An efficient phase-field model for fatigue fracture in viscoelastic solids using cyclic load decomposition and damage superposition

Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for f...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 418; p. 116469
Main Authors Yuan, Hongwei, Tang, Wei, He, Jingjing, Guan, Xuefei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for fast evaluations of high-cycle fatigue damage. Based on the Boltzmann superposition principle, the cyclic fatigue load is decomposed into a mean load and a zero-mean cyclic load. The response of the mean load is solved numerically, while the response of the zero-mean cyclic load is solved analytically. The phase-field driving force is obtained analytically by combining the responses of the two independent parts, and the phase-field evolution is calculated numerically. In addition, both the dissipated energy and the elastic energy are decomposed using the volumetric-deviatoric decomposition to avoid unrealistic damage under the compression portion of the cyclic load. The proposed efficiency-enhanced model satisfies the energy conservation law as it does not require the fracture toughness degradation or additional fatigue energy treatments. The computational efficiency of the overall fatigue fracture can be greatly improved by leveraging the analytical solution for the response associated with the cyclic load. Numerical investigations are performed, and comparisons with the conventional cycle-by-cycle computation method are made. The results show that the proposed method can reduce the exponential computational demand to a constant or a linear one while achieving an accuracy comparable to that of the conventional method. The effectiveness of the proposed method is further demonstrated using an actual rubber component with testing data. •An efficient phase-field model for viscoelastic fatigue fracture is developed.•Volumetric-deviatoric decomposition is used for both dissipated and elastic energies.•The model satisfies the energy conservation and thermodynamic consistency.•It reduces the exponential scaling computational demand to a constant or a linear one.•Effectiveness and accuracy are validated using a realistic component with test data.
AbstractList Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications subject to cyclic load. In this study, an efficiency-enhanced phase-field model for viscoelastic fatigue fracture is proposed, allowing for fast evaluations of high-cycle fatigue damage. Based on the Boltzmann superposition principle, the cyclic fatigue load is decomposed into a mean load and a zero-mean cyclic load. The response of the mean load is solved numerically, while the response of the zero-mean cyclic load is solved analytically. The phase-field driving force is obtained analytically by combining the responses of the two independent parts, and the phase-field evolution is calculated numerically. In addition, both the dissipated energy and the elastic energy are decomposed using the volumetric-deviatoric decomposition to avoid unrealistic damage under the compression portion of the cyclic load. The proposed efficiency-enhanced model satisfies the energy conservation law as it does not require the fracture toughness degradation or additional fatigue energy treatments. The computational efficiency of the overall fatigue fracture can be greatly improved by leveraging the analytical solution for the response associated with the cyclic load. Numerical investigations are performed, and comparisons with the conventional cycle-by-cycle computation method are made. The results show that the proposed method can reduce the exponential computational demand to a constant or a linear one while achieving an accuracy comparable to that of the conventional method. The effectiveness of the proposed method is further demonstrated using an actual rubber component with testing data. •An efficient phase-field model for viscoelastic fatigue fracture is developed.•Volumetric-deviatoric decomposition is used for both dissipated and elastic energies.•The model satisfies the energy conservation and thermodynamic consistency.•It reduces the exponential scaling computational demand to a constant or a linear one.•Effectiveness and accuracy are validated using a realistic component with test data.
ArticleNumber 116469
Author Yuan, Hongwei
Guan, Xuefei
Tang, Wei
He, Jingjing
Author_xml – sequence: 1
  givenname: Hongwei
  orcidid: 0000-0002-0639-2987
  surname: Yuan
  fullname: Yuan, Hongwei
  organization: Graduate School of China Academy of Engineering Physics, Beijing 100193, China
– sequence: 2
  givenname: Wei
  surname: Tang
  fullname: Tang, Wei
  organization: Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
– sequence: 3
  givenname: Jingjing
  surname: He
  fullname: He, Jingjing
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Xuefei
  surname: Guan
  fullname: Guan, Xuefei
  email: xfguan@gscaep.ac.cn
  organization: Graduate School of China Academy of Engineering Physics, Beijing 100193, China
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2BXkp-hqxD6gkA37VrI0iidYFtGkgNZ98frkHbTRWYzcIczzJwFmfWuB0LuOUs54-XDPtWdSgUTWcp5mZerKzLndbVKBM_qGZkzlhdJVYvihixC2LOpai7m5HvdU7AWNUIf6fClAiQWoTW0cwZaap2nVkXcjUCtVzqOHij29IBBO2hViKhpcC2aQMeA_Y7qo26nrHXKUAPadYMLGNH1VPVTojq1AxrGAfzf4JZcW9UGuPvtS_L5_PSxeU227y9vm_U20WJVxYQXeVbXkBW2KYwwWhWsgaaqwORlzetGWFtYnpnSWM5tUQoOrMlFk-lSZ6tSZUtSnfdq70LwYKXGqE4XRK-wlZzJk0u5l5NLeXIpzy4nkv8jB4-d8seLzOOZgemlA4KX4SRZg0EPOkrj8AL9Ay-MkgI
CitedBy_id crossref_primary_10_1016_j_jmps_2024_105932
crossref_primary_10_1016_j_engfracmech_2025_110851
crossref_primary_10_1111_ffe_14540
Cites_doi 10.1016/j.cma.2019.112731
10.1016/S0022-5096(98)00034-9
10.1016/j.cma.2021.114286
10.1016/j.ijplas.2021.103021
10.1016/j.jmps.2019.103684
10.1016/j.finel.2023.104004
10.1016/j.ijfatigue.2022.107091
10.1016/j.jmps.2019.03.022
10.1016/j.cma.2018.09.018
10.1016/j.cma.2010.04.011
10.1016/j.cma.2023.116018
10.1016/j.ijfatigue.2021.106297
10.1016/j.engfracmech.2019.106807
10.1016/j.cma.2020.113473
10.1016/j.euromechsol.2021.104472
10.1016/j.cma.2022.115459
10.1007/s10704-020-00468-w
10.1016/S0022-5096(99)00028-9
10.1016/j.engfracmech.2022.108234
10.1016/j.ijmecsci.2017.05.047
10.1016/0167-2789(95)00173-5
10.1016/j.ijfatigue.2021.106521
10.1007/s00161-021-01013-3
10.1016/j.prostr.2018.12.129
10.1016/j.cma.2023.116294
10.1016/j.jmps.2017.03.015
10.1002/nme.2861
10.1007/s10704-020-00508-5
10.1016/j.tafmec.2019.102282
10.1007/s00466-014-1109-y
10.1016/j.jmps.2018.06.006
10.1016/j.engfracmech.2022.108255
10.1007/s00466-019-01769-1
10.1016/j.cma.2022.115181
10.1016/j.engfracmech.2017.11.036
10.1016/j.cma.2020.112962
10.1016/j.engfracmech.2022.108411
10.1016/j.mechmat.2019.103282
10.1016/j.jmps.2009.04.011
10.1016/j.cma.2020.113247
10.1007/s10704-022-00628-0
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2023.116469
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2023_116469
S0045782523005935
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SSH
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c297t-154388e35fb5d2dca50beb77ed46818b2ff5f13d6df11f5621e0b42b3c6c396a3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 04:06:22 EDT 2025
Sat Jul 06 15:31:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase-field
Damage superposition
Fatigue fracture
Viscoelastic
Cyclic load
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-154388e35fb5d2dca50beb77ed46818b2ff5f13d6df11f5621e0b42b3c6c396a3
ORCID 0000-0002-0639-2987
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2023_116469
crossref_primary_10_1016_j_cma_2023_116469
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haveroth, Vale, Bittencourt, Boldrini (b22) 2020; 364
Dammaz, Ambati, Kästner (b32) 2021; 33
Wu, Nguyen (b41) 2018; 119
Schröder, Pise, Brands, Gebuhr, Anders (b24) 2022; 398
Yin, Kaliske (b34) 2020; 65
Bourdin, Francfort, Marigo (b5) 2000; 48
Yuan, Guan (b36) 2023; 410
Wu (b42) 2017; 103
Huang, Yan, Shen, Wan, Li, Ge, Yu, Guo (b33) 2022; 266
Mesgarnejad, Imanian, Karma (b11) 2019; 103
Khalil, Elghazouli, Martínez-Pañeda (b12) 2022; 388
Simoes, Paeda (b16) 2020; 373
Yang, Shen (b28) 2023; 416
Miehe, Hofacker, Welschinger (b39) 2010; 199
Alessi, Marigo, Maurini, Vidoli (b43) 2018; 149
Loew, Peters, Beex (b35) 2019; 127
Lakes (b46) 1999
Francfort (b6) 2022; 237
Schneider, Müller, Seiler, Tobie, Stahl, Kästner (b19) 2022; 163
Hasan, Baxevanis (b10) 2021; 150
Aygün, Wiegold, Klinge (b25) 2021; 143
Alessi, Vidoli, De Lorenzis (b8) 2018; 190
Song, Zhao, Qi, Li, Shi, Huang, Su, Zhang (b17) 2022; 92
Ulloa, Wambacq, Alessi, Degrande, François (b14) 2021; 373
Griffith (b3) 1921; 221
Loew, Peters, Beex (b37) 2020; 142
Loew, Poh, Peters, Beex (b21) 2020; 370
Shen, Waisman, Guo (b31) 2019; 346
Stephens, Fatemi, Stephens, Fuchs (b1) 2000
Lopez-Pamies, Bourdin (b2) 2022
Grossman-Ponemon, Mesgarnejad, Karma (b26) 2022; 264
Carrara, Ambati, Alessi, De Lorenzis (b9) 2020; 361
Seiler, Linse, Hantschke, Kstner (b13) 2020; 224
Liu, Roggel, Juhre (b30) 2018; 13
Ambati, Gerasimov, De Lorenzis (b45) 2015; 55
Golahmar, Kristensen, Niordson, Martínez-Pañeda (b15) 2022; 154
Tan, He, Li, Kang (b18) 2022; 399
Lo, Borden, Ravi-Chandar, Landis (b23) 2019; 132
Yan, Schreiber, Müller (b27) 2022; 237
Jaccon, Prabel, Molnár, Bluthé, Gravouil (b29) 2023; 224
Amor, Marigo, Maurini (b38) 2009; 57
Zhuang, Zhou, Huynh, Areias, Rabczuk (b7) 2022; 262
Anderson (b47) 2017
Gurtin (b44) 1996; 92
Francfort, Marigo (b4) 1998; 46
Miehe, Welschinger, Hofacker (b40) 2010; 83
Schreiber, Kuhn, Müller, Zohdi (b20) 2020; 225
Carrara (10.1016/j.cma.2023.116469_b9) 2020; 361
Golahmar (10.1016/j.cma.2023.116469_b15) 2022; 154
Mesgarnejad (10.1016/j.cma.2023.116469_b11) 2019; 103
Yin (10.1016/j.cma.2023.116469_b34) 2020; 65
Alessi (10.1016/j.cma.2023.116469_b8) 2018; 190
Stephens (10.1016/j.cma.2023.116469_b1) 2000
Yuan (10.1016/j.cma.2023.116469_b36) 2023; 410
Yang (10.1016/j.cma.2023.116469_b28) 2023; 416
Jaccon (10.1016/j.cma.2023.116469_b29) 2023; 224
Lo (10.1016/j.cma.2023.116469_b23) 2019; 132
Lopez-Pamies (10.1016/j.cma.2023.116469_b2) 2022
Ambati (10.1016/j.cma.2023.116469_b45) 2015; 55
Aygün (10.1016/j.cma.2023.116469_b25) 2021; 143
Schneider (10.1016/j.cma.2023.116469_b19) 2022; 163
Francfort (10.1016/j.cma.2023.116469_b6) 2022; 237
Ulloa (10.1016/j.cma.2023.116469_b14) 2021; 373
Wu (10.1016/j.cma.2023.116469_b41) 2018; 119
Dammaz (10.1016/j.cma.2023.116469_b32) 2021; 33
Schreiber (10.1016/j.cma.2023.116469_b20) 2020; 225
Huang (10.1016/j.cma.2023.116469_b33) 2022; 266
Khalil (10.1016/j.cma.2023.116469_b12) 2022; 388
Anderson (10.1016/j.cma.2023.116469_b47) 2017
Tan (10.1016/j.cma.2023.116469_b18) 2022; 399
Miehe (10.1016/j.cma.2023.116469_b39) 2010; 199
Liu (10.1016/j.cma.2023.116469_b30) 2018; 13
Shen (10.1016/j.cma.2023.116469_b31) 2019; 346
Schröder (10.1016/j.cma.2023.116469_b24) 2022; 398
Zhuang (10.1016/j.cma.2023.116469_b7) 2022; 262
Lakes (10.1016/j.cma.2023.116469_b46) 1999
Haveroth (10.1016/j.cma.2023.116469_b22) 2020; 364
Alessi (10.1016/j.cma.2023.116469_b43) 2018; 149
Francfort (10.1016/j.cma.2023.116469_b4) 1998; 46
Loew (10.1016/j.cma.2023.116469_b37) 2020; 142
Wu (10.1016/j.cma.2023.116469_b42) 2017; 103
Amor (10.1016/j.cma.2023.116469_b38) 2009; 57
Bourdin (10.1016/j.cma.2023.116469_b5) 2000; 48
Griffith (10.1016/j.cma.2023.116469_b3) 1921; 221
Simoes (10.1016/j.cma.2023.116469_b16) 2020; 373
Loew (10.1016/j.cma.2023.116469_b21) 2020; 370
Grossman-Ponemon (10.1016/j.cma.2023.116469_b26) 2022; 264
Hasan (10.1016/j.cma.2023.116469_b10) 2021; 150
Seiler (10.1016/j.cma.2023.116469_b13) 2020; 224
Yan (10.1016/j.cma.2023.116469_b27) 2022; 237
Loew (10.1016/j.cma.2023.116469_b35) 2019; 127
Song (10.1016/j.cma.2023.116469_b17) 2022; 92
Miehe (10.1016/j.cma.2023.116469_b40) 2010; 83
Gurtin (10.1016/j.cma.2023.116469_b44) 1996; 92
References_xml – volume: 398
  year: 2022
  ident: b24
  article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 388
  year: 2022
  ident: b12
  article-title: A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 154
  year: 2022
  ident: b15
  article-title: A phase field model for hydrogen-assisted fatigue
  publication-title: Int. J. Fatigue
– volume: 103
  start-page: 72
  year: 2017
  end-page: 99
  ident: b42
  article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure
  publication-title: J. Mech. Phys. Solids
– year: 2017
  ident: b47
  article-title: Fracture Mechanics: Fundamentals and Applications
– volume: 237
  start-page: 47
  year: 2022
  end-page: 60
  ident: b27
  article-title: An efficient implementation of a phase field model for fatigue crack growth
  publication-title: Int. J. Fract.
– year: 2000
  ident: b1
  article-title: Metal Fatigue in Engineering
– volume: 416
  year: 2023
  ident: b28
  article-title: An acceleration scheme for the phase field fatigue fracture simulation with a concurrent temporal homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 92
  year: 2022
  ident: b17
  article-title: Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue
  publication-title: Eur. J. Mech. A. Solids
– volume: 410
  year: 2023
  ident: b36
  article-title: Phase-field viscoelastic fracture modeling of polymer composites using strain tensor spectral decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 224
  year: 2023
  ident: b29
  article-title: Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
  publication-title: Finite Elem. Anal. Des.
– volume: 346
  start-page: 862
  year: 2019
  end-page: 890
  ident: b31
  article-title: Fracture of viscoelastic solids modeled with a modified phase field method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 150
  year: 2021
  ident: b10
  article-title: A phase-field model for low-cycle fatigue of brittle materials
  publication-title: Int. J. Fatigue
– volume: 65
  start-page: 293
  year: 2020
  end-page: 309
  ident: b34
  article-title: Fracture simulation of viscoelastic polymers by the phase-field method
  publication-title: Comput. Mech.
– volume: 373
  year: 2020
  ident: b16
  article-title: Phase field modelling of fracture and fatigue in shape memory alloys
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: b4
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 361
  year: 2020
  ident: b9
  article-title: A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 224
  year: 2020
  ident: b13
  article-title: An efficient phase-field model for fatigue fracture in ductile materials
  publication-title: Eng. Fract. Mech.
– volume: 163
  year: 2022
  ident: b19
  article-title: Phase-field modeling of fatigue crack growth during tooth flank fracture in case-hardened spur gears
  publication-title: Int. J. Fatigue
– year: 1999
  ident: b46
  article-title: Viscoelastic Solids
– volume: 92
  start-page: 178
  year: 1996
  end-page: 192
  ident: b44
  article-title: Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance
  publication-title: Physica D
– volume: 364
  year: 2020
  ident: b22
  article-title: A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  ident: b3
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character
– volume: 190
  start-page: 53
  year: 2018
  end-page: 73
  ident: b8
  article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case
  publication-title: Eng. Fract. Mech.
– year: 2022
  ident: b2
  article-title: Phase-Field Approaches To Fracture in the 3rd Millennium
– volume: 132
  year: 2019
  ident: b23
  article-title: A phase-field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids
– volume: 237
  start-page: 3
  year: 2022
  end-page: 13
  ident: b6
  article-title: Variational fracture: Twenty years after
  publication-title: Int. J. Fract.
– volume: 370
  year: 2020
  ident: b21
  article-title: Accelerating fatigue simulations of a phase-field damage model for rubber
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 33
  start-page: 1907
  year: 2021
  end-page: 1929
  ident: b32
  article-title: A unified phase-field model of fracture in viscoelastic materials
  publication-title: Contin. Mech. Thermodyn.
– volume: 373
  year: 2021
  ident: b14
  article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 142
  year: 2020
  ident: b37
  article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation
  publication-title: Mech. Mater.
– volume: 127
  start-page: 266
  year: 2019
  end-page: 294
  ident: b35
  article-title: Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification
  publication-title: J. Mech. Phys. Solids
– volume: 399
  year: 2022
  ident: b18
  article-title: A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 57
  start-page: 1209
  year: 2009
  end-page: 1229
  ident: b38
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
  publication-title: J. Mech. Phys. Solids
– volume: 13
  start-page: 781
  year: 2018
  end-page: 786
  ident: b30
  article-title: Phase-field modelling of fracture in viscoelastic solids
  publication-title: Procedia Struct. Integrity
– volume: 55
  start-page: 383
  year: 2015
  end-page: 405
  ident: b45
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput. Mech.
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  ident: b5
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
– volume: 262
  year: 2022
  ident: b7
  article-title: Phase field modeling and computer implementation: A review
  publication-title: Eng. Fract. Mech.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: b39
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 103
  year: 2019
  ident: b11
  article-title: Phase-field models for fatigue crack growth
  publication-title: Theor. Appl. Fract. Mech.
– volume: 149
  start-page: 559
  year: 2018
  end-page: 576
  ident: b43
  article-title: Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples
  publication-title: Int. J. Mech. Sci.
– volume: 143
  year: 2021
  ident: b25
  article-title: Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load
  publication-title: Int. J. Plast.
– volume: 119
  start-page: 20
  year: 2018
  end-page: 42
  ident: b41
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
– volume: 266
  year: 2022
  ident: b33
  article-title: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method
  publication-title: Eng. Fract. Mech.
– volume: 264
  year: 2022
  ident: b26
  article-title: Phase-field modeling of continuous fatigue via toughness degradation
  publication-title: Eng. Fract. Mech.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: b40
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 225
  start-page: 89
  year: 2020
  end-page: 100
  ident: b20
  article-title: A phase field modeling approach of cyclic fatigue crack growth
  publication-title: Int. J. Fract.
– volume: 361
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b9
  article-title: A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112731
– year: 2000
  ident: 10.1016/j.cma.2023.116469_b1
– volume: 46
  start-page: 1319
  year: 1998
  ident: 10.1016/j.cma.2023.116469_b4
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– volume: 388
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b12
  article-title: A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114286
– volume: 143
  year: 2021
  ident: 10.1016/j.cma.2023.116469_b25
  article-title: Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.103021
– volume: 373
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b16
  article-title: Phase field modelling of fracture and fatigue in shape memory alloys
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 132
  year: 2019
  ident: 10.1016/j.cma.2023.116469_b23
  article-title: A phase-field model for fatigue crack growth
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.103684
– volume: 224
  year: 2023
  ident: 10.1016/j.cma.2023.116469_b29
  article-title: Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2023.104004
– year: 2022
  ident: 10.1016/j.cma.2023.116469_b2
– volume: 163
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b19
  article-title: Phase-field modeling of fatigue crack growth during tooth flank fracture in case-hardened spur gears
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2022.107091
– volume: 127
  start-page: 266
  year: 2019
  ident: 10.1016/j.cma.2023.116469_b35
  article-title: Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.03.022
– volume: 346
  start-page: 862
  year: 2019
  ident: 10.1016/j.cma.2023.116469_b31
  article-title: Fracture of viscoelastic solids modeled with a modified phase field method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.09.018
– year: 1999
  ident: 10.1016/j.cma.2023.116469_b46
– volume: 199
  start-page: 2765
  year: 2010
  ident: 10.1016/j.cma.2023.116469_b39
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.04.011
– volume: 410
  year: 2023
  ident: 10.1016/j.cma.2023.116469_b36
  article-title: Phase-field viscoelastic fracture modeling of polymer composites using strain tensor spectral decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2023.116018
– volume: 150
  year: 2021
  ident: 10.1016/j.cma.2023.116469_b10
  article-title: A phase-field model for low-cycle fatigue of brittle materials
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106297
– volume: 224
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b13
  article-title: An efficient phase-field model for fatigue fracture in ductile materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106807
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2023.116469_b14
  article-title: Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113473
– volume: 92
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b17
  article-title: Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue
  publication-title: Eur. J. Mech. A. Solids
  doi: 10.1016/j.euromechsol.2021.104472
– volume: 399
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b18
  article-title: A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115459
– volume: 225
  start-page: 89
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b20
  article-title: A phase field modeling approach of cyclic fatigue crack growth
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-020-00468-w
– volume: 48
  start-page: 797
  year: 2000
  ident: 10.1016/j.cma.2023.116469_b5
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00028-9
– volume: 262
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b7
  article-title: Phase field modeling and computer implementation: A review
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108234
– volume: 149
  start-page: 559
  year: 2018
  ident: 10.1016/j.cma.2023.116469_b43
  article-title: Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.05.047
– volume: 92
  start-page: 178
  year: 1996
  ident: 10.1016/j.cma.2023.116469_b44
  article-title: Generalized ginzburg-landau and cahn-hilliard equations based on a microforce balance
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00173-5
– volume: 154
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b15
  article-title: A phase field model for hydrogen-assisted fatigue
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106521
– volume: 33
  start-page: 1907
  year: 2021
  ident: 10.1016/j.cma.2023.116469_b32
  article-title: A unified phase-field model of fracture in viscoelastic materials
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-021-01013-3
– volume: 13
  start-page: 781
  year: 2018
  ident: 10.1016/j.cma.2023.116469_b30
  article-title: Phase-field modelling of fracture in viscoelastic solids
  publication-title: Procedia Struct. Integrity
  doi: 10.1016/j.prostr.2018.12.129
– volume: 416
  year: 2023
  ident: 10.1016/j.cma.2023.116469_b28
  article-title: An acceleration scheme for the phase field fatigue fracture simulation with a concurrent temporal homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2023.116294
– volume: 103
  start-page: 72
  year: 2017
  ident: 10.1016/j.cma.2023.116469_b42
  article-title: A unified phase-field theory for the mechanics of damage and quasi-brittle failure
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.03.015
– volume: 83
  start-page: 1273
  year: 2010
  ident: 10.1016/j.cma.2023.116469_b40
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2861
– volume: 237
  start-page: 3
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b6
  article-title: Variational fracture: Twenty years after
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-020-00508-5
– volume: 103
  year: 2019
  ident: 10.1016/j.cma.2023.116469_b11
  article-title: Phase-field models for fatigue crack growth
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102282
– volume: 55
  start-page: 383
  year: 2015
  ident: 10.1016/j.cma.2023.116469_b45
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1109-y
– volume: 119
  start-page: 20
  year: 2018
  ident: 10.1016/j.cma.2023.116469_b41
  article-title: A length scale insensitive phase-field damage model for brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.06.006
– volume: 264
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b26
  article-title: Phase-field modeling of continuous fatigue via toughness degradation
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108255
– volume: 65
  start-page: 293
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b34
  article-title: Fracture simulation of viscoelastic polymers by the phase-field method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01769-1
– volume: 398
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b24
  article-title: Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115181
– volume: 190
  start-page: 53
  year: 2018
  ident: 10.1016/j.cma.2023.116469_b8
  article-title: A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.11.036
– volume: 364
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b22
  article-title: A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.112962
– volume: 266
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b33
  article-title: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108411
– volume: 142
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b37
  article-title: Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2019.103282
– volume: 57
  start-page: 1209
  year: 2009
  ident: 10.1016/j.cma.2023.116469_b38
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.04.011
– volume: 221
  start-page: 163
  year: 1921
  ident: 10.1016/j.cma.2023.116469_b3
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character
– volume: 370
  year: 2020
  ident: 10.1016/j.cma.2023.116469_b21
  article-title: Accelerating fatigue simulations of a phase-field damage model for rubber
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113247
– volume: 237
  start-page: 47
  year: 2022
  ident: 10.1016/j.cma.2023.116469_b27
  article-title: An efficient implementation of a phase field model for fatigue crack growth
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-022-00628-0
– year: 2017
  ident: 10.1016/j.cma.2023.116469_b47
SSID ssj0000812
Score 2.4659839
Snippet Accurate and efficient evaluations of fatigue fracture is of great importance for the design and evaluation of viscoelastic materials in critical applications...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116469
SubjectTerms Cyclic load
Damage superposition
Fatigue fracture
Phase-field
Viscoelastic
Title An efficient phase-field model for fatigue fracture in viscoelastic solids using cyclic load decomposition and damage superposition
URI https://dx.doi.org/10.1016/j.cma.2023.116469
Volume 418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEN4QvMhBFDWCSubgyWSFdn-0Pb4QyVMCJ0i4Nd3dWah59r3w3iPhwsV_3Jl2i5ioB4_d7qTNznRmdvvNN0J88KVCNJmV2ptGatowywq9kWibyoU8VkXPM3t6ZqcX-uuludwQR2MtDMMqk-8ffHrvrdPIQVrNg0Xbco2vZi52PtbkvnRcaK51wVb-6f4XzINC3sAYro3k2eOfzR7j5XvqoVyR47CaMc9_ik2P4s3xc_EsJYowGd7lhdjAbkdsp6QR0ie53BFbjxgFX4ofkw6wZ4WgYAKLa4pRsgepQd_yBihFhUjKuFojRC6QWt8gtB3ctks_R8qk6WlA5tiGJTAk_gr8nZ_R2GzeBAjICPQE84Kmo5HmOzkkWK4X3K1ruPFKXBx_Pj-aytRnQfq8KlaSsihVlqhMdCbkgZskOHRFgUFbiucuj9HETAUbYpZFSpgyPHQ6d8pbryrbqNdis5t3-EZACDYrQ-nLChvaKqLTmAXlna9Kw_zpu-JwXOHaJxJy7oUxq0e02bealFKzUupBKbvi44PIYmDg-NdkPaqt_s2MaooQfxfb-z-xt-IpXenhROad2FzdrPE95Sgrt98b4b54MvlyMj37CYTp6Gg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9lA4QCkgyqPMgROS2yZ-bHKsKqrt89RKvUWxPS6pluyqu1upFy78ccaJA0UCDlz9UCKPPd_Y_vwNwEdXSCKdGaGcroXiDbMoyWlBpi6tz0M56nRmz87N-FIdX-mrFTgY3sJEWmXy_b1P77x1KtlNo7k7a5r4xldFLfZ4rBnz0ulHsKZ4-cY0BjvffvE8GPN6yXClRWw-XG12JC_XaQ_lkj2HUZH0_CdwegA4hxvwNEWKuN__zHNYoXYTnqWoEdOanG_CkweSgi_g-36L1MlCMJrg7AuDlOhYatjlvEGOUTGwNa6XhCG-kFreEjYt3jVzNyUOpflryPOx8XOMnPhrdPduwmWTae3RU6SgJ54X1i2X1F_ZI-F8OYvpuvqKl3B5-PniYCxSogXh8nK0EBxGyaIgqYPVPvcxS4IlOxqRV4YB3eYh6JBJb3zIssARU0Z7VuVWOuNkaWr5ClbbaUuvAb03WeELV5RU816RrKLMS2ddWegooL4Fe8MIVy6pkMdkGJNqoJvdVGyUKhql6o2yBZ9-dpn1Ehz_aqwGs1W_zaOKIeLv3d78X7cPsD6-ODutTo_OT97CY65R_fHMO1hd3C7pPQcsC7vdTcgf4iTp9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+phase-field+model+for+fatigue+fracture+in+viscoelastic+solids+using+cyclic+load+decomposition+and+damage+superposition&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yuan%2C+Hongwei&rft.au=Tang%2C+Wei&rft.au=He%2C+Jingjing&rft.au=Guan%2C+Xuefei&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=418&rft_id=info:doi/10.1016%2Fj.cma.2023.116469&rft.externalDocID=S0045782523005935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon