Metal halide perovskite materials in photocatalysis: Design strategies and applications
In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction,...
Saved in:
Published in | Coordination chemistry reviews Vol. 481; p. 215031 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation are summarized. Additionally, advanced progresses for MHPs in hydrogen evolution, carbon dioxide reduction, organics degradation and nitric oxide removal are introduced. In the end, the current challenges and outlooks of MHP photocatalysts in environment and energy are presented.
[Display omitted]
•Fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite photocatalysts for photocatalysis are introduced.•Universal strategies for boosting the photocatalytic activity and stability of metal halide perovskites are summarized.•Advanced progresses for metal halide perovskites in photocatalytic H2 evolution, CO2 reduction, organics degradation and NO removal are presented.•Challenges and prospects of metal halide perovskite photocatalysts in environment and energy are discussed.
Photocatalytic technologies have been widely considered as ideal ways to deal with the energy shortage and environmental crisis. Metal halide perovskites (MHPs) are recognized as a new generation of photocatalysts on account of their tunable band gap, low binding energy, wide visible-light absorption range, high photoluminescence quantum yield and fast carrier transfer. However, the development of efficient MHP photocatalysts has also encountered challenges. MHPs with ionic crystal structures are difficult to stabilize under water, oxygen atmosphere and high temperatures, as well as the serious recombination of photogenerated electrons-holes and weak oxidation activity during photocatalysis. Herein, we overview recent advances and developments for MHPs in photocatalysis, including H2 evolution, CO2 reduction, organic pollutant degradation and NO removal. In the beginning, the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of MHP photocatalysts have been discussed. In order to overcome the severe charge recombination, poor stability and lack of active sites of MHPs, various design strategies for efficient MHP photocatalysts are presented, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation. In the end, the current challenges and outlooks of MHP photocatalysts are provided to highlight the glorious future and significant position of MHP materials for photocatalytic applications. |
---|---|
AbstractList | In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation are summarized. Additionally, advanced progresses for MHPs in hydrogen evolution, carbon dioxide reduction, organics degradation and nitric oxide removal are introduced. In the end, the current challenges and outlooks of MHP photocatalysts in environment and energy are presented.
[Display omitted]
•Fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite photocatalysts for photocatalysis are introduced.•Universal strategies for boosting the photocatalytic activity and stability of metal halide perovskites are summarized.•Advanced progresses for metal halide perovskites in photocatalytic H2 evolution, CO2 reduction, organics degradation and NO removal are presented.•Challenges and prospects of metal halide perovskite photocatalysts in environment and energy are discussed.
Photocatalytic technologies have been widely considered as ideal ways to deal with the energy shortage and environmental crisis. Metal halide perovskites (MHPs) are recognized as a new generation of photocatalysts on account of their tunable band gap, low binding energy, wide visible-light absorption range, high photoluminescence quantum yield and fast carrier transfer. However, the development of efficient MHP photocatalysts has also encountered challenges. MHPs with ionic crystal structures are difficult to stabilize under water, oxygen atmosphere and high temperatures, as well as the serious recombination of photogenerated electrons-holes and weak oxidation activity during photocatalysis. Herein, we overview recent advances and developments for MHPs in photocatalysis, including H2 evolution, CO2 reduction, organic pollutant degradation and NO removal. In the beginning, the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of MHP photocatalysts have been discussed. In order to overcome the severe charge recombination, poor stability and lack of active sites of MHPs, various design strategies for efficient MHP photocatalysts are presented, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation. In the end, the current challenges and outlooks of MHP photocatalysts are provided to highlight the glorious future and significant position of MHP materials for photocatalytic applications. |
ArticleNumber | 215031 |
Author | Huang, Ning-Yu Chen, Zhen-Yu Xu, Qiang |
Author_xml | – sequence: 1 givenname: Zhen-Yu surname: Chen fullname: Chen, Zhen-Yu – sequence: 2 givenname: Ning-Yu surname: Huang fullname: Huang, Ning-Yu email: huangny@sustech.edu.cn – sequence: 3 givenname: Qiang surname: Xu fullname: Xu, Qiang email: xuq@sustech.edu.cn |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzDyR47DwcWKHylIrYgFhajuO0U9Iksq1K_XtcyopFV6OR7hndOTMy6YfeEnINLAUGxc0mNcalnHGRcsiZgDMyBVmKRMiMTciUMWCJzLP8gsy838S1qCo-JV9vNuiOrnWHjaWjdcPOf2OwdKuDdag7T7Gn43oIg9Exuffob-mD9bjqqQ8uplZoPdV9Q_U4dhhTOPT-kpy3EbZXf3NOPp8ePxYvyfL9-XVxv0wMr8qQAGd5AdpKUelCFLKu27Y1TcvrumxBZhIEk5qBKRlkWkIuqjI3XAve6iyTtZiT8njXuMF7Z1tlMPxWiN2wU8DUwY_aqOhHHfyoo59Iwj9ydLjVbn-SuTsyNr60Q-uUN2h7Yxt01gTVDHiC_gFohIC4 |
CitedBy_id | crossref_primary_10_1016_j_jmat_2024_06_010 crossref_primary_10_1016_j_ijhydene_2024_07_441 crossref_primary_10_1016_j_foodchem_2024_139316 crossref_primary_10_1016_j_jece_2024_113309 crossref_primary_10_1007_s10562_024_04666_2 crossref_primary_10_1140_epjp_s13360_024_05548_7 crossref_primary_10_1039_D3CP05061K crossref_primary_10_1039_D4CY00312H crossref_primary_10_1080_10408347_2024_2440697 crossref_primary_10_1002_aesr_202400040 crossref_primary_10_1021_acsami_4c05157 crossref_primary_10_1039_D3DT04144A crossref_primary_10_1016_j_cej_2024_149741 crossref_primary_10_1016_j_apcatb_2024_125012 crossref_primary_10_1016_j_ijhydene_2024_01_268 crossref_primary_10_1016_j_jcis_2024_09_188 crossref_primary_10_1016_j_jre_2024_08_014 crossref_primary_10_1016_j_ssc_2024_115721 crossref_primary_10_1016_j_mtener_2023_101407 crossref_primary_10_1007_s40843_023_2754_8 crossref_primary_10_1002_smll_202401202 crossref_primary_10_1016_j_mcat_2023_113319 crossref_primary_10_1002_adfm_202423656 crossref_primary_10_1016_j_jclepro_2024_144279 crossref_primary_10_1021_acsomega_3c08356 crossref_primary_10_1016_j_solener_2025_113296 crossref_primary_10_1021_acsaem_4c00521 crossref_primary_10_1039_D4EY00091A crossref_primary_10_1002_advs_202402471 crossref_primary_10_1007_s40843_024_3035_4 crossref_primary_10_3390_ma16196531 crossref_primary_10_1016_j_apcatb_2024_124318 crossref_primary_10_1039_D3EY00187C crossref_primary_10_1039_D3TA04149B crossref_primary_10_1016_j_apcatb_2024_123821 crossref_primary_10_3390_ma17092119 crossref_primary_10_1039_D4TC01602E crossref_primary_10_1016_j_mtener_2023_101458 crossref_primary_10_1016_j_apcatb_2024_124633 crossref_primary_10_1103_PhysRevApplied_22_014058 crossref_primary_10_3390_catal13071102 crossref_primary_10_1016_j_jece_2024_113125 crossref_primary_10_1039_D3DT03989G crossref_primary_10_1016_j_ijbiomac_2023_124966 crossref_primary_10_1016_j_jece_2023_110970 crossref_primary_10_1016_j_jece_2024_114934 crossref_primary_10_1016_j_ccr_2023_215484 crossref_primary_10_1002_adfm_202421847 crossref_primary_10_1016_j_solener_2024_112812 crossref_primary_10_1016_j_cej_2024_156663 crossref_primary_10_1039_D3CS01026K crossref_primary_10_1021_acs_inorgchem_4c04313 crossref_primary_10_1007_s43630_024_00599_2 crossref_primary_10_1002_smll_202409909 crossref_primary_10_26565_2312_4334_2024_4_27 crossref_primary_10_1016_j_jcis_2024_05_012 crossref_primary_10_1016_j_apsadv_2023_100476 crossref_primary_10_1002_idm2_12203 crossref_primary_10_1016_j_vacuum_2023_112381 crossref_primary_10_1016_j_ccr_2023_215210 crossref_primary_10_1016_j_jallcom_2024_175708 crossref_primary_10_1007_s11581_024_05599_x crossref_primary_10_1002_smll_202408921 crossref_primary_10_3390_coatings13061130 crossref_primary_10_1039_D4CC01949K crossref_primary_10_1016_j_cej_2024_149058 crossref_primary_10_1016_j_cej_2024_153307 crossref_primary_10_1016_j_inoche_2025_114369 crossref_primary_10_1002_smll_202304756 crossref_primary_10_1016_j_apcatb_2024_124454 |
Cites_doi | 10.1002/eom2.12015 10.1039/C9RA07236E 10.1039/c3cp53131g 10.1021/acsami.1c01718 10.3390/nano11020433 10.1021/acs.inorgchem.2c00012 10.3390/nano11092422 10.1016/j.rser.2021.111047 10.1126/sciadv.1700255 10.1021/acs.jpclett.1c02373 10.1016/j.cej.2022.134811 10.1007/s40843-021-1962-9 10.1002/anie.202007584 10.1039/C9NR07722G 10.1002/smll.202106001 10.1021/jp500449z 10.1016/0047-2670(79)80037-4 10.1016/j.apcatb.2019.04.050 10.1002/admi.201801015 10.1016/j.cej.2021.128889 10.1021/acs.jpclett.5b01610 10.1002/smll.202002140 10.1021/acs.jpclett.9b02605 10.1002/cssc.201600863 10.1126/science.aat3583 10.1021/acsenergylett.2c00752 10.1016/j.rser.2016.05.022 10.1126/science.1137014 10.1021/cm802978z 10.1016/j.enchem.2020.100032 10.1021/acsenergylett.0c00058 10.1016/j.jallcom.2022.165062 10.1038/nphoton.2012.175 10.1021/acsnano.5b01154 10.1002/aenm.201901801 10.1016/j.apsusc.2019.06.230 10.1016/j.jcis.2022.05.116 10.1021/acs.nanolett.0c04148 10.1021/acsami.0c14826 10.1039/D1TA09383E 10.1002/adfm.202006919 10.1016/j.jechem.2022.01.015 10.1002/chem.201702237 10.1016/j.cej.2022.137197 10.1039/D0NR02917C 10.1038/nenergy.2016.207 10.1016/j.apcatb.2018.01.031 10.1002/anie.201904537 10.1073/pnas.1607471113 10.1038/s41467-019-08918-3 10.1039/D0CC00095G 10.1126/science.aaa5760 10.1039/D1CS00684C 10.1021/acsami.1c17870 10.1002/cssc.202102295 10.1016/j.nanoen.2018.06.033 10.1016/j.apsusc.2021.149012 10.1039/D1EE03679C 10.1016/j.apcatb.2019.01.019 10.1038/s41467-021-24702-8 10.1007/s42114-022-00520-4 10.1021/acs.nanolett.0c04073 10.1021/jacs.9b11089 10.1007/s12274-021-3775-3 10.1007/s11356-021-14188-8 10.1016/j.cej.2021.132807 10.1002/eom2.12079 10.1002/adma.202001344 10.1016/j.apcatb.2019.118075 10.1021/acsami.0c06081 10.1016/j.chempr.2020.06.010 10.1021/acsnano.0c04659 10.1002/adma.202002137 10.1016/j.apcatb.2020.119751 10.1039/D2TA03217A 10.1016/j.nantod.2021.101179 10.1021/acs.nanolett.7b04838 10.1002/anie.202108133 10.1016/j.jcis.2021.11.094 10.1016/j.chempr.2020.01.005 10.1039/C8TA03953D 10.1007/s12274-022-4268-8 10.1039/c3ee43822h 10.1039/C9TA03478A 10.1002/solr.202200294 10.1016/j.matlet.2020.127501 10.1021/acsnano.1c11442 10.1126/science.aba3433 10.1126/science.aad1818 10.1016/j.ijhydene.2021.12.255 10.1016/j.carbon.2021.06.040 10.1039/C5CS00769K 10.1021/acs.jpclett.8b03849 10.1039/C4EE01076K 10.1002/anie.201909707 10.1016/j.cej.2021.132137 10.1039/B913880N 10.1021/acscatal.5b02098 10.1039/D0EE01153C 10.1021/acsaem.8b01133 10.1039/C5CS00113G 10.1039/C7EE02685D 10.3390/nano10010115 10.1002/aenm.201701503 10.1021/acs.est.8b05041 10.1021/acsnano.6b01643 10.1021/acssuschemeng.9b03761 10.1007/s12274-020-3159-0 10.1016/j.cclet.2021.09.033 10.1039/D1TA01281A 10.1039/C8SC05813J 10.1016/j.jcat.2018.11.004 10.1021/je4000394 10.1016/j.jssc.2022.123001 10.1016/j.enchem.2020.100044 10.1002/anie.202200872 10.1021/acs.jpcc.0c11241 10.1021/acsaem.1c00722 10.1021/acsaem.0c00195 10.1021/jacs.1c07231 10.1016/j.jphotochem.2019.03.009 10.1016/j.apcatb.2022.121375 10.1002/smll.201702253 10.1021/acs.inorgchem.2c00188 10.1021/acs.chemrev.5b00715 10.1002/smll.201703762 10.1021/acscatal.2c00037 10.1016/j.jece.2021.106264 10.1016/j.apcatb.2019.118399 10.1039/D2DT00972B 10.1038/nenergy.2016.185 10.1021/acsaem.2c02680 10.1002/adma.201803230 10.1016/j.rser.2020.110073 10.1016/j.apcatb.2020.119230 10.1016/j.enchem.2020.100047 10.1002/anie.201901081 10.1016/j.cej.2018.10.120 10.1021/jacs.7b00489 10.1002/cssc.202000953 10.1021/acs.chemmater.9b04582 10.1016/j.apcatb.2018.11.012 10.1002/adma.201601694 10.1016/j.apcatb.2017.03.018 10.1021/acscatal.2c00841 10.1016/j.matt.2020.07.004 10.1039/C4TA04994B 10.1039/C7NR04421F 10.1016/j.apsusc.2021.149452 10.1021/acsnano.7b05442 10.1039/D1TA09148D 10.1016/j.apcatb.2020.119570 10.1002/adfm.201600109 10.1021/acsaem.1c01636 10.1021/acs.jpclett.9b03176 10.1002/adfm.202004293 10.1038/nature08017 10.1021/acs.accounts.2c00477 10.1021/acsenergylett.6b00457 10.1038/ncomms8961 10.1039/D2QI01247B 10.1002/cssc.201902192 10.1002/anie.201506966 10.1002/ejic.201800078 10.1039/C5EE02573G 10.1021/acs.jpclett.0c01088 10.1039/D1MA00703C 10.1002/solr.201900365 10.1021/acsaem.1c03552 10.1002/anie.202014623 10.1126/science.aam7093 10.1016/j.enchem.2020.100027 10.1002/anie.201900658 10.1016/j.joule.2017.12.009 10.1039/C5TC04116C 10.1039/C5EE02575C 10.1038/s41929-019-0242-6 10.1002/solr.202000419 10.1016/j.apcatb.2021.120411 10.1002/aenm.201902500 10.1016/j.mattod.2018.10.017 10.3390/catal10111352 10.1063/5.0012938 10.1002/adma.201805337 10.1021/acsami.0c08152 10.1016/j.jpowsour.2020.228838 10.1016/j.jcat.2021.03.007 10.1126/science.1243167 10.1021/acsenergylett.8b01830 10.1021/acsestengg.1c00089 10.1016/j.cej.2021.129543 10.1039/C9CS00598F 10.1002/adma.201803792 10.1016/j.jcis.2021.03.144 10.1021/acs.jpclett.1c01527 10.1021/ja1068596 10.1039/D0MH00955E 10.1038/s41467-020-18350-7 10.1021/acs.chemrev.8b00539 10.1021/acs.nanolett.0c04299 10.1002/smll.201903398 10.1016/j.solener.2020.08.007 10.1038/ncomms6982 10.1021/acs.accounts.0c00712 10.1021/acsaem.1c02751 10.1021/acs.jpclett.1c02542 10.1515/zna-1991-0305 10.1002/solr.202100263 10.1002/chem.202004682 10.1021/acs.jpclett.7b01952 10.1021/jacs.6b08900 10.1021/acsami.0c21588 10.1016/j.cej.2020.126740 10.1246/bcsj.65.2264 10.1016/j.jclepro.2019.119335 10.1021/acs.jpclett.5b02597 10.1016/j.nanoen.2020.105388 10.1021/acsaem.1c01406 10.1021/acscatal.8b02374 10.1016/j.cej.2022.135014 10.1016/j.jhazmat.2019.120855 10.1039/C7TA08190A 10.1021/acsami.0c18391 10.1016/j.cej.2022.137102 10.1016/j.rser.2017.05.284 10.1016/j.matlet.2020.128695 10.1016/j.enchem.2020.100026 10.3390/app9010188 10.1016/j.enchem.2022.100084 10.1016/j.ccr.2020.213316 10.1002/anie.201905869 10.1002/solr.202100154 10.1002/advs.202202408 10.1021/jacs.9b04482 10.3390/nano10040763 10.1002/anie.201808930 10.1002/cssc.202002847 10.1039/C4TA05033A 10.1016/j.cej.2021.132968 10.1016/j.enchem.2021.100056 10.1016/j.enchem.2021.100051 10.1021/acssuschemeng.8b06023 10.1039/D0CS00332H 10.1039/D2NJ00435F 10.1021/acsenergylett.8b00488 10.1016/j.mssp.2018.04.001 10.1016/j.jechem.2020.04.017 10.1002/anie.201709766 10.1080/15980316.2018.1424652 10.1016/j.enchem.2022.100078 10.1021/acsenergylett.6b00337 10.1016/j.nanoen.2019.104249 10.1039/C9DT02468A 10.1021/acsenergylett.8b01658 10.1002/admi.202200058 10.1021/jacs.8b13673 10.1002/adfm.201905683 10.1039/C7EE01145H 10.1021/acsomega.0c02960 10.1002/solr.202101058 10.1016/j.cej.2020.128077 10.1021/cm4000476 10.1021/acsami.0c20349 10.1002/adfm.202001478 10.1016/j.apcatb.2014.07.026 10.1039/C5CS00380F 10.1002/solr.202000691 10.1021/acscatal.9b01605 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2023.215031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2023_215031 S0010854523000206 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c297t-120561ae839a6368bbfffcdf2bb7f18481308a01c7014a8153975c2a32fa448b3 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:43:56 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Fri Feb 23 02:38:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organics degradation Metal halide perovskites (MHPs) CO2 reduction H2 evolution Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-120561ae839a6368bbfffcdf2bb7f18481308a01c7014a8153975c2a32fa448b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2023_215031 crossref_primary_10_1016_j_ccr_2023_215031 elsevier_sciencedirect_doi_10_1016_j_ccr_2023_215031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-15 |
PublicationDateYYYYMMDD | 2023-04-15 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liang, Chen, Yao, Zhang, Qu, Qin, Huang, Li (b0285) 2020; 16 Yue, Liu, Xu, Li, Azam, Ren, Liu, Sun, Wang, Cao, Yan, Qu, Lei, Wang (b0315) 2017; 10 Holzhey, Yadav, Turren-Cruz, Ummadisingu, Grätzel, Hagfeldt, Saliba (b0395) 2019; 29 Xu, Shen, Hou, Gao, Sun (b0590) 2009; 21 Jiang, Liao, Chen, Zhang, Li, Wang, Kuang (b0960) 2020; 6 Li, Zhu (b0660) 2020; 2 Zhang, Hodes, Jin, Liu (b0360) 2019; 58 Bresolin, Ben Hammouda, Sillanpaa (b1310) 2020; 10 Liang, Lei, Gao, Sun, Jiao, Wu, Qamar, Xie (b0465) 2015; 54 Li, Xu, Wang, Song, Chen, Xue, Dong, Cai, Shan, Han, Zeng (b0580) 2017; 29 Cai, Teng, Wu, Li, Chen, Chen, Kuang (b0855) 2020; 30 Saparov, Mitzi (b0335) 2016; 116 Tasleem, Tahir (b0275) 2020; 132 Liu, Yang, Wang, Yuan, Hills-Kimball, Cai, Wang, Tang, Chen (b0895) 2021; 21 Hang, Tang, Li, Zheng, Huang (b0240) 2022; 6 Zhu, Zhu, Huang, Hou, Shen, Li (b0995) 2020; 12 Wu, Huo, Huang, Zhao, Yang, Hu, Mao, He, Huang, Tang (b1145) 2022; 18 Wang, Li, Idris, Wang, Du, Pan, Li (b1070) 2021; 5 Xiao, Hao, Lyu, Moore, Zhang, Luo, Hou, Lipton-Duffin, Wang (b0735) 2019; 29 Xu, Yang, Chen, Wang, Chen, Kuang, Su (b0185) 2017; 139 Guo, Tang, Mu, Wu, Dong, Zhang (b1045) 2019; 9 An, Wei, Ma, Zhang, Wen (b0295) 2022; 10 Niu, Guo, Wang (b0390) 2015; 3 Li, Yang, Xue, Pang, Xu (b0665) 2020; 2 Wang, Shi, Wang, Li (b0235) 2022; 7 Zhao, Zeng, Yu, Feng, Zhao, Wang, Li, Liu, Liu, Wei, Zhu, Kang, Zhang, Yang (b0795) 2020; 7 Li, Li, Zhang, Shi, Wu, Chen, Lin, Tian, Li (b1300) 2021; 596 Mu, Zhang, Dong, Su, Zhang, Lu (b1055) 2020; 16 Schünemann, Tüysüz (b1265) 2018; 2018 Wang, Wang (b0880) 2015; 162 Li, Li, She, Chen, Liu, Xu, Lee, Zhu (b0875) 2021; 5 Kim, Jung, Park, Larson, Dunfield, Xiao, Kim, Tong, Boonmongkolras, Ji, Zhang, Pae, Kim, Kang, Dravid, Berry, Kim, Zhu, Kim, Shin (b0100) 2020; 368 Su, Dong, Zhang, Liu, Zhang, Lu (b0645) 2020; 12 Feng, Dong, Su, Liu, Zhang, Zhang, Lu (b1190) 2022; 69 Ravi, Markad, Nag (b0175) 2016; 1 Xiao, Song, Yan (b0370) 2019; 31 Wang, Luo, Wang, Tawiah, Liu, Xin, Fei, Wong (b1315) 2020; 12 Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (b1370) 2014; 7 Li, Chen, Wang, Liang, Ma, Jing, Chen, Li (b0515) 2022; 16 Xu, Wang, Liao, Chen, Chen, Kuang (b0935) 2018; 5 Yang, Wang, Wang, Dong, Zhu (b1340) 2021; 1 Li, Xu, Jiao, Jiang (b0670) 2019; 1 Hong, Phuong, Huong, Nam, Hue (b0615) 2019; 492 Liao, Cai, Li, Jiang, Wang, Chen, Kuang (b0930) 2021; 53 Azam, Yue, Xu, Liu, Ren, Sun, Liu, Wang, Qu, Lei, Wang (b0320) 2018; 6 Wang, Huang, Liao, Jiang, Zhou, Zhang, Chen, Kuang (b0520) 2019; 141 Zhao, Li, Zhang, Xu, Wang (b0705) 2018; 50 Tachibana, Vayssieres, Durrant (b0005) 2012; 6 Ju, Fang, Zhou, Feng, Song, Lu, Liu (b0620) 2021; 551 Kong, Zhang, Liao, Dong, Jiang, Chen, Kuang (b0900) 2019; 4 Zhang, Jiang, Shu, Li, Dong, Xu (b0220) 2021; 12 Guo, Liu, Li, Lou, Chen, Zhao (b0830) 2019; 7 Chen, Xu, Wang, Chen, Kuang (b0950) 2020; 4 Liu, Guo, You, Sun, Wang, Zhao, Su (b0975) 2020; 31 Zhang, Shu, Jiang, Xu (b1110) 2021; 414 Nie, Sumukam, Reddy, Banavoth, Seok (b0440) 2020; 13 Mourdikoudis, Liz-Marzán (b0585) 2013; 25 Shi, Li, Tian, Jin, Tao, Jiang, Pidko, Li, Li (b0790) 2020; 32 Shaner, Atwater, Lewis, McFarland (b0720) 2016; 9 Li, Lu, Duan, Xu, Zhang (b1245) 2021; 125 Goto, Hisatomi, Wang, Higashi, Ishikiriyama, Maeda, Sakata, Okunaka, Tokudome, Katayama, Akiyama, Nishiyama, Inoue, Takewaki, Setoyama, Minegishi, Takata, Yamada, Domen (b1405) 2018; 2 Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (b0655) 2019; 58 Jiang, Liao, Xu, Chen, Wang, Kuang (b0955) 2019; 7 Zhao, Wu, Zheng, Li, Li, Tao (b0600) 2019; 9 Meng, Yang, Patil, Lin, Yeh, Chen, Pao, Chen, Chen, Lu, Kuo, Wang (b1225) 2021; 12 Ding, Bai, Borjigin, Li, Li, Wang (b1205) 2022; 446 Chen, Ye, Chang, Liu, Chuang, Liu, Liu, Pu (b1215) 2021; 284 Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (b1230) 2022; 4 Xu, Eguchi, Nakayama (b0350) 1992; 65 Romani, Speltini, Ambrosio, Mosconi, Profumo, Marelli, Margadonna, Milella, Fracassi, Listorti, De Angelis, Malavasi (b0760) 2021; 60 Cho, Jeong, Park, Kim, Wolf, Lee, Heo, Sadhanala, Myoung, Yoo, Im, Friend, Lee (b0125) 2015; 350 Li, Li, Wu, Lv, Zheng, Zhao, Ding, Tao, Chen (b0780) 2019; 259 Liu, Chen, Li, Xu, Li, He, Lu (b1325) 2019; 243 Raza, Li, Que, Zhu, Chen (b0225) 2021; 2 Guo, Zhou, Zhao, Sun, You, Wang, Su (b0980) 2019; 369 Bai, Yuan, Gao (b0115) 2016; 4 Pellegrino, Malandrino (b1290) 2021; 4 Xie, Chen, Li, Xu, Li, He, Lu (b0510) 2022; 430 Gao, Qian, Wei, Chen, Liu, Wang, Chen, Chen, Liu, Wei (b0635) 2022; 623 Furlan, Mortarino (b0020) 2018; 81 Wang, Wang, Li, Du, Ma, He, Li (b0555) 2020; 12 Shyamal, Dutta, Das, Sen, Chakraborty, Pradhan (b0500) 2020; 11 Wang, He, Mao, Cai, Sun, Zhu (b1105) 2021; 416 Das, Paul, Maiti, Chattopadhyay (b1260) 2020; 267 Kumar, Regue, Isaacs, Freeman, Eslava (b0990) 2020; 3 Ma, Ji, Wang, Zhang, Liu, Yang, Jia, Chen, Wu, Zhang, Li, Shi, Shan (b1375) 2022; 9 Yue, Zhang, Wang, Yan, Guo, Qian, Zhao (b0825) 2020; 2 Kong, Liao, Dong, Xu, Chen, Kuang, Su (b0625) 2018; 3 Kannan, Vakeesan (b0045) 2016; 62 Fu, Yu, Jiang, Cheng (b0070) 2018; 8 Qian, Chen, Yang, Zhao, Liu, Sun, Zhou, Yang, Wei, Fan (b0290) 2020; 249 Wu, Wang, Guan, Liu, Wang, Zheng, Jin, Dai, Whangbo, Huang (b0770) 2018; 8 Hai, Huang, Li, Wu, Huang, Tang (b1120) 2021; 4 Jiang, Ding, Zheng, Ye, Li, Xu, Wang, Li, Loh, Ye, Sun (b1165) 2022; 15 Ito, Tanaka, Manabe, Nishino (b0400) 2014; 118 Lewis (b0015) 2007; 315 Dong, Wang, Zhang, Zeng (b0230) 2020; 2 Loeb, Alvarez, Brame, Cates, Choi, Crittenden, Dionysiou, Li, Li-Puma, Quan, Sedlak, David Waite, Westerhoff, Kim (b1395) 2019; 53 Bera, Shyamal, Pradhan (b0445) 2021; 143 Ying, Luo, Qiao, Huang (b1360) 2020; 2007423 Miyasaka, Kulkarni, Kim, Öz, Jena (b0375) 2019; 10 Shyamal, Dutta, Pradhan (b0965) 2019; 10 Yuan, Weng, Colmenares, Sun, Xu (b0575) 2017; 13 Zhang, Chen, Zhou, Miao, Liu (b1180) 2021; 4 Sheng, He, Li, Yuan, Huang, Wang, Sun, Wang, Dong (b1005) 2020; 14 Huang, Zhang, Zheng, Wang, Liu, Chen, Luo (b1285) 2021; 11 Bard (b0545) 1979; 10 He Zhao, Leukkunen, Popov, Kahaly, Kordas, Ojala (b0870) 2021; 14 Klejna, Mazur, Wlaźlak, Zawal, Soo, Szaciłowski (b1380) 2020; 415 Sun, Xu, Tao, Ye, Zhou, He, Lu (b0640) 2022; 61 Li, Wu, Zhang, Cai, Gu, Song, Zeng (b0450) 2016; 26 Armenise, Colella, Fracassi, Listorti (b0330) 2021; 11 Fan, Zhou, Huang, Zhou (b0105) 2020; 2 Madi, Tahir, Tasleem (b0265) 2021; 9 Wang, Zhang, Wang, Gao, Fan, Wu, Zong, Li (b0750) 2021; 60 Hu, Li, Wang, Wang (b1355) 2021; 3 Wu, Wang, Zhu, Zhang, Wang, Liu, Zou, Dai, Whangbo, Huang (b0695) 2018; 30 Tang, Mak, Zhang, Jia, Cheng, Song, Yuan, Zhao, Kai, Colmenares, Hsu (b0380) 2022 Ding, Shen, Zhao, Chen, Yuan, Yang, Liang, Xiang, Li (b0755) 2020; 483 Cheng, Jin, Roeffaers, Hofkens, Debroye (b1095) 2020; 5 Li, Li, Xu (b1235) 2021; 3 Bhosale, Kharade, Jokar, Fathi, Chang, Diau (b1220) 2019; 141 Ketavath, Mohan, Sumukam, Alsulami, Premalatha, Murali (b0215) 2022; 10 Wang, Li, He, Yang, Dong, Mai, Zhu (b0610) 2020; 78 Lignos, Protesescu, Emiroglu, Maceiczyk, Schneider, Kovalenko, deMello (b0415) 2018; 18 Xu, Zhang, Su, Feng, Mu, Zhang, Lu (b1065) 2021; 27 Yin, Chen, Guan, Zheng, Kong, Yang, Zhou, Yang, Pullerits, Han (b0850) 2021; 60 Eperon, Stranks, Menelaou, Johnston, Herz, Snaith (b0405) 2014; 7 Wu, Zhang, Feng, Zhang, Zhang, Lu (b0475) 2021; 5 Lu, Itanze, Aragon, Ma, Li, Ucer, Hewitt, Carroll, Williams, Qiu, Geyer (b0910) 2020; 12 Zhang, Liang, Huang, Liu, Li, Chen, Xu (b0690) 2019; 58 Xu, Eguchi, Nakayama, Nakamura, Kishita (b0345) 1991; 46a Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (b0160) 2015; 347 Protesescu, Yakunin, Bodnarchuk, Bertolotti, Masciocchi, Guagliardi, Kovalenko (b0420) 2016; 138 Chen, Wang, Wu, Zhang, Wu, Wang, Zheng, Liu, Dai, Huang (b0835) 2020; 32 Yuan, He, Chen, Sun, Li, Cui, Chen, Sheng, Dong (b0210) 2020; 5 Ren, Yue, Li, Fang, Gasem, Leszczynski, Qu, Wang, Fan (b0280) 2022; 10 Guan, Wu, Wang, Zhang, Wang, Zheng, Liu, Dai, Whangbo, Huang (b0775) 2019; 245 Dong, Jiang, Liao, Chen, Kuang, Su (b0945) 2022; 65 Wan, Ou, Zhong, Wang (b1085) 2019; 358 Huang, Guo, Chen, Lou, Zhao (b0815) 2022; 46 Xing, Mathews, Sun, Lim, Lam, Grätzel, Mhaisalkar, Sum (b0155) 2013; 342 Han, Zhu, Martin, Lin, Spears, Yan (b0260) 2020; 13 Wang, Zuo, Wang, Wang, Shen, Qiu, Cai, Zhou, Lau, Chai (b0860) 2019; 9 Li, Zhang, Ding, Xu (b1115) 2021; 419 Hu, Chen, Yao, Wu, Zhong, Song, Cao, Zhang (b1250) 2021; 13 Kulbak, Gupta, Kedem, Levine, Bendikov, Hodes, Cahen (b0430) 2016; 7 Liu, Liu, Mu, Feng, Dong, Zhang, Lu (b0565) 2021; 5 Wu, Mu, Guo, Zhang, Zhang, Zhang, Lu (b0630) 2019; 58 Marzo, Pagire, Reiser, Konig (b0085) 2018; 57 Low, Yu, Ho (b0605) 2015; 6 Li, Zhang (b1035) 2022; 434 Huang, Pradhan, Hofkens, Roeffaers, Steele (b0205) 2020; 5 Zhang, Zhong, Chen, Wu, Hu, Huang, Han, Zou, Dong (b0170) 2015; 9 Purohit, Yadav, Satapathi (b0255) 2022; 9 Dong, Zhang, Liu, Yao, Zhao (b0120) 2020; 49 L. Wang, M. Wagner, Yan, Jakob, Xu (b0150) 2017; 3 Chen, Hu, Wang, Shen, Zhang, Ding, Bai, Jiang, Li, Gaponik (b1050) 2020; 32 Jiang, Li, Wu, Zhu, Zhang, Zhang, Wang, Loh, Shi, Xu (b0805) 2021; 13 Zheng, Wu, Jha, Li, Zhu, Priya (b0410) 2016; 1 Trivedi, Prochowicz, Kalam, Tavakoli, Yadav (b0245) 2021; 145 Cho, Kim, Kim, Lee (b0425) 2018; 19 Chen, Morgan, Liu, Chen, Seshadri, Mao (b0745) 2022; 9 Cheng, Zhao, Sun (b0080) 2022; 4 Ding, Borjigin, Li, Yang, Wang, Li (b1185) 2021; 13 Mai, Chen, Tachibana, Suzuki, Abe, Caruso (b0040) 2021; 50 Tang, Sun, Zhang, Liu, Meng, Zhang, Yang, Li, Zhao, Zheng, Huang (b0490) 2022; 429 Wei, Zheng, Huang, Gong, Liu, Lu, Li, Chen (b0905) 2021; 39 Yang, Yang, Moore, Yan, Miller, Zhu, Beard (b0135) 2017; 2 Han, Bai, Man, He, Li, Hu, Alsaedi, Hayat, Yu, Zhang, Wang, Zhou, Zou (b0470) 2019; 141 Cheng, Debroye, Hofkens, Roeffaers (b1130) 2020; 10 Gu, Lee (b0110) 2016; 10 Wu, Wu, Zhang, Lou, Liu, Ma, Wang, Zheng, Cheng, Liu, Dai, Huang, Wang (b0840) 2022; 15 Wang, Huang, Zhang, Wang, Yang, Li, Xu (b0560) 2021; 282 Jiang, Chen, Li, Liao, Zhang, Wang, Kuang (b0940) 2020; 30 Zhang, Sun, Wang, Zang, Tao (b0820) 2022; 47 Paul, Das, Das, Sarkar, Maiti, Chattopadhyay (b0530) 2019; 380 Pan, Ma, Huang, Wu, Jia, Shi, Liu, Wangyang, H Xie (10.1016/j.ccr.2023.215031_b0510) 2022; 430 Wu (10.1016/j.ccr.2023.215031_b0695) 2018; 30 Zhang (10.1016/j.ccr.2023.215031_b1110) 2021; 414 Wei (10.1016/j.ccr.2023.215031_b0905) 2021; 39 Park (10.1016/j.ccr.2023.215031_b0355) 2019; 31 Jiang (10.1016/j.ccr.2023.215031_b1165) 2022; 15 Bhosale (10.1016/j.ccr.2023.215031_b1220) 2019; 141 Bresolin (10.1016/j.ccr.2023.215031_b1310) 2020; 10 Kim (10.1016/j.ccr.2023.215031_b0165) 2016; 113 Chen (10.1016/j.ccr.2023.215031_b0745) 2022; 9 Jiang (10.1016/j.ccr.2023.215031_b0960) 2020; 6 Wang (10.1016/j.ccr.2023.215031_b0865) 2020; 56 Feng (10.1016/j.ccr.2023.215031_b1190) 2022; 69 Zhou (10.1016/j.ccr.2023.215031_b0305) 2022; 911 Nie (10.1016/j.ccr.2023.215031_b0440) 2020; 13 Meinshausen (10.1016/j.ccr.2023.215031_b0025) 2009; 458 Fan (10.1016/j.ccr.2023.215031_b0105) 2020; 2 Que (10.1016/j.ccr.2023.215031_b1100) 2021; 282 Guo (10.1016/j.ccr.2023.215031_b1045) 2019; 9 Qi Liu (10.1016/j.ccr.2023.215031_b0460) 2010; 132 Kazes (10.1016/j.ccr.2023.215031_b1345) 2021; 54 Liu (10.1016/j.ccr.2023.215031_b0895) 2021; 21 Andrei (10.1016/j.ccr.2023.215031_b1390) 2022; 55 Nie (10.1016/j.ccr.2023.215031_b1305) 2018; 83 Gao (10.1016/j.ccr.2023.215031_b0635) 2022; 623 Hai (10.1016/j.ccr.2023.215031_b1120) 2021; 4 Xu (10.1016/j.ccr.2023.215031_b0345) 1991; 46a Ding (10.1016/j.ccr.2023.215031_b0755) 2020; 483 Sheng (10.1016/j.ccr.2023.215031_b1040) 2022; 12 Wang (10.1016/j.ccr.2023.215031_b0555) 2020; 12 Mahmoud Idris (10.1016/j.ccr.2023.215031_b1210) 2022; 446 Li (10.1016/j.ccr.2023.215031_b1245) 2021; 125 Chen (10.1016/j.ccr.2023.215031_b1140) 2022; 5 Bard (10.1016/j.ccr.2023.215031_b0545) 1979; 10 Goto (10.1016/j.ccr.2023.215031_b1405) 2018; 2 Wu (10.1016/j.ccr.2023.215031_b0840) 2022; 15 Liu (10.1016/j.ccr.2023.215031_b0495) 2016; 6 Tachibana (10.1016/j.ccr.2023.215031_b0005) 2012; 6 Purohit (10.1016/j.ccr.2023.215031_b0255) 2022; 9 Huo (10.1016/j.ccr.2023.215031_b1330) 2021; 406 Trivedi (10.1016/j.ccr.2023.215031_b0245) 2021; 145 Cai (10.1016/j.ccr.2023.215031_b0855) 2020; 30 Zhao (10.1016/j.ccr.2023.215031_b0715) 2019; 253 Ou (10.1016/j.ccr.2023.215031_b0885) 2018; 2018 Choi (10.1016/j.ccr.2023.215031_b1025) 2022; 430 Zhang (10.1016/j.ccr.2023.215031_b1320) 2020; 153 Low (10.1016/j.ccr.2023.215031_b0060) 2017; 29 Guan (10.1016/j.ccr.2023.215031_b0725) 2021; 21 Han (10.1016/j.ccr.2023.215031_b0470) 2019; 141 Jena (10.1016/j.ccr.2023.215031_b0310) 2019; 119 Ma (10.1016/j.ccr.2023.215031_b0595) 2018; 227 Kannan (10.1016/j.ccr.2023.215031_b0045) 2016; 62 Liu (10.1016/j.ccr.2023.215031_b0845) 2021; 21 Jiang (10.1016/j.ccr.2023.215031_b0955) 2019; 7 Wu (10.1016/j.ccr.2023.215031_b1335) 2021; 397 Zhang (10.1016/j.ccr.2023.215031_b1230) 2022; 4 Noel (10.1016/j.ccr.2023.215031_b1370) 2014; 7 Wu (10.1016/j.ccr.2023.215031_b0630) 2019; 58 Sheng (10.1016/j.ccr.2023.215031_b1005) 2020; 14 Park (10.1016/j.ccr.2023.215031_b0095) 2016; 9 Xiao (10.1016/j.ccr.2023.215031_b0735) 2019; 29 Kovalenko (10.1016/j.ccr.2023.215031_b0340) 2017; 358 Yang (10.1016/j.ccr.2023.215031_b0135) 2017; 2 Xu (10.1016/j.ccr.2023.215031_b0935) 2018; 5 Hu (10.1016/j.ccr.2023.215031_b1250) 2021; 13 Ju (10.1016/j.ccr.2023.215031_b0620) 2021; 551 Wang (10.1016/j.ccr.2023.215031_b0860) 2019; 9 Mu (10.1016/j.ccr.2023.215031_b0010) 2019; 12 Dong (10.1016/j.ccr.2023.215031_b0230) 2020; 2 Huang (10.1016/j.ccr.2023.215031_b0205) 2020; 5 Wang (10.1016/j.ccr.2023.215031_b0710) 2018; 4 Ke (10.1016/j.ccr.2023.215031_b1365) 2019; 31 Ke (10.1016/j.ccr.2023.215031_b0435) 2019; 10 Wang (10.1016/j.ccr.2023.215031_b0750) 2021; 60 Yue (10.1016/j.ccr.2023.215031_b0825) 2020; 2 Ava (10.1016/j.ccr.2023.215031_b0385) 2019; 9 Zhang (10.1016/j.ccr.2023.215031_b1155) 2022; 61 Xiao (10.1016/j.ccr.2023.215031_b0370) 2019; 31 Protesescu (10.1016/j.ccr.2023.215031_b0420) 2016; 138 Guo (10.1016/j.ccr.2023.215031_b1080) 2022; 33 Cho (10.1016/j.ccr.2023.215031_b0125) 2015; 350 Bai (10.1016/j.ccr.2023.215031_b0115) 2016; 4 Wang (10.1016/j.ccr.2023.215031_b0485) 2019; 58 Martin (10.1016/j.ccr.2023.215031_b0035) 2015; 44 Liu (10.1016/j.ccr.2023.215031_b0565) 2021; 5 Azam (10.1016/j.ccr.2023.215031_b0320) 2018; 6 Loeb (10.1016/j.ccr.2023.215031_b1395) 2019; 53 Huang (10.1016/j.ccr.2023.215031_b0815) 2022; 46 Liu (10.1016/j.ccr.2023.215031_b1325) 2019; 243 Wan (10.1016/j.ccr.2023.215031_b1085) 2019; 358 Xu (10.1016/j.ccr.2023.215031_b1175) 2020; 11 Xu (10.1016/j.ccr.2023.215031_b0185) 2017; 139 Holzhey (10.1016/j.ccr.2023.215031_b0395) 2019; 29 Wang (10.1016/j.ccr.2023.215031_b0520) 2019; 141 Wang (10.1016/j.ccr.2023.215031_b0785) 2020; 268 Kumar (10.1016/j.ccr.2023.215031_b1020) 2021; 9 Xu (10.1016/j.ccr.2023.215031_b0925) 2018; 1 Ketavath (10.1016/j.ccr.2023.215031_b0215) 2022; 10 Cardenas-Morcoso (10.1016/j.ccr.2023.215031_b0200) 2019; 10 Shaner (10.1016/j.ccr.2023.215031_b0720) 2016; 9 Kong (10.1016/j.ccr.2023.215031_b0625) 2018; 3 Yin (10.1016/j.ccr.2023.215031_b0850) 2021; 60 Saparov (10.1016/j.ccr.2023.215031_b0335) 2016; 116 Park (10.1016/j.ccr.2023.215031_b0180) 2016; 2 Ding (10.1016/j.ccr.2023.215031_b1185) 2021; 13 Das (10.1016/j.ccr.2023.215031_b1260) 2020; 267 Tang (10.1016/j.ccr.2023.215031_b0490) 2022; 429 Marzo (10.1016/j.ccr.2023.215031_b0085) 2018; 57 Chen (10.1016/j.ccr.2023.215031_b0835) 2020; 32 Hisatomi (10.1016/j.ccr.2023.215031_b0075) 2019; 2 Jiao (10.1016/j.ccr.2023.215031_b0480) 2020; 49 Zhou (10.1016/j.ccr.2023.215031_b0810) 2021; 12 Yue (10.1016/j.ccr.2023.215031_b0315) 2017; 10 Cheng (10.1016/j.ccr.2023.215031_b0080) 2022; 4 Kreft (10.1016/j.ccr.2023.215031_b0055) 2020; 2 Yu (10.1016/j.ccr.2023.215031_b0550) 2013; 15 Kim (10.1016/j.ccr.2023.215031_b0100) 2020; 368 Niu (10.1016/j.ccr.2023.215031_b0390) 2015; 3 Miyasaka (10.1016/j.ccr.2023.215031_b0375) 2019; 10 Bresolin (10.1016/j.ccr.2023.215031_b1295) 2020; 10 Klejna (10.1016/j.ccr.2023.215031_b1380) 2020; 415 Lewis (10.1016/j.ccr.2023.215031_b0015) 2007; 315 Wang (10.1016/j.ccr.2023.215031_b0700) 2018; 3 Shu (10.1016/j.ccr.2023.215031_b1125) 2021; 182 Li (10.1016/j.ccr.2023.215031_b1115) 2021; 419 Pu (10.1016/j.ccr.2023.215031_b0195) 2017; 5 Pan (10.1016/j.ccr.2023.215031_b1090) 2019; 10 Raza (10.1016/j.ccr.2023.215031_b0225) 2021; 2 Wang (10.1016/j.ccr.2023.215031_b0235) 2022; 7 Fu (10.1016/j.ccr.2023.215031_b0070) 2018; 8 Zhang (10.1016/j.ccr.2023.215031_b0220) 2021; 12 Gao (10.1016/j.ccr.2023.215031_b0730) 2015; 6 Chen (10.1016/j.ccr.2023.215031_b0250) 2022 Li (10.1016/j.ccr.2023.215031_b0665) 2020; 2 Pellegrino (10.1016/j.ccr.2023.215031_b1290) 2021; 4 Chen (10.1016/j.ccr.2023.215031_b0675) 2022; 310 Wang (10.1016/j.ccr.2023.215031_b0030) 2015; 44 Liu (10.1016/j.ccr.2023.215031_b0140) 2017; 11 Zhao (10.1016/j.ccr.2023.215031_b0795) 2020; 7 Yuan (10.1016/j.ccr.2023.215031_b0210) 2020; 5 Zhang (10.1016/j.ccr.2023.215031_b0740) 2017; 10 Hu (10.1016/j.ccr.2023.215031_b1000) 2021; 481 Wang (10.1016/j.ccr.2023.215031_b0560) 2021; 282 Gong (10.1016/j.ccr.2023.215031_b1010) 2021; 545 Cheng (10.1016/j.ccr.2023.215031_b1130) 2020; 10 Zhang (10.1016/j.ccr.2023.215031_b0690) 2019; 58 Eperon (10.1016/j.ccr.2023.215031_b0405) 2014; 7 Shi (10.1016/j.ccr.2023.215031_b0790) 2020; 32 Que (10.1016/j.ccr.2023.215031_b1135) 2022; 610 Yin (10.1016/j.ccr.2023.215031_b0325) 2015; 3 Xu (10.1016/j.ccr.2023.215031_b1065) 2021; 27 Cho (10.1016/j.ccr.2023.215031_b0425) 2018; 19 He Zhao (10.1016/j.ccr.2023.215031_b0870) 2021; 14 Gu (10.1016/j.ccr.2023.215031_b0110) 2016; 10 Zhang (10.1016/j.ccr.2023.215031_b0655) 2019; 58 Kumar (10.1016/j.ccr.2023.215031_b0990) 2020; 3 Xie (10.1016/j.ccr.2023.215031_b1280) 2022; 5 Xing (10.1016/j.ccr.2023.215031_b0155) 2013; 342 Gao (10.1016/j.ccr.2023.215031_b0190) 2017; 9 Dong (10.1016/j.ccr.2023.215031_b0945) 2022; 65 Armenise (10.1016/j.ccr.2023.215031_b0330) 2021; 11 Feng (10.1016/j.ccr.2023.215031_b1255) 2019; 7 Singh (10.1016/j.ccr.2023.215031_b1385) 2020; 208 Li (10.1016/j.ccr.2023.215031_b0450) 2016; 26 Wu (10.1016/j.ccr.2023.215031_b0770) 2018; 8 Hong (10.1016/j.ccr.2023.215031_b0615) 2019; 492 Xu (10.1016/j.ccr.2023.215031_b0590) 2009; 21 Ito (10.1016/j.ccr.2023.215031_b0400) 2014; 118 Schünemann (10.1016/j.ccr.2023.215031_b1265) 2018; 2018 Li (10.1016/j.ccr.2023.215031_b0660) 2020; 2 Li (10.1016/j.ccr.2023.215031_b0780) 2019; 259 Zhang (10.1016/j.ccr.2023.215031_b0820) 2022; 47 Sun (10.1016/j.ccr.2023.215031_b1275) 2021; 28 Xu (10.1016/j.ccr.2023.215031_b0540) 2020; 6 Wu (10.1016/j.ccr.2023.215031_b0475) 2021; 5 Wang (10.1016/j.ccr.2023.215031_b1105) 2021; 416 Zhang (10.1016/j.ccr.2023.215031_b0050) 2016; 45 Mu (10.1016/j.ccr.2023.215031_b0570) 2021; 13 Tasleem (10.1016/j.ccr.2023.215031_b0275) 2020; 132 Wang (10.1016/j.ccr.2023.215031_b0880) 2015; 162 Nourozieh (10.1016/j.ccr.2023.215031_b0915) 2013; 58 Sun (10.1016/j.ccr.2023.215031_b0640) 2022; 61 Li (10.1016/j.ccr.2023.215031_b1300) 2021; 596 Wang (10.1016/j.ccr.2023.215031_b1070) 2021; 5 Zhang (10.1016/j.ccr.2023.215031_b1180) 2021; 4 Xu (10.1016/j.ccr.2023.215031_b0350) 1992; 65 Zhang (10.1016/j.ccr.2023.215031_b0360) 2019; 58 Bian (10.1016/j.ccr.2023.215031_b0535) 2016; 9 Liao (10.1016/j.ccr.2023.215031_b0930) 2021; 53 Shyamal (10.1016/j.ccr.2023.215031_b0965) 2019; 10 Li (10.1016/j.ccr.2023.215031_b0875) 2021; 5 Park (10.1016/j.ccr.2023.215031_b1400) 2021; 12 Mourdikoudis (10.1016/j.ccr.2023.215031_b0585) 2013; 25 Guo (10.1016/j.ccr.2023.215031_b0830) 2019; 7 Romani (10.1016/j.ccr.2023.215031_b0760) 2021; 60 Ma (10.1016/j.ccr.2023.215031_b1375) 2022; 9 Maksym (10.1016/j.ccr.2023.215031_b0130) 2017; 358 Ren (10.1016/j.ccr.2023.215031_b0280) 2022; 10 Li (10.1016/j.ccr.2023.215031_b1235) 2021; 3 Liang (10.1016/j.ccr.2023.215031_b1350) 2022; 12 Zheng (10.1016/j.ccr.2023.215031_b0410) 2016; 1 Narayanam (10.1016/j.ccr.2023.215031_b0090) 2011; 40 Han (10.1016/j.ccr.2023.215031_b0505) 2019; 10 Kulbak (10.1016/j.ccr.2023.215031_b0430) 2016; 7 Zhang (10.1016/j.ccr.2023.215031_b1150) 2022; 435 Hu (10.1016/j.ccr.2023.215031_b1355) 2021; 3 Luo (10.1016/j.ccr.2023.215031_b0300) 2021; 3 Liang (10.1016/j.ccr.2023.215031_b0285) 2020; 16 Tang (10.1016/j.ccr.2023.215031_b0525) 2020; 30 Hang (10.1016/j.ccr.2023.215031_b0240) 2022; 6 Li (10.1016/j.ccr.2023.215031_b0515) 2022; 16 Meng (10.1016/j.ccr.2023.215031_b1225) 2021; 12 |
References_xml | – volume: 60 start-page: 22693 year: 2021 end-page: 22699 ident: b0850 article-title: Controlling photoluminescence and photocatalysis activities in lead-free Cs publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 3281 year: 2020 end-page: 3284 ident: b0865 article-title: A noble-metal-free MoS publication-title: Chem. Commun. – volume: 113 start-page: 11694 year: 2016 end-page: 11702 ident: b0165 article-title: Metal halide perovskite light emitters publication-title: Proc. Natl. Acad. Sci. – volume: 58 start-page: 11752 year: 2019 end-page: 11756 ident: b0655 article-title: Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO publication-title: Angew. Chem. Int. Ed. – volume: 315 start-page: 798 year: 2007 end-page: 801 ident: b0015 article-title: Toward cost-effective solar energy use publication-title: Science – volume: 13 year: 2017 ident: b0575 article-title: Multichannel charge transfer and mechanistic insight in metal decorated 2D–2D Bi publication-title: Small – volume: 2 start-page: 509 year: 2018 end-page: 520 ident: b1405 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation publication-title: Joule – volume: 5 start-page: 2100154 year: 2021 ident: b1070 article-title: Surface defect engineering of CsPbBr publication-title: Sol. RRL – volume: 53 start-page: 309 year: 2021 end-page: 315 ident: b0930 article-title: Plasmonic CsPbBr publication-title: J. Energy Chem. – volume: 899 year: 2022 ident: b1030 article-title: Multi-dimensional collaborations boost lead halide perovskite driven superior and long-period CO publication-title: J. Alloys Compd. – volume: 15 start-page: 16883 year: 2013 end-page: 16890 ident: b0550 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C publication-title: Phys. Chem. Chem. Phys. – volume: 54 start-page: 13971 year: 2015 end-page: 13974 ident: b0465 article-title: Single unit cell bismuth tungstate layers realizing robust solar CO publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 1092 year: 2016 end-page: 1105 ident: b0045 article-title: Solar energy for future world: - A review publication-title: Renewable Sustainable Energy Rev. – volume: 16 start-page: 3332 year: 2022 end-page: 3340 ident: b0515 article-title: ZnSe nanorods-CsSnCl publication-title: ACS Nano – volume: 60 start-page: 7376 year: 2021 end-page: 7381 ident: b0750 article-title: Mechanistic understanding of efficient photocatalytic H publication-title: Angew. Chem. Int. Ed. – volume: 415 year: 2020 ident: b1380 article-title: Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing publication-title: Coord. Chem. Rev. – volume: 9 start-page: 188 year: 2019 ident: b0385 article-title: A Review: Thermal stability of methylammonium lead halide based perovskite solar cells publication-title: Appl. Sci. – volume: 6 start-page: 2101058 year: 2022 ident: b0240 article-title: Tailoring inorganic halide perovskite photocatalysts toward carbon dioxide reduction publication-title: Sol. RRL – volume: 132 year: 2020 ident: b0275 article-title: Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production publication-title: Renewable Sustainable Energy Rev. – volume: 7 start-page: 167 year: 2016 end-page: 172 ident: b0430 article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells publication-title: J. Phys. Chem. Lett. – volume: 31 start-page: e1803792 year: 2019 ident: b0370 article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives publication-title: Adv. Mater. – volume: 6 start-page: 1097 year: 2016 end-page: 1108 ident: b0495 article-title: Engineering coexposed {001} and {101} facets in oxygen-deficient TiO publication-title: ACS Catal. – volume: 12 start-page: 31477 year: 2020 end-page: 31485 ident: b0555 article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr publication-title: ACS Appl. Mater. Interfaces – volume: 78 year: 2020 ident: b0610 article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO publication-title: Nano Energy – volume: 25 start-page: 1465 year: 2013 end-page: 1476 ident: b0585 article-title: Oleylamine in nanoparticle synthesis publication-title: Chem. Mater. – volume: 430 year: 2022 ident: b1025 article-title: An in-situ spectroscopic study on the photochemical CO publication-title: Chem. Eng. J. – volume: 54 start-page: 1409 year: 2021 end-page: 1418 ident: b1345 article-title: Effect of surface ligands in perovskite nanocrystals: extending in and reaching out publication-title: Acc. Chem. Res. – volume: 10 start-page: 965 year: 2019 ident: b0435 article-title: Prospects for low-toxicity lead-free perovskite solar cells publication-title: Nat. Commun. – volume: 26 start-page: 2435 year: 2016 end-page: 2445 ident: b0450 article-title: CsPbX publication-title: Adv. Funct. Mater. – volume: 19 start-page: 53 year: 2018 end-page: 60 ident: b0425 article-title: Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films publication-title: J. Inf. Disp. – volume: 30 start-page: 2006919 year: 2020 ident: b0525 article-title: In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution publication-title: Adv. Funct. Mater. – volume: 182 start-page: 454 year: 2021 end-page: 462 ident: b1125 article-title: CsPbBr publication-title: Carbon – volume: 141 start-page: 4209 year: 2019 end-page: 4213 ident: b0470 article-title: Convincing synthesis of atomically thin, single-crystalline InVO publication-title: J. Am. Chem. Soc. – volume: 31 year: 2020 ident: b0975 article-title: Mn-doped CsPb(Br/Cl) publication-title: Nanotechnology – volume: 2 year: 2020 ident: b0665 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem – volume: 9 start-page: 12179 year: 2021 end-page: 12187 ident: b1020 article-title: Mechanochemically synthesized Pb-free halide perovskite-based Cs publication-title: J. Mater. Chem. A – volume: 45 start-page: 5951 year: 2016 end-page: 5984 ident: b0050 article-title: Inorganic perovskite photocatalysts for solar energy utilization publication-title: Chem. Soc. Rev. – volume: 29 start-page: 201603885 year: 2017 ident: b0580 article-title: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr publication-title: Adv. Mater. – volume: 282 year: 2021 ident: b1100 article-title: Colloidal formamidinium lead bromide quantum dots for photocatalytic CO publication-title: Mater. Lett. – volume: 11 start-page: 10373 year: 2017 end-page: 10383 ident: b0140 article-title: Highly luminescent phase-stable CsPbI publication-title: ACS Nano – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: b0540 article-title: S-scheme heterojunction photocatalyst publication-title: Chem – volume: 545 year: 2021 ident: b1010 article-title: Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules publication-title: Appl. Surf. Sci. – volume: 28 start-page: 50813 year: 2021 end-page: 50824 ident: b1275 article-title: Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution publication-title: Environ. Sci. Pollut. Res. – volume: 12 start-page: 27578 year: 2020 end-page: 27586 ident: b1315 article-title: Growing poly(norepinephrine) layer over individual nanoparticles to boost hybrid perovskite photocatalysts publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 597 year: 2021 end-page: 604 ident: b0725 article-title: Fabricating MAPbI publication-title: Nano Lett. – volume: 9 start-page: 411 year: 2016 end-page: 433 ident: b0095 article-title: Photoinduced charge transfer processes in solar photocatalysis based on modified TiO publication-title: Energy Environ. Sci. – volume: 209 start-page: 476 year: 2017 end-page: 482 ident: b0680 article-title: Visible-light reduction CO publication-title: Appl. Catal., B – volume: 139 start-page: 5660 year: 2017 end-page: 5663 ident: b0185 article-title: A CsPbBr publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2305 year: 2021 end-page: 2309 ident: b1065 article-title: Glycine-functionalized CsPbBr publication-title: Chem. Eur. J. – volume: 29 start-page: 10 year: 2019 end-page: 19 ident: b0395 article-title: A chain is as strong as its weakest link-Stability study of MAPbI publication-title: Mater. Today – volume: 10 start-page: 14923 year: 2022 end-page: 14932 ident: b0295 article-title: Water-driven boost in the visible light photocatalytic performance of Cs publication-title: J. Mater. Chem. A – volume: 60 start-page: 3611 year: 2021 end-page: 3618 ident: b0760 article-title: Water-stable DMASnBr publication-title: Angew. Chem. Int. Ed. – volume: 414 year: 2021 ident: b1110 article-title: Fullerene modified CsPbBr publication-title: Chem. Eng. J. – volume: 5 start-page: 1107 year: 2020 end-page: 1123 ident: b0205 article-title: Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance publication-title: ACS Energy Lett. – volume: 32 start-page: e2001344 year: 2020 ident: b0835 article-title: Lead-free halide perovskite Cs publication-title: Adv. Mater. – volume: 16 start-page: e1903398 year: 2020 ident: b0285 article-title: Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications publication-title: Small – volume: 10 start-page: 5413 year: 2016 end-page: 5418 ident: b0110 article-title: Flexible hybrid organic-inorganic perovskite memory publication-title: ACS Nano – volume: 9 start-page: 1901801 year: 2019 ident: b0860 article-title: Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis publication-title: Adv. Energy Mater. – volume: 5 start-page: 1423 year: 2022 end-page: 1432 ident: b1280 article-title: Synthesis of CsPbBr publication-title: Advanced Composites and Hybrid Materials – volume: 81 start-page: 1879 year: 2018 end-page: 1886 ident: b0020 article-title: Forecasting the impact of renewable energies in competition with non-renewable sources publication-title: Renewable Sustainable Energy Rev. – volume: 1 start-page: 1014 year: 2016 end-page: 1020 ident: b0410 article-title: Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation publication-title: ACS Energy Lett. – volume: 227 start-page: 218 year: 2018 end-page: 228 ident: b0595 article-title: Noble-metal-free Ni publication-title: Appl. Catal., B – volume: 12 start-page: 11842 year: 2020 end-page: 11846 ident: b0995 article-title: Synthesis of monodisperse water-stable surface Pb-rich CsPbCl publication-title: Nanoscale – volume: 58 start-page: 15596 year: 2019 end-page: 15618 ident: b0360 article-title: All-inorganic CsPbX publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 766 year: 2020 end-page: 780 ident: b0960 article-title: All-solid-state Z-scheme α-Fe publication-title: Chem – volume: 9 start-page: 2723 year: 2016 end-page: 2735 ident: b0535 article-title: Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications publication-title: ChemSusChem – volume: 4 start-page: 5913 year: 2021 end-page: 5917 ident: b1120 article-title: Morphology regulation and photocatalytic CO publication-title: ACS Appl. Energy Mater. – volume: 397 start-page: 27 year: 2021 end-page: 35 ident: b1335 article-title: High visible-light photocatalytic performance of stable lead-free Cs publication-title: J. Catal. – volume: 49 start-page: 6592 year: 2020 end-page: 6604 ident: b0480 article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO publication-title: Chem. Soc. Rev. – volume: 11 start-page: 3608 year: 2020 end-page: 3614 ident: b0500 article-title: Facets and defects in perovskite nanocrystals for photocatalytic CO publication-title: J. Phys. Chem. Lett. – volume: 58 start-page: 9491 year: 2019 end-page: 9495 ident: b0630 article-title: Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO publication-title: Angew. Chem. Int. Ed. – volume: 249 year: 2020 ident: b0290 article-title: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system publication-title: J. Cleaner Prod. – volume: 9 year: 2021 ident: b0265 article-title: Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO publication-title: J. Environ. Chem. Eng. – volume: 10 start-page: 7965 year: 2019 end-page: 7969 ident: b0965 article-title: Doping iron in CsPbBr publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 1131 year: 2021 end-page: 1139 ident: b1060 article-title: Coupling CsPbBr publication-title: ChemSusChem – volume: 7 start-page: 5152 year: 2019 end-page: 5156 ident: b1255 article-title: Highly efficient photocatalytic degradation performance of CsPb(Br publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 8292 year: 2021 end-page: 8301 ident: b1400 article-title: Metal halide perovskites for solar fuel production and photoreactions publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 1116 year: 2021 end-page: 1125 ident: b0870 article-title: Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution publication-title: Nano Res. – volume: 10 start-page: 630 year: 2019 end-page: 636 ident: b0200 article-title: Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots publication-title: J. Phys. Chem. Lett. – volume: 277 year: 2020 ident: b0970 article-title: Immobilizing perovskite CsPbBr publication-title: Appl. Catal., B – volume: 358 start-page: 745 year: 2017 end-page: 750 ident: b0340 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science – volume: 4 start-page: 1900365 year: 2019 ident: b0900 article-title: Immobilizing Re(CO) publication-title: Sol. RRL – volume: 2 start-page: 387 year: 2019 end-page: 399 ident: b0075 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat. Catal. – volume: 4 start-page: 3898 year: 2016 end-page: 3904 ident: b0115 article-title: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications publication-title: J. Mater. Chem. C – volume: 10 start-page: 3514 year: 2019 end-page: 3522 ident: b0505 article-title: Efficient photoredox conversion of alcohol to aldehyde and H publication-title: Chem. Sci. – volume: 65 start-page: 2264 year: 1992 end-page: 2266 ident: b0350 article-title: Molecular motions in solid CD publication-title: Bull. Chem. Soc. Jpn. – volume: 2 year: 2020 ident: b0660 article-title: MOF-based materials for photo- and electrocatalytic CO publication-title: EnergyChem – volume: 369 start-page: 201 year: 2019 end-page: 208 ident: b0980 article-title: Enhanced CO publication-title: J. Catal. – volume: 7 start-page: 3061 year: 2014 end-page: 3068 ident: b1370 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. – volume: 6 start-page: 511 year: 2012 end-page: 518 ident: b0005 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat. Photonics – volume: 10 start-page: 407 year: 2022 end-page: 429 ident: b0280 article-title: Metal halide perovskites for photocatalysis applications publication-title: J. Mater. Chem. A – volume: 13 start-page: 2363 year: 2020 end-page: 2385 ident: b0440 article-title: Lead-free perovskite solar cells enabled by hetero-valent substitutes publication-title: Energy Environ. Sci. – volume: 5 start-page: 25438 year: 2017 end-page: 25449 ident: b0195 article-title: Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis publication-title: J. Mater. Chem. A – volume: 29 start-page: e1601694 year: 2017 ident: b0060 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. – volume: 47 start-page: 8829 year: 2022 end-page: 8840 ident: b0820 article-title: Efficient and long-term photocatalytic H publication-title: Int. J. Hydrogen Energy – volume: 2 year: 2020 ident: b0230 article-title: Halide perovskite materials as light harvesters for solar energy conversion publication-title: EnergyChem – volume: 145 year: 2021 ident: b0245 article-title: Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction publication-title: Renewable Sustainable Energy Rev. – volume: 16 start-page: e2002140 year: 2020 ident: b1055 article-title: Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO publication-title: Small – volume: 138 start-page: 14202 year: 2016 end-page: 14205 ident: b0420 article-title: Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence publication-title: J. Am. Chem. Soc. – volume: 162 start-page: 494 year: 2015 end-page: 500 ident: b0880 article-title: Photocatalytic CO publication-title: Appl. Catal., B – volume: 350 start-page: 1222 year: 2015 end-page: 1225 ident: b0125 article-title: Overcoming the electroluminescence efficiency limitations ofperovskite light-emitting diodes publication-title: Science – volume: 3 start-page: 935 year: 2020 end-page: 949 ident: b0800 article-title: Perovskite microcrystals with intercalated monolayer MoS publication-title: Matter – volume: 12 start-page: 5864 year: 2021 end-page: 5870 ident: b0220 article-title: Artificial photosynthesis over metal halide perovskites: achievements, challenges, and prospects publication-title: J. Phys. Chem. Lett. – volume: 61 start-page: 6861 year: 2022 end-page: 6868 ident: b0650 article-title: Induction of chirality in boron imidazolate frameworks: The structure-directing effects of substituents publication-title: Inorg. Chem. – volume: 3 year: 2021 ident: b1235 article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis publication-title: EnergyChem – volume: 3 year: 2021 ident: b1355 article-title: Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts publication-title: EnergyChem – volume: 9 start-page: 4533 year: 2015 end-page: 4542 ident: b0170 article-title: Brightly luminescent and color tunable colloidal CH publication-title: ACS Nano – volume: 310 year: 2022 ident: b1160 article-title: Space-confined growth of lead-free halide perovskite Cs publication-title: Appl. Catal., B – volume: 5 start-page: 2000691 year: 2021 ident: b0565 article-title: In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs publication-title: Sol. RRL – volume: 9 start-page: 2200058 year: 2022 ident: b0255 article-title: Metal halide perovskite heterojunction for photocatalytic hydrogen generation: progress and future opportunities publication-title: Adv. Mater. Interfaces – volume: 143 start-page: 14895 year: 2021 end-page: 14906 ident: b0445 article-title: Chemically spiraling CsPbBr publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1620 year: 2021 end-page: 1627 ident: b0895 article-title: Synthesis of lead-free Cs publication-title: Nano Lett. – volume: 284 year: 2021 ident: b1215 article-title: Mechanisms behind photocatalytic CO publication-title: Appl. Catal., B – volume: 116 start-page: 4558 year: 2016 end-page: 4596 ident: b0335 article-title: Organic-inorganic perovskites: Structural versatility for functional materials design publication-title: Chem. Rev. – volume: 15 start-page: 1271 year: 2022 end-page: 1281 ident: b0840 article-title: An organometal halide perovskite supported Pt single-atom photocatalyst for H publication-title: Energy Environ. Sci. – volume: 46 start-page: 7395 year: 2022 end-page: 7402 ident: b0815 article-title: NiCoP modified lead-free double perovskite Cs publication-title: New J. Chem. – volume: 118 start-page: 16995 year: 2014 end-page: 17000 ident: b0400 article-title: Effects of surface blocking layer of Sb publication-title: J. Phys. Chem. C – volume: 50 start-page: 665 year: 2018 end-page: 674 ident: b0705 article-title: PtI publication-title: Nano Energy – volume: 2 year: 2020 ident: b0105 article-title: Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation publication-title: EnergyChem – volume: 23 start-page: 9481 year: 2017 end-page: 9485 ident: b0455 article-title: Inorganic colloidal perovskite quantum dots for robust solar CO publication-title: Chem. Eur. J. – volume: 58 start-page: 1236 year: 2013 end-page: 1243 ident: b0915 article-title: Equilibrium properties of (carbon dioxide + publication-title: J. Chem. Eng. Data – volume: 347 start-page: 967 year: 2015 end-page: 970 ident: b0160 article-title: Electron-hole diffusion lengths >175 μm in solution-grown CH publication-title: Science – volume: 1 start-page: 5083 year: 2018 end-page: 5089 ident: b0925 article-title: Enhanced solar-driven gaseous CO publication-title: ACS Appl. Energy Mater. – volume: 358 start-page: 1287 year: 2019 end-page: 1295 ident: b1085 article-title: Perovskite-type CsPbBr publication-title: Chem. Eng. J. – year: 2022 ident: b0250 article-title: Stabilisation and performance enhancement strategies for halide perovskite photocatalysts publication-title: Adv. Mater. – volume: 3 start-page: 8926 year: 2015 end-page: 8942 ident: b0325 article-title: Halide perovskite materials for solar cells: a theoretical review publication-title: J. Mater. Chem. A – volume: 380 year: 2019 ident: b0530 article-title: CsPbBrCl publication-title: J. Hazard. Mater – volume: 5 start-page: 14605 year: 2022 end-page: 14637 ident: b0270 article-title: A review on halide perovskite-based photocatalysts: Key factors and challenges publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 4769 year: 2019 end-page: 4774 ident: b0010 article-title: Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO publication-title: ChemSusChem – volume: 10 start-page: 1902500 year: 2019 ident: b0375 article-title: Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free? publication-title: Adv. Energy Mater. – volume: 481 year: 2021 ident: b1000 article-title: Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO publication-title: J. Power Sources – volume: 141 start-page: 20434 year: 2019 end-page: 20442 ident: b1220 article-title: Mechanism of photocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 65 start-page: 1550 year: 2022 end-page: 1559 ident: b0945 article-title: Construction of a ternary WO publication-title: Sci. China Mater. – volume: 6 start-page: 13725 year: 2018 end-page: 13734 ident: b0320 article-title: Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials publication-title: J. Mater. Chem. A – volume: 6 start-page: 5982 year: 2015 ident: b0730 article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation publication-title: Nat. Commun. – volume: 12 start-page: 2987 year: 2020 end-page: 2991 ident: b0910 article-title: Synthesis of lead-free Cs publication-title: Nanoscale – volume: 12 start-page: 4216 year: 2022 end-page: 4226 ident: b1350 article-title: Atomically precise metal nanocluster-mediated photocatalysis publication-title: ACS Catal. – volume: 2 start-page: 16185 year: 2016 ident: b0180 article-title: Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution publication-title: Nat. Energy – volume: 13 start-page: 22314 year: 2021 end-page: 22322 ident: b0570 article-title: Direct Z-scheme heterojunction of ligand-free FAPbBr publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 4300 year: 2017 end-page: 4307 ident: b1270 article-title: High-quality (CH publication-title: J. Phys. Chem. Lett. – volume: 368 start-page: 155 year: 2020 end-page: 160 ident: b0100 article-title: Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites publication-title: Science – volume: 39 year: 2021 ident: b0905 article-title: Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites publication-title: Nano Today – volume: 7 start-page: 2719 year: 2020 end-page: 2725 ident: b0795 article-title: Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites publication-title: Mater. Horiz. – volume: 13 start-page: 10037 year: 2021 end-page: 10046 ident: b0805 article-title: In situ synthesis of lead-free halide perovskite Cs publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 2937 year: 2019 end-page: 2947 ident: b1395 article-title: The technology horizon for photocatalytic water treatment: sunrise or sunset? publication-title: Environ. Sci. Technol. – volume: 55 start-page: 3376 year: 2022 end-page: 3386 ident: b1390 article-title: Solar panel technologies for light-to-chemical conversion publication-title: Acc. Chem. Res. – volume: 67 year: 2020 ident: b0365 article-title: Stability of all-inorganic perovskite solar cells publication-title: Nano Energy – volume: 434 year: 2022 ident: b1035 article-title: In-situ fabrication of Cu doped dual-phase CsPbBr publication-title: Chem. Eng. J. – volume: 31 start-page: e1803230 year: 2019 ident: b1365 article-title: “Unleaded” perovskites: Status quo and future prospects of tin-based perovskite solar cells publication-title: Adv. Mater. – volume: 10 start-page: 115 year: 2020 ident: b1310 article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications publication-title: Nanomaterials – volume: 119 start-page: 3036 year: 2019 end-page: 3103 ident: b0310 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem. Rev. – volume: 12 start-page: 2915 year: 2022 end-page: 2926 ident: b1040 article-title: Frustrated lewis pair sites boosting CO publication-title: ACS Catal. – volume: 245 start-page: 522 year: 2019 end-page: 527 ident: b0775 article-title: Perovskite photocatalyst CsPbBr publication-title: Appl. Catal., B – volume: 911 year: 2022 ident: b0305 article-title: A brief review on metal halide perovskite photocatalysts: History, applications and prospects publication-title: J. Alloys Compd. – volume: 208 start-page: 296 year: 2020 end-page: 311 ident: b1385 article-title: Halide perovskite-based photocatalysis systems for solar-driven fuel generation publication-title: Solar Energy – volume: 1 year: 2019 ident: b0670 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 61 start-page: 3351 year: 2022 end-page: 3360 ident: b1155 article-title: Step-scheme photocatalyst of CsPbBr publication-title: Inorg. Chem. – volume: 2018 start-page: 2350 year: 2018 end-page: 2355 ident: b1265 article-title: An inverse opal structured halide perovskite photocatalyst publication-title: Eur. J. Inorg. Chem. – volume: 9 start-page: 8144 year: 2019 end-page: 8152 ident: b0600 article-title: Ni publication-title: ACS Catal. – volume: 30 start-page: 2004293 year: 2020 ident: b0940 article-title: Z-scheme 2D/2D heterojunction of CsPbBr publication-title: Adv. Funct. Mater. – volume: 492 start-page: 449 year: 2019 end-page: 454 ident: b0615 article-title: Highly sensitive and low detection limit of resistive NO publication-title: Appl. Surf. Sci. – volume: 48 start-page: 14115 year: 2019 end-page: 14121 ident: b0985 article-title: All-inorganic perovskite/graphitic carbon nitride composites for CO publication-title: Dalton Trans. – volume: 58 start-page: 7263 year: 2019 end-page: 7267 ident: b0690 article-title: Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2354 year: 2016 end-page: 2371 ident: b0720 article-title: A comparative technoeconomic analysis of renewable hydrogen production using solar energy publication-title: Energy Environ. Sci. – volume: 7 start-page: 13762 year: 2019 end-page: 13769 ident: b0955 article-title: Hierarchical CsPbBr publication-title: J. Mater. Chem. A – volume: 6 start-page: 4244 year: 2015 end-page: 4251 ident: b0605 article-title: Graphene-based photocatalysts for CO publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 4412 year: 2021 ident: b0810 article-title: Single-atom Pt-I publication-title: Nat. Commun. – volume: 623 start-page: 974 year: 2022 end-page: 984 ident: b0635 article-title: Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis publication-title: J. Colloid Interface Sci. – volume: 268 year: 2020 ident: b0785 article-title: Lead-free double perovskite Cs publication-title: Appl. Catal., B – volume: 3 start-page: 4509 year: 2020 end-page: 4522 ident: b0990 article-title: All-inorganic CsPbBr publication-title: ACS Appl. Energy Mater. – volume: 4 year: 2022 ident: b1230 article-title: Application of MOFs and COFs for photocatalysis in CO publication-title: EnergyChem – volume: 5 start-page: 2000419 year: 2020 ident: b0210 article-title: Perovskite nanocrystals-based heterostructures: Synthesis strategies, interfacial effects, and photocatalytic applications publication-title: Sol. RRL – volume: 3 start-page: 2656 year: 2018 end-page: 2662 ident: b0625 article-title: Core@shell CsPbBr publication-title: ACS Energy Lett. – volume: 10 start-page: 1352 year: 2020 ident: b1130 article-title: Efficient photocatalytic CO publication-title: Catalysts – volume: 21 start-page: 1643 year: 2021 end-page: 1650 ident: b0845 article-title: A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis publication-title: Nano Lett. – volume: 13 start-page: 51161 year: 2021 end-page: 51173 ident: b1185 article-title: Assembling an affinal 0D CsPbBr publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1845 year: 2021 end-page: 1852 ident: b1075 article-title: Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO publication-title: Nano Res. – volume: 46a start-page: 240 year: 1991 end-page: 246 ident: b0345 article-title: Molecular motions and phase transitions in solid CH publication-title: Naturforsch. A – volume: 15 start-page: 5953 year: 2022 end-page: 5961 ident: b1195 article-title: Layered double hydroxide nanosheets activate CsPbBr publication-title: Nano Res. – volume: 11 start-page: 4613 year: 2020 ident: b1175 article-title: Unique S-scheme heterojunctions in self-assembled TiO publication-title: Nat. Commun. – volume: 51 start-page: 8036 year: 2022 end-page: 8045 ident: b0920 article-title: Monochromatic light-enhanced photocatalytic CO publication-title: Dalton Trans. – volume: 4 start-page: 2249 year: 2020 end-page: 2255 ident: b0950 article-title: Solvent selection and Pt decoration towards enhanced photocatalytic CO publication-title: Energy Fuels – volume: 259 year: 2019 ident: b0780 article-title: Few-layer black phosphorus-on-MAPbI publication-title: Appl. Catal., B – volume: 9 start-page: e2202408 year: 2022 ident: b1375 article-title: Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu publication-title: Adv. Sci. – volume: 12 start-page: 50464 year: 2020 end-page: 50471 ident: b0645 article-title: In situ coating CsPbBr publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 207 year: 2021 end-page: 213 ident: b0875 article-title: Multidimensional perovskite for visible light driven hydrogen production in aqueous HI solution publication-title: ACS Appl. Energy Mater. – volume: 30 start-page: 2001478 year: 2020 ident: b0855 article-title: In situ photosynthesis of an MAPbI publication-title: Adv. Funct. Mater. – volume: 9 start-page: 34342 year: 2019 end-page: 34348 ident: b1045 article-title: Engineering a CsPbBr publication-title: RSC Adv. – volume: 44 start-page: 7808 year: 2015 end-page: 7828 ident: b0035 article-title: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1175 year: 2022 end-page: 1182 ident: b1140 article-title: Composite of CsPbBr publication-title: ACS Appl. Energy Mater. – volume: 40 start-page: 102 year: 2011 end-page: 113 ident: b0090 article-title: Visible light photoredox catalysis: applications in organic synthesis publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1159 year: 2018 end-page: 1164 ident: b0700 article-title: Dynamic interaction between methylammonium lead iodide and TiO publication-title: ACS Energy Lett. – volume: 4 start-page: 40 year: 2018 end-page: 47 ident: b0710 article-title: Promoting photocatalytic H publication-title: ACS Energy Lett. – volume: 2 start-page: 7187 year: 2021 end-page: 7209 ident: b0225 article-title: Photocatalytic reduction of CO publication-title: Mater. Adv. – volume: 13 start-page: 6180 year: 2021 end-page: 6187 ident: b1015 article-title: Anchoring of formamidinium lead bromide quantum dots on Ti publication-title: ACS Appl. Mater. Interfaces – volume: 446 year: 2022 ident: b1205 article-title: Embedding Cs publication-title: Chem. Eng. J. – volume: 8 start-page: 10349 year: 2018 end-page: 10357 ident: b0770 article-title: Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH publication-title: ACS Catal. – volume: 33 start-page: 3039 year: 2022 end-page: 3042 ident: b1080 article-title: In-situ growth of PbI publication-title: Chin. Chem. Lett. – volume: 10 start-page: 59 year: 1979 end-page: 75 ident: b0545 article-title: Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors publication-title: J. Photochem. – volume: 3 start-page: 8970 year: 2015 end-page: 8980 ident: b0390 article-title: Review of recent progress in chemical stability of perovskite solar cells publication-title: J. Mater. Chem. A – volume: 18 start-page: 1246 year: 2018 end-page: 1252 ident: b0415 article-title: Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform publication-title: Nano Lett. – volume: 57 start-page: 10034 year: 2018 end-page: 10072 ident: b0085 article-title: Visible-light photocatalysis: Does it make a difference in organic synthesis? publication-title: Angew. Chem. Int. Ed. – volume: 429 year: 2022 ident: b0490 article-title: Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO publication-title: Chem. Eng. J. – volume: 5 start-page: 1801015 year: 2018 ident: b0935 article-title: Amorphous-TiO publication-title: Adv. Mater. Interfaces – volume: 50 start-page: 13692 year: 2021 end-page: 13729 ident: b0040 article-title: Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2095 year: 2017 end-page: 2102 ident: b0740 article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping publication-title: Energy Environ. Sci. – volume: 458 start-page: 1158 year: 2009 end-page: 1162 ident: b0025 article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C publication-title: Nature – volume: 12 start-page: 8763 year: 2021 end-page: 8769 ident: b1225 article-title: Facile fabrication of highly stable and wavelength-tunable tin based perovskite materials with enhanced quantum yield via the cation transformation reaction publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: e12079 year: 2021 ident: b0300 article-title: Halide perovskite composites for photocatalysis: A mini review publication-title: EcoMat – volume: 11 start-page: 433 year: 2021 ident: b0330 article-title: Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions publication-title: Nanomaterials – volume: 31 start-page: e1805337 year: 2019 ident: b0355 article-title: Intrinsic instability of inorganic-organic hybrid halide perovskite materials publication-title: Adv. Mater. – volume: 132 start-page: 14385 year: 2010 end-page: 14387 ident: b0460 article-title: High-yield synthesis of ultralong and ultrathin Zn publication-title: J. Am. Chem. Soc. – volume: 358 start-page: 745 year: 2017 end-page: 750 ident: b0130 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science – volume: 310 year: 2022 ident: b0675 article-title: Synthesis of chiral boron imidazolate frameworks with second-order nonlinear optics publication-title: J. Solid State Chem. – volume: 267 year: 2020 ident: b1260 article-title: Ambient processed CsPbX publication-title: Mater. Lett. – volume: 435 year: 2022 ident: b1150 article-title: A novel S-scheme heterojunction of CsPbBr publication-title: Chem. Eng. J. – volume: 13 start-page: 4005 year: 2020 end-page: 4025 ident: b0260 article-title: Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis publication-title: ChemSusChem – volume: 14 start-page: 13103 year: 2020 end-page: 13114 ident: b1005 article-title: Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO publication-title: ACS Nano – volume: 362 start-page: 449 year: 2018 end-page: 453 ident: b0685 article-title: Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture publication-title: Science – volume: 10 start-page: 2570 year: 2017 end-page: 2578 ident: b0315 article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells publication-title: Energy Environ. Sci. – volume: 5 start-page: 24495 year: 2020 end-page: 24503 ident: b1095 article-title: Incorporation of cesium lead halide perovskites into g-C publication-title: ACS Omega – volume: 32 start-page: 1517 year: 2020 end-page: 1525 ident: b1050 article-title: Boosting photocatalytic CO publication-title: Chem. Mater. – volume: 9 start-page: 12032 year: 2017 end-page: 12038 ident: b0190 article-title: Novel inorganic perovskite quantum dots for photocatalysis publication-title: Nanoscale – volume: 551 year: 2021 ident: b0620 article-title: CsPbBr publication-title: Appl. Surf. Sci. – volume: 253 start-page: 41 year: 2019 end-page: 48 ident: b0715 article-title: Stable hybrid perovskite MAPb(I publication-title: Appl. Catal., B – volume: 5 start-page: 2100263 year: 2021 ident: b0475 article-title: Two-dimensional metal halide perovskite nanosheets for efficient photocatalytic CO publication-title: Sol. RRL – volume: 406 year: 2021 ident: b1330 article-title: Amino-mediated anchoring of FAPbBr publication-title: Chem. Eng. J. – volume: 2 start-page: 16207 year: 2017 ident: b0135 article-title: Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films publication-title: Nat. Energy – volume: 29 start-page: 1905683 year: 2019 ident: b0735 article-title: Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation publication-title: Adv. Funct. Mater. – volume: 2007423 year: 2020 ident: b1360 article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts publication-title: Adv. Funct. Mater. – volume: 10 start-page: 763 year: 2020 ident: b1295 article-title: Pb-free Cs publication-title: Nanomaterials – volume: 243 start-page: 576 year: 2019 end-page: 584 ident: b1325 article-title: Integration of 3D macroscopic graphene aerogel with 0D–2D AgVO publication-title: Appl. Catal., B – volume: 14 start-page: e1703762 year: 2018 ident: b0890 article-title: Synthesis and photocatalytic application of stable lead-free Cs publication-title: Small – volume: 2201721 year: 2022 ident: b0765 article-title: In-depth understanding of the effect of halogen-induced stable 2D bismuth-based perovskites for photocatalytic hydrogen evolution activity publication-title: Adv. Funct. Mater. – volume: 2018 start-page: 13570 year: 2018 end-page: 13574 ident: b0885 article-title: Amino-assisted anchoring of CsPbBr publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1021 year: 2021 end-page: 1027 ident: b1340 article-title: CsPbBr publication-title: ACS EST Engg – volume: 282 year: 2021 ident: b0560 article-title: Lead-free perovskite Cs publication-title: Appl. Catal., B – volume: 419 year: 2021 ident: b1115 article-title: Boosting charge separation and photocatalytic CO publication-title: Chem. Eng. J. – volume: 483 year: 2020 ident: b0755 article-title: CsPbBr publication-title: Mol. Catal. – volume: 3 start-page: e1700255 year: 2017 ident: b0150 article-title: Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy publication-title: Sci. Adv. – volume: 430 year: 2022 ident: b0510 article-title: Fabrication of an FAPbBr publication-title: Chem. Eng. J. – volume: 125 start-page: 2382 year: 2021 end-page: 2392 ident: b1245 article-title: Potential application of perovskite glass material in photocatalysis field publication-title: J. Phys. Chem. C – volume: 7 start-page: 2043 year: 2022 end-page: 2059 ident: b0235 article-title: Rational design of metal halide perovskite nanocrystals for photocatalytic CO publication-title: ACS Energy Lett. – volume: 7 start-page: 982 year: 2014 end-page: 988 ident: b0405 article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energy Environ. Sci. – volume: 15 start-page: e202102295 year: 2022 ident: b1165 article-title: In-situ generated CsPbBr publication-title: ChemSusChem – volume: 7 start-page: 15080 year: 2019 end-page: 15085 ident: b0830 article-title: Stable lead-free (CH publication-title: ACS Sustainable Chem. Eng. – volume: 610 start-page: 538 year: 2022 end-page: 545 ident: b1135 article-title: 2D/2D Schottky heterojunction of in-situ growth FAPbBr publication-title: J. Colloid Interface Sci. – start-page: e2207835 year: 2022 ident: b0380 article-title: Unravelling the interfacial dynamics of bandgap funneling in bismuth-based halide perovskites publication-title: Adv. Mater. – volume: 342 start-page: 344 year: 2013 end-page: 347 ident: b0155 article-title: Long-range balanced electronand hole-transport lengths in organic-inorganic CH publication-title: Science – volume: 13 start-page: 4017 year: 2021 end-page: 4025 ident: b1250 article-title: Highly stable CsPbBr publication-title: ACS Appl. Mater. Interfaces – volume: 141 start-page: 13434 year: 2019 end-page: 13441 ident: b0520 article-title: In situ construction of a Cs publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 348 year: 2022 end-page: 355 ident: b1190 article-title: Self-template-oriented synthesis of lead-free perovskite Cs publication-title: J. Energy Chem. – volume: 18 start-page: e2106001 year: 2022 ident: b1145 article-title: Synthesis of stable lead-free Cs publication-title: Small – volume: 10 start-page: 12317 year: 2022 end-page: 12333 ident: b0215 article-title: Can perovskites be efficient photocatalysts in organic transformations? publication-title: J. Mater. Chem. A – volume: 4 start-page: 9154 year: 2021 end-page: 9165 ident: b1180 article-title: Efficient photocatalytic CO publication-title: ACS Appl. Energy Mater. – volume: 153 year: 2020 ident: b1320 article-title: Gamma-phase CsPbBr publication-title: J. Chem. Phys. – volume: 416 year: 2021 ident: b1105 article-title: CsPbBr publication-title: Chem. Eng. J. – volume: 10 start-page: 6590 year: 2019 end-page: 6597 ident: b1090 article-title: CsPbBr publication-title: J. Phys. Chem. Lett. – volume: 446 year: 2022 ident: b1210 article-title: A heterostructure of halide and oxide double perovskites Cs publication-title: Chem. Eng. J. – volume: 58 start-page: 17236 year: 2019 end-page: 17240 ident: b0485 article-title: Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 9431 year: 2021 end-page: 9439 ident: b1290 article-title: Surfactant-free synthesis of the full inorganic perovskite CsPbBr publication-title: ACS Appl. Energy Mater. – volume: 49 start-page: 951 year: 2020 end-page: 982 ident: b0120 article-title: Materials chemistry and engineering in metal halide perovskite lasers publication-title: Chem. Soc. Rev. – volume: 297 year: 2021 ident: b1170 article-title: Aspect ratio dependent photocatalytic enhancement of CsPbBr publication-title: Appl. Catal., B – volume: 2 year: 2020 ident: b0055 article-title: Recent advances on TiO publication-title: EnergyChem – volume: 61 start-page: e202200872 year: 2022 ident: b0640 article-title: Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2018 ident: b0695 article-title: Composite of CH publication-title: Adv. Mater. – volume: 21 start-page: 1778 year: 2009 end-page: 1780 ident: b0590 article-title: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles publication-title: Chem. Mater. – volume: 32 start-page: e2002137 year: 2020 ident: b0790 article-title: Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites publication-title: Adv. Mater. – volume: 2 start-page: e12015 year: 2020 ident: b0825 article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H publication-title: EcoMat – volume: 83 start-page: 12 year: 2018 end-page: 17 ident: b1305 article-title: Fe-modified perovskite-type NaMgF publication-title: Mater. Sci. Semicond. Process. – volume: 376 start-page: 116 year: 2019 end-page: 126 ident: b1240 article-title: Methylammonium iodo bismuthate perovskite (CH publication-title: J. Photochem. Photobiol., A – volume: 4 year: 2022 ident: b0080 article-title: Facet-engineering of materials for photocatalytic application: status and future prospects publication-title: EnergyChem – volume: 1 start-page: 665 year: 2016 end-page: 671 ident: b0175 article-title: Band edge energies and excitonic transition probabilities of colloidal CsPbX publication-title: ACS Energy Lett. – volume: 6 start-page: 2200294 year: 2022 ident: b1200 article-title: Mn-doped perovskite nanocrystals for photocatalytic CO publication-title: Sol. RRL – volume: 3 year: 2021 ident: b0065 article-title: Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts publication-title: EnergyChem – volume: 9 start-page: 4892 year: 2022 end-page: 4898 ident: b0745 article-title: “Breathing” organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites publication-title: Inorg. Chem. Front. – volume: 6 start-page: 7961 year: 2015 ident: b0145 article-title: Low surface recombination velocity in solution-grown CH publication-title: Nat. Commun. – volume: 596 start-page: 376 year: 2021 end-page: 383 ident: b1300 article-title: Highly-efficient and stable photocatalytic activity of lead-free Cs publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 2422 year: 2021 ident: b1285 article-title: Photocatalytic degradation of tobacco tar using CsPbBr publication-title: Nanomaterials – volume: 44 start-page: 5371 year: 2015 end-page: 5408 ident: b0030 article-title: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment publication-title: Chem. Soc. Rev. – volume: 8 start-page: 1701503 year: 2018 ident: b0070 article-title: g-C publication-title: Adv. Energy Mater. – volume: 2 start-page: e12015 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0825 article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation publication-title: EcoMat doi: 10.1002/eom2.12015 – volume: 9 start-page: 34342 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1045 article-title: Engineering a CsPbBr3-based nanocomposite for efficient photocatalytic CO2 reduction: improved charge separation concomitant with increased activity sites publication-title: RSC Adv. doi: 10.1039/C9RA07236E – start-page: e2207835 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0380 article-title: Unravelling the interfacial dynamics of bandgap funneling in bismuth-based halide perovskites publication-title: Adv. Mater. – volume: 15 start-page: 16883 year: 2013 ident: 10.1016/j.ccr.2023.215031_b0550 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53131g – volume: 13 start-page: 22314 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0570 article-title: Direct Z-scheme heterojunction of ligand-free FAPbBr3/alpha-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01718 – volume: 11 start-page: 433 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0330 article-title: Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions publication-title: Nanomaterials doi: 10.3390/nano11020433 – volume: 61 start-page: 3351 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1155 article-title: Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00012 – volume: 11 start-page: 2422 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1285 article-title: Photocatalytic degradation of tobacco tar using CsPbBr3 quantum dots modified Bi2WO6 composite photocatalyst publication-title: Nanomaterials doi: 10.3390/nano11092422 – volume: 145 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0245 article-title: Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111047 – volume: 3 start-page: e1700255 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0150 article-title: Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy publication-title: Sci. Adv. doi: 10.1126/sciadv.1700255 – volume: 12 start-page: 8292 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1400 article-title: Metal halide perovskites for solar fuel production and photoreactions publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02373 – volume: 434 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1035 article-title: In-situ fabrication of Cu doped dual-phase CsPbBr3-Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134811 – volume: 65 start-page: 1550 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0945 article-title: Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction publication-title: Sci. China Mater. doi: 10.1007/s40843-021-1962-9 – volume: 60 start-page: 3611 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0760 article-title: Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007584 – volume: 12 start-page: 2987 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0910 article-title: Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity publication-title: Nanoscale doi: 10.1039/C9NR07722G – volume: 18 start-page: e2106001 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1145 article-title: Synthesis of stable lead-free Cs3Sb2(BrxI1–x)9 (0 ≤ x ≤ 1) perovskite nanoplatelets and their application in CO2 photocatalytic reduction publication-title: Small doi: 10.1002/smll.202106001 – volume: 30 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0695 article-title: Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution publication-title: Adv. Mater. – volume: 118 start-page: 16995 year: 2014 ident: 10.1016/j.ccr.2023.215031_b0400 article-title: Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp500449z – volume: 10 start-page: 59 year: 1979 ident: 10.1016/j.ccr.2023.215031_b0545 article-title: Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors publication-title: J. Photochem. doi: 10.1016/0047-2670(79)80037-4 – volume: 253 start-page: 41 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0715 article-title: Stable hybrid perovskite MAPb(I1−xBrx)3 for photocatalytic hydrogen evolution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.04.050 – volume: 5 start-page: 1801015 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0935 article-title: Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801015 – volume: 414 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1110 article-title: Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128889 – volume: 6 start-page: 4244 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0605 article-title: Graphene-based photocatalysts for CO2 reduction to solar fuel publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01610 – volume: 16 start-page: e2002140 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1055 article-title: Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction publication-title: Small doi: 10.1002/smll.202002140 – volume: 10 start-page: 6590 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1090 article-title: CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02605 – volume: 9 start-page: 2723 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0535 article-title: Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications publication-title: ChemSusChem doi: 10.1002/cssc.201600863 – volume: 362 start-page: 449 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0685 article-title: Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture publication-title: Science doi: 10.1126/science.aat3583 – volume: 7 start-page: 2043 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0235 article-title: Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: recent advances, challenges, and prospects publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00752 – volume: 62 start-page: 1092 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0045 article-title: Solar energy for future world: - A review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2016.05.022 – volume: 315 start-page: 798 year: 2007 ident: 10.1016/j.ccr.2023.215031_b0015 article-title: Toward cost-effective solar energy use publication-title: Science doi: 10.1126/science.1137014 – volume: 21 start-page: 1778 year: 2009 ident: 10.1016/j.ccr.2023.215031_b0590 article-title: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm802978z – volume: 2 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0105 article-title: Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100032 – volume: 5 start-page: 1107 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0205 article-title: Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00058 – volume: 911 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0305 article-title: A brief review on metal halide perovskite photocatalysts: History, applications and prospects publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165062 – volume: 6 start-page: 511 year: 2012 ident: 10.1016/j.ccr.2023.215031_b0005 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.175 – volume: 9 start-page: 4533 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0170 article-title: Brightly luminescent and color tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology publication-title: ACS Nano doi: 10.1021/acsnano.5b01154 – volume: 9 start-page: 1901801 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0860 article-title: Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901801 – volume: 492 start-page: 449 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0615 article-title: Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.230 – volume: 623 start-page: 974 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0635 article-title: Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.05.116 – volume: 21 start-page: 1620 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0895 article-title: Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04148 – volume: 12 start-page: 50464 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0645 article-title: In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14826 – volume: 10 start-page: 12317 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0215 article-title: Can perovskites be efficient photocatalysts in organic transformations? publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09383E – volume: 30 start-page: 2006919 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0525 article-title: In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006919 – volume: 69 start-page: 348 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1190 article-title: Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.01.015 – volume: 23 start-page: 9481 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0455 article-title: Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction publication-title: Chem. Eur. J. doi: 10.1002/chem.201702237 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0660 article-title: MOF-based materials for photo- and electrocatalytic CO2 reduction publication-title: EnergyChem – volume: 446 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1210 article-title: A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137197 – volume: 12 start-page: 11842 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0995 article-title: Synthesis of monodisperse water-stable surface Pb-rich CsPbCl3 nanocrystals for efficient photocatalytic CO2 reduction publication-title: Nanoscale doi: 10.1039/D0NR02917C – volume: 2 start-page: 16207 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0135 article-title: Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films publication-title: Nat. Energy doi: 10.1038/nenergy.2016.207 – volume: 227 start-page: 218 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0595 article-title: Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.01.031 – volume: 58 start-page: 9491 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0630 article-title: Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904537 – volume: 113 start-page: 11694 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0165 article-title: Metal halide perovskite light emitters publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1607471113 – volume: 10 start-page: 965 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0435 article-title: Prospects for low-toxicity lead-free perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-08918-3 – volume: 1 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0670 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 56 start-page: 3281 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0865 article-title: A noble-metal-free MoS2 nanosheet-coupled MAPbI3 photocatalyst for efficient and stable visible-light-driven hydrogen evolution publication-title: Chem. Commun. doi: 10.1039/D0CC00095G – volume: 347 start-page: 967 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0160 article-title: Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals publication-title: Science doi: 10.1126/science.aaa5760 – volume: 50 start-page: 13692 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0040 article-title: Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00684C – volume: 13 start-page: 51161 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1185 article-title: Assembling an affinal 0D CsPbBr3/2D CsPb2Br5 architecture by synchronously in situ growing CsPbBr3 QDs and CsPb2Br5 nanosheets: Enhanced activity and reusability for photocatalytic CO2 reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c17870 – volume: 15 start-page: e202102295 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1165 article-title: In-situ generated CsPbBr3 nanocrystals on O-defective WO3 for photocatalytic CO2 reduction publication-title: ChemSusChem doi: 10.1002/cssc.202102295 – volume: 50 start-page: 665 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0705 article-title: PtIx/[(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.033 – volume: 545 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1010 article-title: Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149012 – volume: 15 start-page: 1271 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0840 article-title: An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03679C – volume: 245 start-page: 522 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0775 article-title: Perovskite photocatalyst CsPbBr3–xIx with a bandgap funnel structure for H2 evolution under visible light publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.01.019 – volume: 12 start-page: 4412 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0810 article-title: Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production publication-title: Nat. Commun. doi: 10.1038/s41467-021-24702-8 – volume: 5 start-page: 1423 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1280 article-title: Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: Precisely controllable structure and improved catalytic activity for dye degradation publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00520-4 – volume: 21 start-page: 597 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0725 article-title: Fabricating MAPbI3/MoS2 composites for improved photocatalytic performance publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04073 – volume: 141 start-page: 20434 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1220 article-title: Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas-solid interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11089 – volume: 15 start-page: 1845 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1075 article-title: Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction publication-title: Nano Res. doi: 10.1007/s12274-021-3775-3 – volume: 28 start-page: 50813 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1275 article-title: Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14188-8 – volume: 430 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1025 article-title: An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr3 perovskite catalysts embedded in a porous copper scaffold publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132807 – volume: 3 start-page: e12079 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0300 article-title: Halide perovskite composites for photocatalysis: A mini review publication-title: EcoMat doi: 10.1002/eom2.12079 – volume: 32 start-page: e2001344 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0835 article-title: Lead-free halide perovskite Cs3Bi2xSb2–2xI9 (x ≈ 0.3) possessing the photocatalytic activity for hydrogen evolution comparable to that of (CH3NH3)PbI3 publication-title: Adv. Mater. doi: 10.1002/adma.202001344 – volume: 259 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0780 article-title: Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118075 – volume: 12 start-page: 27578 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1315 article-title: Growing poly(norepinephrine) layer over individual nanoparticles to boost hybrid perovskite photocatalysts publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06081 – volume: 6 start-page: 1543 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0540 article-title: S-scheme heterojunction photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 14 start-page: 13103 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1005 article-title: Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction publication-title: ACS Nano doi: 10.1021/acsnano.0c04659 – volume: 32 start-page: e2002137 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0790 article-title: Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites publication-title: Adv. Mater. doi: 10.1002/adma.202002137 – volume: 284 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1215 article-title: Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119751 – volume: 10 start-page: 14923 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0295 article-title: Water-driven boost in the visible light photocatalytic performance of Cs2AgBiBr6 double perovskite nanocrystals publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03217A – volume: 39 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0905 article-title: Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites publication-title: Nano Today doi: 10.1016/j.nantod.2021.101179 – volume: 29 start-page: 201603885 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0580 article-title: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control publication-title: Adv. Mater. – volume: 18 start-page: 1246 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0415 article-title: Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04838 – volume: 60 start-page: 22693 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0850 article-title: Controlling photoluminescence and photocatalysis activities in lead-free Cs2PtxSn1–xCl6 perovskites via ion substitution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108133 – volume: 610 start-page: 538 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1135 article-title: 2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.094 – volume: 6 start-page: 766 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0960 article-title: All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction publication-title: Chem doi: 10.1016/j.chempr.2020.01.005 – volume: 6 start-page: 13725 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0320 article-title: Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03953D – volume: 15 start-page: 5953 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1195 article-title: Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction publication-title: Nano Res. doi: 10.1007/s12274-022-4268-8 – volume: 7 start-page: 982 year: 2014 ident: 10.1016/j.ccr.2023.215031_b0405 article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 7 start-page: 13762 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0955 article-title: Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03478A – volume: 6 start-page: 2200294 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1200 article-title: Mn-doped perovskite nanocrystals for photocatalytic CO2 reduction: Insight into the role of the charge carriers with prolonged lifetime publication-title: Sol. RRL doi: 10.1002/solr.202200294 – volume: 267 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1260 article-title: Ambient processed CsPbX3 perovskite cubes for photocatalysis publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127501 – volume: 16 start-page: 3332 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0515 article-title: ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction publication-title: ACS Nano doi: 10.1021/acsnano.1c11442 – volume: 368 start-page: 155 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0100 article-title: Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites publication-title: Science doi: 10.1126/science.aba3433 – volume: 350 start-page: 1222 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0125 article-title: Overcoming the electroluminescence efficiency limitations ofperovskite light-emitting diodes publication-title: Science doi: 10.1126/science.aad1818 – volume: 47 start-page: 8829 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0820 article-title: Efficient and long-term photocatalytic H2 evolution stability enabled by Cs2AgBiBr6/MoS2 in aqueous HBr solution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.255 – volume: 182 start-page: 454 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1125 article-title: CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction publication-title: Carbon doi: 10.1016/j.carbon.2021.06.040 – volume: 45 start-page: 5951 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0050 article-title: Inorganic perovskite photocatalysts for solar energy utilization publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00769K – volume: 10 start-page: 630 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0200 article-title: Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03849 – volume: 7 start-page: 3061 year: 2014 ident: 10.1016/j.ccr.2023.215031_b1370 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01076K – volume: 58 start-page: 17236 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0485 article-title: Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909707 – volume: 429 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0490 article-title: Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132137 – volume: 40 start-page: 102 year: 2011 ident: 10.1016/j.ccr.2023.215031_b0090 article-title: Visible light photoredox catalysis: applications in organic synthesis publication-title: Chem. Soc. Rev. doi: 10.1039/B913880N – volume: 6 start-page: 1097 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0495 article-title: Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.5b02098 – volume: 13 start-page: 2363 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0440 article-title: Lead-free perovskite solar cells enabled by hetero-valent substitutes publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01153C – volume: 1 start-page: 5083 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0925 article-title: Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet schottky-junction photocatalyst publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01133 – volume: 44 start-page: 5371 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0030 article-title: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00113G – volume: 10 start-page: 2570 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0315 article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02685D – volume: 10 start-page: 115 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1310 article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications publication-title: Nanomaterials doi: 10.3390/nano10010115 – volume: 8 start-page: 1701503 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0070 article-title: g-C3N4-based heterostructured photocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701503 – volume: 53 start-page: 2937 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1395 article-title: The technology horizon for photocatalytic water treatment: sunrise or sunset? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05041 – volume: 10 start-page: 5413 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0110 article-title: Flexible hybrid organic-inorganic perovskite memory publication-title: ACS Nano doi: 10.1021/acsnano.6b01643 – volume: 7 start-page: 15080 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0830 article-title: Stable lead-free (CH3NH-3)3Bi2I9 perovskite for photocatalytic hydrogen generation publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03761 – volume: 14 start-page: 1116 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0870 article-title: Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution publication-title: Nano Res. doi: 10.1007/s12274-020-3159-0 – volume: 33 start-page: 3039 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1080 article-title: In-situ growth of PbI2 on ligand-free FAPbBr3 nanocrystals to significantly ameliorate the stability of CO2 photoreduction publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.09.033 – volume: 9 start-page: 12179 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1020 article-title: Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr 6-Cu-RGO nanocomposite for photocatalytic CO2 reduction publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01281A – volume: 10 start-page: 3514 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0505 article-title: Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal-semiconductor hybrids publication-title: Chem. Sci. doi: 10.1039/C8SC05813J – volume: 369 start-page: 201 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0980 article-title: Enhanced CO2 photoreduction via tuning halides in perovskites publication-title: J. Catal. doi: 10.1016/j.jcat.2018.11.004 – volume: 58 start-page: 1236 year: 2013 ident: 10.1016/j.ccr.2023.215031_b0915 article-title: Equilibrium properties of (carbon dioxide + n-decane + n-octadecane) systems: experiments and thermodynamic modeling publication-title: J. Chem. Eng. Data doi: 10.1021/je4000394 – volume: 310 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0675 article-title: Synthesis of chiral boron imidazolate frameworks with second-order nonlinear optics publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2022.123001 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0055 article-title: Recent advances on TiO2-based photocatalytic CO2 reduction publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100044 – volume: 61 start-page: e202200872 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0640 article-title: Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200872 – volume: 125 start-page: 2382 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1245 article-title: Potential application of perovskite glass material in photocatalysis field publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c11241 – volume: 4 start-page: 5913 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1120 article-title: Morphology regulation and photocatalytic CO2 reduction of lead-free perovskite Cs3Sb2I9 microcrystals publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00722 – volume: 3 start-page: 4509 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0990 article-title: All-inorganic CsPbBr3 nanocrystals: Gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00195 – volume: 143 start-page: 14895 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0445 article-title: Chemically spiraling CsPbBr3 perovskite nanorods publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07231 – volume: 376 start-page: 116 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1240 article-title: Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2019.03.009 – volume: 310 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1160 article-title: Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas−solid condition under visible light publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121375 – volume: 13 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0575 article-title: Multichannel charge transfer and mechanistic insight in metal decorated 2D–2D Bi2WO6-TiO2 cascade with enhanced photocatalytic performance publication-title: Small doi: 10.1002/smll.201702253 – volume: 61 start-page: 6861 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0650 article-title: Induction of chirality in boron imidazolate frameworks: The structure-directing effects of substituents publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00188 – volume: 116 start-page: 4558 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0335 article-title: Organic-inorganic perovskites: Structural versatility for functional materials design publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 14 start-page: e1703762 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0890 article-title: Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals publication-title: Small doi: 10.1002/smll.201703762 – volume: 12 start-page: 2915 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1040 article-title: Frustrated lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots publication-title: ACS Catal. doi: 10.1021/acscatal.2c00037 – volume: 9 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0265 article-title: Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106264 – volume: 268 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0785 article-title: Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118399 – volume: 51 start-page: 8036 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0920 article-title: Monochromatic light-enhanced photocatalytic CO2 reduction based on exciton properties of two-dimensional lead halide perovskites publication-title: Dalton Trans. doi: 10.1039/D2DT00972B – volume: 2 start-page: 16185 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0180 article-title: Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution publication-title: Nat. Energy doi: 10.1038/nenergy.2016.185 – volume: 5 start-page: 14605 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0270 article-title: A review on halide perovskite-based photocatalysts: Key factors and challenges publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c02680 – volume: 31 start-page: e1803230 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1365 article-title: “Unleaded” perovskites: Status quo and future prospects of tin-based perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201803230 – volume: 132 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0275 article-title: Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.110073 – volume: 277 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0970 article-title: Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119230 – volume: 3 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1235 article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100047 – volume: 58 start-page: 15596 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0360 article-title: All-inorganic CsPbX3 perovskite solar cells: Progress and prospects publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901081 – volume: 358 start-page: 1287 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1085 article-title: Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.120 – volume: 139 start-page: 5660 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0185 article-title: A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00489 – volume: 13 start-page: 4005 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0260 article-title: Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis publication-title: ChemSusChem doi: 10.1002/cssc.202000953 – volume: 32 start-page: 1517 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1050 article-title: Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04582 – volume: 243 start-page: 576 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1325 article-title: Integration of 3D macroscopic graphene aerogel with 0D–2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.11.012 – volume: 29 start-page: e1601694 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0060 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 209 start-page: 476 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0680 article-title: Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.03.018 – volume: 12 start-page: 4216 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1350 article-title: Atomically precise metal nanocluster-mediated photocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.2c00841 – volume: 3 start-page: 935 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0800 article-title: Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanced photocatalyst for solar-powered hydrogen generation publication-title: Matter doi: 10.1016/j.matt.2020.07.004 – volume: 3 start-page: 8970 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0390 article-title: Review of recent progress in chemical stability of perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04994B – volume: 9 start-page: 12032 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0190 article-title: Novel inorganic perovskite quantum dots for photocatalysis publication-title: Nanoscale doi: 10.1039/C7NR04421F – volume: 551 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0620 article-title: CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149452 – volume: 11 start-page: 10373 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0140 article-title: Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield publication-title: ACS Nano doi: 10.1021/acsnano.7b05442 – volume: 10 start-page: 407 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0280 article-title: Metal halide perovskites for photocatalysis applications publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09148D – volume: 282 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0560 article-title: Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119570 – volume: 26 start-page: 2435 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0450 article-title: CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600109 – volume: 4 start-page: 9431 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1290 article-title: Surfactant-free synthesis of the full inorganic perovskite CsPbBr3: evolution and phase stability of CsPbBr3 vs CsPb2Br5 and their photocatalytic properties publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01636 – volume: 10 start-page: 7965 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0965 article-title: Doping iron in CsPbBr3 perovskite nanocrystals for efficient and product selective CO2 reduction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03176 – volume: 30 start-page: 2004293 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0940 article-title: Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004293 – volume: 458 start-page: 1158 year: 2009 ident: 10.1016/j.ccr.2023.215031_b0025 article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C publication-title: Nature doi: 10.1038/nature08017 – volume: 55 start-page: 3376 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1390 article-title: Solar panel technologies for light-to-chemical conversion publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00477 – volume: 1 start-page: 1014 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0410 article-title: Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00457 – volume: 6 start-page: 7961 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0145 article-title: Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal publication-title: Nat. Commun. doi: 10.1038/ncomms8961 – volume: 9 start-page: 4892 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0745 article-title: “Breathing” organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01247B – volume: 12 start-page: 4769 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0010 article-title: Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water publication-title: ChemSusChem doi: 10.1002/cssc.201902192 – volume: 54 start-page: 13971 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0465 article-title: Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506966 – volume: 2018 start-page: 2350 year: 2018 ident: 10.1016/j.ccr.2023.215031_b1265 article-title: An inverse opal structured halide perovskite photocatalyst publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201800078 – volume: 9 start-page: 2354 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0720 article-title: A comparative technoeconomic analysis of renewable hydrogen production using solar energy publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02573G – volume: 11 start-page: 3608 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0500 article-title: Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01088 – volume: 2 start-page: 7187 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0225 article-title: Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives publication-title: Mater. Adv. doi: 10.1039/D1MA00703C – volume: 4 start-page: 1900365 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0900 article-title: Immobilizing Re(CO)3 Br(dcbpy) complex on CsPbBr3 nanocrystal for boosted charge separation and photocatalytic CO2 reduction publication-title: Sol. RRL doi: 10.1002/solr.201900365 – volume: 5 start-page: 1175 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1140 article-title: Composite of CsPbBr3 with boron imidazolate frameworks as an efficient visible-light photocatalyst for CO2 reduction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03552 – volume: 60 start-page: 7376 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0750 article-title: Mechanistic understanding of efficient photocatalytic H2 evolution on two-dimensional layered lead iodide hybrid perovskites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014623 – volume: 358 start-page: 745 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0340 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science doi: 10.1126/science.aam7093 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0665 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100027 – volume: 58 start-page: 7263 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0690 article-title: Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900658 – volume: 2 start-page: 509 year: 2018 ident: 10.1016/j.ccr.2023.215031_b1405 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation publication-title: Joule doi: 10.1016/j.joule.2017.12.009 – volume: 4 start-page: 3898 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0115 article-title: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04116C – volume: 9 start-page: 411 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0095 article-title: Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02575C – volume: 2 start-page: 387 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0075 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-019-0242-6 – volume: 5 start-page: 2000419 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0210 article-title: Perovskite nanocrystals-based heterostructures: Synthesis strategies, interfacial effects, and photocatalytic applications publication-title: Sol. RRL doi: 10.1002/solr.202000419 – volume: 297 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1170 article-title: Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120411 – volume: 10 start-page: 1902500 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0375 article-title: Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free? publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902500 – volume: 29 start-page: 10 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0395 article-title: A chain is as strong as its weakest link-Stability study of MAPbI3 under light and temperature publication-title: Mater. Today doi: 10.1016/j.mattod.2018.10.017 – volume: 10 start-page: 1352 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1130 article-title: Efficient photocatalytic CO2 reduction with MIL-100(Fe)-CsPbBr3 composites publication-title: Catalysts doi: 10.3390/catal10111352 – volume: 153 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1320 article-title: Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property publication-title: J. Chem. Phys. doi: 10.1063/5.0012938 – volume: 31 start-page: e1805337 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0355 article-title: Intrinsic instability of inorganic-organic hybrid halide perovskite materials publication-title: Adv. Mater. doi: 10.1002/adma.201805337 – volume: 12 start-page: 31477 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0555 article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08152 – volume: 481 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1000 article-title: Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO2 reduction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228838 – volume: 397 start-page: 27 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1335 article-title: High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals publication-title: J. Catal. doi: 10.1016/j.jcat.2021.03.007 – volume: 342 start-page: 344 year: 2013 ident: 10.1016/j.ccr.2023.215031_b0155 article-title: Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3 publication-title: Science doi: 10.1126/science.1243167 – volume: 4 start-page: 40 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0710 article-title: Promoting photocatalytic H2 evolution on organic-inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01830 – volume: 1 start-page: 1021 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1340 article-title: CsPbBr3 perovskite nanocrystal: A robust photocatalyst for realizing NO abatement publication-title: ACS EST Engg doi: 10.1021/acsestengg.1c00089 – year: 2022 ident: 10.1016/j.ccr.2023.215031_b0250 article-title: Stabilisation and performance enhancement strategies for halide perovskite photocatalysts publication-title: Adv. Mater. – volume: 419 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1115 article-title: Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129543 – volume: 49 start-page: 951 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0120 article-title: Materials chemistry and engineering in metal halide perovskite lasers publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00598F – volume: 31 start-page: e1803792 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0370 article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives publication-title: Adv. Mater. doi: 10.1002/adma.201803792 – volume: 596 start-page: 376 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1300 article-title: Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.03.144 – volume: 12 start-page: 5864 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0220 article-title: Artificial photosynthesis over metal halide perovskites: achievements, challenges, and prospects publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c01527 – volume: 132 start-page: 14385 year: 2010 ident: 10.1016/j.ccr.2023.215031_b0460 article-title: High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1068596 – volume: 7 start-page: 2719 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0795 article-title: Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites publication-title: Mater. Horiz. doi: 10.1039/D0MH00955E – volume: 11 start-page: 4613 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1175 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18350-7 – volume: 2007423 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1360 article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts publication-title: Adv. Funct. Mater. – volume: 119 start-page: 3036 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0310 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00539 – volume: 21 start-page: 1643 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0845 article-title: A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04299 – volume: 16 start-page: e1903398 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0285 article-title: Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications publication-title: Small doi: 10.1002/smll.201903398 – volume: 208 start-page: 296 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1385 article-title: Halide perovskite-based photocatalysis systems for solar-driven fuel generation publication-title: Solar Energy doi: 10.1016/j.solener.2020.08.007 – volume: 6 start-page: 5982 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0730 article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms6982 – volume: 54 start-page: 1409 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1345 article-title: Effect of surface ligands in perovskite nanocrystals: extending in and reaching out publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00712 – volume: 5 start-page: 207 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0875 article-title: Multidimensional perovskite for visible light driven hydrogen production in aqueous HI solution publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02751 – volume: 12 start-page: 8763 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1225 article-title: Facile fabrication of highly stable and wavelength-tunable tin based perovskite materials with enhanced quantum yield via the cation transformation reaction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02542 – volume: 46a start-page: 240 year: 1991 ident: 10.1016/j.ccr.2023.215031_b0345 article-title: Molecular motions and phase transitions in solid CH3NH3PbX3 (X = CI, Br, I) as studied by NMR and NQR, Z publication-title: Naturforsch. A doi: 10.1515/zna-1991-0305 – volume: 5 start-page: 2100263 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0475 article-title: Two-dimensional metal halide perovskite nanosheets for efficient photocatalytic CO2 reduction publication-title: Sol. RRL doi: 10.1002/solr.202100263 – volume: 27 start-page: 2305 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1065 article-title: Glycine-functionalized CsPbBr3 nanocrystals for efficient visible-light photocatalysis of CO2 reduction publication-title: Chem. Eur. J. doi: 10.1002/chem.202004682 – volume: 8 start-page: 4300 year: 2017 ident: 10.1016/j.ccr.2023.215031_b1270 article-title: High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64% publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01952 – volume: 138 start-page: 14202 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0420 article-title: Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08900 – volume: 13 start-page: 10037 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0805 article-title: In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21588 – volume: 406 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1330 article-title: Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126740 – volume: 65 start-page: 2264 year: 1992 ident: 10.1016/j.ccr.2023.215031_b0350 article-title: Molecular motions in solid CD3NH3PbBr3 as studied by 1H NMR publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.65.2264 – volume: 483 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0755 article-title: CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting publication-title: Mol. Catal. – volume: 249 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0290 article-title: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.119335 – volume: 7 start-page: 167 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0430 article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02597 – volume: 78 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0610 article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105388 – volume: 4 start-page: 9154 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1180 article-title: Efficient photocatalytic CO2 reduction by the construction of Ti3C2/CsPbBr3 QD composites publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01406 – volume: 4 start-page: 2249 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0950 article-title: Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals, Sustainable publication-title: Energy Fuels – volume: 8 start-page: 10349 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0770 article-title: Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3–xIx achieved by bandgap funneling of charge carriers publication-title: ACS Catal. doi: 10.1021/acscatal.8b02374 – volume: 435 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1150 article-title: A novel S-scheme heterojunction of CsPbBr3 nanocrystals/AgBr nanorods for artificial photosynthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135014 – volume: 380 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0530 article-title: CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2019.120855 – volume: 5 start-page: 25438 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0195 article-title: Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08190A – volume: 13 start-page: 6180 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1015 article-title: Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18391 – volume: 446 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1205 article-title: Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137102 – volume: 81 start-page: 1879 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0020 article-title: Forecasting the impact of renewable energies in competition with non-renewable sources publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.05.284 – volume: 282 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1100 article-title: Colloidal formamidinium lead bromide quantum dots for photocatalytic CO2 reduction publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128695 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0230 article-title: Halide perovskite materials as light harvesters for solar energy conversion publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100026 – volume: 9 start-page: 188 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0385 article-title: A Review: Thermal stability of methylammonium lead halide based perovskite solar cells publication-title: Appl. Sci. doi: 10.3390/app9010188 – volume: 4 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0080 article-title: Facet-engineering of materials for photocatalytic application: status and future prospects publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100084 – volume: 415 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1380 article-title: Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213316 – volume: 58 start-page: 11752 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0655 article-title: Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905869 – volume: 5 start-page: 2100154 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1070 article-title: Surface defect engineering of CsPbBr3 nanocrystals for high efficient photocatalytic CO2 reduction publication-title: Sol. RRL doi: 10.1002/solr.202100154 – volume: 9 start-page: e2202408 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1375 article-title: Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu2I3-based yellow LEDs publication-title: Adv. Sci. doi: 10.1002/advs.202202408 – volume: 358 start-page: 745 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0130 article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals publication-title: Science doi: 10.1126/science.aam7093 – volume: 141 start-page: 13434 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0520 article-title: In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04482 – volume: 10 start-page: 763 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1295 article-title: Pb-free Cs3Bi2I9 perovskite as a visible-light-active photocatalyst for organic pollutant degradation publication-title: Nanomaterials doi: 10.3390/nano10040763 – volume: 2018 start-page: 13570 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0885 article-title: Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808930 – volume: 14 start-page: 1131 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1060 article-title: Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction publication-title: ChemSusChem doi: 10.1002/cssc.202002847 – volume: 3 start-page: 8926 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0325 article-title: Halide perovskite materials for solar cells: a theoretical review publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05033A – volume: 430 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0510 article-title: Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132968 – volume: 899 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1030 article-title: Multi-dimensional collaborations boost lead halide perovskite driven superior and long-period CO2 photoreduction under liquid-phase H2O environment publication-title: J. Alloys Compd. – volume: 3 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1355 article-title: Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts publication-title: EnergyChem doi: 10.1016/j.enchem.2021.100056 – volume: 3 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0065 article-title: Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts publication-title: EnergyChem doi: 10.1016/j.enchem.2021.100051 – volume: 7 start-page: 5152 year: 2019 ident: 10.1016/j.ccr.2023.215031_b1255 article-title: Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06023 – volume: 49 start-page: 6592 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0480 article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00332H – volume: 46 start-page: 7395 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0815 article-title: NiCoP modified lead-free double perovskite Cs2AgBiBr6 for efficient photocatalytic hydrogen generation publication-title: New J. Chem. doi: 10.1039/D2NJ00435F – volume: 3 start-page: 1159 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0700 article-title: Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00488 – volume: 83 start-page: 12 year: 2018 ident: 10.1016/j.ccr.2023.215031_b1305 article-title: Fe-modified perovskite-type NaMgF3 photocatalyst: Synthesis and photocatalytic properties publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.04.001 – volume: 53 start-page: 309 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0930 article-title: Plasmonic CsPbBr3-Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.017 – volume: 57 start-page: 10034 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0085 article-title: Visible-light photocatalysis: Does it make a difference in organic synthesis? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709766 – volume: 31 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0975 article-title: Mn-doped CsPb(Br/Cl)3 mixed-halide perovskites for CO2 photoreduction publication-title: Nanotechnology – volume: 19 start-page: 53 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0425 article-title: Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films publication-title: J. Inf. Disp. doi: 10.1080/15980316.2018.1424652 – volume: 4 year: 2022 ident: 10.1016/j.ccr.2023.215031_b1230 article-title: Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment publication-title: EnergyChem doi: 10.1016/j.enchem.2022.100078 – volume: 1 start-page: 665 year: 2016 ident: 10.1016/j.ccr.2023.215031_b0175 article-title: Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00337 – volume: 67 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0365 article-title: Stability of all-inorganic perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104249 – volume: 48 start-page: 14115 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0985 article-title: All-inorganic perovskite/graphitic carbon nitride composites for CO2 photoreduction into C1 compounds under low concentrations of CO2 publication-title: Dalton Trans. doi: 10.1039/C9DT02468A – volume: 3 start-page: 2656 year: 2018 ident: 10.1016/j.ccr.2023.215031_b0625 article-title: Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01658 – volume: 9 start-page: 2200058 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0255 article-title: Metal halide perovskite heterojunction for photocatalytic hydrogen generation: progress and future opportunities publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202200058 – volume: 141 start-page: 4209 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0470 article-title: Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13673 – volume: 29 start-page: 1905683 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0735 article-title: Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905683 – volume: 10 start-page: 2095 year: 2017 ident: 10.1016/j.ccr.2023.215031_b0740 article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01145H – volume: 5 start-page: 24495 year: 2020 ident: 10.1016/j.ccr.2023.215031_b1095 article-title: Incorporation of cesium lead halide perovskites into g-C3N4 for photocatalytic CO2 reduction publication-title: ACS Omega doi: 10.1021/acsomega.0c02960 – volume: 6 start-page: 2101058 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0240 article-title: Tailoring inorganic halide perovskite photocatalysts toward carbon dioxide reduction publication-title: Sol. RRL doi: 10.1002/solr.202101058 – volume: 416 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1105 article-title: CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128077 – volume: 25 start-page: 1465 year: 2013 ident: 10.1016/j.ccr.2023.215031_b0585 article-title: Oleylamine in nanoparticle synthesis publication-title: Chem. Mater. doi: 10.1021/cm4000476 – volume: 13 start-page: 4017 year: 2021 ident: 10.1016/j.ccr.2023.215031_b1250 article-title: Highly stable CsPbBr3 colloidal nanocrystal clusters as photocatalysts in polar solvents publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20349 – volume: 2201721 year: 2022 ident: 10.1016/j.ccr.2023.215031_b0765 article-title: In-depth understanding of the effect of halogen-induced stable 2D bismuth-based perovskites for photocatalytic hydrogen evolution activity publication-title: Adv. Funct. Mater. – volume: 30 start-page: 2001478 year: 2020 ident: 10.1016/j.ccr.2023.215031_b0855 article-title: In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001478 – volume: 162 start-page: 494 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0880 article-title: Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.07.026 – volume: 44 start-page: 7808 year: 2015 ident: 10.1016/j.ccr.2023.215031_b0035 article-title: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00380F – volume: 5 start-page: 2000691 year: 2021 ident: 10.1016/j.ccr.2023.215031_b0565 article-title: In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction publication-title: Sol. RRL doi: 10.1002/solr.202000691 – volume: 9 start-page: 8144 year: 2019 ident: 10.1016/j.ccr.2023.215031_b0600 article-title: Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b01605 |
SSID | ssj0016992 |
Score | 2.6395273 |
SecondaryResourceType | review_article |
Snippet | In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 215031 |
SubjectTerms | CO2 reduction H2 evolution Metal halide perovskites (MHPs) Organics degradation Photocatalysis |
Title | Metal halide perovskite materials in photocatalysis: Design strategies and applications |
URI | https://dx.doi.org/10.1016/j.ccr.2023.215031 |
Volume | 481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPehFfGJ9lBw8CdtuNvtovJVqqYo9WewtJNmEVmRb7OrR325mH6WCevC4SwLLx-zMN8mXLwCXidER87n0uAq1F3L3z0mqtBeb2PqRVTTShcp3HI8m4f00mjZgUJ-FQVlllfvLnF5k6-pNt0Kzu5zP8YwvKudDXNZE0oO222GYYJR3PtcyDxpzXjqGu3yDo-udzULjpTVaggas4wqfz-jPtWmj3gz3YLciiqRffss-NEx2ANuD-n62Q3h-NI44k5kj0qkh6Pf9scKlWOI4aBlWZJ6R5WyRL4o1GrQeuSY3hWKDrPLaIoLILCWb29hHMBnePg1GXnVNgqcDnuQeDbALkMZRHRmzuKeUtVanNlAqsRTt8pnfkz7ViWuHZM-lOJ5EOpAssNI1Z4odQzNbZOYEiOV4mFoxlqLtn7Ic3eUKiCPpK5O0wK8BErryEMerLF5FLRZ7EQ5TgZiKEtMWXK2nLEsDjb8GhzXq4lsUCJfgf592-r9pZ7CDT7g3RKNzaOZv7-bCUYxctYsYasNW_-5hNP4CbyHO7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9lAuiFWU1QdOSKFJnKXmVhWqlC6nVvQW2Y6tFqG0ooHvx5MFFQk4cE0yUvRkj99szwA3oZI-tRm3mPCk5TGz57gjpBWoQNu-Fo4v8y7fSRDNvKe5P69Br5qFwbbK0vcXPj331uWTdolme71c4owvds57mNZE0hPsQAPVqfw6NLqDYTT5KiYEjBWi4cbloEFV3MzbvKREVVCX3pmzz6bOz8fT1pHT34e9kiuSbvE7B1BT6SE0e9UVbUfwPFaGO5OF4dKJIij5_bHBbCwxNLRYWWSZkvVila3yNA2qj9yTh7xpg2yySiWC8DQh25XsY5j1H6e9yCpvSrCky8LMclwMBLgybIcHNOgIobWWiXaFCLWDivnU7nDbkaGJiHjHeDkW-tLl1NXcxGeCnkA9XaXqFIhmOE8tKE1Q-U9ohgJzOco-t4UKW2BXAMWylBHH2yxe46pf7CU2mMaIaVxg2oLbL5N1oaHx18dehXr8bSHExsf_bnb2P7NraEbT8SgeDSbDc9jFN1gqcvwLqGdv7-rSMI5MXJUr6hObrNGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+halide+perovskite+materials+in+photocatalysis%3A+Design+strategies+and+applications&rft.jtitle=Coordination+chemistry+reviews&rft.au=Chen%2C+Zhen-Yu&rft.au=Huang%2C+Ning-Yu&rft.au=Xu%2C+Qiang&rft.date=2023-04-15&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=481&rft_id=info:doi/10.1016%2Fj.ccr.2023.215031&rft.externalDocID=S0010854523000206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |