019.112395_b16) 2017; 73
Abualigah (10.1016/j.cam.2019.112395_b12) 2018; 73
Quinlan (10.1016/j.cam.2019.112395_b42) 1986; 1
Shah (10.1016/j.cam.2019.112395_b27) 2014
Zhenin (10.1016/j.cam.2019.112395_b38) 2018; 32
McNally (10.1016/j.cam.2019.112395_b15) 2018
Mai (10.1016/j.cam.2019.112395_b3) 2018; 35
Ciaian (10.1016/j.cam.2019.112395_b22) 2016; 48
10.1016/j.cam.2019.112395_b29
Langford (10.1016/j.cam.2019.112395_b35) 2003; 51
Freund (10.1016/j.cam.2019.112395_b36) 1998
Dyhrberg (10.1016/j.cam.2019.112395_b41) 2016; 16
Wang (10.1016/j.cam.2019.112395_b46) 2019; 109
10.1016/j.cam.2019.112395_b1
10.1016/j.cam.2019.112395_b4
Domingos (10.1016/j.cam.2019.112395_b33) 1999; 3
Kumar (10.1016/j.cam.2019.112395_b45) 2016; 17
Nieto (10.1016/j.cam.2019.112395_b5) 2018; 330
Yermack (10.1016/j.cam.2019.112395_b2) 2015
Lv (10.1016/j.cam.2019.112395_b10) 2019; 14
Zahálka (10.1016/j.cam.2019.112395_b32) 2011; 82
Wang (10.1016/j.cam.2019.112395_b39) 2018
Bacao (10.1016/j.cam.2019.112395_b40) 2018; 65
Kim (10.1016/j.cam.2019.112395_b26) 2016; 11
Le (10.1016/j.cam.2019.112395_b9) 2018; 44
10.1016/j.cam.2019.112395_b30
Abualigah (10.1016/j.cam.2019.112395_b13) 2018; 48
Barro (10.1016/j.cam.2019.112395_b23) 1979; 89
10.1016/j.cam.2019.112395_b18
Kristoufek (10.1016/j.cam.2019.112395_b19) 2013; 3
Abualigah (10.1016/j.cam.2019.112395_b14) 2017; 60
Basak (10.1016/j.cam.2019.112395_b44) 2019; 47
Ordóñez (10.1016/j.cam.2019.112395_b7) 2019; 346
Stefanescu (10.1016/j.cam.2019.112395_b8) 2018; 340
References_xml – volume: 89
  start-page: 13
  year: 1979
  end-page: 33
  ident: b23
  article-title: Money and the price level under the gold standard
  publication-title: Econ. J.
– volume: 340
  start-page: 629
  year: 2018
  end-page: 644
  ident: b8
  article-title: Parametric domain decomposition for accurate reduced order models: applications of MP-LROM methodology
  publication-title: J. Comput. Appl. Math.
– volume: 25
  start-page: 456
  year: 2018
  end-page: 466
  ident: b17
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
– volume: 48
  start-page: 4047
  year: 2018
  end-page: 4071
  ident: b13
  article-title: Hybrid clustering analysis using improved krill herd algorithm
  publication-title: Appl. Intell.
– volume: 73
  start-page: 111
  year: 2018
  end-page: 125
  ident: b12
  article-title: A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 109
  start-page: 470
  year: 2019
  end-page: 479
  ident: b46
  article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 48
  start-page: 1799
  year: 2016
  end-page: 1815
  ident: b22
  article-title: The economics of bitcoin price formation
  publication-title: Appl. Econ.
– reference: P. Geurts, G. Louppe, Learning to rank with extremely randomized trees, in: JMLR: Workshop and Conference Proceedings, 2011.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  ident: b45
  article-title: Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets
  publication-title: J. Comput. Sci.
– volume: 346
  start-page: 184
  year: 2019
  end-page: 191
  ident: b7
  article-title: A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines
  publication-title: J. Comput. Appl. Math.
– volume: 65
  start-page: 97
  year: 2018
  end-page: 117
  ident: b40
  article-title: Information transmission between cryptocurrencies: does bitcoin rule the cryptocurrency world?
  publication-title: Sci. Ann. Econ. Bus.
– volume: 35
  start-page: 19
  year: 2018
  end-page: 52
  ident: b3
  article-title: How does social media impact bitcoin value? a test of the silent majority hypothesis
  publication-title: J. Manage. Inf. Syst.
– reference: E. Pagnotta, A. Buraschi, An equilibrium valuation of bitcoin and decentralized network assets, 2018.
– reference: J. Bukovina, M. Martiček, Sentiment and bitcoin volatility, Mendel University in Brno, Faculty of Business and Economics, 2016.
– volume: 82
  start-page: 475
  year: 2011
  end-page: 481
  ident: b32
  article-title: An experimental test of Occam’s razor in classification
  publication-title: Mach. Learn.
– start-page: 31
  year: 2015
  end-page: 43
  ident: b2
  article-title: Is bitcoin a real currency? an economic appraisal
  publication-title: Handbook of Digital Currency
– reference: I. Madan, S. Saluja, A. Zhao, Automated bitcoin trading via machine learning algorithms, vol. 20. URL:
– volume: 14
  year: 2019
  ident: b10
  article-title: Selection of the optimal trading model for stock investment in different industries
  publication-title: PLoS One
– reference: I. Georgoula, et al. Using time-series and sentiment analysis to detect the determinants of bitcoin prices, SSRN 2607167, 2015.
– year: 1998
  ident: b36
  article-title: Self bounding learning algorithms
  publication-title: COLT
– volume: 3
  start-page: 3415
  year: 2013
  ident: b19
  article-title: Bitcoin meets google trends and wikipedia: quantifying the relationship between phenomena of the internet era
  publication-title: Sci. Rep.
– reference: , 2015.
– volume: 73
  start-page: 4773
  year: 2017
  end-page: 4795
  ident: b16
  article-title: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering
  publication-title: J. Supercomput.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b42
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 47
  start-page: 552
  year: 2019
  end-page: 567
  ident: b44
  article-title: Predicting the direction of stock market prices using tree-based classifiers
  publication-title: North American J. Econ. Finance
– reference: G.H. Chen, S. Nikolov, D. Shah, A latent source model for nonparametric time series classification, in: Conference on Advances in Neural Information Processing Systems, 2013.
– volume: 51
  start-page: 165
  year: 2003
  end-page: 179
  ident: b35
  article-title: Microchoice bounds and self bounding learning algorithms
  publication-title: Mach. Learn.
– volume: 62
  start-page: 214
  year: 2017
  end-page: 221
  ident: b37
  article-title: Occam’s razor in dimension reduction: using reduced row echelon form for finding linear independent features in high dimensional microarray datasets
  publication-title: Eng. Appl. Artif. Intell.
– year: 2018
  ident: b15
  article-title: Predicting the price of bitcoin using machine learning
  publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, PDP
– volume: 32
  start-page: 877
  year: 2018
  end-page: 888
  ident: b38
  article-title: Rescoring of docking poses under occam’s razor: are there simpler solutions?
  publication-title: J. Comput. Aid. Mol. Des.
– volume: 60
  start-page: 423
  year: 2017
  end-page: 435
  ident: b14
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 19
  year: 2015
  ident: b11
  article-title: Applying genetic algorithms to information retrieval using vector space model
  publication-title: Int. J. Comput. Sci. Eng. Appl.
– volume: 11
  year: 2016
  ident: b26
  article-title: Predicting fluctuations in cryptocurrency transactions based on user comments and replies
  publication-title: Plos One
– volume: 64
  start-page: 74
  year: 2017
  end-page: 81
  ident: b24
  article-title: Can volume predict bitcoin returns and volatility? a quantiles-based approach
  publication-title: Econ. Model.
– volume: 330
  start-page: 877
  year: 2018
  end-page: 895
  ident: b5
  article-title: A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance
  publication-title: J. Comput. Appl. Math.
– start-page: 74
  year: 2018
  end-page: 81
  ident: b39
  article-title: Machine learning for feature-based analytics
  publication-title: Proceedings of the 2018 International Symposium on Physical Design
– volume: 10
  year: 2015
  ident: b20
  article-title: What are the main drivers of the Bitcoin price? evidence from wavelet coherence analysis
  publication-title: PLoS One
– year: 2017
  ident: b34
  article-title: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 1997
  ident: b31
  article-title: Conditions for occam’s razor applicability and noise elimination
  publication-title: European Conference on Machine Learning
– volume: 3
  start-page: 409
  year: 1999
  end-page: 425
  ident: b33
  article-title: The role of occam’s razor in knowledge discovery
  publication-title: Data Min. Knowl. Discov.
– volume: 16
  start-page: 85
  year: 2016
  end-page: 92
  ident: b41
  article-title: Bitcoin, gold and the dollar–a garch volatility analysis
  publication-title: Finance Res. Lett.
– volume: 309
  start-page: 532
  year: 2017
  end-page: 541
  ident: b6
  article-title: Hybrid regression model for near real-time urban water demand forecasting
  publication-title: J. Comput. Appl. Math.
– reference: A. Hayes, What factors give cryptocurrencies their value: An empirical analysis, 2015.
– reference: S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.
– volume: 44
  start-page: 16
  year: 2018
  end-page: 25
  ident: b9
  article-title: Predicting bank failure: an improvement by implementing a machine-learning approach to classical financial ratios
  publication-title: Res. Int. Bus. Finance
– year: 2014
  ident: b27
  article-title: Bayesian regression and bitcoin
  publication-title: Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on
– reference: A. Greaves, B. Au, Using the bitcoin transaction graph to predict the price of bitcoin, stanford.edu, 2015.
– ident: 10.1016/j.cam.2019.112395_b4
– volume: 3
  start-page: 3415
  year: 2013
  ident: 10.1016/j.cam.2019.112395_b19
  article-title: Bitcoin meets google trends and wikipedia: quantifying the relationship between phenomena of the internet era
  publication-title: Sci. Rep.
  doi: 10.1038/srep03415
– volume: 48
  start-page: 1799
  issue: 19
  year: 2016
  ident: 10.1016/j.cam.2019.112395_b22
  article-title: The economics of bitcoin price formation
  publication-title: Appl. Econ.
  doi: 10.1080/00036846.2015.1109038
– ident: 10.1016/j.cam.2019.112395_b43
– volume: 340
  start-page: 629
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b8
  article-title: Parametric domain decomposition for accurate reduced order models: applications of MP-LROM methodology
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.11.018
– volume: 330
  start-page: 877
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b5
  article-title: A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.02.031
– volume: 89
  start-page: 13
  issue: 353
  year: 1979
  ident: 10.1016/j.cam.2019.112395_b23
  article-title: Money and the price level under the gold standard
  publication-title: Econ. J.
  doi: 10.2307/2231404
– year: 1998
  ident: 10.1016/j.cam.2019.112395_b36
  article-title: Self bounding learning algorithms
– volume: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.cam.2019.112395_b10
  article-title: Selection of the optimal trading model for stock investment in different industries
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212137
– volume: 62
  start-page: 214
  year: 2017
  ident: 10.1016/j.cam.2019.112395_b37
  article-title: Occam’s razor in dimension reduction: using reduced row echelon form for finding linear independent features in high dimensional microarray datasets
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.04.006
– ident: 10.1016/j.cam.2019.112395_b30
– ident: 10.1016/j.cam.2019.112395_b28
– volume: 25
  start-page: 456
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b17
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.018
– volume: 16
  start-page: 85
  year: 2016
  ident: 10.1016/j.cam.2019.112395_b41
  article-title: Bitcoin, gold and the dollar–a garch volatility analysis
  publication-title: Finance Res. Lett.
  doi: 10.1016/j.frl.2015.10.008
– year: 1997
  ident: 10.1016/j.cam.2019.112395_b31
  article-title: Conditions for occam’s razor applicability and noise elimination
– year: 2018
  ident: 10.1016/j.cam.2019.112395_b15
  article-title: Predicting the price of bitcoin using machine learning
– volume: 32
  start-page: 877
  issue: 9
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b38
  article-title: Rescoring of docking poses under occam’s razor: are there simpler solutions?
  publication-title: J. Comput. Aid. Mol. Des.
  doi: 10.1007/s10822-018-0155-5
– ident: 10.1016/j.cam.2019.112395_b18
  doi: 10.2139/ssrn.3142022
– ident: 10.1016/j.cam.2019.112395_b29
  doi: 10.2139/ssrn.2607167
– volume: 5
  start-page: 19
  issue: 1
  year: 2015
  ident: 10.1016/j.cam.2019.112395_b11
  article-title: Applying genetic algorithms to information retrieval using vector space model
  publication-title: Int. J. Comput. Sci. Eng. Appl.
– ident: 10.1016/j.cam.2019.112395_b21
  doi: 10.2139/ssrn.2579445
– volume: 64
  start-page: 74
  year: 2017
  ident: 10.1016/j.cam.2019.112395_b24
  article-title: Can volume predict bitcoin returns and volatility? a quantiles-based approach
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2017.03.019
– volume: 3
  start-page: 409
  issue: 4
  year: 1999
  ident: 10.1016/j.cam.2019.112395_b33
  article-title: The role of occam’s razor in knowledge discovery
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009868929893
– year: 2014
  ident: 10.1016/j.cam.2019.112395_b27
  article-title: Bayesian regression and bitcoin
– start-page: 74
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b39
  article-title: Machine learning for feature-based analytics
– ident: 10.1016/j.cam.2019.112395_b1
– volume: 73
  start-page: 4773
  issue: 11
  year: 2017
  ident: 10.1016/j.cam.2019.112395_b16
  article-title: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2046-2
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.cam.2019.112395_b45
  article-title: Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.07.006
– year: 2017
  ident: 10.1016/j.cam.2019.112395_b34
  article-title: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.cam.2019.112395_b26
  article-title: Predicting fluctuations in cryptocurrency transactions based on user comments and replies
  publication-title: Plos One
  doi: 10.1371/journal.pone.0161197
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.cam.2019.112395_b20
  article-title: What are the main drivers of the Bitcoin price? evidence from wavelet coherence analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123923
– volume: 82
  start-page: 475
  issue: 3
  year: 2011
  ident: 10.1016/j.cam.2019.112395_b32
  article-title: An experimental test of Occam’s razor in classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-010-5227-2
– volume: 44
  start-page: 16
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b9
  article-title: Predicting bank failure: an improvement by implementing a machine-learning approach to classical financial ratios
  publication-title: Res. Int. Bus. Finance
  doi: 10.1016/j.ribaf.2017.07.104
– volume: 109
  start-page: 470
  year: 2019
  ident: 10.1016/j.cam.2019.112395_b46
  article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.02.022
– volume: 35
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b3
  article-title: How does social media impact bitcoin value? a test of the silent majority hypothesis
  publication-title: J. Manage. Inf. Syst.
  doi: 10.1080/07421222.2018.1440774
– volume: 60
  start-page: 423
  year: 2017
  ident: 10.1016/j.cam.2019.112395_b14
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.059
– volume: 48
  start-page: 4047
  issue: 11
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b13
  article-title: Hybrid clustering analysis using improved krill herd algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1190-6
– start-page: 31
  year: 2015
  ident: 10.1016/j.cam.2019.112395_b2
  article-title: Is bitcoin a real currency? an economic appraisal
– volume: 51
  start-page: 165
  issue: 2
  year: 2003
  ident: 10.1016/j.cam.2019.112395_b35
  article-title: Microchoice bounds and self bounding learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022806918936
– volume: 65
  start-page: 97
  issue: 2
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b40
  article-title: Information transmission between cryptocurrencies: does bitcoin rule the cryptocurrency world?
  publication-title: Sci. Ann. Econ. Bus.
  doi: 10.2478/saeb-2018-0013
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.cam.2019.112395_b42
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– ident: 10.1016/j.cam.2019.112395_b25
– volume: 309
  start-page: 532
  year: 2017
  ident: 10.1016/j.cam.2019.112395_b6
  article-title: Hybrid regression model for near real-time urban water demand forecasting
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.02.009
– volume: 346
  start-page: 184
  year: 2019
  ident: 10.1016/j.cam.2019.112395_b7
  article-title: A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.008
– volume: 73
  start-page: 111
  year: 2018
  ident: 10.1016/j.cam.2019.112395_b12
  article-title: A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.05.003
– volume: 47
  start-page: 552
  year: 2019
  ident: 10.1016/j.cam.2019.112395_b44
  article-title: Predicting the direction of stock market prices using tree-based classifiers
  publication-title: North American J. Econ. Finance
  doi: 10.1016/j.najef.2018.06.013
SSID ssj0006914
Score 2.6643014
Snippet After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112395
SubjectTerms Bitcoin price prediction
Machine learning algorithms
Occam’s Razor principle
Sample dimension engineering
Title Bitcoin price prediction using machine learning: An approach to sample dimension engineering
URI https://dx.doi.org/10.1016/j.cam.2019.112395
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuqaNm0ab9twbOqGqIMehJIm6ahoN1y9-reb14-poB68tBASKD8e76P5vd9D6NRJpB_YTFge1cKiRFArplJYghKtPBMCEw3dyOOJP5zSq9ALG6hf98IArbLy_aVPL7x1tdKp0Ows0rRzb7uMwaQIk4LYLg9C6GCnDKz8_P2T5uHzUt_bbLZgd32zWXC8pIBmdMKhkcaFERM_xaYv8WawhTarRBF3y2_ZRg2d7aCN8UpldbmLHntpLudphhegDGSecOkCQGNgs8_wS0GU1LiaDDG7wN0M1yLiOJ_jpQBtYKxA4R_-mmH9qU64h6aDy4f-0KqmJVjS4Sy3iIo1oTEz9R03VZTkSniJEDBiShmQYsL8JJCepLbQvq0cE9kDhwexb0KYdkzVso-a2TzTBwhLlnhME-EoA57igvtCuSIm0g1MgiJlC9k1TpGspMRhosVzVHPGniIDbQTQRiW0LXS2OrIodTT-2kxr8KNvxhAZP__7scP_HTtC6w4U0QUV-xg189c3fWIyjTxuF6bURmvd_t3NLbxH18OJWR2FvQ8YTtUP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA6iB_UgrjiuOehFqNOmadMIHlwZl_GiwhyEmiapjGhncCrixT_lH_S9Li6gHgQvPZSmpF_CW5rvvY-QNZbqMHKFcgJulcM9xZ2Ea-Uo7lkTgAtMLVYjt8_C1iU_7gSdIfJa18IgrbKy_aVNL6x1dadZodnsd7vNc9cXApUiIARxfRl1KmbliX1-grxtsH20D4u8ztjhwcVey6mkBRzNpMgdzyTW44mAZEhCyqGlUUGqFOoxGXhj4okwjXSguats6BoGbjBiMkpCsPeWCZSKALs_wsFcoGzC5ssHrySUZUNxmJ2D06uPUgtSmVZY_e5JrNzxUdPiO2f4ycEdTpKJKjKlO-XHT5Ehm02T8fZ7W9fBDLna7ea6181oH1sRwRVPeXBlKdLnb-h9wcy0tJKiuNmiOxmtu5bTvEcHCpsRU4OSAvibjtqPdoiz5PJfMJwjw1kvs_OEapEGwnqKGQDPSCVDZXyVeNqPICLSukHcGqdYV73LUULjLq5JarcxQBsjtHEJbYNsvA_pl407fnuY1-DHX3ZfDI7l52ELfxu2SkZbF-3T-PTo7GSRjDHM4Ase-BIZzh8e7TKEOXmyUmwrSq7_ex-_AdiODH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bitcoin+price+prediction+using+machine+learning%3A+An+approach+to+sample+dimension+engineering&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Chen%2C+Zheshi&rft.au=Li%2C+Chunhong&rft.au=Sun%2C+Wenjun&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=365&rft_id=info:doi/10.1016%2Fj.cam.2019.112395&rft.externalDocID=S037704271930398X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon