Spacecraft attitude fault-tolerant stabilization against loss of actuator Effectiveness: A novel iterative learning sliding mode approach

This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factor...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 72; no. 2; pp. 529 - 540
Main Authors Jia, Qingxian, Ma, Rui, Zhang, Chengxi, Varatharajoo, Renuganth
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2023
Subjects
Online AccessGet full text
ISSN0273-1177
1879-1948
DOI10.1016/j.asr.2023.02.041

Cover

Loading…
Abstract This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factors robustly and accurately by combining the P-type iterative learning algorithm with the sliding mode approach. Based on the reconstructed fault signals, an Iterative Learning Sliding Mode Controller (ILSMC) is designed to guarantee the closed-loop spacecraft attitude fault-tolerant stabilization by compensating for its lumped disturbance. The ILSMO and ILSMC stabilities are guaranteed using the Lyapunov direct approach, respectively. Finally, the numerical simulation results show that the proposed ILSMO-ILSMC-based spacecraft attitude fault-tolerant stabilization method is effective and superior.
AbstractList This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factors robustly and accurately by combining the P-type iterative learning algorithm with the sliding mode approach. Based on the reconstructed fault signals, an Iterative Learning Sliding Mode Controller (ILSMC) is designed to guarantee the closed-loop spacecraft attitude fault-tolerant stabilization by compensating for its lumped disturbance. The ILSMO and ILSMC stabilities are guaranteed using the Lyapunov direct approach, respectively. Finally, the numerical simulation results show that the proposed ILSMO-ILSMC-based spacecraft attitude fault-tolerant stabilization method is effective and superior.
Author Varatharajoo, Renuganth
Jia, Qingxian
Zhang, Chengxi
Ma, Rui
Author_xml – sequence: 1
  givenname: Qingxian
  orcidid: 0000-0002-8103-7467
  surname: Jia
  fullname: Jia, Qingxian
  email: jqxnuaa@nuaa.edu.cn
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-7333-1060
  surname: Ma
  fullname: Ma, Rui
  email: mr932970168@163.com
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
– sequence: 3
  givenname: Chengxi
  surname: Zhang
  fullname: Zhang, Chengxi
  email: dongfangxy@163.com
  organization: School of Internet of Things Engineering, Jiangnan University, 214122 Wuxi, China
– sequence: 4
  givenname: Renuganth
  surname: Varatharajoo
  fullname: Varatharajoo, Renuganth
  email: renu99@gmx.de
  organization: Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 Selangor, Malaysia
BookMark eNp9kE1qHDEQRkVwIGPHB_BOF-iOfnqsVrIyxnECBi8Sr0V1dcnRIEuDpBlIbpBbuzvOyguvCop6X_G9U3aSciLGLqTopZCXn3Y91NIroXQvVC8G-Y5t5GhsJ-0wnrCNUEZ3UhrzgZ3WuhNCKmPEhv39sQckLOAbh9ZCO8zEPRxi61qOVCA1XhtMIYY_0EJOHB4hpNp4zLXy7DlgO0DLhd94T9jCkRLV-plf8ZSPFHloS8q65pGgpJAeeY1hXudTXp7Bfl8y4K-P7L2HWOn8_zxjD19vfl5_6-7ub79fX911qKxpndRbvNTWWKRhErP2SqDCcaul12bQOFjhpR-t1VtjtJ38iAbMeoB-Ipr0GTMvuViWBoW8w9D-VWsFQnRSuNWo27nFqFuNOqHcYnQh5StyX8ITlN9vMl9eGFoqHQMVVzFQQppDWWy5OYc36Ge8QJTQ
CitedBy_id crossref_primary_10_3390_app13169415
crossref_primary_10_1016_j_asr_2024_10_051
crossref_primary_10_1061_JAEEEZ_ASENG_5262
crossref_primary_10_1002_oca_3165
crossref_primary_10_1016_j_ast_2023_108653
crossref_primary_10_1016_j_asr_2023_09_051
crossref_primary_10_1109_TAES_2023_3344390
crossref_primary_10_1016_j_asr_2024_11_073
crossref_primary_10_1016_j_asr_2023_04_023
crossref_primary_10_1016_j_jfranklin_2024_107395
crossref_primary_10_1007_s42405_025_00909_7
crossref_primary_10_1016_j_asr_2023_12_048
crossref_primary_10_1016_j_ast_2024_109085
crossref_primary_10_1002_rnc_7289
crossref_primary_10_1016_j_asr_2024_05_065
crossref_primary_10_2514_1_G008384
crossref_primary_10_1007_s11071_024_09502_1
crossref_primary_10_1016_j_actaastro_2024_11_062
Cites_doi 10.2514/1.60998
10.1109/TAES.2017.2705318
10.1109/TAES.2019.2955257
10.1016/j.actaastro.2020.05.041
10.1108/AEAT-10-2020-0224
10.1016/j.ast.2020.105706
10.1016/j.actaastro.2020.10.017
10.1109/TCYB.2019.2905427
10.1109/TIE.2016.2611576
10.1016/j.ast.2018.05.007
10.1109/TSMC.2019.2932225
10.1080/00207721.2015.1118773
10.1177/0954410013517671
10.1109/TIE.2018.2854602
10.1002/asjc.1076
10.1016/j.isatra.2018.11.048
10.1016/j.automatica.2021.110024
10.1049/iet-cta.2017.0969
10.1016/j.automatica.2018.10.055
10.2514/1.G000497
10.1109/TAC.2021.3062159
10.2514/1.G000625
10.2514/1.G006246
10.1016/j.isatra.2019.01.039
10.2514/1.A35058
10.1049/iet-cta.2019.0195
10.1007/s11071-018-4661-8
10.1109/TIE.2016.2530789
10.1115/1.2719773
10.1016/j.arcontrol.2008.03.008
10.1016/j.asr.2018.07.026
10.1016/j.ast.2015.09.018
10.1016/j.asr.2020.06.019
10.1016/j.isatra.2019.04.014
10.1002/asjc.1888
10.1016/j.ast.2019.06.013
10.1061/(ASCE)AS.1943-5525.0000331
10.1108/AEAT-07-2018-0203
ContentType Journal Article
Copyright 2023 COSPAR
Copyright_xml – notice: 2023 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2023.02.041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 540
ExternalDocumentID 10_1016_j_asr_2023_02_041
S0273117723001710
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RIG
RPZ
SHN
SSH
T9H
UHS
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c297t-135c63979ce4b0d3f20c2c8531f3743c490f1f899357739bf8c7a7c853cfbeeb3
IEDL.DBID .~1
ISSN 0273-1177
IngestDate Tue Jul 01 03:24:55 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:35:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Spacecraft attitude control
Iterative Learning observer
Fault reconstruction
Iterative Learning sliding mode control
Fault-tolerant control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-135c63979ce4b0d3f20c2c8531f3743c490f1f899357739bf8c7a7c853cfbeeb3
ORCID 0000-0001-7333-1060
0000-0002-8103-7467
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_asr_2023_02_041
crossref_primary_10_1016_j_asr_2023_02_041
elsevier_sciencedirect_doi_10_1016_j_asr_2023_02_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hu, Liu, Wang, Cheng, Luo (b0050) 2020; 98
Liu, Vukovich, Shi, Sun (b0105) 2018; 62
Chunodkar, Akella (b0025) 2014; 37
Hu, Hu, Niu (b0045) 2019; 92
Mirshams, Khosrojerdi, Hasani (b0110) 2014; 228
Zhang, Hu, Zhang (b0185) 2015; 38
Zhang, Wang, Zhang, Shao (b0200) 2018; 78
Peter (b0120) 2004
Wang, Tan, Wu, Wang (b0145) 2021; 51
Zhang, Biggs, Ye, Sun (b0180) 2020; 56
Gui (b0035) 2021; 66
Li, Liu, Shi (b0085) 2020; 175
Chen, Shan (b0020) 2019; 95
Li, Yuan, Zhang (b0095) 2019; 88
Zong, Zhang, Liu (b0210) 2017; 233
Mirshams, Khosrojerdi (b0115) 2016; 48
Wu, Wang, Poh (b0155) 2015; 38
Xiao, Yin, Wu (b0165) 2017; 64
Liu, Liu, Yu (b0100) 2021; 51
Tafazoli (b0140) 2008; 64
Lang, Ruiter (b0070) 2022; 45
Xu, Wu, Chen (b0170) 2018; GNCC2018
Yin, Xiao, Ding, Zhou (b0175) 2016; 63
Zhang, Meng, Li (b0195) 2022; 137
Shi, Zhou, Zhou (b0135) 2020; 22
Li, Qin, Xiao, Yang (b0090) 2019; 91
Chen, Edwards, Alwi (b0010) 2019; 101
Jia, Chen, Zhang, Li (b0055) 2015; 47
Shen, Yue, Goh, Wang (b0130) 2019; 66
Jia, Li, Chen, Zhang (b0065) 2019; 91
Zhang, Zhou (b0205) 2019; 13
Sanwale, Salahudden, Giri (b0125) 2021; 58
Amrr, Nabi (b0005) 2020; 66
Li, Hu, Yu, Ma (b0075) 2017; 53
Zhang, Jiang (b0190) 2008; 32
Guo, Chen (b0040) 2019; 94
Xiao, Hu, Wang (b0160) 2015; 28
Gao, Zhou, Qian, Lin (b0030) 2018; 12
Jia, Chen, Zhang, Li (b0060) 2016; 18
Chen, Saif (b0015) 2007; 129
Wu, Luo, Wei, Liao (b0150) 2021; 178
Li, Jia, Ma, Chen (b0080) 2021; 93
Gao (10.1016/j.asr.2023.02.041_b0030) 2018; 12
Hu (10.1016/j.asr.2023.02.041_b0045) 2019; 92
Chunodkar (10.1016/j.asr.2023.02.041_b0025) 2014; 37
Gui (10.1016/j.asr.2023.02.041_b0035) 2021; 66
Li (10.1016/j.asr.2023.02.041_b0075) 2017; 53
Sanwale (10.1016/j.asr.2023.02.041_b0125) 2021; 58
Zhang (10.1016/j.asr.2023.02.041_b0200) 2018; 78
Amrr (10.1016/j.asr.2023.02.041_b0005) 2020; 66
Wu (10.1016/j.asr.2023.02.041_b0150) 2021; 178
Li (10.1016/j.asr.2023.02.041_b0090) 2019; 91
Zhang (10.1016/j.asr.2023.02.041_b0180) 2020; 56
Li (10.1016/j.asr.2023.02.041_b0085) 2020; 175
Chen (10.1016/j.asr.2023.02.041_b0020) 2019; 95
Tafazoli (10.1016/j.asr.2023.02.041_b0140) 2008; 64
Mirshams (10.1016/j.asr.2023.02.041_b0115) 2016; 48
Mirshams (10.1016/j.asr.2023.02.041_b0110) 2014; 228
Zhang (10.1016/j.asr.2023.02.041_b0195) 2022; 137
Yin (10.1016/j.asr.2023.02.041_b0175) 2016; 63
Xiao (10.1016/j.asr.2023.02.041_b0165) 2017; 64
Lang (10.1016/j.asr.2023.02.041_b0070) 2022; 45
Wang (10.1016/j.asr.2023.02.041_b0145) 2021; 51
Guo (10.1016/j.asr.2023.02.041_b0040) 2019; 94
Zong (10.1016/j.asr.2023.02.041_b0210) 2017; 233
Jia (10.1016/j.asr.2023.02.041_b0060) 2016; 18
Li (10.1016/j.asr.2023.02.041_b0080) 2021; 93
Zhang (10.1016/j.asr.2023.02.041_b0185) 2015; 38
Peter (10.1016/j.asr.2023.02.041_b0120) 2004
Jia (10.1016/j.asr.2023.02.041_b0055) 2015; 47
Li (10.1016/j.asr.2023.02.041_b0095) 2019; 88
Zhang (10.1016/j.asr.2023.02.041_b0190) 2008; 32
Shen (10.1016/j.asr.2023.02.041_b0130) 2019; 66
Xiao (10.1016/j.asr.2023.02.041_b0160) 2015; 28
Jia (10.1016/j.asr.2023.02.041_b0065) 2019; 91
Liu (10.1016/j.asr.2023.02.041_b0100) 2021; 51
Wu (10.1016/j.asr.2023.02.041_b0155) 2015; 38
Chen (10.1016/j.asr.2023.02.041_b0010) 2019; 101
Chen (10.1016/j.asr.2023.02.041_b0015) 2007; 129
Zhang (10.1016/j.asr.2023.02.041_b0205) 2019; 13
Liu (10.1016/j.asr.2023.02.041_b0105) 2018; 62
Xu (10.1016/j.asr.2023.02.041_b0170) 2018; GNCC2018
Hu (10.1016/j.asr.2023.02.041_b0050) 2020; 98
Shi (10.1016/j.asr.2023.02.041_b0135) 2020; 22
References_xml – volume: 66
  start-page: 3763
  year: 2019
  end-page: 3772
  ident: b0130
  article-title: Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults
  publication-title: IEEE Trans. Ind. Electron.
– volume: 38
  start-page: 806
  year: 2015
  end-page: 811
  ident: b0185
  article-title: Observer-based attitude control for satellite under actuator fault
  publication-title: J. Guid. Control Dyn.
– volume: 137
  year: 2022
  ident: b0195
  article-title: Robust adaptive learning for attitude control of rigid bodies with initial alignment errors
  publication-title: Automatica.
– volume: 94
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0040
  article-title: Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system
  publication-title: ISA Trans.
– volume: 66
  start-page: 1659
  year: 2020
  end-page: 1671
  ident: b0005
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space. Res.
– volume: 88
  start-page: 37
  year: 2019
  end-page: 49
  ident: b0095
  article-title: Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation
  publication-title: ISA Trans.
– volume: 47
  start-page: 3749
  year: 2015
  end-page: 3761
  ident: b0055
  article-title: Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers
  publication-title: Int. J. of Syst. Sci.
– volume: 175
  start-page: 570
  year: 2020
  end-page: 581
  ident: b0085
  article-title: Adaptive sliding mode attitude tracking control for flexible 0spacecraft systems based on the Takagi-Sugeno fuzzy modelling method
  publication-title: Acta Astronaut.
– volume: 58
  year: 2021
  ident: b0125
  article-title: Neuro-Adaptive Fault-Tolerant Sliding Mode Controller for Spacecraft Attitude Stabilization
  publication-title: J. Spacecr. Rockets
– volume: 22
  start-page: 423
  year: 2020
  end-page: 435
  ident: b0135
  article-title: Adaptive Fault-Tolerant Attitude Tracking Control of Rigid Spacecraft on Lie Group with Fixed-Time Convergence
  publication-title: Asian J. Control.
– volume: 93
  start-page: 1145
  year: 2021
  end-page: 1155
  ident: b0080
  article-title: Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems
  publication-title: Aircr. Eng. Aerosp. Technol.
– volume: 51
  start-page: 4400
  year: 2021
  end-page: 4408
  ident: b0100
  article-title: Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission
  publication-title: IEEE Trans. Syst. Man Cybern. -Syst.
– volume: 64
  start-page: 1436
  year: 2017
  end-page: 1446
  ident: b0165
  article-title: A Structure Simple Controller for Satellite Attitude Tracking Maneuver
  publication-title: IEEE Trans. Ind. Electron.
– volume: 18
  start-page: 549
  year: 2016
  end-page: 561
  ident: b0060
  article-title: Fault Reconstruction for Continuous-Time Systems Via Learning Observers
  publication-title: Asian J. Control.
– volume: 91
  start-page: 1268
  year: 2019
  end-page: 1277
  ident: b0065
  article-title: Observer-based reaction wheel fault reconstruction for spacecraft attitude control systems
  publication-title: Aircr. Eng. Aerosp. Technol.
– volume: 129
  start-page: 352
  year: 2007
  end-page: 356
  ident: b0015
  article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults
  publication-title: J. Dyn. Syst. Meas. Control.
– volume: 228
  start-page: 2343
  year: 2014
  end-page: 2357
  ident: b0110
  article-title: Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters
  publication-title: Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
– year: 2004
  ident: b0120
  article-title: Spacecraft attitude dynamics
– volume: 13
  start-page: 2365
  year: 2019
  end-page: 2375
  ident: b0205
  article-title: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation
  publication-title: IET Contr. Theory Appl.
– volume: 45
  start-page: 748
  year: 2022
  end-page: 754
  ident: b0070
  article-title: Passivity-Based Iterative Learning Control for Spacecraft Attitude Tracking on SO(3)
  publication-title: J. Guid. Control Dyn.
– volume: 91
  start-page: 11
  year: 2019
  end-page: 20
  ident: b0090
  article-title: Finite-time Extended State Observer based fault tolerant output feedback control for attitude stabilization
  publication-title: ISA Trans.
– volume: 48
  start-page: 140
  year: 2016
  end-page: 145
  ident: b0115
  article-title: Attitude control of an underactuated spacecraft using tube-based MPC approach
  publication-title: Aerosp. Sci. Technol.
– volume: 64
  start-page: 195
  year: 2008
  end-page: 205
  ident: b0140
  article-title: A study of on-orbit spacecraft failures
  publication-title: Acta Astronaut.
– volume: 233
  start-page: 616
  year: 2017
  end-page: 628
  ident: b0210
  article-title: Disturbance Observer-Based Fault-Tolerant Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence
  publication-title: J. Aerosp. Eng.
– volume: 28
  start-page: 04014055
  year: 2015
  ident: b0160
  article-title: Spacecraft Attitude Fault Tolerant Control with Terminal Sliding-Mode Observer
  publication-title: J. Aerosp. Eng.
– volume: 178
  start-page: 824
  year: 2021
  end-page: 834
  ident: b0150
  article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults
  publication-title: Acta Astronaut.
– volume: 56
  start-page: 2872
  year: 2020
  end-page: 2883
  ident: b0180
  article-title: Extended-State-Observer-Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 53
  start-page: 2572
  year: 2017
  end-page: 2582
  ident: b0075
  article-title: Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 32
  start-page: 229
  year: 2008
  end-page: 252
  ident: b0190
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annu. Rev. Control.
– volume: 37
  start-page: 869
  year: 2014
  end-page: 878
  ident: b0025
  article-title: Switching angular velocity observer for rigid-body attitude stabilization and tracking control
  publication-title: J. Guid. Control Dyn.
– volume: 66
  start-page: 6108
  year: 2021
  end-page: 6114
  ident: b0035
  article-title: Observer-Based Fault-Tolerant Spacecraft Attitude Tracking Using Sequential Lyapunov Analyses
  publication-title: IEEE Trans. Autom. Control.
– volume: 92
  start-page: 373
  year: 2019
  end-page: 386
  ident: b0045
  article-title: Observer-based fault tolerant control and experimental verification for rigid spacecraft
  publication-title: Aerosp. Sci. Technol.
– volume: 101
  start-page: 66
  year: 2019
  end-page: 77
  ident: b0010
  article-title: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters
  publication-title: Automatica.
– volume: 78
  start-page: 522
  year: 2018
  end-page: 530
  ident: b0200
  article-title: Learning observer based and event-triggered control to spacecraft against actuator faults
  publication-title: Aerosp. Sci. Technol.
– volume: 62
  start-page: 2631
  year: 2018
  end-page: 2684
  ident: b0105
  article-title: Robust fault tolerant nonfragile
  publication-title: Adv. Space Res.
– volume: 63
  start-page: 3311
  year: 2016
  end-page: 3320
  ident: b0175
  article-title: A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System
  publication-title: IEEE Trans. Ind. Electron.
– volume: 38
  start-page: 528
  year: 2015
  end-page: 533
  ident: b0155
  article-title: High precision satellite attitude tracking control via iterative learning control
  publication-title: J. Guid. Control Dyn.
– volume: GNCC2018
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0170
  article-title: A Composite Unknown Input Observer and H∞ Control Strategy for Flexible Spacecraft with Time Delay
  publication-title: IEEE/CSAA
– volume: 95
  start-page: 1827
  year: 2019
  end-page: 1839
  ident: b0020
  article-title: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO (3)
  publication-title: Nonlinear Dyn.
– volume: 98
  year: 2020
  ident: b0050
  article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts
  publication-title: Aerosp. Sci. Technol.
– volume: 12
  start-page: 405
  year: 2018
  end-page: 412
  ident: b0030
  article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults
  publication-title: IET Contr. Theory Appl.
– volume: 51
  start-page: 1216
  year: 2021
  end-page: 1229
  ident: b0145
  article-title: Fault-Tolerant Attitude Control for Rigid Spacecraft Without Angular Velocity Measurements
  publication-title: IEEE Trans. Cybern.
– volume: 37
  start-page: 869
  issue: 3
  year: 2014
  ident: 10.1016/j.asr.2023.02.041_b0025
  article-title: Switching angular velocity observer for rigid-body attitude stabilization and tracking control
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.60998
– year: 2004
  ident: 10.1016/j.asr.2023.02.041_b0120
– volume: 53
  start-page: 2572
  issue: 5
  year: 2017
  ident: 10.1016/j.asr.2023.02.041_b0075
  article-title: Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2705318
– volume: GNCC2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.asr.2023.02.041_b0170
  article-title: A Composite Unknown Input Observer and H∞ Control Strategy for Flexible Spacecraft with Time Delay
  publication-title: IEEE/CSAA
– volume: 56
  start-page: 2872
  issue: 4
  year: 2020
  ident: 10.1016/j.asr.2023.02.041_b0180
  article-title: Extended-State-Observer-Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2019.2955257
– volume: 175
  start-page: 570
  year: 2020
  ident: 10.1016/j.asr.2023.02.041_b0085
  article-title: Adaptive sliding mode attitude tracking control for flexible 0spacecraft systems based on the Takagi-Sugeno fuzzy modelling method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.05.041
– volume: 93
  start-page: 1145
  issue: 7
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0080
  article-title: Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems
  publication-title: Aircr. Eng. Aerosp. Technol.
  doi: 10.1108/AEAT-10-2020-0224
– volume: 98
  year: 2020
  ident: 10.1016/j.asr.2023.02.041_b0050
  article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105706
– volume: 178
  start-page: 824
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0150
  article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.10.017
– volume: 51
  start-page: 1216
  issue: 3
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0145
  article-title: Fault-Tolerant Attitude Control for Rigid Spacecraft Without Angular Velocity Measurements
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2905427
– volume: 64
  start-page: 1436
  issue: 2
  year: 2017
  ident: 10.1016/j.asr.2023.02.041_b0165
  article-title: A Structure Simple Controller for Satellite Attitude Tracking Maneuver
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2611576
– volume: 78
  start-page: 522
  year: 2018
  ident: 10.1016/j.asr.2023.02.041_b0200
  article-title: Learning observer based and event-triggered control to spacecraft against actuator faults
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.05.007
– volume: 51
  start-page: 4400
  issue: 7
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0100
  article-title: Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission
  publication-title: IEEE Trans. Syst. Man Cybern. -Syst.
  doi: 10.1109/TSMC.2019.2932225
– volume: 47
  start-page: 3749
  issue: 16
  year: 2015
  ident: 10.1016/j.asr.2023.02.041_b0055
  article-title: Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers
  publication-title: Int. J. of Syst. Sci.
  doi: 10.1080/00207721.2015.1118773
– volume: 228
  start-page: 2343
  issue: 12
  year: 2014
  ident: 10.1016/j.asr.2023.02.041_b0110
  article-title: Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters
  publication-title: Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
  doi: 10.1177/0954410013517671
– volume: 66
  start-page: 3763
  issue: 5
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0130
  article-title: Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2854602
– volume: 18
  start-page: 549
  issue: 2
  year: 2016
  ident: 10.1016/j.asr.2023.02.041_b0060
  article-title: Fault Reconstruction for Continuous-Time Systems Via Learning Observers
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.1076
– volume: 88
  start-page: 37
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0095
  article-title: Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.11.048
– volume: 137
  year: 2022
  ident: 10.1016/j.asr.2023.02.041_b0195
  article-title: Robust adaptive learning for attitude control of rigid bodies with initial alignment errors
  publication-title: Automatica.
  doi: 10.1016/j.automatica.2021.110024
– volume: 12
  start-page: 405
  issue: 3
  year: 2018
  ident: 10.1016/j.asr.2023.02.041_b0030
  article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults
  publication-title: IET Contr. Theory Appl.
  doi: 10.1049/iet-cta.2017.0969
– volume: 101
  start-page: 66
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0010
  article-title: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters
  publication-title: Automatica.
  doi: 10.1016/j.automatica.2018.10.055
– volume: 38
  start-page: 528
  issue: 3
  year: 2015
  ident: 10.1016/j.asr.2023.02.041_b0155
  article-title: High precision satellite attitude tracking control via iterative learning control
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000497
– volume: 66
  start-page: 6108
  issue: 12
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0035
  article-title: Observer-Based Fault-Tolerant Spacecraft Attitude Tracking Using Sequential Lyapunov Analyses
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.2021.3062159
– volume: 38
  start-page: 806
  issue: 4
  year: 2015
  ident: 10.1016/j.asr.2023.02.041_b0185
  article-title: Observer-based attitude control for satellite under actuator fault
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000625
– volume: 45
  start-page: 748
  issue: 4
  year: 2022
  ident: 10.1016/j.asr.2023.02.041_b0070
  article-title: Passivity-Based Iterative Learning Control for Spacecraft Attitude Tracking on SO(3)
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G006246
– volume: 91
  start-page: 11
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0090
  article-title: Finite-time Extended State Observer based fault tolerant output feedback control for attitude stabilization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.01.039
– volume: 58
  issue: 6
  year: 2021
  ident: 10.1016/j.asr.2023.02.041_b0125
  article-title: Neuro-Adaptive Fault-Tolerant Sliding Mode Controller for Spacecraft Attitude Stabilization
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.A35058
– volume: 13
  start-page: 2365
  issue: 15
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0205
  article-title: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation
  publication-title: IET Contr. Theory Appl.
  doi: 10.1049/iet-cta.2019.0195
– volume: 95
  start-page: 1827
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0020
  article-title: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO (3)
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4661-8
– volume: 63
  start-page: 3311
  issue: 5
  year: 2016
  ident: 10.1016/j.asr.2023.02.041_b0175
  article-title: A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2530789
– volume: 129
  start-page: 352
  issue: 3
  year: 2007
  ident: 10.1016/j.asr.2023.02.041_b0015
  article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults
  publication-title: J. Dyn. Syst. Meas. Control.
  doi: 10.1115/1.2719773
– volume: 32
  start-page: 229
  issue: 2
  year: 2008
  ident: 10.1016/j.asr.2023.02.041_b0190
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annu. Rev. Control.
  doi: 10.1016/j.arcontrol.2008.03.008
– volume: 62
  start-page: 2631
  issue: 9
  year: 2018
  ident: 10.1016/j.asr.2023.02.041_b0105
  article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.07.026
– volume: 48
  start-page: 140
  year: 2016
  ident: 10.1016/j.asr.2023.02.041_b0115
  article-title: Attitude control of an underactuated spacecraft using tube-based MPC approach
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.09.018
– volume: 66
  start-page: 1659
  issue: 7
  year: 2020
  ident: 10.1016/j.asr.2023.02.041_b0005
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space. Res.
  doi: 10.1016/j.asr.2020.06.019
– volume: 94
  start-page: 1
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0040
  article-title: Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.04.014
– volume: 22
  start-page: 423
  issue: 1
  year: 2020
  ident: 10.1016/j.asr.2023.02.041_b0135
  article-title: Adaptive Fault-Tolerant Attitude Tracking Control of Rigid Spacecraft on Lie Group with Fixed-Time Convergence
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.1888
– volume: 92
  start-page: 373
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0045
  article-title: Observer-based fault tolerant control and experimental verification for rigid spacecraft
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.06.013
– volume: 64
  start-page: 195
  issue: 2–3
  year: 2008
  ident: 10.1016/j.asr.2023.02.041_b0140
  article-title: A study of on-orbit spacecraft failures
  publication-title: Acta Astronaut.
– volume: 28
  start-page: 04014055
  issue: 1
  year: 2015
  ident: 10.1016/j.asr.2023.02.041_b0160
  article-title: Spacecraft Attitude Fault Tolerant Control with Terminal Sliding-Mode Observer
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000331
– volume: 91
  start-page: 1268
  issue: 10
  year: 2019
  ident: 10.1016/j.asr.2023.02.041_b0065
  article-title: Observer-based reaction wheel fault reconstruction for spacecraft attitude control systems
  publication-title: Aircr. Eng. Aerosp. Technol.
  doi: 10.1108/AEAT-07-2018-0203
– volume: 233
  start-page: 616
  issue: 2
  year: 2017
  ident: 10.1016/j.asr.2023.02.041_b0210
  article-title: Disturbance Observer-Based Fault-Tolerant Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence
  publication-title: J. Aerosp. Eng.
SSID ssj0012770
Score 2.4631648
Snippet This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 529
SubjectTerms Fault reconstruction
Fault-tolerant control
Iterative Learning observer
Iterative Learning sliding mode control
Spacecraft attitude control
Title Spacecraft attitude fault-tolerant stabilization against loss of actuator Effectiveness: A novel iterative learning sliding mode approach
URI https://dx.doi.org/10.1016/j.asr.2023.02.041
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS9xAEB5EKehDsafiVXvMQ_FBiJdsNtmLb8dRubZUBBV8C5u9XTmJF_Gi4Ivv_dedySZiwfrQt2TZhSWzmflmduYbgK-pCTORmCyIRsoEMqF_TltZBFKnNnU2LVLBxcm_TtPppfxxlVytwKSrheG0ylb3e53eaOt2ZNh-zeHdfD48ZyYWvnIkEM2kL-y3S6n4lB89v6R5REIpH2dRccCzu5vNJsdLL5kSVMQNbaeM3rZNr-zNySZ8bIEijv1ePsGKXfRgd7zk0HV1-4QH2Dz7yMSyBxuvmAV78OHMj2_B73PyigkbalejrjkxYGbR6YeyDuqqtGSqaiSEyDmyviIT9bWeE2jEkvaIlUPNNSbkmqNnOm7V4zGOcVE92hI9MTMNY9uC4hoJvLJNRO6zgx1t-TZcnny7mEyDtv9CYESmuEt9Ypp7P0PSC2exE6ERhux75GICHkZmoYscOWxxolScFW5klFY8wbjCkpe-A6uLamF3AaMiyTJdjJxMhOSOlSHzrtmZjGfaRkr3Iey-fG5acnLukVHmXRbaTU7CyllYeShyElYfDl-W3Hlmjvcmy06c-V_HKyfL8e9ln_9v2R6s8xuHgKNkH1br-wf7hbBLXQyawzmAtfH3n9PTPw6d8JY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_KFVEfRE-lrV_zID4I4ZLNbvbi21EsV9seQlvoW9js7ZYr8VJ6qeCf4H_tTHZTKqgPvoXNDiyZzXzPbwDeFzYthbJlkk21TaSif844WSfSFK7wrqgLwc3JJ4tifi6_XKiLLdgfemG4rDLK_iDTe2kdVybxa06uV6vJKSOxcMqRjGgGfSG_fZvRqdQItmeHR_PFXTJBaB1CLTpPmGBIbvZlXmbDqKAi75E7ZfZn9XRP5Rw8hSfRVsRZOM4z2HLrMezMNhy9br_9wA_YP4fgxGYMj--BC47hwdew_hx-npJjTOah8R2ajmsDlg69uW26pGsbR9qqQzISuUw2NGWiuTQrshuxoTNi69Fwmwl55xjAjqOE_IQzXLffXYMBm5mWMU6huESyX1ktIo_awQG5_AWcH3w-258ncQRDYkWpeVC9sn3qzxID02XuRWqFJRWf-ZxsDyvL1GeefLZcaZ2XtZ9abTRvsL525Ki_hNG6XbsdwKxWZWnqqZdKSB5amTL0mlvKfGlcps0upMOXr2zEJ-cxGU01FKJdVcSsiplVpaIiZu3CxzuS6wDO8a_NcmBn9dsNq0h5_J1s7__I3sHD-dnJcXV8uDh6BY_4DUeEM_UaRt3NrXtDpkxXv41X9RdJFPNH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spacecraft+attitude+fault-tolerant+stabilization+against+loss+of+actuator+Effectiveness%3A+A+novel+iterative+learning+sliding+mode+approach&rft.jtitle=Advances+in+space+research&rft.au=Jia%2C+Qingxian&rft.au=Ma%2C+Rui&rft.au=Zhang%2C+Chengxi&rft.au=Varatharajoo%2C+Renuganth&rft.date=2023-07-15&rft.issn=0273-1177&rft.volume=72&rft.issue=2&rft.spage=529&rft.epage=540&rft_id=info:doi/10.1016%2Fj.asr.2023.02.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2023_02_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon