Comparative analysis of micro patterned PDMS-based piezoresistive pressure sensors with multifunctional strain and health monitoring applications

Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have inve...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 369; p. 115139
Main Authors Tanusha, Datla, Badhulika, Sushmee
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.04.2024
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2024.115139

Cover

Loading…
Abstract Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have investigated four different micropatterned Poly Dimethyl Siloxane (PDMS)-based device configurations to develop a cost-effective, high performance physical sensing form for both pressure and strain sensing. PDMS is poured into four different micropatterned molds, and the patterned surface of the PDMS is rendered conductive by the thermal evaporation of copper metal. Given the ease of fabrication and clean room-free approach, the optimized pressure sensor yields a sensitivity of 1.77 kPa−1 over the dynamic range of 100 N – 600 N and a response time of 0.31 s. Further, the PDMS-based pressure sensor is used for an ultrasensitive carotid arterial pulse and speech detection to demonstrate its real-time applications. When utilized as a strain sensor, the fabricated device exhibits a (GF) Gauge Factor of 22 and 0.2 s response time and could detect compressive and tensile strains ranging from 9.2–61.6 %. To illustrate its practicality, the PDMS-based strain sensor is also used for gesture detection. This excellent response of the fabricated sensor can be attributed to a piezoresistive working mechanism. The concept presented here paves the way for developing adaptive, low-cost, clean-room-free, simpler multipurpose sensors for medical applications and wearable consumer electronics by exploring different types of novel architectures with optimal performance. [Display omitted] •Micro Patterned PDMS structures were fabricated using the facile casting method.•The micropatterned devices were used for developing strain sensors and pressure sensors.•The fabricated strain and pressure sensors were used for carotid arterial pulse detection and speech detection.•The fabricated device displays excellent durability for 10,000 loading and unloading cycles.
AbstractList Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have investigated four different micropatterned Poly Dimethyl Siloxane (PDMS)-based device configurations to develop a cost-effective, high performance physical sensing form for both pressure and strain sensing. PDMS is poured into four different micropatterned molds, and the patterned surface of the PDMS is rendered conductive by the thermal evaporation of copper metal. Given the ease of fabrication and clean room-free approach, the optimized pressure sensor yields a sensitivity of 1.77 kPa−1 over the dynamic range of 100 N – 600 N and a response time of 0.31 s. Further, the PDMS-based pressure sensor is used for an ultrasensitive carotid arterial pulse and speech detection to demonstrate its real-time applications. When utilized as a strain sensor, the fabricated device exhibits a (GF) Gauge Factor of 22 and 0.2 s response time and could detect compressive and tensile strains ranging from 9.2–61.6 %. To illustrate its practicality, the PDMS-based strain sensor is also used for gesture detection. This excellent response of the fabricated sensor can be attributed to a piezoresistive working mechanism. The concept presented here paves the way for developing adaptive, low-cost, clean-room-free, simpler multipurpose sensors for medical applications and wearable consumer electronics by exploring different types of novel architectures with optimal performance. [Display omitted] •Micro Patterned PDMS structures were fabricated using the facile casting method.•The micropatterned devices were used for developing strain sensors and pressure sensors.•The fabricated strain and pressure sensors were used for carotid arterial pulse detection and speech detection.•The fabricated device displays excellent durability for 10,000 loading and unloading cycles.
ArticleNumber 115139
Author Tanusha, Datla
Badhulika, Sushmee
Author_xml – sequence: 1
  givenname: Datla
  surname: Tanusha
  fullname: Tanusha, Datla
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
– sequence: 2
  givenname: Sushmee
  surname: Badhulika
  fullname: Badhulika, Sushmee
  email: sbadh@iith.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
BookMark eNp9kEtuFDEQhi0UJCaBA7DzBXqw-2G3xQoNEJAmSqTA2qp215Aa9dgt25Mo3IIbx51hlUVWVYv_q8d3zs588MjYRynWUkj1ab9OHta1qNu1lJ1szBu2kr1uqkYoc8ZWwtRt1datfsfOU9oLIZpG6xX7twmHGSJkukcOHqbHRImHHT-Qi4HPkDNGjyO_-Xp1Ww2QSjsT_g0RS_CZmkubjhF5Qp9CTPyB8h0_HKdMu6N3mUIZy1OOQL6sGPkdwrQkgqccIvk_HOZ5IgdLNL1nb3cwJfzwv16w39-__dr8qLbXlz83X7aVq43Olezqxgg0vRq1ajuFUtRojHDQOwVFhOuh74VW4yD6oTVD5zotXaNADkoOprlg-jS3_JlSxJ11lJ9PWC6drBR2MWv3tpi1i1l7MltI-YKcIx0gPr7KfD4xWF66J4w2OULvcKSILtsx0Cv0E1S7l2k
CitedBy_id crossref_primary_10_1002_adsr_202400039
crossref_primary_10_1016_j_carbpol_2025_123278
crossref_primary_10_1016_j_sna_2024_115714
crossref_primary_10_3390_ma18050965
crossref_primary_10_1016_j_compositesa_2024_108648
crossref_primary_10_1016_j_measurement_2024_116312
crossref_primary_10_1021_acsnano_4c15294
crossref_primary_10_1016_j_compscitech_2025_111078
crossref_primary_10_1016_j_compstruct_2024_118711
crossref_primary_10_1088_2058_8585_adb85e
crossref_primary_10_1007_s42235_024_00526_2
crossref_primary_10_1007_s00604_024_06595_8
crossref_primary_10_1016_j_sna_2024_115782
crossref_primary_10_1021_acsami_4c12066
crossref_primary_10_1016_j_sna_2024_115810
crossref_primary_10_1109_JSEN_2024_3477419
Cites_doi 10.1016/j.cej.2019.05.136
10.1080/14686996.2020.1862629
10.1016/j.compscitech.2019.107938
10.1021/acsami.8b16237
10.1016/j.cej.2020.126393
10.1016/j.cej.2020.126940
10.1021/acsabm.0c01399
10.1016/j.orgel.2017.05.001
10.1063/5.0123238
10.1016/j.eurpolymj.2017.01.041
10.1016/j.coco.2020.100426
10.1039/C6AN02221A
10.1021/nn501204t
10.1039/D0TC01584A
10.1002/anie.200453974
10.1371/journal.pbio.2001402
10.1080/01694243.2019.1615742
10.1002/smll.201901558
10.1109/ACCESS.2018.2881463
10.1007/s10544-005-6070-2
10.1039/c3nr05496a
10.1016/j.materresbull.2021.111471
10.1016/j.compositesa.2021.106535
10.1016/j.cej.2020.124415
10.3390/s17112582
10.1016/j.materresbull.2022.112133
10.1021/acsnano.5b01835
10.1039/C9MH01139K
10.1039/C6TC01925K
10.1038/s41467-017-02685-9
10.1023/A:1020772521781
10.1016/j.molstruc.2010.03.054
10.1021/acsami.9b05214
10.1039/C8TC02230E
10.1016/j.radphyschem.2012.02.016
10.1021/acssuschemeng.6b00783
10.1038/ncomms4132
10.1016/j.est.2022.103994
10.1021/acsaelm.9b00022
10.1021/acsami.9b00154
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sna.2024.115139
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2024_115139
S0924424724001328
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
LY7
M36
R2-
SCB
SCH
SET
SSH
WUQ
ID FETCH-LOGICAL-c297t-152390e986d76456e102e990ca8c6a202c8a88076db08b49b5c571c36a1b61b93
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Tue Jul 01 02:24:57 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Sat Mar 23 16:29:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoresistive
Speech Recognition
Strain sensor
Pressure sensor
Gesture recognition
PDMS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-152390e986d76456e102e990ca8c6a202c8a88076db08b49b5c571c36a1b61b93
ParticipantIDs crossref_citationtrail_10_1016_j_sna_2024_115139
crossref_primary_10_1016_j_sna_2024_115139
elsevier_sciencedirect_doi_10_1016_j_sna_2024_115139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-16
PublicationDateYYYYMMDD 2024-04-16
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-16
  day: 16
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pang, Yang, Han, Jian, Li, Wang, Qiao, Yang, Ren (bib5) 2018; 10
Veeralingam, Sahatiya, Kadu, Mattela, Badhulika (bib11) 2019; 1
Mehrali, Thakur, Kadumudi, Pierchala, Cordova, Shahbazi, Mehrali, Pennisi, Orive, Gaharwar, Dolatshahi-Pirouz (bib14) 2019; 11
Thomas, Veeralingam, Badhulika (bib3) 2022; 132
Haniff, Hafiz, Abd Wahid, Endut, Lee, Bien, Azid, Abdullah, Huang, Rahman (bib23) 2015; 5
Veeralingam, Badhulika (bib30) 2021; 4
Jing, Li, Yang, Chen (bib15) 2020; 7
Lin, Liu, Chen, Wei, Dong, Liu (bib10) 2016; 4
Li, Samad, Taha, Cai, Fu, Liao (bib27) 2016; 4
Cao, Liu, Cai, Chen, Yang, Liu (bib16) 2021; 149
Wang, Zhou, Song, Fang, Wang, Wang, Huang (bib32) 2021; 404
Wu, Ma, Hou, Meng, Guo, Yu, Liu (bib36) 2019; 15
Veeralingam, Gandrothula, Badhulika (bib6) 2023; 160
Kim, Song, Park, Yun (bib8) 2017; 17
Gong, Schwalb, Wang, Chen, Tang, Si, Shirinzadeh, Cheng (bib29) 2014; 5
Gong, Fei, Fu, Fang, Gao, Zhong, De Zhang (bib39) 2017; 47
Neog, Biswas (bib12) 2021; 144
Li, Dunn, Salins, Zhou, Zhou, Schüssler-Fiorenza Rose, Perelman, Colbert, Runge, Rego, Sonecha, Datta, Mclaughlin, Snyder (bib1) 2017; 15
Wu, Wang, Zhang, Li, Zhu (bib17) 2019; 33
Vu, Kim, Kim (bib38) 2021; 22
Kim, Waqued, Nodurft, Devarenne, Yakovlev, Han (bib25) 2017; 142
Cai, Neyer, Kuckuk, Heise (bib26) 2010; 976
Amjad, Pichitpajongkit, Lee, Ryu, Park (bib22) 2014; 8
Wang, Tan, Zhong, Liu, Li, Chen, Wang, Wang (bib31) 2020; 22
Lee, Kweon, Kim, Yoo, Han, Oh (bib4) 2018; 6
Romo-Uribe, Santiago-Santiago, Reyes-Mayer, Aguilar-Franco (bib18) 2017; 89
Lancastre, Fernandes, Margaça, Salvado, Ferreira, Falcão, Casimiro (bib19) 2012; 81
Hwang, Lee, Trung, Roh, Kim, Kim, Lee (bib34) 2015; 9
Cheng, Wang, Yang, Wang (bib33) 2021; 9
Zheng, Tice, Roach, Ismagilov (bib20) 2004; 43
Mata, Fleischman, Roy (bib28) 2005; 7
Yao, Zhu (bib7) 2014; 6
Yabuta, Bescher, Mackenzie, Tsuru, Hayakawa, Osaka (bib21) 2003; 26
Nag, Simorangkir, Valentin, Björninen, Ukkonen, Hashmi, Mukhopadhyay (bib40) 2018; 6
Feng, Li, Wang, Wang, Hou, Zhang (bib35) 2019; 11
Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (bib2) 2018; 9
Chen, Zhu, Jiang (bib41) 2020; 186
Huang, Li, Zhao, Ke, Mensah, Lv, Wei (bib9) 2019; 373
Veeralingam, Priya, Badhulika (bib13) 2020; 389
Wang, Yang, Cheng, Ye, Wang (bib24) 2021; 404
Gunasekaran, Veeralingam, Badhulika (bib37) 2022; 48
Veeralingam (10.1016/j.sna.2024.115139_bib30) 2021; 4
Veeralingam (10.1016/j.sna.2024.115139_bib13) 2020; 389
Wang (10.1016/j.sna.2024.115139_bib31) 2020; 22
Hwang (10.1016/j.sna.2024.115139_bib34) 2015; 9
Veeralingam (10.1016/j.sna.2024.115139_bib6) 2023; 160
Wang (10.1016/j.sna.2024.115139_bib24) 2021; 404
Hua (10.1016/j.sna.2024.115139_bib2) 2018; 9
Jing (10.1016/j.sna.2024.115139_bib15) 2020; 7
Haniff (10.1016/j.sna.2024.115139_bib23) 2015; 5
Amjad (10.1016/j.sna.2024.115139_bib22) 2014; 8
Cai (10.1016/j.sna.2024.115139_bib26) 2010; 976
Yao (10.1016/j.sna.2024.115139_bib7) 2014; 6
Mata (10.1016/j.sna.2024.115139_bib28) 2005; 7
Yabuta (10.1016/j.sna.2024.115139_bib21) 2003; 26
Li (10.1016/j.sna.2024.115139_bib27) 2016; 4
Zheng (10.1016/j.sna.2024.115139_bib20) 2004; 43
Huang (10.1016/j.sna.2024.115139_bib9) 2019; 373
Wu (10.1016/j.sna.2024.115139_bib17) 2019; 33
Wu (10.1016/j.sna.2024.115139_bib36) 2019; 15
Feng (10.1016/j.sna.2024.115139_bib35) 2019; 11
Gong (10.1016/j.sna.2024.115139_bib39) 2017; 47
Cao (10.1016/j.sna.2024.115139_bib16) 2021; 149
Nag (10.1016/j.sna.2024.115139_bib40) 2018; 6
Lin (10.1016/j.sna.2024.115139_bib10) 2016; 4
Li (10.1016/j.sna.2024.115139_bib1) 2017; 15
Veeralingam (10.1016/j.sna.2024.115139_bib11) 2019; 1
Kim (10.1016/j.sna.2024.115139_bib8) 2017; 17
Neog (10.1016/j.sna.2024.115139_bib12) 2021; 144
Gong (10.1016/j.sna.2024.115139_bib29) 2014; 5
Lancastre (10.1016/j.sna.2024.115139_bib19) 2012; 81
Cheng (10.1016/j.sna.2024.115139_bib33) 2021; 9
Romo-Uribe (10.1016/j.sna.2024.115139_bib18) 2017; 89
Wang (10.1016/j.sna.2024.115139_bib32) 2021; 404
Thomas (10.1016/j.sna.2024.115139_bib3) 2022; 132
Lee (10.1016/j.sna.2024.115139_bib4) 2018; 6
Chen (10.1016/j.sna.2024.115139_bib41) 2020; 186
Pang (10.1016/j.sna.2024.115139_bib5) 2018; 10
Gunasekaran (10.1016/j.sna.2024.115139_bib37) 2022; 48
Kim (10.1016/j.sna.2024.115139_bib25) 2017; 142
Mehrali (10.1016/j.sna.2024.115139_bib14) 2019; 11
Vu (10.1016/j.sna.2024.115139_bib38) 2021; 22
References_xml – volume: 33
  start-page: 1870
  year: 2019
  end-page: 1881
  ident: bib17
  article-title: Preparation and characterization of superhydrophobic surface based on polydimethylsiloxane (PDMS)
  publication-title: J. Adhes. Sci. Technol.
– volume: 81
  start-page: 1336
  year: 2012
  end-page: 1340
  ident: bib19
  article-title: Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation
  publication-title: Radiat. Phys. Chem.
– volume: 142
  start-page: 1054
  year: 2017
  end-page: 1060
  ident: bib25
  article-title: Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics
  publication-title: Analyst
– volume: 9
  start-page: 1014
  year: 2021
  end-page: 1024
  ident: bib33
  article-title: A low-cost piezoresistive pressure sensor with a wide strain range–featuring polyurethane sponge@ poly (vinyl alcohol)/sulfuric gel electrolyte
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2014
  ident: bib29
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
– volume: 17
  start-page: 2582
  year: 2017
  ident: bib8
  article-title: Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array
  publication-title: Sensors
– volume: 149
  year: 2021
  ident: bib16
  article-title: Chinese ink-coated melamine foam with Joule heating and photothermal effect for strain sensor and seawater desalination
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib23
  article-title: Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor
  publication-title: Sci. Rep.
– volume: 22
  start-page: 26
  year: 2021
  end-page: 36
  ident: bib38
  article-title: Flexible wearable sensors - an update in view of touch-sensing
  publication-title: Sci. Technol. Adv. Mater.
– volume: 4
  start-page: 6345
  year: 2016
  end-page: 6352
  ident: bib10
  article-title: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network
  publication-title: J. Mater. Chem. C
– volume: 48
  year: 2022
  ident: bib37
  article-title: “One for two” strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications
  publication-title: J. Energy Storage
– volume: 11
  start-page: 21049
  year: 2019
  end-page: 21057
  ident: bib35
  article-title: Tunable dual temperature–pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2017
  ident: bib1
  article-title: Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information
  publication-title: PLOS Biol.
– volume: 15
  start-page: 1901558
  year: 2019
  ident: bib36
  article-title: Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing
  publication-title: Small
– volume: 144
  year: 2021
  ident: bib12
  article-title: WS2 nanosheets as a potential candidate towards sensing heavy metal ions: a new dimension of 2D materials
  publication-title: Mater. Res. Bull.
– volume: 26
  start-page: 1219
  year: 2003
  end-page: 1222
  ident: bib21
  article-title: Synthesis of PDMS-based porous materials for biomedical applications
  publication-title: J. Sol. -Gel Sci. Technol.
– volume: 11
  start-page: 12283
  year: 2019
  end-page: 12297
  ident: bib14
  article-title: Pectin methacrylate (PEMA) and gelatin-based hydrogels for cell delivery: converting waste materials into biomaterials
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 2508
  year: 2004
  end-page: 2511
  ident: bib20
  article-title: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 4288
  year: 2016
  end-page: 4295
  ident: bib27
  article-title: Highly flexible strain sensor from tissue paper for wearable electronics
  publication-title: ACS Sustain. Chem. Eng.
– volume: 22
  year: 2020
  ident: bib31
  article-title: Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensors
  publication-title: Compos. Commun.
– volume: 186
  year: 2020
  ident: bib41
  article-title: A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer
  publication-title: Compos. Sci. Technol.
– volume: 9
  year: 2018
  ident: bib2
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
– volume: 404
  year: 2021
  ident: bib32
  article-title: Freestanding silver/polypyrrole composite film for a multifunctional sensor with biomimetic micropattern for physiological signals monitoring
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 51
  year: 2017
  end-page: 56
  ident: bib39
  article-title: Flexible strain sensor with high performance based on PANI/PDMS films
  publication-title: Org. Electron.
– volume: 373
  start-page: 1357
  year: 2019
  end-page: 1366
  ident: bib9
  article-title: Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors
  publication-title: Chem. Eng. J.
– volume: 976
  start-page: 274
  year: 2010
  end-page: 281
  ident: bib26
  article-title: Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber to characterize polymer optical waveguide materials
  publication-title: J. Mol. Struct.
– volume: 132
  year: 2022
  ident: bib3
  article-title: MoSe
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 8801
  year: 2015
  end-page: 8810
  ident: bib34
  article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities
  publication-title: ACS Nano
– volume: 7
  start-page: 281
  year: 2005
  end-page: 293
  ident: bib28
  article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
  publication-title: Biomed. Microdevices
– volume: 7
  start-page: 54
  year: 2020
  end-page: 70
  ident: bib15
  article-title: Recent advances in integrating 2D materials with soft matter for multifunctional robotic materials
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 14
  year: 2021
  end-page: 23
  ident: bib30
  article-title: Bi2S3/PVDF/Ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing
  publication-title: ACS Appl. Bio Mater.
– volume: 6
  start-page: 2345
  year: 2014
  ident: bib7
  article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
  publication-title: Nanoscale
– volume: 89
  start-page: 101
  year: 2017
  end-page: 118
  ident: bib18
  article-title: Functional PDMS enhanced strain at fracture and toughness of DGEBA epoxy resin
  publication-title: Eur. Polym. J.
– volume: 6
  start-page: 8569
  year: 2018
  end-page: 8612
  ident: bib4
  article-title: Recent advances in organic sensors for health self-monitoring systems
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 5154
  year: 2014
  end-page: 5163
  ident: bib22
  article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
  publication-title: ACS Nano
– volume: 10
  start-page: 44173
  year: 2018
  end-page: 44182
  ident: bib5
  article-title: Multifunctional mechanical sensors for versatile physiological signal detection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 71020
  year: 2018
  end-page: 71027
  ident: bib40
  article-title: A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications
  publication-title: IEEE Access
– volume: 160
  year: 2023
  ident: bib6
  article-title: Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications
  publication-title: Mater. Res. Bull.
– volume: 1
  start-page: 558
  year: 2019
  end-page: 568
  ident: bib11
  article-title: Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized non-invasive personal healthcare monitoring
  publication-title: ACS Appl. Electron. Mater.
– volume: 389
  year: 2020
  ident: bib13
  article-title: NiO nanofibers interspersed sponge based, low-cost, a multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor
  publication-title: Chem. Eng. J.
– volume: 404
  year: 2021
  ident: bib24
  article-title: A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor
  publication-title: Chem. Eng. J.
– volume: 373
  start-page: 1357
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib9
  article-title: Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.136
– volume: 22
  start-page: 26
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib38
  article-title: Flexible wearable sensors - an update in view of touch-sensing
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2020.1862629
– volume: 186
  year: 2020
  ident: 10.1016/j.sna.2024.115139_bib41
  article-title: A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107938
– volume: 10
  start-page: 44173
  year: 2018
  ident: 10.1016/j.sna.2024.115139_bib5
  article-title: Multifunctional mechanical sensors for versatile physiological signal detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16237
– volume: 404
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib24
  article-title: A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126393
– volume: 404
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib32
  article-title: Freestanding silver/polypyrrole composite film for a multifunctional sensor with biomimetic micropattern for physiological signals monitoring
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126940
– volume: 4
  start-page: 14
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib30
  article-title: Bi2S3/PVDF/Ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01399
– volume: 47
  start-page: 51
  year: 2017
  ident: 10.1016/j.sna.2024.115139_bib39
  article-title: Flexible strain sensor with high performance based on PANI/PDMS films
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.05.001
– volume: 132
  year: 2022
  ident: 10.1016/j.sna.2024.115139_bib3
  article-title: MoSe2/PVA-based wearable multi-functional platform for pulse rate monitoring, skin hydration sensor, and human gesture recognition utilizing electrophysiological signals
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0123238
– volume: 89
  start-page: 101
  year: 2017
  ident: 10.1016/j.sna.2024.115139_bib18
  article-title: Functional PDMS enhanced strain at fracture and toughness of DGEBA epoxy resin
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.01.041
– volume: 22
  year: 2020
  ident: 10.1016/j.sna.2024.115139_bib31
  article-title: Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensors
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.100426
– volume: 142
  start-page: 1054
  year: 2017
  ident: 10.1016/j.sna.2024.115139_bib25
  article-title: Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics
  publication-title: Analyst
  doi: 10.1039/C6AN02221A
– volume: 8
  start-page: 5154
  issue: 5
  year: 2014
  ident: 10.1016/j.sna.2024.115139_bib22
  article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.sna.2024.115139_bib23
  article-title: Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1014
  issue: 3
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib33
  article-title: A low-cost piezoresistive pressure sensor with a wide strain range–featuring polyurethane sponge@ poly (vinyl alcohol)/sulfuric gel electrolyte
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC01584A
– volume: 43
  start-page: 2508
  year: 2004
  ident: 10.1016/j.sna.2024.115139_bib20
  article-title: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200453974
– volume: 15
  year: 2017
  ident: 10.1016/j.sna.2024.115139_bib1
  article-title: Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.2001402
– volume: 33
  start-page: 1870
  issue: 17
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib17
  article-title: Preparation and characterization of superhydrophobic surface based on polydimethylsiloxane (PDMS)
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2019.1615742
– volume: 15
  start-page: 1901558
  issue: 31
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib36
  article-title: Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing
  publication-title: Small
  doi: 10.1002/smll.201901558
– volume: 6
  start-page: 71020
  year: 2018
  ident: 10.1016/j.sna.2024.115139_bib40
  article-title: A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881463
– volume: 7
  start-page: 281
  year: 2005
  ident: 10.1016/j.sna.2024.115139_bib28
  article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-005-6070-2
– volume: 6
  start-page: 2345
  year: 2014
  ident: 10.1016/j.sna.2024.115139_bib7
  article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
  publication-title: Nanoscale
  doi: 10.1039/c3nr05496a
– volume: 144
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib12
  article-title: WS2 nanosheets as a potential candidate towards sensing heavy metal ions: a new dimension of 2D materials
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2021.111471
– volume: 149
  year: 2021
  ident: 10.1016/j.sna.2024.115139_bib16
  article-title: Chinese ink-coated melamine foam with Joule heating and photothermal effect for strain sensor and seawater desalination
  publication-title: Compos. Part A: Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2021.106535
– volume: 389
  year: 2020
  ident: 10.1016/j.sna.2024.115139_bib13
  article-title: NiO nanofibers interspersed sponge based, low-cost, a multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124415
– volume: 17
  start-page: 2582
  year: 2017
  ident: 10.1016/j.sna.2024.115139_bib8
  article-title: Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array
  publication-title: Sensors
  doi: 10.3390/s17112582
– volume: 160
  year: 2023
  ident: 10.1016/j.sna.2024.115139_bib6
  article-title: Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2022.112133
– volume: 9
  start-page: 8801
  issue: 9
  year: 2015
  ident: 10.1016/j.sna.2024.115139_bib34
  article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 7
  start-page: 54
  year: 2020
  ident: 10.1016/j.sna.2024.115139_bib15
  article-title: Recent advances in integrating 2D materials with soft matter for multifunctional robotic materials
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01139K
– volume: 4
  start-page: 6345
  year: 2016
  ident: 10.1016/j.sna.2024.115139_bib10
  article-title: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01925K
– volume: 9
  year: 2018
  ident: 10.1016/j.sna.2024.115139_bib2
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02685-9
– volume: 26
  start-page: 1219
  issue: 1
  year: 2003
  ident: 10.1016/j.sna.2024.115139_bib21
  article-title: Synthesis of PDMS-based porous materials for biomedical applications
  publication-title: J. Sol. -Gel Sci. Technol.
  doi: 10.1023/A:1020772521781
– volume: 976
  start-page: 274
  issue: 1-3
  year: 2010
  ident: 10.1016/j.sna.2024.115139_bib26
  article-title: Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber to characterize polymer optical waveguide materials
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2010.03.054
– volume: 11
  start-page: 21049
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib35
  article-title: Tunable dual temperature–pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05214
– volume: 6
  start-page: 8569
  year: 2018
  ident: 10.1016/j.sna.2024.115139_bib4
  article-title: Recent advances in organic sensors for health self-monitoring systems
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02230E
– volume: 81
  start-page: 1336
  issue: 9
  year: 2012
  ident: 10.1016/j.sna.2024.115139_bib19
  article-title: Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.02.016
– volume: 4
  start-page: 4288
  issue: 8
  year: 2016
  ident: 10.1016/j.sna.2024.115139_bib27
  article-title: Highly flexible strain sensor from tissue paper for wearable electronics
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00783
– volume: 5
  year: 2014
  ident: 10.1016/j.sna.2024.115139_bib29
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4132
– volume: 48
  year: 2022
  ident: 10.1016/j.sna.2024.115139_bib37
  article-title: “One for two” strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.103994
– volume: 1
  start-page: 558
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib11
  article-title: Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized non-invasive personal healthcare monitoring
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00022
– volume: 11
  start-page: 12283
  year: 2019
  ident: 10.1016/j.sna.2024.115139_bib14
  article-title: Pectin methacrylate (PEMA) and gelatin-based hydrogels for cell delivery: converting waste materials into biomaterials
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00154
SSID ssj0003377
Score 2.5183148
Snippet Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115139
SubjectTerms Gesture recognition
PDMS
Piezoresistive
Pressure sensor
Speech Recognition
Strain sensor
Title Comparative analysis of micro patterned PDMS-based piezoresistive pressure sensors with multifunctional strain and health monitoring applications
URI https://dx.doi.org/10.1016/j.sna.2024.115139
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YEJybRJHDsZq0JVQK2QSqVukZ04UhFNq6ZdGPgP_GPunIQWCRgYHfkUy2ffd2d_viPkSuhQK-knTCrlMp64mmlfh0x4KZcpgIL28KFwfyB6I_4w9sc10qnewiCtsrT9hU231rr80ixnszmfTJrDFoQO3OUSWZAQU-GDX84lrvKb9zXNw_Ns9UXszLB3dbNpOV55hqmHXA6Gw3ewXvhP2LSBN909sls6irRdjGWf1Ex2QHY20gceko_OOnU3VWV2ETpL6RRZdnRuU2eCGaVPt_0hQ7xK6Hxi3mYQYuPWBilLg10tDM0hnJ0tcornstSyDBHxioNCmttCEvCLhBbvJunUmgIcBt28Aj8io-7dc6fHyhILLHZDuWSA3l7YMmEgEinAlzLgbxgAqFgFsVAwNXGgYIdLkehWoHmo_diXTuwJ5Wjh6NA7JvVslpkTQqEhDQREEP9JHqtUp4Lr1HcTGYBxT9NT0qomN4rL_OM4-teoIpq9RKCPCPURFfo4JddfIvMi-cZfnXmlsejbCooAHH4XO_uf2DnZxhbeKznigtSXi5W5BPdkqRt2_TXIVvv-sTf4BAVJ6Ak
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYETUrS1TZP2OA3QeGxC2pC4VUmbSkPQTXtc-Bf8Y-w-xpCAA8e2sRrFyWc7cT4DXEgTGq38hCutXS4S13Djm5BLLxUqRaNgPLoo3O3JzpO4e_afV6Bd3YWhtMoS-wtMz9G6fNMoR7MxHg4b_SaGDsIVirIgMaYKVqFO7FR-Deqt2_tObwHInpcXYKT2nASqw808zWuaEfuQKxA7fIdKhv9knpZMzs0WbJa-ImsV3dmGFZvtwMYSg-AufLS_2LuZLglG2Chlb5Rox8Y5eyYiKXu86vY5mayEjYf2fYRRNq1ulMozYecTy6YY0Y4mU0ZbsyxPNCSjV-wVsmleSwJ_kbDi6iR7y9GAusGWT8H34OnmetDu8LLKAo_dUM04GnAvbNowkImS6E5ZdDks2qhYB7HUODRxoHGRK5mYZmBEaPzYV07sSe0Y6ZjQ24daNsrsATB8UBZjIgwBlYh1alIpTOq7iQoQ39P0EJrV4EZxSUFOvX-Nqlyzlwj1EZE-okIfh3C5EBkX_Bt_NRaVxqJvkyhC-_C72NH_xM5hrTPoPkQPt737Y1inL3TM5MgTqM0mc3uK3srMnJWz8RP3Suq6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+micro+patterned+PDMS-based+piezoresistive+pressure+sensors+with+multifunctional+strain+and+health+monitoring+applications&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tanusha%2C+Datla&rft.au=Badhulika%2C+Sushmee&rft.date=2024-04-16&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=369&rft_id=info:doi/10.1016%2Fj.sna.2024.115139&rft.externalDocID=S0924424724001328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon