Comparative analysis of micro patterned PDMS-based piezoresistive pressure sensors with multifunctional strain and health monitoring applications
Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have inve...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 369; p. 115139 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
16.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2024.115139 |
Cover
Loading…
Abstract | Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have investigated four different micropatterned Poly Dimethyl Siloxane (PDMS)-based device configurations to develop a cost-effective, high performance physical sensing form for both pressure and strain sensing. PDMS is poured into four different micropatterned molds, and the patterned surface of the PDMS is rendered conductive by the thermal evaporation of copper metal. Given the ease of fabrication and clean room-free approach, the optimized pressure sensor yields a sensitivity of 1.77 kPa−1 over the dynamic range of 100 N – 600 N and a response time of 0.31 s. Further, the PDMS-based pressure sensor is used for an ultrasensitive carotid arterial pulse and speech detection to demonstrate its real-time applications. When utilized as a strain sensor, the fabricated device exhibits a (GF) Gauge Factor of 22 and 0.2 s response time and could detect compressive and tensile strains ranging from 9.2–61.6 %. To illustrate its practicality, the PDMS-based strain sensor is also used for gesture detection. This excellent response of the fabricated sensor can be attributed to a piezoresistive working mechanism. The concept presented here paves the way for developing adaptive, low-cost, clean-room-free, simpler multipurpose sensors for medical applications and wearable consumer electronics by exploring different types of novel architectures with optimal performance.
[Display omitted]
•Micro Patterned PDMS structures were fabricated using the facile casting method.•The micropatterned devices were used for developing strain sensors and pressure sensors.•The fabricated strain and pressure sensors were used for carotid arterial pulse detection and speech detection.•The fabricated device displays excellent durability for 10,000 loading and unloading cycles. |
---|---|
AbstractList | Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated fabrication methodology, are less adaptable, expensive, and need to provide higher sensitivity. In this work, addressing these issues, we have investigated four different micropatterned Poly Dimethyl Siloxane (PDMS)-based device configurations to develop a cost-effective, high performance physical sensing form for both pressure and strain sensing. PDMS is poured into four different micropatterned molds, and the patterned surface of the PDMS is rendered conductive by the thermal evaporation of copper metal. Given the ease of fabrication and clean room-free approach, the optimized pressure sensor yields a sensitivity of 1.77 kPa−1 over the dynamic range of 100 N – 600 N and a response time of 0.31 s. Further, the PDMS-based pressure sensor is used for an ultrasensitive carotid arterial pulse and speech detection to demonstrate its real-time applications. When utilized as a strain sensor, the fabricated device exhibits a (GF) Gauge Factor of 22 and 0.2 s response time and could detect compressive and tensile strains ranging from 9.2–61.6 %. To illustrate its practicality, the PDMS-based strain sensor is also used for gesture detection. This excellent response of the fabricated sensor can be attributed to a piezoresistive working mechanism. The concept presented here paves the way for developing adaptive, low-cost, clean-room-free, simpler multipurpose sensors for medical applications and wearable consumer electronics by exploring different types of novel architectures with optimal performance.
[Display omitted]
•Micro Patterned PDMS structures were fabricated using the facile casting method.•The micropatterned devices were used for developing strain sensors and pressure sensors.•The fabricated strain and pressure sensors were used for carotid arterial pulse detection and speech detection.•The fabricated device displays excellent durability for 10,000 loading and unloading cycles. |
ArticleNumber | 115139 |
Author | Tanusha, Datla Badhulika, Sushmee |
Author_xml | – sequence: 1 givenname: Datla surname: Tanusha fullname: Tanusha, Datla organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India – sequence: 2 givenname: Sushmee surname: Badhulika fullname: Badhulika, Sushmee email: sbadh@iith.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India |
BookMark | eNp9kEtuFDEQhi0UJCaBA7DzBXqw-2G3xQoNEJAmSqTA2qp215Aa9dgt25Mo3IIbx51hlUVWVYv_q8d3zs588MjYRynWUkj1ab9OHta1qNu1lJ1szBu2kr1uqkYoc8ZWwtRt1datfsfOU9oLIZpG6xX7twmHGSJkukcOHqbHRImHHT-Qi4HPkDNGjyO_-Xp1Ww2QSjsT_g0RS_CZmkubjhF5Qp9CTPyB8h0_HKdMu6N3mUIZy1OOQL6sGPkdwrQkgqccIvk_HOZ5IgdLNL1nb3cwJfzwv16w39-__dr8qLbXlz83X7aVq43Olezqxgg0vRq1ajuFUtRojHDQOwVFhOuh74VW4yD6oTVD5zotXaNADkoOprlg-jS3_JlSxJ11lJ9PWC6drBR2MWv3tpi1i1l7MltI-YKcIx0gPr7KfD4xWF66J4w2OULvcKSILtsx0Cv0E1S7l2k |
CitedBy_id | crossref_primary_10_1002_adsr_202400039 crossref_primary_10_1016_j_carbpol_2025_123278 crossref_primary_10_1016_j_sna_2024_115714 crossref_primary_10_3390_ma18050965 crossref_primary_10_1016_j_compositesa_2024_108648 crossref_primary_10_1016_j_measurement_2024_116312 crossref_primary_10_1021_acsnano_4c15294 crossref_primary_10_1016_j_compscitech_2025_111078 crossref_primary_10_1016_j_compstruct_2024_118711 crossref_primary_10_1088_2058_8585_adb85e crossref_primary_10_1007_s42235_024_00526_2 crossref_primary_10_1007_s00604_024_06595_8 crossref_primary_10_1016_j_sna_2024_115782 crossref_primary_10_1021_acsami_4c12066 crossref_primary_10_1016_j_sna_2024_115810 crossref_primary_10_1109_JSEN_2024_3477419 |
Cites_doi | 10.1016/j.cej.2019.05.136 10.1080/14686996.2020.1862629 10.1016/j.compscitech.2019.107938 10.1021/acsami.8b16237 10.1016/j.cej.2020.126393 10.1016/j.cej.2020.126940 10.1021/acsabm.0c01399 10.1016/j.orgel.2017.05.001 10.1063/5.0123238 10.1016/j.eurpolymj.2017.01.041 10.1016/j.coco.2020.100426 10.1039/C6AN02221A 10.1021/nn501204t 10.1039/D0TC01584A 10.1002/anie.200453974 10.1371/journal.pbio.2001402 10.1080/01694243.2019.1615742 10.1002/smll.201901558 10.1109/ACCESS.2018.2881463 10.1007/s10544-005-6070-2 10.1039/c3nr05496a 10.1016/j.materresbull.2021.111471 10.1016/j.compositesa.2021.106535 10.1016/j.cej.2020.124415 10.3390/s17112582 10.1016/j.materresbull.2022.112133 10.1021/acsnano.5b01835 10.1039/C9MH01139K 10.1039/C6TC01925K 10.1038/s41467-017-02685-9 10.1023/A:1020772521781 10.1016/j.molstruc.2010.03.054 10.1021/acsami.9b05214 10.1039/C8TC02230E 10.1016/j.radphyschem.2012.02.016 10.1021/acssuschemeng.6b00783 10.1038/ncomms4132 10.1016/j.est.2022.103994 10.1021/acsaelm.9b00022 10.1021/acsami.9b00154 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sna.2024.115139 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2024_115139 S0924424724001328 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ LY7 M36 R2- SCB SCH SET SSH WUQ |
ID | FETCH-LOGICAL-c297t-152390e986d76456e102e990ca8c6a202c8a88076db08b49b5c571c36a1b61b93 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Tue Jul 01 02:24:57 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Sat Mar 23 16:29:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoresistive Speech Recognition Strain sensor Pressure sensor Gesture recognition PDMS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-152390e986d76456e102e990ca8c6a202c8a88076db08b49b5c571c36a1b61b93 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sna_2024_115139 crossref_primary_10_1016_j_sna_2024_115139 elsevier_sciencedirect_doi_10_1016_j_sna_2024_115139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-16 |
PublicationDateYYYYMMDD | 2024-04-16 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pang, Yang, Han, Jian, Li, Wang, Qiao, Yang, Ren (bib5) 2018; 10 Veeralingam, Sahatiya, Kadu, Mattela, Badhulika (bib11) 2019; 1 Mehrali, Thakur, Kadumudi, Pierchala, Cordova, Shahbazi, Mehrali, Pennisi, Orive, Gaharwar, Dolatshahi-Pirouz (bib14) 2019; 11 Thomas, Veeralingam, Badhulika (bib3) 2022; 132 Haniff, Hafiz, Abd Wahid, Endut, Lee, Bien, Azid, Abdullah, Huang, Rahman (bib23) 2015; 5 Veeralingam, Badhulika (bib30) 2021; 4 Jing, Li, Yang, Chen (bib15) 2020; 7 Lin, Liu, Chen, Wei, Dong, Liu (bib10) 2016; 4 Li, Samad, Taha, Cai, Fu, Liao (bib27) 2016; 4 Cao, Liu, Cai, Chen, Yang, Liu (bib16) 2021; 149 Wang, Zhou, Song, Fang, Wang, Wang, Huang (bib32) 2021; 404 Wu, Ma, Hou, Meng, Guo, Yu, Liu (bib36) 2019; 15 Veeralingam, Gandrothula, Badhulika (bib6) 2023; 160 Kim, Song, Park, Yun (bib8) 2017; 17 Gong, Schwalb, Wang, Chen, Tang, Si, Shirinzadeh, Cheng (bib29) 2014; 5 Gong, Fei, Fu, Fang, Gao, Zhong, De Zhang (bib39) 2017; 47 Neog, Biswas (bib12) 2021; 144 Li, Dunn, Salins, Zhou, Zhou, Schüssler-Fiorenza Rose, Perelman, Colbert, Runge, Rego, Sonecha, Datta, Mclaughlin, Snyder (bib1) 2017; 15 Wu, Wang, Zhang, Li, Zhu (bib17) 2019; 33 Vu, Kim, Kim (bib38) 2021; 22 Kim, Waqued, Nodurft, Devarenne, Yakovlev, Han (bib25) 2017; 142 Cai, Neyer, Kuckuk, Heise (bib26) 2010; 976 Amjad, Pichitpajongkit, Lee, Ryu, Park (bib22) 2014; 8 Wang, Tan, Zhong, Liu, Li, Chen, Wang, Wang (bib31) 2020; 22 Lee, Kweon, Kim, Yoo, Han, Oh (bib4) 2018; 6 Romo-Uribe, Santiago-Santiago, Reyes-Mayer, Aguilar-Franco (bib18) 2017; 89 Lancastre, Fernandes, Margaça, Salvado, Ferreira, Falcão, Casimiro (bib19) 2012; 81 Hwang, Lee, Trung, Roh, Kim, Kim, Lee (bib34) 2015; 9 Cheng, Wang, Yang, Wang (bib33) 2021; 9 Zheng, Tice, Roach, Ismagilov (bib20) 2004; 43 Mata, Fleischman, Roy (bib28) 2005; 7 Yao, Zhu (bib7) 2014; 6 Yabuta, Bescher, Mackenzie, Tsuru, Hayakawa, Osaka (bib21) 2003; 26 Nag, Simorangkir, Valentin, Björninen, Ukkonen, Hashmi, Mukhopadhyay (bib40) 2018; 6 Feng, Li, Wang, Wang, Hou, Zhang (bib35) 2019; 11 Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (bib2) 2018; 9 Chen, Zhu, Jiang (bib41) 2020; 186 Huang, Li, Zhao, Ke, Mensah, Lv, Wei (bib9) 2019; 373 Veeralingam, Priya, Badhulika (bib13) 2020; 389 Wang, Yang, Cheng, Ye, Wang (bib24) 2021; 404 Gunasekaran, Veeralingam, Badhulika (bib37) 2022; 48 Veeralingam (10.1016/j.sna.2024.115139_bib30) 2021; 4 Veeralingam (10.1016/j.sna.2024.115139_bib13) 2020; 389 Wang (10.1016/j.sna.2024.115139_bib31) 2020; 22 Hwang (10.1016/j.sna.2024.115139_bib34) 2015; 9 Veeralingam (10.1016/j.sna.2024.115139_bib6) 2023; 160 Wang (10.1016/j.sna.2024.115139_bib24) 2021; 404 Hua (10.1016/j.sna.2024.115139_bib2) 2018; 9 Jing (10.1016/j.sna.2024.115139_bib15) 2020; 7 Haniff (10.1016/j.sna.2024.115139_bib23) 2015; 5 Amjad (10.1016/j.sna.2024.115139_bib22) 2014; 8 Cai (10.1016/j.sna.2024.115139_bib26) 2010; 976 Yao (10.1016/j.sna.2024.115139_bib7) 2014; 6 Mata (10.1016/j.sna.2024.115139_bib28) 2005; 7 Yabuta (10.1016/j.sna.2024.115139_bib21) 2003; 26 Li (10.1016/j.sna.2024.115139_bib27) 2016; 4 Zheng (10.1016/j.sna.2024.115139_bib20) 2004; 43 Huang (10.1016/j.sna.2024.115139_bib9) 2019; 373 Wu (10.1016/j.sna.2024.115139_bib17) 2019; 33 Wu (10.1016/j.sna.2024.115139_bib36) 2019; 15 Feng (10.1016/j.sna.2024.115139_bib35) 2019; 11 Gong (10.1016/j.sna.2024.115139_bib39) 2017; 47 Cao (10.1016/j.sna.2024.115139_bib16) 2021; 149 Nag (10.1016/j.sna.2024.115139_bib40) 2018; 6 Lin (10.1016/j.sna.2024.115139_bib10) 2016; 4 Li (10.1016/j.sna.2024.115139_bib1) 2017; 15 Veeralingam (10.1016/j.sna.2024.115139_bib11) 2019; 1 Kim (10.1016/j.sna.2024.115139_bib8) 2017; 17 Neog (10.1016/j.sna.2024.115139_bib12) 2021; 144 Gong (10.1016/j.sna.2024.115139_bib29) 2014; 5 Lancastre (10.1016/j.sna.2024.115139_bib19) 2012; 81 Cheng (10.1016/j.sna.2024.115139_bib33) 2021; 9 Romo-Uribe (10.1016/j.sna.2024.115139_bib18) 2017; 89 Wang (10.1016/j.sna.2024.115139_bib32) 2021; 404 Thomas (10.1016/j.sna.2024.115139_bib3) 2022; 132 Lee (10.1016/j.sna.2024.115139_bib4) 2018; 6 Chen (10.1016/j.sna.2024.115139_bib41) 2020; 186 Pang (10.1016/j.sna.2024.115139_bib5) 2018; 10 Gunasekaran (10.1016/j.sna.2024.115139_bib37) 2022; 48 Kim (10.1016/j.sna.2024.115139_bib25) 2017; 142 Mehrali (10.1016/j.sna.2024.115139_bib14) 2019; 11 Vu (10.1016/j.sna.2024.115139_bib38) 2021; 22 |
References_xml | – volume: 33 start-page: 1870 year: 2019 end-page: 1881 ident: bib17 article-title: Preparation and characterization of superhydrophobic surface based on polydimethylsiloxane (PDMS) publication-title: J. Adhes. Sci. Technol. – volume: 81 start-page: 1336 year: 2012 end-page: 1340 ident: bib19 article-title: Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation publication-title: Radiat. Phys. Chem. – volume: 142 start-page: 1054 year: 2017 end-page: 1060 ident: bib25 article-title: Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics publication-title: Analyst – volume: 9 start-page: 1014 year: 2021 end-page: 1024 ident: bib33 article-title: A low-cost piezoresistive pressure sensor with a wide strain range–featuring polyurethane sponge@ poly (vinyl alcohol)/sulfuric gel electrolyte publication-title: J. Mater. Chem. C – volume: 5 year: 2014 ident: bib29 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. – volume: 17 start-page: 2582 year: 2017 ident: bib8 article-title: Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array publication-title: Sensors – volume: 149 year: 2021 ident: bib16 article-title: Chinese ink-coated melamine foam with Joule heating and photothermal effect for strain sensor and seawater desalination publication-title: Compos. Part A: Appl. Sci. Manuf. – volume: 5 start-page: 1 year: 2015 end-page: 10 ident: bib23 article-title: Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor publication-title: Sci. Rep. – volume: 22 start-page: 26 year: 2021 end-page: 36 ident: bib38 article-title: Flexible wearable sensors - an update in view of touch-sensing publication-title: Sci. Technol. Adv. Mater. – volume: 4 start-page: 6345 year: 2016 end-page: 6352 ident: bib10 article-title: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network publication-title: J. Mater. Chem. C – volume: 48 year: 2022 ident: bib37 article-title: “One for two” strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications publication-title: J. Energy Storage – volume: 11 start-page: 21049 year: 2019 end-page: 21057 ident: bib35 article-title: Tunable dual temperature–pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2017 ident: bib1 article-title: Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information publication-title: PLOS Biol. – volume: 15 start-page: 1901558 year: 2019 ident: bib36 article-title: Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing publication-title: Small – volume: 144 year: 2021 ident: bib12 article-title: WS2 nanosheets as a potential candidate towards sensing heavy metal ions: a new dimension of 2D materials publication-title: Mater. Res. Bull. – volume: 26 start-page: 1219 year: 2003 end-page: 1222 ident: bib21 article-title: Synthesis of PDMS-based porous materials for biomedical applications publication-title: J. Sol. -Gel Sci. Technol. – volume: 11 start-page: 12283 year: 2019 end-page: 12297 ident: bib14 article-title: Pectin methacrylate (PEMA) and gelatin-based hydrogels for cell delivery: converting waste materials into biomaterials publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 2508 year: 2004 end-page: 2511 ident: bib20 article-title: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 4288 year: 2016 end-page: 4295 ident: bib27 article-title: Highly flexible strain sensor from tissue paper for wearable electronics publication-title: ACS Sustain. Chem. Eng. – volume: 22 year: 2020 ident: bib31 article-title: Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensors publication-title: Compos. Commun. – volume: 186 year: 2020 ident: bib41 article-title: A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer publication-title: Compos. Sci. Technol. – volume: 9 year: 2018 ident: bib2 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nat. Commun. – volume: 404 year: 2021 ident: bib32 article-title: Freestanding silver/polypyrrole composite film for a multifunctional sensor with biomimetic micropattern for physiological signals monitoring publication-title: Chem. Eng. J. – volume: 47 start-page: 51 year: 2017 end-page: 56 ident: bib39 article-title: Flexible strain sensor with high performance based on PANI/PDMS films publication-title: Org. Electron. – volume: 373 start-page: 1357 year: 2019 end-page: 1366 ident: bib9 article-title: Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors publication-title: Chem. Eng. J. – volume: 976 start-page: 274 year: 2010 end-page: 281 ident: bib26 article-title: Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber to characterize polymer optical waveguide materials publication-title: J. Mol. Struct. – volume: 132 year: 2022 ident: bib3 article-title: MoSe publication-title: J. Appl. Phys. – volume: 9 start-page: 8801 year: 2015 end-page: 8810 ident: bib34 article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities publication-title: ACS Nano – volume: 7 start-page: 281 year: 2005 end-page: 293 ident: bib28 article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems publication-title: Biomed. Microdevices – volume: 7 start-page: 54 year: 2020 end-page: 70 ident: bib15 article-title: Recent advances in integrating 2D materials with soft matter for multifunctional robotic materials publication-title: Mater. Horiz. – volume: 4 start-page: 14 year: 2021 end-page: 23 ident: bib30 article-title: Bi2S3/PVDF/Ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing publication-title: ACS Appl. Bio Mater. – volume: 6 start-page: 2345 year: 2014 ident: bib7 article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires publication-title: Nanoscale – volume: 89 start-page: 101 year: 2017 end-page: 118 ident: bib18 article-title: Functional PDMS enhanced strain at fracture and toughness of DGEBA epoxy resin publication-title: Eur. Polym. J. – volume: 6 start-page: 8569 year: 2018 end-page: 8612 ident: bib4 article-title: Recent advances in organic sensors for health self-monitoring systems publication-title: J. Mater. Chem. C – volume: 8 start-page: 5154 year: 2014 end-page: 5163 ident: bib22 article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite publication-title: ACS Nano – volume: 10 start-page: 44173 year: 2018 end-page: 44182 ident: bib5 article-title: Multifunctional mechanical sensors for versatile physiological signal detection publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 71020 year: 2018 end-page: 71027 ident: bib40 article-title: A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications publication-title: IEEE Access – volume: 160 year: 2023 ident: bib6 article-title: Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications publication-title: Mater. Res. Bull. – volume: 1 start-page: 558 year: 2019 end-page: 568 ident: bib11 article-title: Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized non-invasive personal healthcare monitoring publication-title: ACS Appl. Electron. Mater. – volume: 389 year: 2020 ident: bib13 article-title: NiO nanofibers interspersed sponge based, low-cost, a multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor publication-title: Chem. Eng. J. – volume: 404 year: 2021 ident: bib24 article-title: A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor publication-title: Chem. Eng. J. – volume: 373 start-page: 1357 year: 2019 ident: 10.1016/j.sna.2024.115139_bib9 article-title: Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.136 – volume: 22 start-page: 26 year: 2021 ident: 10.1016/j.sna.2024.115139_bib38 article-title: Flexible wearable sensors - an update in view of touch-sensing publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2020.1862629 – volume: 186 year: 2020 ident: 10.1016/j.sna.2024.115139_bib41 article-title: A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107938 – volume: 10 start-page: 44173 year: 2018 ident: 10.1016/j.sna.2024.115139_bib5 article-title: Multifunctional mechanical sensors for versatile physiological signal detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16237 – volume: 404 year: 2021 ident: 10.1016/j.sna.2024.115139_bib24 article-title: A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126393 – volume: 404 year: 2021 ident: 10.1016/j.sna.2024.115139_bib32 article-title: Freestanding silver/polypyrrole composite film for a multifunctional sensor with biomimetic micropattern for physiological signals monitoring publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126940 – volume: 4 start-page: 14 year: 2021 ident: 10.1016/j.sna.2024.115139_bib30 article-title: Bi2S3/PVDF/Ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01399 – volume: 47 start-page: 51 year: 2017 ident: 10.1016/j.sna.2024.115139_bib39 article-title: Flexible strain sensor with high performance based on PANI/PDMS films publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.05.001 – volume: 132 year: 2022 ident: 10.1016/j.sna.2024.115139_bib3 article-title: MoSe2/PVA-based wearable multi-functional platform for pulse rate monitoring, skin hydration sensor, and human gesture recognition utilizing electrophysiological signals publication-title: J. Appl. Phys. doi: 10.1063/5.0123238 – volume: 89 start-page: 101 year: 2017 ident: 10.1016/j.sna.2024.115139_bib18 article-title: Functional PDMS enhanced strain at fracture and toughness of DGEBA epoxy resin publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.01.041 – volume: 22 year: 2020 ident: 10.1016/j.sna.2024.115139_bib31 article-title: Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensors publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.100426 – volume: 142 start-page: 1054 year: 2017 ident: 10.1016/j.sna.2024.115139_bib25 article-title: Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics publication-title: Analyst doi: 10.1039/C6AN02221A – volume: 8 start-page: 5154 issue: 5 year: 2014 ident: 10.1016/j.sna.2024.115139_bib22 article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.sna.2024.115139_bib23 article-title: Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor publication-title: Sci. Rep. – volume: 9 start-page: 1014 issue: 3 year: 2021 ident: 10.1016/j.sna.2024.115139_bib33 article-title: A low-cost piezoresistive pressure sensor with a wide strain range–featuring polyurethane sponge@ poly (vinyl alcohol)/sulfuric gel electrolyte publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01584A – volume: 43 start-page: 2508 year: 2004 ident: 10.1016/j.sna.2024.115139_bib20 article-title: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200453974 – volume: 15 year: 2017 ident: 10.1016/j.sna.2024.115139_bib1 article-title: Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information publication-title: PLOS Biol. doi: 10.1371/journal.pbio.2001402 – volume: 33 start-page: 1870 issue: 17 year: 2019 ident: 10.1016/j.sna.2024.115139_bib17 article-title: Preparation and characterization of superhydrophobic surface based on polydimethylsiloxane (PDMS) publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2019.1615742 – volume: 15 start-page: 1901558 issue: 31 year: 2019 ident: 10.1016/j.sna.2024.115139_bib36 article-title: Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing publication-title: Small doi: 10.1002/smll.201901558 – volume: 6 start-page: 71020 year: 2018 ident: 10.1016/j.sna.2024.115139_bib40 article-title: A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2881463 – volume: 7 start-page: 281 year: 2005 ident: 10.1016/j.sna.2024.115139_bib28 article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems publication-title: Biomed. Microdevices doi: 10.1007/s10544-005-6070-2 – volume: 6 start-page: 2345 year: 2014 ident: 10.1016/j.sna.2024.115139_bib7 article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires publication-title: Nanoscale doi: 10.1039/c3nr05496a – volume: 144 year: 2021 ident: 10.1016/j.sna.2024.115139_bib12 article-title: WS2 nanosheets as a potential candidate towards sensing heavy metal ions: a new dimension of 2D materials publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2021.111471 – volume: 149 year: 2021 ident: 10.1016/j.sna.2024.115139_bib16 article-title: Chinese ink-coated melamine foam with Joule heating and photothermal effect for strain sensor and seawater desalination publication-title: Compos. Part A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2021.106535 – volume: 389 year: 2020 ident: 10.1016/j.sna.2024.115139_bib13 article-title: NiO nanofibers interspersed sponge based, low-cost, a multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124415 – volume: 17 start-page: 2582 year: 2017 ident: 10.1016/j.sna.2024.115139_bib8 article-title: Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array publication-title: Sensors doi: 10.3390/s17112582 – volume: 160 year: 2023 ident: 10.1016/j.sna.2024.115139_bib6 article-title: Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2022.112133 – volume: 9 start-page: 8801 issue: 9 year: 2015 ident: 10.1016/j.sna.2024.115139_bib34 article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 7 start-page: 54 year: 2020 ident: 10.1016/j.sna.2024.115139_bib15 article-title: Recent advances in integrating 2D materials with soft matter for multifunctional robotic materials publication-title: Mater. Horiz. doi: 10.1039/C9MH01139K – volume: 4 start-page: 6345 year: 2016 ident: 10.1016/j.sna.2024.115139_bib10 article-title: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01925K – volume: 9 year: 2018 ident: 10.1016/j.sna.2024.115139_bib2 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nat. Commun. doi: 10.1038/s41467-017-02685-9 – volume: 26 start-page: 1219 issue: 1 year: 2003 ident: 10.1016/j.sna.2024.115139_bib21 article-title: Synthesis of PDMS-based porous materials for biomedical applications publication-title: J. Sol. -Gel Sci. Technol. doi: 10.1023/A:1020772521781 – volume: 976 start-page: 274 issue: 1-3 year: 2010 ident: 10.1016/j.sna.2024.115139_bib26 article-title: Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber to characterize polymer optical waveguide materials publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2010.03.054 – volume: 11 start-page: 21049 year: 2019 ident: 10.1016/j.sna.2024.115139_bib35 article-title: Tunable dual temperature–pressure sensing and parameter self-separating based on ionic hydrogel via multisynergistic network design publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05214 – volume: 6 start-page: 8569 year: 2018 ident: 10.1016/j.sna.2024.115139_bib4 article-title: Recent advances in organic sensors for health self-monitoring systems publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02230E – volume: 81 start-page: 1336 issue: 9 year: 2012 ident: 10.1016/j.sna.2024.115139_bib19 article-title: Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.02.016 – volume: 4 start-page: 4288 issue: 8 year: 2016 ident: 10.1016/j.sna.2024.115139_bib27 article-title: Highly flexible strain sensor from tissue paper for wearable electronics publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00783 – volume: 5 year: 2014 ident: 10.1016/j.sna.2024.115139_bib29 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 48 year: 2022 ident: 10.1016/j.sna.2024.115139_bib37 article-title: “One for two” strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications publication-title: J. Energy Storage doi: 10.1016/j.est.2022.103994 – volume: 1 start-page: 558 year: 2019 ident: 10.1016/j.sna.2024.115139_bib11 article-title: Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized non-invasive personal healthcare monitoring publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00022 – volume: 11 start-page: 12283 year: 2019 ident: 10.1016/j.sna.2024.115139_bib14 article-title: Pectin methacrylate (PEMA) and gelatin-based hydrogels for cell delivery: converting waste materials into biomaterials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00154 |
SSID | ssj0003377 |
Score | 2.5183148 |
Snippet | Flexible strain and pressure sensors are widely utilized for healthcare and wearable applications. But the majority of the sensors include sophisticated... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115139 |
SubjectTerms | Gesture recognition PDMS Piezoresistive Pressure sensor Speech Recognition Strain sensor |
Title | Comparative analysis of micro patterned PDMS-based piezoresistive pressure sensors with multifunctional strain and health monitoring applications |
URI | https://dx.doi.org/10.1016/j.sna.2024.115139 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YEJybRJHDsZq0JVQK2QSqVukZ04UhFNq6ZdGPgP_GPunIQWCRgYHfkUy2ffd2d_viPkSuhQK-knTCrlMp64mmlfh0x4KZcpgIL28KFwfyB6I_4w9sc10qnewiCtsrT9hU231rr80ixnszmfTJrDFoQO3OUSWZAQU-GDX84lrvKb9zXNw_Ns9UXszLB3dbNpOV55hqmHXA6Gw3ewXvhP2LSBN909sls6irRdjGWf1Ex2QHY20gceko_OOnU3VWV2ETpL6RRZdnRuU2eCGaVPt_0hQ7xK6Hxi3mYQYuPWBilLg10tDM0hnJ0tcornstSyDBHxioNCmttCEvCLhBbvJunUmgIcBt28Aj8io-7dc6fHyhILLHZDuWSA3l7YMmEgEinAlzLgbxgAqFgFsVAwNXGgYIdLkehWoHmo_diXTuwJ5Wjh6NA7JvVslpkTQqEhDQREEP9JHqtUp4Lr1HcTGYBxT9NT0qomN4rL_OM4-teoIpq9RKCPCPURFfo4JddfIvMi-cZfnXmlsejbCooAHH4XO_uf2DnZxhbeKznigtSXi5W5BPdkqRt2_TXIVvv-sTf4BAVJ6Ak |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYETUrS1TZP2OA3QeGxC2pC4VUmbSkPQTXtc-Bf8Y-w-xpCAA8e2sRrFyWc7cT4DXEgTGq38hCutXS4S13Djm5BLLxUqRaNgPLoo3O3JzpO4e_afV6Bd3YWhtMoS-wtMz9G6fNMoR7MxHg4b_SaGDsIVirIgMaYKVqFO7FR-Deqt2_tObwHInpcXYKT2nASqw808zWuaEfuQKxA7fIdKhv9knpZMzs0WbJa-ImsV3dmGFZvtwMYSg-AufLS_2LuZLglG2Chlb5Rox8Y5eyYiKXu86vY5mayEjYf2fYRRNq1ulMozYecTy6YY0Y4mU0ZbsyxPNCSjV-wVsmleSwJ_kbDi6iR7y9GAusGWT8H34OnmetDu8LLKAo_dUM04GnAvbNowkImS6E5ZdDks2qhYB7HUODRxoHGRK5mYZmBEaPzYV07sSe0Y6ZjQ24daNsrsATB8UBZjIgwBlYh1alIpTOq7iQoQ39P0EJrV4EZxSUFOvX-Nqlyzlwj1EZE-okIfh3C5EBkX_Bt_NRaVxqJvkyhC-_C72NH_xM5hrTPoPkQPt737Y1inL3TM5MgTqM0mc3uK3srMnJWz8RP3Suq6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+micro+patterned+PDMS-based+piezoresistive+pressure+sensors+with+multifunctional+strain+and+health+monitoring+applications&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tanusha%2C+Datla&rft.au=Badhulika%2C+Sushmee&rft.date=2024-04-16&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=369&rft_id=info:doi/10.1016%2Fj.sna.2024.115139&rft.externalDocID=S0924424724001328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |