Spacecraft attitude fault-tolerant stabilization against loss of actuator Effectiveness: A novel iterative learning sliding mode approach
This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factor...
Saved in:
Published in | Advances in space research Vol. 72; no. 2; pp. 529 - 540 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0273-1177 1879-1948 |
DOI | 10.1016/j.asr.2023.02.041 |
Cover
Loading…
Abstract | This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factors robustly and accurately by combining the P-type iterative learning algorithm with the sliding mode approach. Based on the reconstructed fault signals, an Iterative Learning Sliding Mode Controller (ILSMC) is designed to guarantee the closed-loop spacecraft attitude fault-tolerant stabilization by compensating for its lumped disturbance. The ILSMO and ILSMC stabilities are guaranteed using the Lyapunov direct approach, respectively. Finally, the numerical simulation results show that the proposed ILSMO-ILSMC-based spacecraft attitude fault-tolerant stabilization method is effective and superior. |
---|---|
AbstractList | This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties and space disturbances. A novel Iterative Learning Sliding Mode Observer (ILSMO) is proposed to reconstruct the actuator effectiveness factors robustly and accurately by combining the P-type iterative learning algorithm with the sliding mode approach. Based on the reconstructed fault signals, an Iterative Learning Sliding Mode Controller (ILSMC) is designed to guarantee the closed-loop spacecraft attitude fault-tolerant stabilization by compensating for its lumped disturbance. The ILSMO and ILSMC stabilities are guaranteed using the Lyapunov direct approach, respectively. Finally, the numerical simulation results show that the proposed ILSMO-ILSMC-based spacecraft attitude fault-tolerant stabilization method is effective and superior. |
Author | Varatharajoo, Renuganth Jia, Qingxian Zhang, Chengxi Ma, Rui |
Author_xml | – sequence: 1 givenname: Qingxian orcidid: 0000-0002-8103-7467 surname: Jia fullname: Jia, Qingxian email: jqxnuaa@nuaa.edu.cn organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China – sequence: 2 givenname: Rui orcidid: 0000-0001-7333-1060 surname: Ma fullname: Ma, Rui email: mr932970168@163.com organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China – sequence: 3 givenname: Chengxi surname: Zhang fullname: Zhang, Chengxi email: dongfangxy@163.com organization: School of Internet of Things Engineering, Jiangnan University, 214122 Wuxi, China – sequence: 4 givenname: Renuganth surname: Varatharajoo fullname: Varatharajoo, Renuganth email: renu99@gmx.de organization: Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 Selangor, Malaysia |
BookMark | eNp9kE1qHDEQRkVwIGPHB_BOF-iOfnqsVrIyxnECBi8Sr0V1dcnRIEuDpBlIbpBbuzvOyguvCop6X_G9U3aSciLGLqTopZCXn3Y91NIroXQvVC8G-Y5t5GhsJ-0wnrCNUEZ3UhrzgZ3WuhNCKmPEhv39sQckLOAbh9ZCO8zEPRxi61qOVCA1XhtMIYY_0EJOHB4hpNp4zLXy7DlgO0DLhd94T9jCkRLV-plf8ZSPFHloS8q65pGgpJAeeY1hXudTXp7Bfl8y4K-P7L2HWOn8_zxjD19vfl5_6-7ub79fX911qKxpndRbvNTWWKRhErP2SqDCcaul12bQOFjhpR-t1VtjtJ38iAbMeoB-Ipr0GTMvuViWBoW8w9D-VWsFQnRSuNWo27nFqFuNOqHcYnQh5StyX8ITlN9vMl9eGFoqHQMVVzFQQppDWWy5OYc36Ge8QJTQ |
CitedBy_id | crossref_primary_10_3390_app13169415 crossref_primary_10_1016_j_asr_2024_10_051 crossref_primary_10_1061_JAEEEZ_ASENG_5262 crossref_primary_10_1002_oca_3165 crossref_primary_10_1016_j_ast_2023_108653 crossref_primary_10_1016_j_asr_2023_09_051 crossref_primary_10_1109_TAES_2023_3344390 crossref_primary_10_1016_j_asr_2024_11_073 crossref_primary_10_1016_j_asr_2023_04_023 crossref_primary_10_1016_j_jfranklin_2024_107395 crossref_primary_10_1007_s42405_025_00909_7 crossref_primary_10_1016_j_asr_2023_12_048 crossref_primary_10_1016_j_ast_2024_109085 crossref_primary_10_1002_rnc_7289 crossref_primary_10_1016_j_asr_2024_05_065 crossref_primary_10_2514_1_G008384 crossref_primary_10_1007_s11071_024_09502_1 crossref_primary_10_1016_j_actaastro_2024_11_062 |
Cites_doi | 10.2514/1.60998 10.1109/TAES.2017.2705318 10.1109/TAES.2019.2955257 10.1016/j.actaastro.2020.05.041 10.1108/AEAT-10-2020-0224 10.1016/j.ast.2020.105706 10.1016/j.actaastro.2020.10.017 10.1109/TCYB.2019.2905427 10.1109/TIE.2016.2611576 10.1016/j.ast.2018.05.007 10.1109/TSMC.2019.2932225 10.1080/00207721.2015.1118773 10.1177/0954410013517671 10.1109/TIE.2018.2854602 10.1002/asjc.1076 10.1016/j.isatra.2018.11.048 10.1016/j.automatica.2021.110024 10.1049/iet-cta.2017.0969 10.1016/j.automatica.2018.10.055 10.2514/1.G000497 10.1109/TAC.2021.3062159 10.2514/1.G000625 10.2514/1.G006246 10.1016/j.isatra.2019.01.039 10.2514/1.A35058 10.1049/iet-cta.2019.0195 10.1007/s11071-018-4661-8 10.1109/TIE.2016.2530789 10.1115/1.2719773 10.1016/j.arcontrol.2008.03.008 10.1016/j.asr.2018.07.026 10.1016/j.ast.2015.09.018 10.1016/j.asr.2020.06.019 10.1016/j.isatra.2019.04.014 10.1002/asjc.1888 10.1016/j.ast.2019.06.013 10.1061/(ASCE)AS.1943-5525.0000331 10.1108/AEAT-07-2018-0203 |
ContentType | Journal Article |
Copyright | 2023 COSPAR |
Copyright_xml | – notice: 2023 COSPAR |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asr.2023.02.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Astronomy & Astrophysics Physics |
EISSN | 1879-1948 |
EndPage | 540 |
ExternalDocumentID | 10_1016_j_asr_2023_02_041 S0273117723001710 |
GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SEW SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RIG RPZ SHN SSH T9H UHS VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-135c63979ce4b0d3f20c2c8531f3743c490f1f899357739bf8c7a7c853cfbeeb3 |
IEDL.DBID | .~1 |
ISSN | 0273-1177 |
IngestDate | Tue Jul 01 03:24:55 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:35:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Spacecraft attitude control Iterative Learning observer Fault reconstruction Iterative Learning sliding mode control Fault-tolerant control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-135c63979ce4b0d3f20c2c8531f3743c490f1f899357739bf8c7a7c853cfbeeb3 |
ORCID | 0000-0001-7333-1060 0000-0002-8103-7467 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asr_2023_02_041 crossref_primary_10_1016_j_asr_2023_02_041 elsevier_sciencedirect_doi_10_1016_j_asr_2023_02_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-15 |
PublicationDateYYYYMMDD | 2023-07-15 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Advances in space research |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hu, Liu, Wang, Cheng, Luo (b0050) 2020; 98 Liu, Vukovich, Shi, Sun (b0105) 2018; 62 Chunodkar, Akella (b0025) 2014; 37 Hu, Hu, Niu (b0045) 2019; 92 Mirshams, Khosrojerdi, Hasani (b0110) 2014; 228 Zhang, Hu, Zhang (b0185) 2015; 38 Zhang, Wang, Zhang, Shao (b0200) 2018; 78 Peter (b0120) 2004 Wang, Tan, Wu, Wang (b0145) 2021; 51 Zhang, Biggs, Ye, Sun (b0180) 2020; 56 Gui (b0035) 2021; 66 Li, Liu, Shi (b0085) 2020; 175 Chen, Shan (b0020) 2019; 95 Li, Yuan, Zhang (b0095) 2019; 88 Zong, Zhang, Liu (b0210) 2017; 233 Mirshams, Khosrojerdi (b0115) 2016; 48 Wu, Wang, Poh (b0155) 2015; 38 Xiao, Yin, Wu (b0165) 2017; 64 Liu, Liu, Yu (b0100) 2021; 51 Tafazoli (b0140) 2008; 64 Lang, Ruiter (b0070) 2022; 45 Xu, Wu, Chen (b0170) 2018; GNCC2018 Yin, Xiao, Ding, Zhou (b0175) 2016; 63 Zhang, Meng, Li (b0195) 2022; 137 Shi, Zhou, Zhou (b0135) 2020; 22 Li, Qin, Xiao, Yang (b0090) 2019; 91 Chen, Edwards, Alwi (b0010) 2019; 101 Jia, Chen, Zhang, Li (b0055) 2015; 47 Shen, Yue, Goh, Wang (b0130) 2019; 66 Jia, Li, Chen, Zhang (b0065) 2019; 91 Zhang, Zhou (b0205) 2019; 13 Sanwale, Salahudden, Giri (b0125) 2021; 58 Amrr, Nabi (b0005) 2020; 66 Li, Hu, Yu, Ma (b0075) 2017; 53 Zhang, Jiang (b0190) 2008; 32 Guo, Chen (b0040) 2019; 94 Xiao, Hu, Wang (b0160) 2015; 28 Gao, Zhou, Qian, Lin (b0030) 2018; 12 Jia, Chen, Zhang, Li (b0060) 2016; 18 Chen, Saif (b0015) 2007; 129 Wu, Luo, Wei, Liao (b0150) 2021; 178 Li, Jia, Ma, Chen (b0080) 2021; 93 Gao (10.1016/j.asr.2023.02.041_b0030) 2018; 12 Hu (10.1016/j.asr.2023.02.041_b0045) 2019; 92 Chunodkar (10.1016/j.asr.2023.02.041_b0025) 2014; 37 Gui (10.1016/j.asr.2023.02.041_b0035) 2021; 66 Li (10.1016/j.asr.2023.02.041_b0075) 2017; 53 Sanwale (10.1016/j.asr.2023.02.041_b0125) 2021; 58 Zhang (10.1016/j.asr.2023.02.041_b0200) 2018; 78 Amrr (10.1016/j.asr.2023.02.041_b0005) 2020; 66 Wu (10.1016/j.asr.2023.02.041_b0150) 2021; 178 Li (10.1016/j.asr.2023.02.041_b0090) 2019; 91 Zhang (10.1016/j.asr.2023.02.041_b0180) 2020; 56 Li (10.1016/j.asr.2023.02.041_b0085) 2020; 175 Chen (10.1016/j.asr.2023.02.041_b0020) 2019; 95 Tafazoli (10.1016/j.asr.2023.02.041_b0140) 2008; 64 Mirshams (10.1016/j.asr.2023.02.041_b0115) 2016; 48 Mirshams (10.1016/j.asr.2023.02.041_b0110) 2014; 228 Zhang (10.1016/j.asr.2023.02.041_b0195) 2022; 137 Yin (10.1016/j.asr.2023.02.041_b0175) 2016; 63 Xiao (10.1016/j.asr.2023.02.041_b0165) 2017; 64 Lang (10.1016/j.asr.2023.02.041_b0070) 2022; 45 Wang (10.1016/j.asr.2023.02.041_b0145) 2021; 51 Guo (10.1016/j.asr.2023.02.041_b0040) 2019; 94 Zong (10.1016/j.asr.2023.02.041_b0210) 2017; 233 Jia (10.1016/j.asr.2023.02.041_b0060) 2016; 18 Li (10.1016/j.asr.2023.02.041_b0080) 2021; 93 Zhang (10.1016/j.asr.2023.02.041_b0185) 2015; 38 Peter (10.1016/j.asr.2023.02.041_b0120) 2004 Jia (10.1016/j.asr.2023.02.041_b0055) 2015; 47 Li (10.1016/j.asr.2023.02.041_b0095) 2019; 88 Zhang (10.1016/j.asr.2023.02.041_b0190) 2008; 32 Shen (10.1016/j.asr.2023.02.041_b0130) 2019; 66 Xiao (10.1016/j.asr.2023.02.041_b0160) 2015; 28 Jia (10.1016/j.asr.2023.02.041_b0065) 2019; 91 Liu (10.1016/j.asr.2023.02.041_b0100) 2021; 51 Wu (10.1016/j.asr.2023.02.041_b0155) 2015; 38 Chen (10.1016/j.asr.2023.02.041_b0010) 2019; 101 Chen (10.1016/j.asr.2023.02.041_b0015) 2007; 129 Zhang (10.1016/j.asr.2023.02.041_b0205) 2019; 13 Liu (10.1016/j.asr.2023.02.041_b0105) 2018; 62 Xu (10.1016/j.asr.2023.02.041_b0170) 2018; GNCC2018 Hu (10.1016/j.asr.2023.02.041_b0050) 2020; 98 Shi (10.1016/j.asr.2023.02.041_b0135) 2020; 22 |
References_xml | – volume: 66 start-page: 3763 year: 2019 end-page: 3772 ident: b0130 article-title: Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults publication-title: IEEE Trans. Ind. Electron. – volume: 38 start-page: 806 year: 2015 end-page: 811 ident: b0185 article-title: Observer-based attitude control for satellite under actuator fault publication-title: J. Guid. Control Dyn. – volume: 137 year: 2022 ident: b0195 article-title: Robust adaptive learning for attitude control of rigid bodies with initial alignment errors publication-title: Automatica. – volume: 94 start-page: 1 year: 2019 end-page: 9 ident: b0040 article-title: Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system publication-title: ISA Trans. – volume: 66 start-page: 1659 year: 2020 end-page: 1671 ident: b0005 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space. Res. – volume: 88 start-page: 37 year: 2019 end-page: 49 ident: b0095 article-title: Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation publication-title: ISA Trans. – volume: 47 start-page: 3749 year: 2015 end-page: 3761 ident: b0055 article-title: Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers publication-title: Int. J. of Syst. Sci. – volume: 175 start-page: 570 year: 2020 end-page: 581 ident: b0085 article-title: Adaptive sliding mode attitude tracking control for flexible 0spacecraft systems based on the Takagi-Sugeno fuzzy modelling method publication-title: Acta Astronaut. – volume: 58 year: 2021 ident: b0125 article-title: Neuro-Adaptive Fault-Tolerant Sliding Mode Controller for Spacecraft Attitude Stabilization publication-title: J. Spacecr. Rockets – volume: 22 start-page: 423 year: 2020 end-page: 435 ident: b0135 article-title: Adaptive Fault-Tolerant Attitude Tracking Control of Rigid Spacecraft on Lie Group with Fixed-Time Convergence publication-title: Asian J. Control. – volume: 93 start-page: 1145 year: 2021 end-page: 1155 ident: b0080 article-title: Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems publication-title: Aircr. Eng. Aerosp. Technol. – volume: 51 start-page: 4400 year: 2021 end-page: 4408 ident: b0100 article-title: Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission publication-title: IEEE Trans. Syst. Man Cybern. -Syst. – volume: 64 start-page: 1436 year: 2017 end-page: 1446 ident: b0165 article-title: A Structure Simple Controller for Satellite Attitude Tracking Maneuver publication-title: IEEE Trans. Ind. Electron. – volume: 18 start-page: 549 year: 2016 end-page: 561 ident: b0060 article-title: Fault Reconstruction for Continuous-Time Systems Via Learning Observers publication-title: Asian J. Control. – volume: 91 start-page: 1268 year: 2019 end-page: 1277 ident: b0065 article-title: Observer-based reaction wheel fault reconstruction for spacecraft attitude control systems publication-title: Aircr. Eng. Aerosp. Technol. – volume: 129 start-page: 352 year: 2007 end-page: 356 ident: b0015 article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults publication-title: J. Dyn. Syst. Meas. Control. – volume: 228 start-page: 2343 year: 2014 end-page: 2357 ident: b0110 article-title: Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters publication-title: Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. – year: 2004 ident: b0120 article-title: Spacecraft attitude dynamics – volume: 13 start-page: 2365 year: 2019 end-page: 2375 ident: b0205 article-title: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation publication-title: IET Contr. Theory Appl. – volume: 45 start-page: 748 year: 2022 end-page: 754 ident: b0070 article-title: Passivity-Based Iterative Learning Control for Spacecraft Attitude Tracking on SO(3) publication-title: J. Guid. Control Dyn. – volume: 91 start-page: 11 year: 2019 end-page: 20 ident: b0090 article-title: Finite-time Extended State Observer based fault tolerant output feedback control for attitude stabilization publication-title: ISA Trans. – volume: 48 start-page: 140 year: 2016 end-page: 145 ident: b0115 article-title: Attitude control of an underactuated spacecraft using tube-based MPC approach publication-title: Aerosp. Sci. Technol. – volume: 64 start-page: 195 year: 2008 end-page: 205 ident: b0140 article-title: A study of on-orbit spacecraft failures publication-title: Acta Astronaut. – volume: 233 start-page: 616 year: 2017 end-page: 628 ident: b0210 article-title: Disturbance Observer-Based Fault-Tolerant Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence publication-title: J. Aerosp. Eng. – volume: 28 start-page: 04014055 year: 2015 ident: b0160 article-title: Spacecraft Attitude Fault Tolerant Control with Terminal Sliding-Mode Observer publication-title: J. Aerosp. Eng. – volume: 178 start-page: 824 year: 2021 end-page: 834 ident: b0150 article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults publication-title: Acta Astronaut. – volume: 56 start-page: 2872 year: 2020 end-page: 2883 ident: b0180 article-title: Extended-State-Observer-Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 53 start-page: 2572 year: 2017 end-page: 2582 ident: b0075 article-title: Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 32 start-page: 229 year: 2008 end-page: 252 ident: b0190 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annu. Rev. Control. – volume: 37 start-page: 869 year: 2014 end-page: 878 ident: b0025 article-title: Switching angular velocity observer for rigid-body attitude stabilization and tracking control publication-title: J. Guid. Control Dyn. – volume: 66 start-page: 6108 year: 2021 end-page: 6114 ident: b0035 article-title: Observer-Based Fault-Tolerant Spacecraft Attitude Tracking Using Sequential Lyapunov Analyses publication-title: IEEE Trans. Autom. Control. – volume: 92 start-page: 373 year: 2019 end-page: 386 ident: b0045 article-title: Observer-based fault tolerant control and experimental verification for rigid spacecraft publication-title: Aerosp. Sci. Technol. – volume: 101 start-page: 66 year: 2019 end-page: 77 ident: b0010 article-title: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters publication-title: Automatica. – volume: 78 start-page: 522 year: 2018 end-page: 530 ident: b0200 article-title: Learning observer based and event-triggered control to spacecraft against actuator faults publication-title: Aerosp. Sci. Technol. – volume: 62 start-page: 2631 year: 2018 end-page: 2684 ident: b0105 article-title: Robust fault tolerant nonfragile publication-title: Adv. Space Res. – volume: 63 start-page: 3311 year: 2016 end-page: 3320 ident: b0175 article-title: A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System publication-title: IEEE Trans. Ind. Electron. – volume: 38 start-page: 528 year: 2015 end-page: 533 ident: b0155 article-title: High precision satellite attitude tracking control via iterative learning control publication-title: J. Guid. Control Dyn. – volume: GNCC2018 start-page: 1 year: 2018 end-page: 6 ident: b0170 article-title: A Composite Unknown Input Observer and H∞ Control Strategy for Flexible Spacecraft with Time Delay publication-title: IEEE/CSAA – volume: 95 start-page: 1827 year: 2019 end-page: 1839 ident: b0020 article-title: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO (3) publication-title: Nonlinear Dyn. – volume: 98 year: 2020 ident: b0050 article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts publication-title: Aerosp. Sci. Technol. – volume: 12 start-page: 405 year: 2018 end-page: 412 ident: b0030 article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults publication-title: IET Contr. Theory Appl. – volume: 51 start-page: 1216 year: 2021 end-page: 1229 ident: b0145 article-title: Fault-Tolerant Attitude Control for Rigid Spacecraft Without Angular Velocity Measurements publication-title: IEEE Trans. Cybern. – volume: 37 start-page: 869 issue: 3 year: 2014 ident: 10.1016/j.asr.2023.02.041_b0025 article-title: Switching angular velocity observer for rigid-body attitude stabilization and tracking control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.60998 – year: 2004 ident: 10.1016/j.asr.2023.02.041_b0120 – volume: 53 start-page: 2572 issue: 5 year: 2017 ident: 10.1016/j.asr.2023.02.041_b0075 article-title: Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2705318 – volume: GNCC2018 start-page: 1 year: 2018 ident: 10.1016/j.asr.2023.02.041_b0170 article-title: A Composite Unknown Input Observer and H∞ Control Strategy for Flexible Spacecraft with Time Delay publication-title: IEEE/CSAA – volume: 56 start-page: 2872 issue: 4 year: 2020 ident: 10.1016/j.asr.2023.02.041_b0180 article-title: Extended-State-Observer-Based Event-Triggered Orbit-Attitude Tracking for Low-Thrust Spacecraft publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2019.2955257 – volume: 175 start-page: 570 year: 2020 ident: 10.1016/j.asr.2023.02.041_b0085 article-title: Adaptive sliding mode attitude tracking control for flexible 0spacecraft systems based on the Takagi-Sugeno fuzzy modelling method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.05.041 – volume: 93 start-page: 1145 issue: 7 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0080 article-title: Observer-based robust actuator fault isolation and identification for microsatellite attitude control systems publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-10-2020-0224 – volume: 98 year: 2020 ident: 10.1016/j.asr.2023.02.041_b0050 article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105706 – volume: 178 start-page: 824 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0150 article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.10.017 – volume: 51 start-page: 1216 issue: 3 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0145 article-title: Fault-Tolerant Attitude Control for Rigid Spacecraft Without Angular Velocity Measurements publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2905427 – volume: 64 start-page: 1436 issue: 2 year: 2017 ident: 10.1016/j.asr.2023.02.041_b0165 article-title: A Structure Simple Controller for Satellite Attitude Tracking Maneuver publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2611576 – volume: 78 start-page: 522 year: 2018 ident: 10.1016/j.asr.2023.02.041_b0200 article-title: Learning observer based and event-triggered control to spacecraft against actuator faults publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.05.007 – volume: 51 start-page: 4400 issue: 7 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0100 article-title: Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission publication-title: IEEE Trans. Syst. Man Cybern. -Syst. doi: 10.1109/TSMC.2019.2932225 – volume: 47 start-page: 3749 issue: 16 year: 2015 ident: 10.1016/j.asr.2023.02.041_b0055 article-title: Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers publication-title: Int. J. of Syst. Sci. doi: 10.1080/00207721.2015.1118773 – volume: 228 start-page: 2343 issue: 12 year: 2014 ident: 10.1016/j.asr.2023.02.041_b0110 article-title: Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters publication-title: Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. doi: 10.1177/0954410013517671 – volume: 66 start-page: 3763 issue: 5 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0130 article-title: Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2854602 – volume: 18 start-page: 549 issue: 2 year: 2016 ident: 10.1016/j.asr.2023.02.041_b0060 article-title: Fault Reconstruction for Continuous-Time Systems Via Learning Observers publication-title: Asian J. Control. doi: 10.1002/asjc.1076 – volume: 88 start-page: 37 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0095 article-title: Extended state observer based output control for spacecraft rendezvous and docking with actuator saturation publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.11.048 – volume: 137 year: 2022 ident: 10.1016/j.asr.2023.02.041_b0195 article-title: Robust adaptive learning for attitude control of rigid bodies with initial alignment errors publication-title: Automatica. doi: 10.1016/j.automatica.2021.110024 – volume: 12 start-page: 405 issue: 3 year: 2018 ident: 10.1016/j.asr.2023.02.041_b0030 article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults publication-title: IET Contr. Theory Appl. doi: 10.1049/iet-cta.2017.0969 – volume: 101 start-page: 66 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0010 article-title: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters publication-title: Automatica. doi: 10.1016/j.automatica.2018.10.055 – volume: 38 start-page: 528 issue: 3 year: 2015 ident: 10.1016/j.asr.2023.02.041_b0155 article-title: High precision satellite attitude tracking control via iterative learning control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000497 – volume: 66 start-page: 6108 issue: 12 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0035 article-title: Observer-Based Fault-Tolerant Spacecraft Attitude Tracking Using Sequential Lyapunov Analyses publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.2021.3062159 – volume: 38 start-page: 806 issue: 4 year: 2015 ident: 10.1016/j.asr.2023.02.041_b0185 article-title: Observer-based attitude control for satellite under actuator fault publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000625 – volume: 45 start-page: 748 issue: 4 year: 2022 ident: 10.1016/j.asr.2023.02.041_b0070 article-title: Passivity-Based Iterative Learning Control for Spacecraft Attitude Tracking on SO(3) publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G006246 – volume: 91 start-page: 11 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0090 article-title: Finite-time Extended State Observer based fault tolerant output feedback control for attitude stabilization publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.01.039 – volume: 58 issue: 6 year: 2021 ident: 10.1016/j.asr.2023.02.041_b0125 article-title: Neuro-Adaptive Fault-Tolerant Sliding Mode Controller for Spacecraft Attitude Stabilization publication-title: J. Spacecr. Rockets doi: 10.2514/1.A35058 – volume: 13 start-page: 2365 issue: 15 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0205 article-title: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation publication-title: IET Contr. Theory Appl. doi: 10.1049/iet-cta.2019.0195 – volume: 95 start-page: 1827 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0020 article-title: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on SO (3) publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4661-8 – volume: 63 start-page: 3311 issue: 5 year: 2016 ident: 10.1016/j.asr.2023.02.041_b0175 article-title: A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2530789 – volume: 129 start-page: 352 issue: 3 year: 2007 ident: 10.1016/j.asr.2023.02.041_b0015 article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults publication-title: J. Dyn. Syst. Meas. Control. doi: 10.1115/1.2719773 – volume: 32 start-page: 229 issue: 2 year: 2008 ident: 10.1016/j.asr.2023.02.041_b0190 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annu. Rev. Control. doi: 10.1016/j.arcontrol.2008.03.008 – volume: 62 start-page: 2631 issue: 9 year: 2018 ident: 10.1016/j.asr.2023.02.041_b0105 article-title: Robust fault tolerant nonfragile H∞ attitude control for spacecraft via stochastically intermediate observer publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.07.026 – volume: 48 start-page: 140 year: 2016 ident: 10.1016/j.asr.2023.02.041_b0115 article-title: Attitude control of an underactuated spacecraft using tube-based MPC approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.09.018 – volume: 66 start-page: 1659 issue: 7 year: 2020 ident: 10.1016/j.asr.2023.02.041_b0005 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space. Res. doi: 10.1016/j.asr.2020.06.019 – volume: 94 start-page: 1 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0040 article-title: Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.04.014 – volume: 22 start-page: 423 issue: 1 year: 2020 ident: 10.1016/j.asr.2023.02.041_b0135 article-title: Adaptive Fault-Tolerant Attitude Tracking Control of Rigid Spacecraft on Lie Group with Fixed-Time Convergence publication-title: Asian J. Control. doi: 10.1002/asjc.1888 – volume: 92 start-page: 373 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0045 article-title: Observer-based fault tolerant control and experimental verification for rigid spacecraft publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.06.013 – volume: 64 start-page: 195 issue: 2–3 year: 2008 ident: 10.1016/j.asr.2023.02.041_b0140 article-title: A study of on-orbit spacecraft failures publication-title: Acta Astronaut. – volume: 28 start-page: 04014055 issue: 1 year: 2015 ident: 10.1016/j.asr.2023.02.041_b0160 article-title: Spacecraft Attitude Fault Tolerant Control with Terminal Sliding-Mode Observer publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0000331 – volume: 91 start-page: 1268 issue: 10 year: 2019 ident: 10.1016/j.asr.2023.02.041_b0065 article-title: Observer-based reaction wheel fault reconstruction for spacecraft attitude control systems publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-07-2018-0203 – volume: 233 start-page: 616 issue: 2 year: 2017 ident: 10.1016/j.asr.2023.02.041_b0210 article-title: Disturbance Observer-Based Fault-Tolerant Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence publication-title: J. Aerosp. Eng. |
SSID | ssj0012770 |
Score | 2.4631648 |
Snippet | This paper investigates the attitude fault-tolerant stabilization problem for a spacecraft subjected to its actuator effectiveness loss, inertia uncertainties... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 529 |
SubjectTerms | Fault reconstruction Fault-tolerant control Iterative Learning observer Iterative Learning sliding mode control Spacecraft attitude control |
Title | Spacecraft attitude fault-tolerant stabilization against loss of actuator Effectiveness: A novel iterative learning sliding mode approach |
URI | https://dx.doi.org/10.1016/j.asr.2023.02.041 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS9xAEB5EKehDsafiVXvMQ_FBiJdsNtmLb8dRubZUBBV8C5u9XTmJF_Gi4Ivv_dedySZiwfrQt2TZhSWzmflmduYbgK-pCTORmCyIRsoEMqF_TltZBFKnNnU2LVLBxcm_TtPppfxxlVytwKSrheG0ylb3e53eaOt2ZNh-zeHdfD48ZyYWvnIkEM2kL-y3S6n4lB89v6R5REIpH2dRccCzu5vNJsdLL5kSVMQNbaeM3rZNr-zNySZ8bIEijv1ePsGKXfRgd7zk0HV1-4QH2Dz7yMSyBxuvmAV78OHMj2_B73PyigkbalejrjkxYGbR6YeyDuqqtGSqaiSEyDmyviIT9bWeE2jEkvaIlUPNNSbkmqNnOm7V4zGOcVE92hI9MTMNY9uC4hoJvLJNRO6zgx1t-TZcnny7mEyDtv9CYESmuEt9Ypp7P0PSC2exE6ERhux75GICHkZmoYscOWxxolScFW5klFY8wbjCkpe-A6uLamF3AaMiyTJdjJxMhOSOlSHzrtmZjGfaRkr3Iey-fG5acnLukVHmXRbaTU7CyllYeShyElYfDl-W3Hlmjvcmy06c-V_HKyfL8e9ln_9v2R6s8xuHgKNkH1br-wf7hbBLXQyawzmAtfH3n9PTPw6d8JY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_KFVEfRE-lrV_zID4I4ZLNbvbi21EsV9seQlvoW9js7ZYr8VJ6qeCf4H_tTHZTKqgPvoXNDiyZzXzPbwDeFzYthbJlkk21TaSif844WSfSFK7wrqgLwc3JJ4tifi6_XKiLLdgfemG4rDLK_iDTe2kdVybxa06uV6vJKSOxcMqRjGgGfSG_fZvRqdQItmeHR_PFXTJBaB1CLTpPmGBIbvZlXmbDqKAi75E7ZfZn9XRP5Rw8hSfRVsRZOM4z2HLrMezMNhy9br_9wA_YP4fgxGYMj--BC47hwdew_hx-npJjTOah8R2ajmsDlg69uW26pGsbR9qqQzISuUw2NGWiuTQrshuxoTNi69Fwmwl55xjAjqOE_IQzXLffXYMBm5mWMU6huESyX1ktIo_awQG5_AWcH3w-258ncQRDYkWpeVC9sn3qzxID02XuRWqFJRWf-ZxsDyvL1GeefLZcaZ2XtZ9abTRvsL525Ki_hNG6XbsdwKxWZWnqqZdKSB5amTL0mlvKfGlcps0upMOXr2zEJ-cxGU01FKJdVcSsiplVpaIiZu3CxzuS6wDO8a_NcmBn9dsNq0h5_J1s7__I3sHD-dnJcXV8uDh6BY_4DUeEM_UaRt3NrXtDpkxXv41X9RdJFPNH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spacecraft+attitude+fault-tolerant+stabilization+against+loss+of+actuator+Effectiveness%3A+A+novel+iterative+learning+sliding+mode+approach&rft.jtitle=Advances+in+space+research&rft.au=Jia%2C+Qingxian&rft.au=Ma%2C+Rui&rft.au=Zhang%2C+Chengxi&rft.au=Varatharajoo%2C+Renuganth&rft.date=2023-07-15&rft.issn=0273-1177&rft.volume=72&rft.issue=2&rft.spage=529&rft.epage=540&rft_id=info:doi/10.1016%2Fj.asr.2023.02.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asr_2023_02_041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |