An efficient phase-field model for fatigue fracture in viscoelastic solids using cyclic load decomposition and damage superposition
Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for f...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 418; p. 116469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for fast evaluations of high-cycle fatigue damage. Based on the Boltzmann superposition principle, the cyclic fatigue load is decomposed into a mean load and a zero-mean cyclic load. The response of the mean load is solved numerically, while the response of the zero-mean cyclic load is solved analytically. The phase-field driving force is obtained analytically by combining the responses of the two independent parts, and the phase-field evolution is calculated numerically. In addition, both the dissipated energy and the elastic energy are decomposed using the volumetric-deviatoric decomposition to avoid unrealistic damage under the compression portion of the cyclic load. The proposed efficiency-enhanced model satisfies the energy conservation law as it does not require the fracture toughness degradation or additional fatigue energy treatments. The computational efficiency of the overall fatigue fracture can be greatly improved by leveraging the analytical solution for the response associated with the cyclic load. Numerical investigations are performed, and comparisons with the conventional cycle-by-cycle computation method are made. The results show that the proposed method can reduce the exponential computational demand to a constant or a linear one while achieving an accuracy comparable to that of the conventional method. The effectiveness of the proposed method is further demonstrated using an actual rubber component with testing data.
•An efficient phase-field model for viscoelastic fatigue fracture is developed.•Volumetric-deviatoric decomposition is used for both dissipated and elastic energies.•The model satisfies the energy conservation and thermodynamic consistency.•It reduces the exponential scaling computational demand to a constant or a linear one.•Effectiveness and accuracy are validated using a realistic component with test data. |
---|---|
AbstractList | Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for fast evaluations of high-cycle fatigue damage. Based on the Boltzmann superposition principle, the cyclic fatigue load is decomposed into a mean load and a zero-mean cyclic load. The response of the mean load is solved numerically, while the response of the zero-mean cyclic load is solved analytically. The phase-field driving force is obtained analytically by combining the responses of the two independent parts, and the phase-field evolution is calculated numerically. In addition, both the dissipated energy and the elastic energy are decomposed using the volumetric-deviatoric decomposition to avoid unrealistic damage under the compression portion of the cyclic load. The proposed efficiency-enhanced model satisfies the energy conservation law as it does not require the fracture toughness degradation or additional fatigue energy treatments. The computational efficiency of the overall fatigue fracture can be greatly improved by leveraging the analytical solution for the response associated with the cyclic load. Numerical investigations are performed, and comparisons with the conventional cycle-by-cycle computation method are made. The results show that the proposed method can reduce the exponential computational demand to a constant or a linear one while achieving an accuracy comparable to that of the conventional method. The effectiveness of the proposed method is further demonstrated using an actual rubber component with testing data.
•An efficient phase-field model for viscoelastic fatigue fracture is developed.•Volumetric-deviatoric decomposition is used for both dissipated and elastic energies.•The model satisfies the energy conservation and thermodynamic consistency.•It reduces the exponential scaling computational demand to a constant or a linear one.•Effectiveness and accuracy are validated using a realistic component with test data. |
ArticleNumber | 116469 |
Author | Yuan, Hongwei Guan, Xuefei Tang, Wei He, Jingjing |
Author_xml | – sequence: 1 givenname: Hongwei orcidid: 0000-0002-0639-2987 surname: Yuan fullname: Yuan, Hongwei organization: Graduate School of China Academy of Engineering Physics, Beijing 100193, China – sequence: 2 givenname: Wei surname: Tang fullname: Tang, Wei organization: Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China – sequence: 3 givenname: Jingjing surname: He fullname: He, Jingjing organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Xuefei surname: Guan fullname: Guan, Xuefei email: xfguan@gscaep.ac.cn organization: Graduate School of China Academy of Engineering Physics, Beijing 100193, China |
BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP2BXkp-hqxD6gkA37VrI0iidYFtGkgNZ98frkHbTRWYzcIczzJwFmfWuB0LuOUs54-XDPtWdSgUTWcp5mZerKzLndbVKBM_qGZkzlhdJVYvihixC2LOpai7m5HvdU7AWNUIf6fClAiQWoTW0cwZaap2nVkXcjUCtVzqOHij29IBBO2hViKhpcC2aQMeA_Y7qo26nrHXKUAPadYMLGNH1VPVTojq1AxrGAfzf4JZcW9UGuPvtS_L5_PSxeU227y9vm_U20WJVxYQXeVbXkBW2KYwwWhWsgaaqwORlzetGWFtYnpnSWM5tUQoOrMlFk-lSZ6tSZUtSnfdq70LwYKXGqE4XRK-wlZzJk0u5l5NLeXIpzy4nkv8jB4-d8seLzOOZgemlA4KX4SRZg0EPOkrj8AL9Ay-MkgI |
CitedBy_id | crossref_primary_10_1016_j_jmps_2024_105932 crossref_primary_10_1016_j_engfracmech_2025_110851 crossref_primary_10_1111_ffe_14540 |
Cites_doi | 10.1016/j.cma.2019.112731 10.1016/S0022-5096(98)00034-9 10.1016/j.cma.2021.114286 10.1016/j.ijplas.2021.103021 10.1016/j.jmps.2019.103684 10.1016/j.finel.2023.104004 10.1016/j.ijfatigue.2022.107091 10.1016/j.jmps.2019.03.022 10.1016/j.cma.2018.09.018 10.1016/j.cma.2010.04.011 10.1016/j.cma.2023.116018 10.1016/j.ijfatigue.2021.106297 10.1016/j.engfracmech.2019.106807 10.1016/j.cma.2020.113473 10.1016/j.euromechsol.2021.104472 10.1016/j.cma.2022.115459 10.1007/s10704-020-00468-w 10.1016/S0022-5096(99)00028-9 10.1016/j.engfracmech.2022.108234 10.1016/j.ijmecsci.2017.05.047 10.1016/0167-2789(95)00173-5 10.1016/j.ijfatigue.2021.106521 10.1007/s00161-021-01013-3 10.1016/j.prostr.2018.12.129 10.1016/j.cma.2023.116294 10.1016/j.jmps.2017.03.015 10.1002/nme.2861 10.1007/s10704-020-00508-5 10.1016/j.tafmec.2019.102282 10.1007/s00466-014-1109-y 10.1016/j.jmps.2018.06.006 10.1016/j.engfracmech.2022.108255 10.1007/s00466-019-01769-1 10.1016/j.cma.2022.115181 10.1016/j.engfracmech.2017.11.036 10.1016/j.cma.2020.112962 10.1016/j.engfracmech.2022.108411 10.1016/j.mechmat.2019.103282 10.1016/j.jmps.2009.04.011 10.1016/j.cma.2020.113247 10.1007/s10704-022-00628-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cma.2023.116469 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2023_116469 S0045782523005935 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SSH VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-154388e35fb5d2dca50beb77ed46818b2ff5f13d6df11f5621e0b42b3c6c396a3 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 04:06:22 EDT 2025 Sat Jul 06 15:31:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase-field Damage superposition Fatigue fracture Viscoelastic Cyclic load |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-154388e35fb5d2dca50beb77ed46818b2ff5f13d6df11f5621e0b42b3c6c396a3 |
ORCID | 0000-0002-0639-2987 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2023_116469 crossref_primary_10_1016_j_cma_2023_116469 elsevier_sciencedirect_doi_10_1016_j_cma_2023_116469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haveroth, Vale, Bittencourt, Boldrini (b22) 2020; 364 Dammaz, Ambati, Kästner (b32) 2021; 33 Wu, Nguyen (b41) 2018; 119 Schröder, Pise, Brands, Gebuhr, Anders (b24) 2022; 398 Yin, Kaliske (b34) 2020; 65 Bourdin, Francfort, Marigo (b5) 2000; 48 Yuan, Guan (b36) 2023; 410 Wu (b42) 2017; 103 Huang, Yan, Shen, Wan, Li, Ge, Yu, Guo (b33) 2022; 266 Mesgarnejad, Imanian, Karma (b11) 2019; 103 Khalil, Elghazouli, Martínez-Pañeda (b12) 2022; 388 Simoes, Paeda (b16) 2020; 373 Yang, Shen (b28) 2023; 416 Miehe, Hofacker, Welschinger (b39) 2010; 199 Alessi, Marigo, Maurini, Vidoli (b43) 2018; 149 Loew, Peters, Beex (b35) 2019; 127 Lakes (b46) 1999 Francfort (b6) 2022; 237 Schneider, Müller, Seiler, Tobie, Stahl, Kästner (b19) 2022; 163 Hasan, Baxevanis (b10) 2021; 150 Aygün, Wiegold, Klinge (b25) 2021; 143 Alessi, Vidoli, De Lorenzis (b8) 2018; 190 Song, Zhao, Qi, Li, Shi, Huang, Su, Zhang (b17) 2022; 92 Ulloa, Wambacq, Alessi, Degrande, François (b14) 2021; 373 Griffith (b3) 1921; 221 Loew, Peters, Beex (b37) 2020; 142 Loew, Poh, Peters, Beex (b21) 2020; 370 Shen, Waisman, Guo (b31) 2019; 346 Stephens, Fatemi, Stephens, Fuchs (b1) 2000 Lopez-Pamies, Bourdin (b2) 2022 Grossman-Ponemon, Mesgarnejad, Karma (b26) 2022; 264 Carrara, Ambati, Alessi, De Lorenzis (b9) 2020; 361 Seiler, Linse, Hantschke, Kstner (b13) 2020; 224 Liu, Roggel, Juhre (b30) 2018; 13 Ambati, Gerasimov, De Lorenzis (b45) 2015; 55 Golahmar, Kristensen, Niordson, Martínez-Pañeda (b15) 2022; 154 Tan, He, Li, Kang (b18) 2022; 399 Lo, Borden, Ravi-Chandar, Landis (b23) 2019; 132 Yan, Schreiber, Müller (b27) 2022; 237 Jaccon, Prabel, Molnár, Bluthé, Gravouil (b29) 2023; 224 Amor, Marigo, Maurini (b38) 2009; 57 Zhuang, Zhou, Huynh, Areias, Rabczuk (b7) 2022; 262 Anderson (b47) 2017 Gurtin (b44) 1996; 92 Francfort, Marigo (b4) 1998; 46 Miehe, Welschinger, Hofacker (b40) 2010; 83 Schreiber, Kuhn, Müller, Zohdi (b20) 2020; 225 Carrara (10.1016/j.cma.2023.116469_b9) 2020; 361 Golahmar (10.1016/j.cma.2023.116469_b15) 2022; 154 Mesgarnejad (10.1016/j.cma.2023.116469_b11) 2019; 103 Yin (10.1016/j.cma.2023.116469_b34) 2020; 65 Alessi (10.1016/j.cma.2023.116469_b8) 2018; 190 Stephens (10.1016/j.cma.2023.116469_b1) 2000 Yuan (10.1016/j.cma.2023.116469_b36) 2023; 410 Yang (10.1016/j.cma.2023.116469_b28) 2023; 416 Jaccon (10.1016/j.cma.2023.116469_b29) 2023; 224 Lo (10.1016/j.cma.2023.116469_b23) 2019; 132 Lopez-Pamies (10.1016/j.cma.2023.116469_b2) 2022 Ambati (10.1016/j.cma.2023.116469_b45) 2015; 55 Aygün (10.1016/j.cma.2023.116469_b25) 2021; 143 Schneider (10.1016/j.cma.2023.116469_b19) 2022; 163 Francfort (10.1016/j.cma.2023.116469_b6) 2022; 237 Ulloa (10.1016/j.cma.2023.116469_b14) 2021; 373 Wu (10.1016/j.cma.2023.116469_b41) 2018; 119 Dammaz (10.1016/j.cma.2023.116469_b32) 2021; 33 Schreiber (10.1016/j.cma.2023.116469_b20) 2020; 225 Huang (10.1016/j.cma.2023.116469_b33) 2022; 266 Khalil (10.1016/j.cma.2023.116469_b12) 2022; 388 Anderson (10.1016/j.cma.2023.116469_b47) 2017 Tan (10.1016/j.cma.2023.116469_b18) 2022; 399 Miehe (10.1016/j.cma.2023.116469_b39) 2010; 199 Liu (10.1016/j.cma.2023.116469_b30) 2018; 13 Shen (10.1016/j.cma.2023.116469_b31) 2019; 346 Schröder (10.1016/j.cma.2023.116469_b24) 2022; 398 Zhuang (10.1016/j.cma.2023.116469_b7) 2022; 262 Lakes (10.1016/j.cma.2023.116469_b46) 1999 Haveroth (10.1016/j.cma.2023.116469_b22) 2020; 364 Alessi (10.1016/j.cma.2023.116469_b43) 2018; 149 Francfort (10.1016/j.cma.2023.116469_b4) 1998; 46 Loew (10.1016/j.cma.2023.116469_b37) 2020; 142 Wu (10.1016/j.cma.2023.116469_b42) 2017; 103 Amor (10.1016/j.cma.2023.116469_b38) 2009; 57 Bourdin (10.1016/j.cma.2023.116469_b5) 2000; 48 Griffith (10.1016/j.cma.2023.116469_b3) 1921; 221 Simoes (10.1016/j.cma.2023.116469_b16) 2020; 373 Loew (10.1016/j.cma.2023.116469_b21) 2020; 370 Grossman-Ponemon (10.1016/j.cma.2023.116469_b26) 2022; 264 Hasan (10.1016/j.cma.2023.116469_b10) 2021; 150 Seiler (10.1016/j.cma.2023.116469_b13) 2020; 224 Yan (10.1016/j.cma.2023.116469_b27) 2022; 237 Loew (10.1016/j.cma.2023.116469_b35) 2019; 127 Song (10.1016/j.cma.2023.116469_b17) 2022; 92 Miehe (10.1016/j.cma.2023.116469_b40) 2010; 83 Gurtin (10.1016/j.cma.2023.116469_b44) 1996; 92 |
References_xml | – volume: 398 year: 2022 ident: b24 article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 388 year: 2022 ident: b12 article-title: A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 154 year: 2022 ident: b15 article-title: A phase field model for hydrogen-assisted fatigue publication-title: Int. J. Fatigue – volume: 103 start-page: 72 year: 2017 end-page: 99 ident: b42 article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure publication-title: J. Mech. Phys. Solids – year: 2017 ident: b47 article-title: Fracture Mechanics: Fundamentals and Applications – volume: 237 start-page: 47 year: 2022 end-page: 60 ident: b27 article-title: An efficient implementation of a phase field model for fatigue crack growth publication-title: Int. J. Fract. – year: 2000 ident: b1 article-title: Metal Fatigue in Engineering – volume: 416 year: 2023 ident: b28 article-title: An acceleration scheme for the phase field fatigue fracture simulation with a concurrent temporal homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 92 year: 2022 ident: b17 article-title: Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue publication-title: Eur. J. Mech. A. Solids – volume: 410 year: 2023 ident: b36 article-title: Phase-field viscoelastic fracture modeling of polymer composites using strain tensor spectral decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 224 year: 2023 ident: b29 article-title: Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling publication-title: Finite Elem. Anal. Des. – volume: 346 start-page: 862 year: 2019 end-page: 890 ident: b31 article-title: Fracture of viscoelastic solids modeled with a modified phase field method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 150 year: 2021 ident: b10 article-title: A phase-field model for low-cycle fatigue of brittle materials publication-title: Int. J. Fatigue – volume: 65 start-page: 293 year: 2020 end-page: 309 ident: b34 article-title: Fracture simulation of viscoelastic polymers by the phase-field method publication-title: Comput. Mech. – volume: 373 year: 2020 ident: b16 article-title: Phase field modelling of fracture and fatigue in shape memory alloys publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: b4 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids – volume: 361 year: 2020 ident: b9 article-title: A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 224 year: 2020 ident: b13 article-title: An efficient phase-field model for fatigue fracture in ductile materials publication-title: Eng. Fract. Mech. – volume: 163 year: 2022 ident: b19 article-title: Phase-field modeling of fatigue crack growth during tooth flank fracture in case-hardened spur gears publication-title: Int. J. Fatigue – year: 1999 ident: b46 article-title: Viscoelastic Solids – volume: 92 start-page: 178 year: 1996 end-page: 192 ident: b44 article-title: Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance publication-title: Physica D – volume: 364 year: 2020 ident: b22 article-title: A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: b3 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character – volume: 190 start-page: 53 year: 2018 end-page: 73 ident: b8 article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case publication-title: Eng. Fract. Mech. – year: 2022 ident: b2 article-title: Phase-Field Approaches To Fracture in the 3rd Millennium – volume: 132 year: 2019 ident: b23 article-title: A phase-field model for fatigue crack growth publication-title: J. Mech. Phys. Solids – volume: 237 start-page: 3 year: 2022 end-page: 13 ident: b6 article-title: Variational fracture: Twenty years after publication-title: Int. J. Fract. – volume: 370 year: 2020 ident: b21 article-title: Accelerating fatigue simulations of a phase-field damage model for rubber publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 33 start-page: 1907 year: 2021 end-page: 1929 ident: b32 article-title: A unified phase-field model of fracture in viscoelastic materials publication-title: Contin. Mech. Thermodyn. – volume: 373 year: 2021 ident: b14 article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 142 year: 2020 ident: b37 article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation publication-title: Mech. Mater. – volume: 127 start-page: 266 year: 2019 end-page: 294 ident: b35 article-title: Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification publication-title: J. Mech. Phys. Solids – volume: 399 year: 2022 ident: b18 article-title: A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 57 start-page: 1209 year: 2009 end-page: 1229 ident: b38 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments publication-title: J. Mech. Phys. Solids – volume: 13 start-page: 781 year: 2018 end-page: 786 ident: b30 article-title: Phase-field modelling of fracture in viscoelastic solids publication-title: Procedia Struct. Integrity – volume: 55 start-page: 383 year: 2015 end-page: 405 ident: b45 article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation publication-title: Comput. Mech. – volume: 48 start-page: 797 year: 2000 end-page: 826 ident: b5 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids – volume: 262 year: 2022 ident: b7 article-title: Phase field modeling and computer implementation: A review publication-title: Eng. Fract. Mech. – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: b39 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 103 year: 2019 ident: b11 article-title: Phase-field models for fatigue crack growth publication-title: Theor. Appl. Fract. Mech. – volume: 149 start-page: 559 year: 2018 end-page: 576 ident: b43 article-title: Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples publication-title: Int. J. Mech. Sci. – volume: 143 year: 2021 ident: b25 article-title: Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load publication-title: Int. J. Plast. – volume: 119 start-page: 20 year: 2018 end-page: 42 ident: b41 article-title: A length scale insensitive phase-field damage model for brittle fracture publication-title: J. Mech. Phys. Solids – volume: 266 year: 2022 ident: b33 article-title: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method publication-title: Eng. Fract. Mech. – volume: 264 year: 2022 ident: b26 article-title: Phase-field modeling of continuous fatigue via toughness degradation publication-title: Eng. Fract. Mech. – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: b40 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations publication-title: Internat. J. Numer. Methods Engrg. – volume: 225 start-page: 89 year: 2020 end-page: 100 ident: b20 article-title: A phase field modeling approach of cyclic fatigue crack growth publication-title: Int. J. Fract. – volume: 361 year: 2020 ident: 10.1016/j.cma.2023.116469_b9 article-title: A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112731 – year: 2000 ident: 10.1016/j.cma.2023.116469_b1 – volume: 46 start-page: 1319 year: 1998 ident: 10.1016/j.cma.2023.116469_b4 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00034-9 – volume: 388 year: 2022 ident: 10.1016/j.cma.2023.116469_b12 article-title: A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114286 – volume: 143 year: 2021 ident: 10.1016/j.cma.2023.116469_b25 article-title: Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.103021 – volume: 373 year: 2020 ident: 10.1016/j.cma.2023.116469_b16 article-title: Phase field modelling of fracture and fatigue in shape memory alloys publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 132 year: 2019 ident: 10.1016/j.cma.2023.116469_b23 article-title: A phase-field model for fatigue crack growth publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.103684 – volume: 224 year: 2023 ident: 10.1016/j.cma.2023.116469_b29 article-title: Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2023.104004 – year: 2022 ident: 10.1016/j.cma.2023.116469_b2 – volume: 163 year: 2022 ident: 10.1016/j.cma.2023.116469_b19 article-title: Phase-field modeling of fatigue crack growth during tooth flank fracture in case-hardened spur gears publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2022.107091 – volume: 127 start-page: 266 year: 2019 ident: 10.1016/j.cma.2023.116469_b35 article-title: Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.03.022 – volume: 346 start-page: 862 year: 2019 ident: 10.1016/j.cma.2023.116469_b31 article-title: Fracture of viscoelastic solids modeled with a modified phase field method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.09.018 – year: 1999 ident: 10.1016/j.cma.2023.116469_b46 – volume: 199 start-page: 2765 year: 2010 ident: 10.1016/j.cma.2023.116469_b39 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.04.011 – volume: 410 year: 2023 ident: 10.1016/j.cma.2023.116469_b36 article-title: Phase-field viscoelastic fracture modeling of polymer composites using strain tensor spectral decomposition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2023.116018 – volume: 150 year: 2021 ident: 10.1016/j.cma.2023.116469_b10 article-title: A phase-field model for low-cycle fatigue of brittle materials publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106297 – volume: 224 year: 2020 ident: 10.1016/j.cma.2023.116469_b13 article-title: An efficient phase-field model for fatigue fracture in ductile materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106807 – volume: 373 year: 2021 ident: 10.1016/j.cma.2023.116469_b14 article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113473 – volume: 92 year: 2022 ident: 10.1016/j.cma.2023.116469_b17 article-title: Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue publication-title: Eur. J. Mech. A. Solids doi: 10.1016/j.euromechsol.2021.104472 – volume: 399 year: 2022 ident: 10.1016/j.cma.2023.116469_b18 article-title: A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115459 – volume: 225 start-page: 89 year: 2020 ident: 10.1016/j.cma.2023.116469_b20 article-title: A phase field modeling approach of cyclic fatigue crack growth publication-title: Int. J. Fract. doi: 10.1007/s10704-020-00468-w – volume: 48 start-page: 797 year: 2000 ident: 10.1016/j.cma.2023.116469_b5 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00028-9 – volume: 262 year: 2022 ident: 10.1016/j.cma.2023.116469_b7 article-title: Phase field modeling and computer implementation: A review publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108234 – volume: 149 start-page: 559 year: 2018 ident: 10.1016/j.cma.2023.116469_b43 article-title: Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.05.047 – volume: 92 start-page: 178 year: 1996 ident: 10.1016/j.cma.2023.116469_b44 article-title: Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance publication-title: Physica D doi: 10.1016/0167-2789(95)00173-5 – volume: 154 year: 2022 ident: 10.1016/j.cma.2023.116469_b15 article-title: A phase field model for hydrogen-assisted fatigue publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106521 – volume: 33 start-page: 1907 year: 2021 ident: 10.1016/j.cma.2023.116469_b32 article-title: A unified phase-field model of fracture in viscoelastic materials publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s00161-021-01013-3 – volume: 13 start-page: 781 year: 2018 ident: 10.1016/j.cma.2023.116469_b30 article-title: Phase-field modelling of fracture in viscoelastic solids publication-title: Procedia Struct. Integrity doi: 10.1016/j.prostr.2018.12.129 – volume: 416 year: 2023 ident: 10.1016/j.cma.2023.116469_b28 article-title: An acceleration scheme for the phase field fatigue fracture simulation with a concurrent temporal homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2023.116294 – volume: 103 start-page: 72 year: 2017 ident: 10.1016/j.cma.2023.116469_b42 article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.03.015 – volume: 83 start-page: 1273 year: 2010 ident: 10.1016/j.cma.2023.116469_b40 article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2861 – volume: 237 start-page: 3 year: 2022 ident: 10.1016/j.cma.2023.116469_b6 article-title: Variational fracture: Twenty years after publication-title: Int. J. Fract. doi: 10.1007/s10704-020-00508-5 – volume: 103 year: 2019 ident: 10.1016/j.cma.2023.116469_b11 article-title: Phase-field models for fatigue crack growth publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102282 – volume: 55 start-page: 383 year: 2015 ident: 10.1016/j.cma.2023.116469_b45 article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation publication-title: Comput. Mech. doi: 10.1007/s00466-014-1109-y – volume: 119 start-page: 20 year: 2018 ident: 10.1016/j.cma.2023.116469_b41 article-title: A length scale insensitive phase-field damage model for brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.006 – volume: 264 year: 2022 ident: 10.1016/j.cma.2023.116469_b26 article-title: Phase-field modeling of continuous fatigue via toughness degradation publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108255 – volume: 65 start-page: 293 year: 2020 ident: 10.1016/j.cma.2023.116469_b34 article-title: Fracture simulation of viscoelastic polymers by the phase-field method publication-title: Comput. Mech. doi: 10.1007/s00466-019-01769-1 – volume: 398 year: 2022 ident: 10.1016/j.cma.2023.116469_b24 article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115181 – volume: 190 start-page: 53 year: 2018 ident: 10.1016/j.cma.2023.116469_b8 article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.11.036 – volume: 364 year: 2020 ident: 10.1016/j.cma.2023.116469_b22 article-title: A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112962 – volume: 266 year: 2022 ident: 10.1016/j.cma.2023.116469_b33 article-title: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108411 – volume: 142 year: 2020 ident: 10.1016/j.cma.2023.116469_b37 article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2019.103282 – volume: 57 start-page: 1209 year: 2009 ident: 10.1016/j.cma.2023.116469_b38 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.04.011 – volume: 221 start-page: 163 year: 1921 ident: 10.1016/j.cma.2023.116469_b3 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character – volume: 370 year: 2020 ident: 10.1016/j.cma.2023.116469_b21 article-title: Accelerating fatigue simulations of a phase-field damage model for rubber publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113247 – volume: 237 start-page: 47 year: 2022 ident: 10.1016/j.cma.2023.116469_b27 article-title: An efficient implementation of a phase field model for fatigue crack growth publication-title: Int. J. Fract. doi: 10.1007/s10704-022-00628-0 – year: 2017 ident: 10.1016/j.cma.2023.116469_b47 |
SSID | ssj0000812 |
Score | 2.4659839 |
Snippet | Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116469 |
SubjectTerms | Cyclic load Damage superposition Fatigue fracture Phase-field Viscoelastic |
Title | An efficient phase-field model for fatigue fracture in viscoelastic solids using cyclic load decomposition and damage superposition |
URI | https://dx.doi.org/10.1016/j.cma.2023.116469 |
Volume | 418 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEN4QvMhBFDWCSubgyWSFdn-0Pb4QyVMCJ0i4Nd3dWah59r3w3iPhwsV_3Jl2i5ioB4_d7qTNznRmdvvNN0J88KVCNJmV2ptGatowywq9kWibyoU8VkXPM3t6ZqcX-uuludwQR2MtDMMqk-8ffHrvrdPIQVrNg0Xbco2vZi52PtbkvnRcaK51wVb-6f4XzINC3sAYro3k2eOfzR7j5XvqoVyR47CaMc9_ik2P4s3xc_EsJYowGd7lhdjAbkdsp6QR0ie53BFbjxgFX4ofkw6wZ4WgYAKLa4pRsgepQd_yBihFhUjKuFojRC6QWt8gtB3ctks_R8qk6WlA5tiGJTAk_gr8nZ_R2GzeBAjICPQE84Kmo5HmOzkkWK4X3K1ruPFKXBx_Pj-aytRnQfq8KlaSsihVlqhMdCbkgZskOHRFgUFbiucuj9HETAUbYpZFSpgyPHQ6d8pbryrbqNdis5t3-EZACDYrQ-nLChvaKqLTmAXlna9Kw_zpu-JwXOHaJxJy7oUxq0e02bealFKzUupBKbvi44PIYmDg-NdkPaqt_s2MaooQfxfb-z-xt-IpXenhROad2FzdrPE95Sgrt98b4b54MvlyMj37CYTp6Gg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9lA4QCkgyqPMgROS2yZ-bHKsKqrt89RKvUWxPS6pluyqu1upFy78ccaJA0UCDlz9UCKPPd_Y_vwNwEdXSCKdGaGcroXiDbMoyWlBpi6tz0M56nRmz87N-FIdX-mrFTgY3sJEWmXy_b1P77x1KtlNo7k7a5r4xldFLfZ4rBnz0ulHsKZ4-cY0BjvffvE8GPN6yXClRWw-XG12JC_XaQ_lkj2HUZH0_CdwegA4hxvwNEWKuN__zHNYoXYTnqWoEdOanG_CkweSgi_g-36L1MlCMJrg7AuDlOhYatjlvEGOUTGwNa6XhCG-kFreEjYt3jVzNyUOpflryPOx8XOMnPhrdPduwmWTae3RU6SgJ54X1i2X1F_ZI-F8OYvpuvqKl3B5-PniYCxSogXh8nK0EBxGyaIgqYPVPvcxS4IlOxqRV4YB3eYh6JBJb3zIssARU0Z7VuVWOuNkaWr5ClbbaUuvAb03WeELV5RU816RrKLMS2ddWegooL4Fe8MIVy6pkMdkGJNqoJvdVGyUKhql6o2yBZ9-dpn1Ehz_aqwGs1W_zaOKIeLv3d78X7cPsD6-ODutTo_OT97CY65R_fHMO1hd3C7pPQcsC7vdTcgf4iTp9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+phase-field+model+for+fatigue+fracture+in+viscoelastic+solids+using+cyclic+load+decomposition+and+damage+superposition&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yuan%2C+Hongwei&rft.au=Tang%2C+Wei&rft.au=He%2C+Jingjing&rft.au=Guan%2C+Xuefei&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=418&rft_id=info:doi/10.1016%2Fj.cma.2023.116469&rft.externalDocID=S0045782523005935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |