Metal halide perovskite materials in photocatalysis: Design strategies and applications

In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction,...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 481; p. 215031
Main Authors Chen, Zhen-Yu, Huang, Ning-Yu, Xu, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation are summarized. Additionally, advanced progresses for MHPs in hydrogen evolution, carbon dioxide reduction, organics degradation and nitric oxide removal are introduced. In the end, the current challenges and outlooks of MHP photocatalysts in environment and energy are presented. [Display omitted] •Fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite photocatalysts for photocatalysis are introduced.•Universal strategies for boosting the photocatalytic activity and stability of metal halide perovskites are summarized.•Advanced progresses for metal halide perovskites in photocatalytic H2 evolution, CO2 reduction, organics degradation and NO removal are presented.•Challenges and prospects of metal halide perovskite photocatalysts in environment and energy are discussed. Photocatalytic technologies have been widely considered as ideal ways to deal with the energy shortage and environmental crisis. Metal halide perovskites (MHPs) are recognized as a new generation of photocatalysts on account of their tunable band gap, low binding energy, wide visible-light absorption range, high photoluminescence quantum yield and fast carrier transfer. However, the development of efficient MHP photocatalysts has also encountered challenges. MHPs with ionic crystal structures are difficult to stabilize under water, oxygen atmosphere and high temperatures, as well as the serious recombination of photogenerated electrons-holes and weak oxidation activity during photocatalysis. Herein, we overview recent advances and developments for MHPs in photocatalysis, including H2 evolution, CO2 reduction, organic pollutant degradation and NO removal. In the beginning, the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of MHP photocatalysts have been discussed. In order to overcome the severe charge recombination, poor stability and lack of active sites of MHPs, various design strategies for efficient MHP photocatalysts are presented, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation. In the end, the current challenges and outlooks of MHP photocatalysts are provided to highlight the glorious future and significant position of MHP materials for photocatalytic applications.
AbstractList In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite (MHP) photocatalysts. Then, the novel strategies for MHP photocatalyst design, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation are summarized. Additionally, advanced progresses for MHPs in hydrogen evolution, carbon dioxide reduction, organics degradation and nitric oxide removal are introduced. In the end, the current challenges and outlooks of MHP photocatalysts in environment and energy are presented. [Display omitted] •Fundamentals, crystal structures, coordination environments and characteristics of metal halide perovskite photocatalysts for photocatalysis are introduced.•Universal strategies for boosting the photocatalytic activity and stability of metal halide perovskites are summarized.•Advanced progresses for metal halide perovskites in photocatalytic H2 evolution, CO2 reduction, organics degradation and NO removal are presented.•Challenges and prospects of metal halide perovskite photocatalysts in environment and energy are discussed. Photocatalytic technologies have been widely considered as ideal ways to deal with the energy shortage and environmental crisis. Metal halide perovskites (MHPs) are recognized as a new generation of photocatalysts on account of their tunable band gap, low binding energy, wide visible-light absorption range, high photoluminescence quantum yield and fast carrier transfer. However, the development of efficient MHP photocatalysts has also encountered challenges. MHPs with ionic crystal structures are difficult to stabilize under water, oxygen atmosphere and high temperatures, as well as the serious recombination of photogenerated electrons-holes and weak oxidation activity during photocatalysis. Herein, we overview recent advances and developments for MHPs in photocatalysis, including H2 evolution, CO2 reduction, organic pollutant degradation and NO removal. In the beginning, the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of MHP photocatalysts have been discussed. In order to overcome the severe charge recombination, poor stability and lack of active sites of MHPs, various design strategies for efficient MHP photocatalysts are presented, such as morphology regulation, heterojunction construction, surface/interface modification and material encapsulation. In the end, the current challenges and outlooks of MHP photocatalysts are provided to highlight the glorious future and significant position of MHP materials for photocatalytic applications.
ArticleNumber 215031
Author Huang, Ning-Yu
Chen, Zhen-Yu
Xu, Qiang
Author_xml – sequence: 1
  givenname: Zhen-Yu
  surname: Chen
  fullname: Chen, Zhen-Yu
– sequence: 2
  givenname: Ning-Yu
  surname: Huang
  fullname: Huang, Ning-Yu
  email: huangny@sustech.edu.cn
– sequence: 3
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
  email: xuq@sustech.edu.cn
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDyR47DwcWKHylIrYgFhajuO0U9Iksq1K_XtcyopFV6OR7hndOTMy6YfeEnINLAUGxc0mNcalnHGRcsiZgDMyBVmKRMiMTciUMWCJzLP8gsy838S1qCo-JV9vNuiOrnWHjaWjdcPOf2OwdKuDdag7T7Gn43oIg9Exuffob-mD9bjqqQ8uplZoPdV9Q_U4dhhTOPT-kpy3EbZXf3NOPp8ePxYvyfL9-XVxv0wMr8qQAGd5AdpKUelCFLKu27Y1TcvrumxBZhIEk5qBKRlkWkIuqjI3XAve6iyTtZiT8njXuMF7Z1tlMPxWiN2wU8DUwY_aqOhHHfyoo59Iwj9ydLjVbn-SuTsyNr60Q-uUN2h7Yxt01gTVDHiC_gFohIC4
CitedBy_id crossref_primary_10_1016_j_jmat_2024_06_010
crossref_primary_10_1016_j_ijhydene_2024_07_441
crossref_primary_10_1016_j_foodchem_2024_139316
crossref_primary_10_1016_j_jece_2024_113309
crossref_primary_10_1007_s10562_024_04666_2
crossref_primary_10_1140_epjp_s13360_024_05548_7
crossref_primary_10_1039_D3CP05061K
crossref_primary_10_1039_D4CY00312H
crossref_primary_10_1080_10408347_2024_2440697
crossref_primary_10_1002_aesr_202400040
crossref_primary_10_1021_acsami_4c05157
crossref_primary_10_1039_D3DT04144A
crossref_primary_10_1016_j_cej_2024_149741
crossref_primary_10_1016_j_apcatb_2024_125012
crossref_primary_10_1016_j_ijhydene_2024_01_268
crossref_primary_10_1016_j_jcis_2024_09_188
crossref_primary_10_1016_j_jre_2024_08_014
crossref_primary_10_1016_j_ssc_2024_115721
crossref_primary_10_1016_j_mtener_2023_101407
crossref_primary_10_1007_s40843_023_2754_8
crossref_primary_10_1002_smll_202401202
crossref_primary_10_1016_j_mcat_2023_113319
crossref_primary_10_1002_adfm_202423656
crossref_primary_10_1016_j_jclepro_2024_144279
crossref_primary_10_1021_acsomega_3c08356
crossref_primary_10_1016_j_solener_2025_113296
crossref_primary_10_1021_acsaem_4c00521
crossref_primary_10_1039_D4EY00091A
crossref_primary_10_1002_advs_202402471
crossref_primary_10_1007_s40843_024_3035_4
crossref_primary_10_3390_ma16196531
crossref_primary_10_1016_j_apcatb_2024_124318
crossref_primary_10_1039_D3EY00187C
crossref_primary_10_1039_D3TA04149B
crossref_primary_10_1016_j_apcatb_2024_123821
crossref_primary_10_3390_ma17092119
crossref_primary_10_1039_D4TC01602E
crossref_primary_10_1016_j_mtener_2023_101458
crossref_primary_10_1016_j_apcatb_2024_124633
crossref_primary_10_1103_PhysRevApplied_22_014058
crossref_primary_10_3390_catal13071102
crossref_primary_10_1016_j_jece_2024_113125
crossref_primary_10_1039_D3DT03989G
crossref_primary_10_1016_j_ijbiomac_2023_124966
crossref_primary_10_1016_j_jece_2023_110970
crossref_primary_10_1016_j_jece_2024_114934
crossref_primary_10_1016_j_ccr_2023_215484
crossref_primary_10_1002_adfm_202421847
crossref_primary_10_1016_j_solener_2024_112812
crossref_primary_10_1016_j_cej_2024_156663
crossref_primary_10_1039_D3CS01026K
crossref_primary_10_1021_acs_inorgchem_4c04313
crossref_primary_10_1007_s43630_024_00599_2
crossref_primary_10_1002_smll_202409909
crossref_primary_10_26565_2312_4334_2024_4_27
crossref_primary_10_1016_j_jcis_2024_05_012
crossref_primary_10_1016_j_apsadv_2023_100476
crossref_primary_10_1002_idm2_12203
crossref_primary_10_1016_j_vacuum_2023_112381
crossref_primary_10_1016_j_ccr_2023_215210
crossref_primary_10_1016_j_jallcom_2024_175708
crossref_primary_10_1007_s11581_024_05599_x
crossref_primary_10_1002_smll_202408921
crossref_primary_10_3390_coatings13061130
crossref_primary_10_1039_D4CC01949K
crossref_primary_10_1016_j_cej_2024_149058
crossref_primary_10_1016_j_cej_2024_153307
crossref_primary_10_1016_j_inoche_2025_114369
crossref_primary_10_1002_smll_202304756
crossref_primary_10_1016_j_apcatb_2024_124454
Cites_doi 10.1002/eom2.12015
10.1039/C9RA07236E
10.1039/c3cp53131g
10.1021/acsami.1c01718
10.3390/nano11020433
10.1021/acs.inorgchem.2c00012
10.3390/nano11092422
10.1016/j.rser.2021.111047
10.1126/sciadv.1700255
10.1021/acs.jpclett.1c02373
10.1016/j.cej.2022.134811
10.1007/s40843-021-1962-9
10.1002/anie.202007584
10.1039/C9NR07722G
10.1002/smll.202106001
10.1021/jp500449z
10.1016/0047-2670(79)80037-4
10.1016/j.apcatb.2019.04.050
10.1002/admi.201801015
10.1016/j.cej.2021.128889
10.1021/acs.jpclett.5b01610
10.1002/smll.202002140
10.1021/acs.jpclett.9b02605
10.1002/cssc.201600863
10.1126/science.aat3583
10.1021/acsenergylett.2c00752
10.1016/j.rser.2016.05.022
10.1126/science.1137014
10.1021/cm802978z
10.1016/j.enchem.2020.100032
10.1021/acsenergylett.0c00058
10.1016/j.jallcom.2022.165062
10.1038/nphoton.2012.175
10.1021/acsnano.5b01154
10.1002/aenm.201901801
10.1016/j.apsusc.2019.06.230
10.1016/j.jcis.2022.05.116
10.1021/acs.nanolett.0c04148
10.1021/acsami.0c14826
10.1039/D1TA09383E
10.1002/adfm.202006919
10.1016/j.jechem.2022.01.015
10.1002/chem.201702237
10.1016/j.cej.2022.137197
10.1039/D0NR02917C
10.1038/nenergy.2016.207
10.1016/j.apcatb.2018.01.031
10.1002/anie.201904537
10.1073/pnas.1607471113
10.1038/s41467-019-08918-3
10.1039/D0CC00095G
10.1126/science.aaa5760
10.1039/D1CS00684C
10.1021/acsami.1c17870
10.1002/cssc.202102295
10.1016/j.nanoen.2018.06.033
10.1016/j.apsusc.2021.149012
10.1039/D1EE03679C
10.1016/j.apcatb.2019.01.019
10.1038/s41467-021-24702-8
10.1007/s42114-022-00520-4
10.1021/acs.nanolett.0c04073
10.1021/jacs.9b11089
10.1007/s12274-021-3775-3
10.1007/s11356-021-14188-8
10.1016/j.cej.2021.132807
10.1002/eom2.12079
10.1002/adma.202001344
10.1016/j.apcatb.2019.118075
10.1021/acsami.0c06081
10.1016/j.chempr.2020.06.010
10.1021/acsnano.0c04659
10.1002/adma.202002137
10.1016/j.apcatb.2020.119751
10.1039/D2TA03217A
10.1016/j.nantod.2021.101179
10.1021/acs.nanolett.7b04838
10.1002/anie.202108133
10.1016/j.jcis.2021.11.094
10.1016/j.chempr.2020.01.005
10.1039/C8TA03953D
10.1007/s12274-022-4268-8
10.1039/c3ee43822h
10.1039/C9TA03478A
10.1002/solr.202200294
10.1016/j.matlet.2020.127501
10.1021/acsnano.1c11442
10.1126/science.aba3433
10.1126/science.aad1818
10.1016/j.ijhydene.2021.12.255
10.1016/j.carbon.2021.06.040
10.1039/C5CS00769K
10.1021/acs.jpclett.8b03849
10.1039/C4EE01076K
10.1002/anie.201909707
10.1016/j.cej.2021.132137
10.1039/B913880N
10.1021/acscatal.5b02098
10.1039/D0EE01153C
10.1021/acsaem.8b01133
10.1039/C5CS00113G
10.1039/C7EE02685D
10.3390/nano10010115
10.1002/aenm.201701503
10.1021/acs.est.8b05041
10.1021/acsnano.6b01643
10.1021/acssuschemeng.9b03761
10.1007/s12274-020-3159-0
10.1016/j.cclet.2021.09.033
10.1039/D1TA01281A
10.1039/C8SC05813J
10.1016/j.jcat.2018.11.004
10.1021/je4000394
10.1016/j.jssc.2022.123001
10.1016/j.enchem.2020.100044
10.1002/anie.202200872
10.1021/acs.jpcc.0c11241
10.1021/acsaem.1c00722
10.1021/acsaem.0c00195
10.1021/jacs.1c07231
10.1016/j.jphotochem.2019.03.009
10.1016/j.apcatb.2022.121375
10.1002/smll.201702253
10.1021/acs.inorgchem.2c00188
10.1021/acs.chemrev.5b00715
10.1002/smll.201703762
10.1021/acscatal.2c00037
10.1016/j.jece.2021.106264
10.1016/j.apcatb.2019.118399
10.1039/D2DT00972B
10.1038/nenergy.2016.185
10.1021/acsaem.2c02680
10.1002/adma.201803230
10.1016/j.rser.2020.110073
10.1016/j.apcatb.2020.119230
10.1016/j.enchem.2020.100047
10.1002/anie.201901081
10.1016/j.cej.2018.10.120
10.1021/jacs.7b00489
10.1002/cssc.202000953
10.1021/acs.chemmater.9b04582
10.1016/j.apcatb.2018.11.012
10.1002/adma.201601694
10.1016/j.apcatb.2017.03.018
10.1021/acscatal.2c00841
10.1016/j.matt.2020.07.004
10.1039/C4TA04994B
10.1039/C7NR04421F
10.1016/j.apsusc.2021.149452
10.1021/acsnano.7b05442
10.1039/D1TA09148D
10.1016/j.apcatb.2020.119570
10.1002/adfm.201600109
10.1021/acsaem.1c01636
10.1021/acs.jpclett.9b03176
10.1002/adfm.202004293
10.1038/nature08017
10.1021/acs.accounts.2c00477
10.1021/acsenergylett.6b00457
10.1038/ncomms8961
10.1039/D2QI01247B
10.1002/cssc.201902192
10.1002/anie.201506966
10.1002/ejic.201800078
10.1039/C5EE02573G
10.1021/acs.jpclett.0c01088
10.1039/D1MA00703C
10.1002/solr.201900365
10.1021/acsaem.1c03552
10.1002/anie.202014623
10.1126/science.aam7093
10.1016/j.enchem.2020.100027
10.1002/anie.201900658
10.1016/j.joule.2017.12.009
10.1039/C5TC04116C
10.1039/C5EE02575C
10.1038/s41929-019-0242-6
10.1002/solr.202000419
10.1016/j.apcatb.2021.120411
10.1002/aenm.201902500
10.1016/j.mattod.2018.10.017
10.3390/catal10111352
10.1063/5.0012938
10.1002/adma.201805337
10.1021/acsami.0c08152
10.1016/j.jpowsour.2020.228838
10.1016/j.jcat.2021.03.007
10.1126/science.1243167
10.1021/acsenergylett.8b01830
10.1021/acsestengg.1c00089
10.1016/j.cej.2021.129543
10.1039/C9CS00598F
10.1002/adma.201803792
10.1016/j.jcis.2021.03.144
10.1021/acs.jpclett.1c01527
10.1021/ja1068596
10.1039/D0MH00955E
10.1038/s41467-020-18350-7
10.1021/acs.chemrev.8b00539
10.1021/acs.nanolett.0c04299
10.1002/smll.201903398
10.1016/j.solener.2020.08.007
10.1038/ncomms6982
10.1021/acs.accounts.0c00712
10.1021/acsaem.1c02751
10.1021/acs.jpclett.1c02542
10.1515/zna-1991-0305
10.1002/solr.202100263
10.1002/chem.202004682
10.1021/acs.jpclett.7b01952
10.1021/jacs.6b08900
10.1021/acsami.0c21588
10.1016/j.cej.2020.126740
10.1246/bcsj.65.2264
10.1016/j.jclepro.2019.119335
10.1021/acs.jpclett.5b02597
10.1016/j.nanoen.2020.105388
10.1021/acsaem.1c01406
10.1021/acscatal.8b02374
10.1016/j.cej.2022.135014
10.1016/j.jhazmat.2019.120855
10.1039/C7TA08190A
10.1021/acsami.0c18391
10.1016/j.cej.2022.137102
10.1016/j.rser.2017.05.284
10.1016/j.matlet.2020.128695
10.1016/j.enchem.2020.100026
10.3390/app9010188
10.1016/j.enchem.2022.100084
10.1016/j.ccr.2020.213316
10.1002/anie.201905869
10.1002/solr.202100154
10.1002/advs.202202408
10.1021/jacs.9b04482
10.3390/nano10040763
10.1002/anie.201808930
10.1002/cssc.202002847
10.1039/C4TA05033A
10.1016/j.cej.2021.132968
10.1016/j.enchem.2021.100056
10.1016/j.enchem.2021.100051
10.1021/acssuschemeng.8b06023
10.1039/D0CS00332H
10.1039/D2NJ00435F
10.1021/acsenergylett.8b00488
10.1016/j.mssp.2018.04.001
10.1016/j.jechem.2020.04.017
10.1002/anie.201709766
10.1080/15980316.2018.1424652
10.1016/j.enchem.2022.100078
10.1021/acsenergylett.6b00337
10.1016/j.nanoen.2019.104249
10.1039/C9DT02468A
10.1021/acsenergylett.8b01658
10.1002/admi.202200058
10.1021/jacs.8b13673
10.1002/adfm.201905683
10.1039/C7EE01145H
10.1021/acsomega.0c02960
10.1002/solr.202101058
10.1016/j.cej.2020.128077
10.1021/cm4000476
10.1021/acsami.0c20349
10.1002/adfm.202001478
10.1016/j.apcatb.2014.07.026
10.1039/C5CS00380F
10.1002/solr.202000691
10.1021/acscatal.9b01605
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2023.215031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3840
ExternalDocumentID 10_1016_j_ccr_2023_215031
S0010854523000206
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
RIG
SCB
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
ID FETCH-LOGICAL-c297t-120561ae839a6368bbfffcdf2bb7f18481308a01c7014a8153975c2a32fa448b3
IEDL.DBID .~1
ISSN 0010-8545
IngestDate Tue Jul 01 02:43:56 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Fri Feb 23 02:38:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organics degradation
Metal halide perovskites (MHPs)
CO2 reduction
H2 evolution
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-120561ae839a6368bbfffcdf2bb7f18481308a01c7014a8153975c2a32fa448b3
ParticipantIDs crossref_citationtrail_10_1016_j_ccr_2023_215031
crossref_primary_10_1016_j_ccr_2023_215031
elsevier_sciencedirect_doi_10_1016_j_ccr_2023_215031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liang, Chen, Yao, Zhang, Qu, Qin, Huang, Li (b0285) 2020; 16
Yue, Liu, Xu, Li, Azam, Ren, Liu, Sun, Wang, Cao, Yan, Qu, Lei, Wang (b0315) 2017; 10
Holzhey, Yadav, Turren-Cruz, Ummadisingu, Grätzel, Hagfeldt, Saliba (b0395) 2019; 29
Xu, Shen, Hou, Gao, Sun (b0590) 2009; 21
Jiang, Liao, Chen, Zhang, Li, Wang, Kuang (b0960) 2020; 6
Li, Zhu (b0660) 2020; 2
Zhang, Hodes, Jin, Liu (b0360) 2019; 58
Bresolin, Ben Hammouda, Sillanpaa (b1310) 2020; 10
Liang, Lei, Gao, Sun, Jiao, Wu, Qamar, Xie (b0465) 2015; 54
Li, Xu, Wang, Song, Chen, Xue, Dong, Cai, Shan, Han, Zeng (b0580) 2017; 29
Cai, Teng, Wu, Li, Chen, Chen, Kuang (b0855) 2020; 30
Saparov, Mitzi (b0335) 2016; 116
Tasleem, Tahir (b0275) 2020; 132
Liu, Yang, Wang, Yuan, Hills-Kimball, Cai, Wang, Tang, Chen (b0895) 2021; 21
Hang, Tang, Li, Zheng, Huang (b0240) 2022; 6
Zhu, Zhu, Huang, Hou, Shen, Li (b0995) 2020; 12
Wu, Huo, Huang, Zhao, Yang, Hu, Mao, He, Huang, Tang (b1145) 2022; 18
Wang, Li, Idris, Wang, Du, Pan, Li (b1070) 2021; 5
Xiao, Hao, Lyu, Moore, Zhang, Luo, Hou, Lipton-Duffin, Wang (b0735) 2019; 29
Xu, Yang, Chen, Wang, Chen, Kuang, Su (b0185) 2017; 139
Guo, Tang, Mu, Wu, Dong, Zhang (b1045) 2019; 9
An, Wei, Ma, Zhang, Wen (b0295) 2022; 10
Niu, Guo, Wang (b0390) 2015; 3
Li, Yang, Xue, Pang, Xu (b0665) 2020; 2
Wang, Shi, Wang, Li (b0235) 2022; 7
Zhao, Zeng, Yu, Feng, Zhao, Wang, Li, Liu, Liu, Wei, Zhu, Kang, Zhang, Yang (b0795) 2020; 7
Li, Li, Zhang, Shi, Wu, Chen, Lin, Tian, Li (b1300) 2021; 596
Mu, Zhang, Dong, Su, Zhang, Lu (b1055) 2020; 16
Schünemann, Tüysüz (b1265) 2018; 2018
Wang, Wang (b0880) 2015; 162
Li, Li, She, Chen, Liu, Xu, Lee, Zhu (b0875) 2021; 5
Kim, Jung, Park, Larson, Dunfield, Xiao, Kim, Tong, Boonmongkolras, Ji, Zhang, Pae, Kim, Kang, Dravid, Berry, Kim, Zhu, Kim, Shin (b0100) 2020; 368
Su, Dong, Zhang, Liu, Zhang, Lu (b0645) 2020; 12
Feng, Dong, Su, Liu, Zhang, Zhang, Lu (b1190) 2022; 69
Ravi, Markad, Nag (b0175) 2016; 1
Xiao, Song, Yan (b0370) 2019; 31
Wang, Luo, Wang, Tawiah, Liu, Xin, Fei, Wong (b1315) 2020; 12
Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (b1370) 2014; 7
Li, Chen, Wang, Liang, Ma, Jing, Chen, Li (b0515) 2022; 16
Xu, Wang, Liao, Chen, Chen, Kuang (b0935) 2018; 5
Yang, Wang, Wang, Dong, Zhu (b1340) 2021; 1
Li, Xu, Jiao, Jiang (b0670) 2019; 1
Hong, Phuong, Huong, Nam, Hue (b0615) 2019; 492
Liao, Cai, Li, Jiang, Wang, Chen, Kuang (b0930) 2021; 53
Azam, Yue, Xu, Liu, Ren, Sun, Liu, Wang, Qu, Lei, Wang (b0320) 2018; 6
Wang, Huang, Liao, Jiang, Zhou, Zhang, Chen, Kuang (b0520) 2019; 141
Zhao, Li, Zhang, Xu, Wang (b0705) 2018; 50
Tachibana, Vayssieres, Durrant (b0005) 2012; 6
Ju, Fang, Zhou, Feng, Song, Lu, Liu (b0620) 2021; 551
Kong, Zhang, Liao, Dong, Jiang, Chen, Kuang (b0900) 2019; 4
Zhang, Jiang, Shu, Li, Dong, Xu (b0220) 2021; 12
Guo, Liu, Li, Lou, Chen, Zhao (b0830) 2019; 7
Chen, Xu, Wang, Chen, Kuang (b0950) 2020; 4
Liu, Guo, You, Sun, Wang, Zhao, Su (b0975) 2020; 31
Zhang, Shu, Jiang, Xu (b1110) 2021; 414
Nie, Sumukam, Reddy, Banavoth, Seok (b0440) 2020; 13
Mourdikoudis, Liz-Marzán (b0585) 2013; 25
Shi, Li, Tian, Jin, Tao, Jiang, Pidko, Li, Li (b0790) 2020; 32
Shaner, Atwater, Lewis, McFarland (b0720) 2016; 9
Li, Lu, Duan, Xu, Zhang (b1245) 2021; 125
Goto, Hisatomi, Wang, Higashi, Ishikiriyama, Maeda, Sakata, Okunaka, Tokudome, Katayama, Akiyama, Nishiyama, Inoue, Takewaki, Setoyama, Minegishi, Takata, Yamada, Domen (b1405) 2018; 2
Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (b0655) 2019; 58
Jiang, Liao, Xu, Chen, Wang, Kuang (b0955) 2019; 7
Zhao, Wu, Zheng, Li, Li, Tao (b0600) 2019; 9
Meng, Yang, Patil, Lin, Yeh, Chen, Pao, Chen, Chen, Lu, Kuo, Wang (b1225) 2021; 12
Ding, Bai, Borjigin, Li, Li, Wang (b1205) 2022; 446
Chen, Ye, Chang, Liu, Chuang, Liu, Liu, Pu (b1215) 2021; 284
Zhang, Liu, Gao, Tan, Cai, Hu, Huang, Fang, Wang (b1230) 2022; 4
Xu, Eguchi, Nakayama (b0350) 1992; 65
Romani, Speltini, Ambrosio, Mosconi, Profumo, Marelli, Margadonna, Milella, Fracassi, Listorti, De Angelis, Malavasi (b0760) 2021; 60
Cho, Jeong, Park, Kim, Wolf, Lee, Heo, Sadhanala, Myoung, Yoo, Im, Friend, Lee (b0125) 2015; 350
Li, Li, Wu, Lv, Zheng, Zhao, Ding, Tao, Chen (b0780) 2019; 259
Liu, Chen, Li, Xu, Li, He, Lu (b1325) 2019; 243
Raza, Li, Que, Zhu, Chen (b0225) 2021; 2
Guo, Zhou, Zhao, Sun, You, Wang, Su (b0980) 2019; 369
Bai, Yuan, Gao (b0115) 2016; 4
Pellegrino, Malandrino (b1290) 2021; 4
Xie, Chen, Li, Xu, Li, He, Lu (b0510) 2022; 430
Gao, Qian, Wei, Chen, Liu, Wang, Chen, Chen, Liu, Wei (b0635) 2022; 623
Furlan, Mortarino (b0020) 2018; 81
Wang, Wang, Li, Du, Ma, He, Li (b0555) 2020; 12
Shyamal, Dutta, Das, Sen, Chakraborty, Pradhan (b0500) 2020; 11
Wang, He, Mao, Cai, Sun, Zhu (b1105) 2021; 416
Das, Paul, Maiti, Chattopadhyay (b1260) 2020; 267
Kumar, Regue, Isaacs, Freeman, Eslava (b0990) 2020; 3
Ma, Ji, Wang, Zhang, Liu, Yang, Jia, Chen, Wu, Zhang, Li, Shi, Shan (b1375) 2022; 9
Yue, Zhang, Wang, Yan, Guo, Qian, Zhao (b0825) 2020; 2
Kong, Liao, Dong, Xu, Chen, Kuang, Su (b0625) 2018; 3
Kannan, Vakeesan (b0045) 2016; 62
Fu, Yu, Jiang, Cheng (b0070) 2018; 8
Qian, Chen, Yang, Zhao, Liu, Sun, Zhou, Yang, Wei, Fan (b0290) 2020; 249
Wu, Wang, Guan, Liu, Wang, Zheng, Jin, Dai, Whangbo, Huang (b0770) 2018; 8
Hai, Huang, Li, Wu, Huang, Tang (b1120) 2021; 4
Jiang, Ding, Zheng, Ye, Li, Xu, Wang, Li, Loh, Ye, Sun (b1165) 2022; 15
Ito, Tanaka, Manabe, Nishino (b0400) 2014; 118
Lewis (b0015) 2007; 315
Dong, Wang, Zhang, Zeng (b0230) 2020; 2
Loeb, Alvarez, Brame, Cates, Choi, Crittenden, Dionysiou, Li, Li-Puma, Quan, Sedlak, David Waite, Westerhoff, Kim (b1395) 2019; 53
Bera, Shyamal, Pradhan (b0445) 2021; 143
Ying, Luo, Qiao, Huang (b1360) 2020; 2007423
Miyasaka, Kulkarni, Kim, Öz, Jena (b0375) 2019; 10
Shyamal, Dutta, Pradhan (b0965) 2019; 10
Yuan, Weng, Colmenares, Sun, Xu (b0575) 2017; 13
Zhang, Chen, Zhou, Miao, Liu (b1180) 2021; 4
Sheng, He, Li, Yuan, Huang, Wang, Sun, Wang, Dong (b1005) 2020; 14
Huang, Zhang, Zheng, Wang, Liu, Chen, Luo (b1285) 2021; 11
Bard (b0545) 1979; 10
He Zhao, Leukkunen, Popov, Kahaly, Kordas, Ojala (b0870) 2021; 14
Klejna, Mazur, Wlaźlak, Zawal, Soo, Szaciłowski (b1380) 2020; 415
Sun, Xu, Tao, Ye, Zhou, He, Lu (b0640) 2022; 61
Li, Wu, Zhang, Cai, Gu, Song, Zeng (b0450) 2016; 26
Armenise, Colella, Fracassi, Listorti (b0330) 2021; 11
Fan, Zhou, Huang, Zhou (b0105) 2020; 2
Madi, Tahir, Tasleem (b0265) 2021; 9
Wang, Zhang, Wang, Gao, Fan, Wu, Zong, Li (b0750) 2021; 60
Hu, Li, Wang, Wang (b1355) 2021; 3
Wu, Wang, Zhu, Zhang, Wang, Liu, Zou, Dai, Whangbo, Huang (b0695) 2018; 30
Tang, Mak, Zhang, Jia, Cheng, Song, Yuan, Zhao, Kai, Colmenares, Hsu (b0380) 2022
Ding, Shen, Zhao, Chen, Yuan, Yang, Liang, Xiang, Li (b0755) 2020; 483
Cheng, Jin, Roeffaers, Hofkens, Debroye (b1095) 2020; 5
Li, Li, Xu (b1235) 2021; 3
Bhosale, Kharade, Jokar, Fathi, Chang, Diau (b1220) 2019; 141
Ketavath, Mohan, Sumukam, Alsulami, Premalatha, Murali (b0215) 2022; 10
Wang, Li, He, Yang, Dong, Mai, Zhu (b0610) 2020; 78
Lignos, Protesescu, Emiroglu, Maceiczyk, Schneider, Kovalenko, deMello (b0415) 2018; 18
Xu, Zhang, Su, Feng, Mu, Zhang, Lu (b1065) 2021; 27
Yin, Chen, Guan, Zheng, Kong, Yang, Zhou, Yang, Pullerits, Han (b0850) 2021; 60
Eperon, Stranks, Menelaou, Johnston, Herz, Snaith (b0405) 2014; 7
Wu, Zhang, Feng, Zhang, Zhang, Lu (b0475) 2021; 5
Lu, Itanze, Aragon, Ma, Li, Ucer, Hewitt, Carroll, Williams, Qiu, Geyer (b0910) 2020; 12
Zhang, Liang, Huang, Liu, Li, Chen, Xu (b0690) 2019; 58
Xu, Eguchi, Nakayama, Nakamura, Kishita (b0345) 1991; 46a
Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (b0160) 2015; 347
Protesescu, Yakunin, Bodnarchuk, Bertolotti, Masciocchi, Guagliardi, Kovalenko (b0420) 2016; 138
Chen, Wang, Wu, Zhang, Wu, Wang, Zheng, Liu, Dai, Huang (b0835) 2020; 32
Yuan, He, Chen, Sun, Li, Cui, Chen, Sheng, Dong (b0210) 2020; 5
Ren, Yue, Li, Fang, Gasem, Leszczynski, Qu, Wang, Fan (b0280) 2022; 10
Guan, Wu, Wang, Zhang, Wang, Zheng, Liu, Dai, Whangbo, Huang (b0775) 2019; 245
Dong, Jiang, Liao, Chen, Kuang, Su (b0945) 2022; 65
Wan, Ou, Zhong, Wang (b1085) 2019; 358
Huang, Guo, Chen, Lou, Zhao (b0815) 2022; 46
Xing, Mathews, Sun, Lim, Lam, Grätzel, Mhaisalkar, Sum (b0155) 2013; 342
Han, Zhu, Martin, Lin, Spears, Yan (b0260) 2020; 13
Wang, Zuo, Wang, Wang, Shen, Qiu, Cai, Zhou, Lau, Chai (b0860) 2019; 9
Li, Zhang, Ding, Xu (b1115) 2021; 419
Hu, Chen, Yao, Wu, Zhong, Song, Cao, Zhang (b1250) 2021; 13
Kulbak, Gupta, Kedem, Levine, Bendikov, Hodes, Cahen (b0430) 2016; 7
Liu, Liu, Mu, Feng, Dong, Zhang, Lu (b0565) 2021; 5
Wu, Mu, Guo, Zhang, Zhang, Zhang, Lu (b0630) 2019; 58
Marzo, Pagire, Reiser, Konig (b0085) 2018; 57
Low, Yu, Ho (b0605) 2015; 6
Li, Zhang (b1035) 2022; 434
Huang, Pradhan, Hofkens, Roeffaers, Steele (b0205) 2020; 5
Zhang, Zhong, Chen, Wu, Hu, Huang, Han, Zou, Dong (b0170) 2015; 9
Purohit, Yadav, Satapathi (b0255) 2022; 9
Dong, Zhang, Liu, Yao, Zhao (b0120) 2020; 49
L. Wang, M. Wagner, Yan, Jakob, Xu (b0150) 2017; 3
Chen, Hu, Wang, Shen, Zhang, Ding, Bai, Jiang, Li, Gaponik (b1050) 2020; 32
Jiang, Li, Wu, Zhu, Zhang, Zhang, Wang, Loh, Shi, Xu (b0805) 2021; 13
Zheng, Wu, Jha, Li, Zhu, Priya (b0410) 2016; 1
Trivedi, Prochowicz, Kalam, Tavakoli, Yadav (b0245) 2021; 145
Cho, Kim, Kim, Lee (b0425) 2018; 19
Chen, Morgan, Liu, Chen, Seshadri, Mao (b0745) 2022; 9
Cheng, Zhao, Sun (b0080) 2022; 4
Ding, Borjigin, Li, Yang, Wang, Li (b1185) 2021; 13
Mai, Chen, Tachibana, Suzuki, Abe, Caruso (b0040) 2021; 50
Tang, Sun, Zhang, Liu, Meng, Zhang, Yang, Li, Zhao, Zheng, Huang (b0490) 2022; 429
Wei, Zheng, Huang, Gong, Liu, Lu, Li, Chen (b0905) 2021; 39
Yang, Yang, Moore, Yan, Miller, Zhu, Beard (b0135) 2017; 2
Han, Bai, Man, He, Li, Hu, Alsaedi, Hayat, Yu, Zhang, Wang, Zhou, Zou (b0470) 2019; 141
Cheng, Debroye, Hofkens, Roeffaers (b1130) 2020; 10
Gu, Lee (b0110) 2016; 10
Wu, Wu, Zhang, Lou, Liu, Ma, Wang, Zheng, Cheng, Liu, Dai, Huang, Wang (b0840) 2022; 15
Wang, Huang, Zhang, Wang, Yang, Li, Xu (b0560) 2021; 282
Jiang, Chen, Li, Liao, Zhang, Wang, Kuang (b0940) 2020; 30
Zhang, Sun, Wang, Zang, Tao (b0820) 2022; 47
Paul, Das, Das, Sarkar, Maiti, Chattopadhyay (b0530) 2019; 380
Pan, Ma, Huang, Wu, Jia, Shi, Liu, Wangyang, H
Xie (10.1016/j.ccr.2023.215031_b0510) 2022; 430
Wu (10.1016/j.ccr.2023.215031_b0695) 2018; 30
Zhang (10.1016/j.ccr.2023.215031_b1110) 2021; 414
Wei (10.1016/j.ccr.2023.215031_b0905) 2021; 39
Park (10.1016/j.ccr.2023.215031_b0355) 2019; 31
Jiang (10.1016/j.ccr.2023.215031_b1165) 2022; 15
Bhosale (10.1016/j.ccr.2023.215031_b1220) 2019; 141
Bresolin (10.1016/j.ccr.2023.215031_b1310) 2020; 10
Kim (10.1016/j.ccr.2023.215031_b0165) 2016; 113
Chen (10.1016/j.ccr.2023.215031_b0745) 2022; 9
Jiang (10.1016/j.ccr.2023.215031_b0960) 2020; 6
Wang (10.1016/j.ccr.2023.215031_b0865) 2020; 56
Feng (10.1016/j.ccr.2023.215031_b1190) 2022; 69
Zhou (10.1016/j.ccr.2023.215031_b0305) 2022; 911
Nie (10.1016/j.ccr.2023.215031_b0440) 2020; 13
Meinshausen (10.1016/j.ccr.2023.215031_b0025) 2009; 458
Fan (10.1016/j.ccr.2023.215031_b0105) 2020; 2
Que (10.1016/j.ccr.2023.215031_b1100) 2021; 282
Guo (10.1016/j.ccr.2023.215031_b1045) 2019; 9
Qi Liu (10.1016/j.ccr.2023.215031_b0460) 2010; 132
Kazes (10.1016/j.ccr.2023.215031_b1345) 2021; 54
Liu (10.1016/j.ccr.2023.215031_b0895) 2021; 21
Andrei (10.1016/j.ccr.2023.215031_b1390) 2022; 55
Nie (10.1016/j.ccr.2023.215031_b1305) 2018; 83
Gao (10.1016/j.ccr.2023.215031_b0635) 2022; 623
Hai (10.1016/j.ccr.2023.215031_b1120) 2021; 4
Xu (10.1016/j.ccr.2023.215031_b0345) 1991; 46a
Ding (10.1016/j.ccr.2023.215031_b0755) 2020; 483
Sheng (10.1016/j.ccr.2023.215031_b1040) 2022; 12
Wang (10.1016/j.ccr.2023.215031_b0555) 2020; 12
Mahmoud Idris (10.1016/j.ccr.2023.215031_b1210) 2022; 446
Li (10.1016/j.ccr.2023.215031_b1245) 2021; 125
Chen (10.1016/j.ccr.2023.215031_b1140) 2022; 5
Bard (10.1016/j.ccr.2023.215031_b0545) 1979; 10
Goto (10.1016/j.ccr.2023.215031_b1405) 2018; 2
Wu (10.1016/j.ccr.2023.215031_b0840) 2022; 15
Liu (10.1016/j.ccr.2023.215031_b0495) 2016; 6
Tachibana (10.1016/j.ccr.2023.215031_b0005) 2012; 6
Purohit (10.1016/j.ccr.2023.215031_b0255) 2022; 9
Huo (10.1016/j.ccr.2023.215031_b1330) 2021; 406
Trivedi (10.1016/j.ccr.2023.215031_b0245) 2021; 145
Cai (10.1016/j.ccr.2023.215031_b0855) 2020; 30
Zhao (10.1016/j.ccr.2023.215031_b0715) 2019; 253
Ou (10.1016/j.ccr.2023.215031_b0885) 2018; 2018
Choi (10.1016/j.ccr.2023.215031_b1025) 2022; 430
Zhang (10.1016/j.ccr.2023.215031_b1320) 2020; 153
Low (10.1016/j.ccr.2023.215031_b0060) 2017; 29
Guan (10.1016/j.ccr.2023.215031_b0725) 2021; 21
Han (10.1016/j.ccr.2023.215031_b0470) 2019; 141
Jena (10.1016/j.ccr.2023.215031_b0310) 2019; 119
Ma (10.1016/j.ccr.2023.215031_b0595) 2018; 227
Kannan (10.1016/j.ccr.2023.215031_b0045) 2016; 62
Liu (10.1016/j.ccr.2023.215031_b0845) 2021; 21
Jiang (10.1016/j.ccr.2023.215031_b0955) 2019; 7
Wu (10.1016/j.ccr.2023.215031_b1335) 2021; 397
Zhang (10.1016/j.ccr.2023.215031_b1230) 2022; 4
Noel (10.1016/j.ccr.2023.215031_b1370) 2014; 7
Wu (10.1016/j.ccr.2023.215031_b0630) 2019; 58
Sheng (10.1016/j.ccr.2023.215031_b1005) 2020; 14
Park (10.1016/j.ccr.2023.215031_b0095) 2016; 9
Xiao (10.1016/j.ccr.2023.215031_b0735) 2019; 29
Kovalenko (10.1016/j.ccr.2023.215031_b0340) 2017; 358
Yang (10.1016/j.ccr.2023.215031_b0135) 2017; 2
Xu (10.1016/j.ccr.2023.215031_b0935) 2018; 5
Hu (10.1016/j.ccr.2023.215031_b1250) 2021; 13
Ju (10.1016/j.ccr.2023.215031_b0620) 2021; 551
Wang (10.1016/j.ccr.2023.215031_b0860) 2019; 9
Mu (10.1016/j.ccr.2023.215031_b0010) 2019; 12
Dong (10.1016/j.ccr.2023.215031_b0230) 2020; 2
Huang (10.1016/j.ccr.2023.215031_b0205) 2020; 5
Wang (10.1016/j.ccr.2023.215031_b0710) 2018; 4
Ke (10.1016/j.ccr.2023.215031_b1365) 2019; 31
Ke (10.1016/j.ccr.2023.215031_b0435) 2019; 10
Wang (10.1016/j.ccr.2023.215031_b0750) 2021; 60
Yue (10.1016/j.ccr.2023.215031_b0825) 2020; 2
Ava (10.1016/j.ccr.2023.215031_b0385) 2019; 9
Zhang (10.1016/j.ccr.2023.215031_b1155) 2022; 61
Xiao (10.1016/j.ccr.2023.215031_b0370) 2019; 31
Protesescu (10.1016/j.ccr.2023.215031_b0420) 2016; 138
Guo (10.1016/j.ccr.2023.215031_b1080) 2022; 33
Cho (10.1016/j.ccr.2023.215031_b0125) 2015; 350
Bai (10.1016/j.ccr.2023.215031_b0115) 2016; 4
Wang (10.1016/j.ccr.2023.215031_b0485) 2019; 58
Martin (10.1016/j.ccr.2023.215031_b0035) 2015; 44
Liu (10.1016/j.ccr.2023.215031_b0565) 2021; 5
Azam (10.1016/j.ccr.2023.215031_b0320) 2018; 6
Loeb (10.1016/j.ccr.2023.215031_b1395) 2019; 53
Huang (10.1016/j.ccr.2023.215031_b0815) 2022; 46
Liu (10.1016/j.ccr.2023.215031_b1325) 2019; 243
Wan (10.1016/j.ccr.2023.215031_b1085) 2019; 358
Xu (10.1016/j.ccr.2023.215031_b1175) 2020; 11
Xu (10.1016/j.ccr.2023.215031_b0185) 2017; 139
Holzhey (10.1016/j.ccr.2023.215031_b0395) 2019; 29
Wang (10.1016/j.ccr.2023.215031_b0520) 2019; 141
Wang (10.1016/j.ccr.2023.215031_b0785) 2020; 268
Kumar (10.1016/j.ccr.2023.215031_b1020) 2021; 9
Xu (10.1016/j.ccr.2023.215031_b0925) 2018; 1
Ketavath (10.1016/j.ccr.2023.215031_b0215) 2022; 10
Cardenas-Morcoso (10.1016/j.ccr.2023.215031_b0200) 2019; 10
Shaner (10.1016/j.ccr.2023.215031_b0720) 2016; 9
Kong (10.1016/j.ccr.2023.215031_b0625) 2018; 3
Yin (10.1016/j.ccr.2023.215031_b0850) 2021; 60
Saparov (10.1016/j.ccr.2023.215031_b0335) 2016; 116
Park (10.1016/j.ccr.2023.215031_b0180) 2016; 2
Ding (10.1016/j.ccr.2023.215031_b1185) 2021; 13
Das (10.1016/j.ccr.2023.215031_b1260) 2020; 267
Tang (10.1016/j.ccr.2023.215031_b0490) 2022; 429
Marzo (10.1016/j.ccr.2023.215031_b0085) 2018; 57
Chen (10.1016/j.ccr.2023.215031_b0835) 2020; 32
Hisatomi (10.1016/j.ccr.2023.215031_b0075) 2019; 2
Jiao (10.1016/j.ccr.2023.215031_b0480) 2020; 49
Zhou (10.1016/j.ccr.2023.215031_b0810) 2021; 12
Yue (10.1016/j.ccr.2023.215031_b0315) 2017; 10
Cheng (10.1016/j.ccr.2023.215031_b0080) 2022; 4
Kreft (10.1016/j.ccr.2023.215031_b0055) 2020; 2
Yu (10.1016/j.ccr.2023.215031_b0550) 2013; 15
Kim (10.1016/j.ccr.2023.215031_b0100) 2020; 368
Niu (10.1016/j.ccr.2023.215031_b0390) 2015; 3
Miyasaka (10.1016/j.ccr.2023.215031_b0375) 2019; 10
Bresolin (10.1016/j.ccr.2023.215031_b1295) 2020; 10
Klejna (10.1016/j.ccr.2023.215031_b1380) 2020; 415
Lewis (10.1016/j.ccr.2023.215031_b0015) 2007; 315
Wang (10.1016/j.ccr.2023.215031_b0700) 2018; 3
Shu (10.1016/j.ccr.2023.215031_b1125) 2021; 182
Li (10.1016/j.ccr.2023.215031_b1115) 2021; 419
Pu (10.1016/j.ccr.2023.215031_b0195) 2017; 5
Pan (10.1016/j.ccr.2023.215031_b1090) 2019; 10
Raza (10.1016/j.ccr.2023.215031_b0225) 2021; 2
Wang (10.1016/j.ccr.2023.215031_b0235) 2022; 7
Fu (10.1016/j.ccr.2023.215031_b0070) 2018; 8
Zhang (10.1016/j.ccr.2023.215031_b0220) 2021; 12
Gao (10.1016/j.ccr.2023.215031_b0730) 2015; 6
Chen (10.1016/j.ccr.2023.215031_b0250) 2022
Li (10.1016/j.ccr.2023.215031_b0665) 2020; 2
Pellegrino (10.1016/j.ccr.2023.215031_b1290) 2021; 4
Chen (10.1016/j.ccr.2023.215031_b0675) 2022; 310
Wang (10.1016/j.ccr.2023.215031_b0030) 2015; 44
Liu (10.1016/j.ccr.2023.215031_b0140) 2017; 11
Zhao (10.1016/j.ccr.2023.215031_b0795) 2020; 7
Yuan (10.1016/j.ccr.2023.215031_b0210) 2020; 5
Zhang (10.1016/j.ccr.2023.215031_b0740) 2017; 10
Hu (10.1016/j.ccr.2023.215031_b1000) 2021; 481
Wang (10.1016/j.ccr.2023.215031_b0560) 2021; 282
Gong (10.1016/j.ccr.2023.215031_b1010) 2021; 545
Cheng (10.1016/j.ccr.2023.215031_b1130) 2020; 10
Zhang (10.1016/j.ccr.2023.215031_b0690) 2019; 58
Eperon (10.1016/j.ccr.2023.215031_b0405) 2014; 7
Shi (10.1016/j.ccr.2023.215031_b0790) 2020; 32
Que (10.1016/j.ccr.2023.215031_b1135) 2022; 610
Yin (10.1016/j.ccr.2023.215031_b0325) 2015; 3
Xu (10.1016/j.ccr.2023.215031_b1065) 2021; 27
Cho (10.1016/j.ccr.2023.215031_b0425) 2018; 19
He Zhao (10.1016/j.ccr.2023.215031_b0870) 2021; 14
Gu (10.1016/j.ccr.2023.215031_b0110) 2016; 10
Zhang (10.1016/j.ccr.2023.215031_b0655) 2019; 58
Kumar (10.1016/j.ccr.2023.215031_b0990) 2020; 3
Xie (10.1016/j.ccr.2023.215031_b1280) 2022; 5
Xing (10.1016/j.ccr.2023.215031_b0155) 2013; 342
Gao (10.1016/j.ccr.2023.215031_b0190) 2017; 9
Dong (10.1016/j.ccr.2023.215031_b0945) 2022; 65
Armenise (10.1016/j.ccr.2023.215031_b0330) 2021; 11
Feng (10.1016/j.ccr.2023.215031_b1255) 2019; 7
Singh (10.1016/j.ccr.2023.215031_b1385) 2020; 208
Li (10.1016/j.ccr.2023.215031_b0450) 2016; 26
Wu (10.1016/j.ccr.2023.215031_b0770) 2018; 8
Hong (10.1016/j.ccr.2023.215031_b0615) 2019; 492
Xu (10.1016/j.ccr.2023.215031_b0590) 2009; 21
Ito (10.1016/j.ccr.2023.215031_b0400) 2014; 118
Schünemann (10.1016/j.ccr.2023.215031_b1265) 2018; 2018
Li (10.1016/j.ccr.2023.215031_b0660) 2020; 2
Li (10.1016/j.ccr.2023.215031_b0780) 2019; 259
Zhang (10.1016/j.ccr.2023.215031_b0820) 2022; 47
Sun (10.1016/j.ccr.2023.215031_b1275) 2021; 28
Xu (10.1016/j.ccr.2023.215031_b0540) 2020; 6
Wu (10.1016/j.ccr.2023.215031_b0475) 2021; 5
Wang (10.1016/j.ccr.2023.215031_b1105) 2021; 416
Zhang (10.1016/j.ccr.2023.215031_b0050) 2016; 45
Mu (10.1016/j.ccr.2023.215031_b0570) 2021; 13
Tasleem (10.1016/j.ccr.2023.215031_b0275) 2020; 132
Wang (10.1016/j.ccr.2023.215031_b0880) 2015; 162
Nourozieh (10.1016/j.ccr.2023.215031_b0915) 2013; 58
Sun (10.1016/j.ccr.2023.215031_b0640) 2022; 61
Li (10.1016/j.ccr.2023.215031_b1300) 2021; 596
Wang (10.1016/j.ccr.2023.215031_b1070) 2021; 5
Zhang (10.1016/j.ccr.2023.215031_b1180) 2021; 4
Xu (10.1016/j.ccr.2023.215031_b0350) 1992; 65
Zhang (10.1016/j.ccr.2023.215031_b0360) 2019; 58
Bian (10.1016/j.ccr.2023.215031_b0535) 2016; 9
Liao (10.1016/j.ccr.2023.215031_b0930) 2021; 53
Shyamal (10.1016/j.ccr.2023.215031_b0965) 2019; 10
Li (10.1016/j.ccr.2023.215031_b0875) 2021; 5
Park (10.1016/j.ccr.2023.215031_b1400) 2021; 12
Mourdikoudis (10.1016/j.ccr.2023.215031_b0585) 2013; 25
Guo (10.1016/j.ccr.2023.215031_b0830) 2019; 7
Romani (10.1016/j.ccr.2023.215031_b0760) 2021; 60
Ma (10.1016/j.ccr.2023.215031_b1375) 2022; 9
Maksym (10.1016/j.ccr.2023.215031_b0130) 2017; 358
Ren (10.1016/j.ccr.2023.215031_b0280) 2022; 10
Li (10.1016/j.ccr.2023.215031_b1235) 2021; 3
Liang (10.1016/j.ccr.2023.215031_b1350) 2022; 12
Zheng (10.1016/j.ccr.2023.215031_b0410) 2016; 1
Narayanam (10.1016/j.ccr.2023.215031_b0090) 2011; 40
Han (10.1016/j.ccr.2023.215031_b0505) 2019; 10
Kulbak (10.1016/j.ccr.2023.215031_b0430) 2016; 7
Zhang (10.1016/j.ccr.2023.215031_b1150) 2022; 435
Hu (10.1016/j.ccr.2023.215031_b1355) 2021; 3
Luo (10.1016/j.ccr.2023.215031_b0300) 2021; 3
Liang (10.1016/j.ccr.2023.215031_b0285) 2020; 16
Tang (10.1016/j.ccr.2023.215031_b0525) 2020; 30
Hang (10.1016/j.ccr.2023.215031_b0240) 2022; 6
Li (10.1016/j.ccr.2023.215031_b0515) 2022; 16
Meng (10.1016/j.ccr.2023.215031_b1225) 2021; 12
References_xml – volume: 60
  start-page: 22693
  year: 2021
  end-page: 22699
  ident: b0850
  article-title: Controlling photoluminescence and photocatalysis activities in lead-free Cs
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 3281
  year: 2020
  end-page: 3284
  ident: b0865
  article-title: A noble-metal-free MoS
  publication-title: Chem. Commun.
– volume: 113
  start-page: 11694
  year: 2016
  end-page: 11702
  ident: b0165
  article-title: Metal halide perovskite light emitters
  publication-title: Proc. Natl. Acad. Sci.
– volume: 58
  start-page: 11752
  year: 2019
  end-page: 11756
  ident: b0655
  article-title: Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 315
  start-page: 798
  year: 2007
  end-page: 801
  ident: b0015
  article-title: Toward cost-effective solar energy use
  publication-title: Science
– volume: 13
  year: 2017
  ident: b0575
  article-title: Multichannel charge transfer and mechanistic insight in metal decorated 2D–2D Bi
  publication-title: Small
– volume: 2
  start-page: 509
  year: 2018
  end-page: 520
  ident: b1405
  article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation
  publication-title: Joule
– volume: 5
  start-page: 2100154
  year: 2021
  ident: b1070
  article-title: Surface defect engineering of CsPbBr
  publication-title: Sol. RRL
– volume: 53
  start-page: 309
  year: 2021
  end-page: 315
  ident: b0930
  article-title: Plasmonic CsPbBr
  publication-title: J. Energy Chem.
– volume: 899
  year: 2022
  ident: b1030
  article-title: Multi-dimensional collaborations boost lead halide perovskite driven superior and long-period CO
  publication-title: J. Alloys Compd.
– volume: 15
  start-page: 16883
  year: 2013
  end-page: 16890
  ident: b0550
  article-title: Enhanced photocatalytic performance of direct Z-scheme g-C
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54
  start-page: 13971
  year: 2015
  end-page: 13974
  ident: b0465
  article-title: Single unit cell bismuth tungstate layers realizing robust solar CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 1092
  year: 2016
  end-page: 1105
  ident: b0045
  article-title: Solar energy for future world: - A review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 16
  start-page: 3332
  year: 2022
  end-page: 3340
  ident: b0515
  article-title: ZnSe nanorods-CsSnCl
  publication-title: ACS Nano
– volume: 60
  start-page: 7376
  year: 2021
  end-page: 7381
  ident: b0750
  article-title: Mechanistic understanding of efficient photocatalytic H
  publication-title: Angew. Chem. Int. Ed.
– volume: 415
  year: 2020
  ident: b1380
  article-title: Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 188
  year: 2019
  ident: b0385
  article-title: A Review: Thermal stability of methylammonium lead halide based perovskite solar cells
  publication-title: Appl. Sci.
– volume: 6
  start-page: 2101058
  year: 2022
  ident: b0240
  article-title: Tailoring inorganic halide perovskite photocatalysts toward carbon dioxide reduction
  publication-title: Sol. RRL
– volume: 132
  year: 2020
  ident: b0275
  article-title: Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production
  publication-title: Renewable Sustainable Energy Rev.
– volume: 7
  start-page: 167
  year: 2016
  end-page: 172
  ident: b0430
  article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 31
  start-page: e1803792
  year: 2019
  ident: b0370
  article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1097
  year: 2016
  end-page: 1108
  ident: b0495
  article-title: Engineering coexposed {001} and {101} facets in oxygen-deficient TiO
  publication-title: ACS Catal.
– volume: 12
  start-page: 31477
  year: 2020
  end-page: 31485
  ident: b0555
  article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 78
  year: 2020
  ident: b0610
  article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO
  publication-title: Nano Energy
– volume: 25
  start-page: 1465
  year: 2013
  end-page: 1476
  ident: b0585
  article-title: Oleylamine in nanoparticle synthesis
  publication-title: Chem. Mater.
– volume: 430
  year: 2022
  ident: b1025
  article-title: An in-situ spectroscopic study on the photochemical CO
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 1409
  year: 2021
  end-page: 1418
  ident: b1345
  article-title: Effect of surface ligands in perovskite nanocrystals: extending in and reaching out
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 965
  year: 2019
  ident: b0435
  article-title: Prospects for low-toxicity lead-free perovskite solar cells
  publication-title: Nat. Commun.
– volume: 26
  start-page: 2435
  year: 2016
  end-page: 2445
  ident: b0450
  article-title: CsPbX
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 53
  year: 2018
  end-page: 60
  ident: b0425
  article-title: Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films
  publication-title: J. Inf. Disp.
– volume: 30
  start-page: 2006919
  year: 2020
  ident: b0525
  article-title: In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution
  publication-title: Adv. Funct. Mater.
– volume: 182
  start-page: 454
  year: 2021
  end-page: 462
  ident: b1125
  article-title: CsPbBr
  publication-title: Carbon
– volume: 141
  start-page: 4209
  year: 2019
  end-page: 4213
  ident: b0470
  article-title: Convincing synthesis of atomically thin, single-crystalline InVO
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2020
  ident: b0975
  article-title: Mn-doped CsPb(Br/Cl)
  publication-title: Nanotechnology
– volume: 2
  year: 2020
  ident: b0665
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
– volume: 9
  start-page: 12179
  year: 2021
  end-page: 12187
  ident: b1020
  article-title: Mechanochemically synthesized Pb-free halide perovskite-based Cs
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 5951
  year: 2016
  end-page: 5984
  ident: b0050
  article-title: Inorganic perovskite photocatalysts for solar energy utilization
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 201603885
  year: 2017
  ident: b0580
  article-title: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr
  publication-title: Adv. Mater.
– volume: 282
  year: 2021
  ident: b1100
  article-title: Colloidal formamidinium lead bromide quantum dots for photocatalytic CO
  publication-title: Mater. Lett.
– volume: 11
  start-page: 10373
  year: 2017
  end-page: 10383
  ident: b0140
  article-title: Highly luminescent phase-stable CsPbI
  publication-title: ACS Nano
– volume: 6
  start-page: 1543
  year: 2020
  end-page: 1559
  ident: b0540
  article-title: S-scheme heterojunction photocatalyst
  publication-title: Chem
– volume: 545
  year: 2021
  ident: b1010
  article-title: Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 50813
  year: 2021
  end-page: 50824
  ident: b1275
  article-title: Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution
  publication-title: Environ. Sci. Pollut. Res.
– volume: 12
  start-page: 27578
  year: 2020
  end-page: 27586
  ident: b1315
  article-title: Growing poly(norepinephrine) layer over individual nanoparticles to boost hybrid perovskite photocatalysts
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 597
  year: 2021
  end-page: 604
  ident: b0725
  article-title: Fabricating MAPbI
  publication-title: Nano Lett.
– volume: 9
  start-page: 411
  year: 2016
  end-page: 433
  ident: b0095
  article-title: Photoinduced charge transfer processes in solar photocatalysis based on modified TiO
  publication-title: Energy Environ. Sci.
– volume: 209
  start-page: 476
  year: 2017
  end-page: 482
  ident: b0680
  article-title: Visible-light reduction CO
  publication-title: Appl. Catal., B
– volume: 139
  start-page: 5660
  year: 2017
  end-page: 5663
  ident: b0185
  article-title: A CsPbBr
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2305
  year: 2021
  end-page: 2309
  ident: b1065
  article-title: Glycine-functionalized CsPbBr
  publication-title: Chem. Eur. J.
– volume: 29
  start-page: 10
  year: 2019
  end-page: 19
  ident: b0395
  article-title: A chain is as strong as its weakest link-Stability study of MAPbI
  publication-title: Mater. Today
– volume: 10
  start-page: 14923
  year: 2022
  end-page: 14932
  ident: b0295
  article-title: Water-driven boost in the visible light photocatalytic performance of Cs
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 3611
  year: 2021
  end-page: 3618
  ident: b0760
  article-title: Water-stable DMASnBr
  publication-title: Angew. Chem. Int. Ed.
– volume: 414
  year: 2021
  ident: b1110
  article-title: Fullerene modified CsPbBr
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1107
  year: 2020
  end-page: 1123
  ident: b0205
  article-title: Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: e2001344
  year: 2020
  ident: b0835
  article-title: Lead-free halide perovskite Cs
  publication-title: Adv. Mater.
– volume: 16
  start-page: e1903398
  year: 2020
  ident: b0285
  article-title: Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications
  publication-title: Small
– volume: 10
  start-page: 5413
  year: 2016
  end-page: 5418
  ident: b0110
  article-title: Flexible hybrid organic-inorganic perovskite memory
  publication-title: ACS Nano
– volume: 9
  start-page: 1901801
  year: 2019
  ident: b0860
  article-title: Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1423
  year: 2022
  end-page: 1432
  ident: b1280
  article-title: Synthesis of CsPbBr
  publication-title: Advanced Composites and Hybrid Materials
– volume: 81
  start-page: 1879
  year: 2018
  end-page: 1886
  ident: b0020
  article-title: Forecasting the impact of renewable energies in competition with non-renewable sources
  publication-title: Renewable Sustainable Energy Rev.
– volume: 1
  start-page: 1014
  year: 2016
  end-page: 1020
  ident: b0410
  article-title: Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
  publication-title: ACS Energy Lett.
– volume: 227
  start-page: 218
  year: 2018
  end-page: 228
  ident: b0595
  article-title: Noble-metal-free Ni
  publication-title: Appl. Catal., B
– volume: 12
  start-page: 11842
  year: 2020
  end-page: 11846
  ident: b0995
  article-title: Synthesis of monodisperse water-stable surface Pb-rich CsPbCl
  publication-title: Nanoscale
– volume: 58
  start-page: 15596
  year: 2019
  end-page: 15618
  ident: b0360
  article-title: All-inorganic CsPbX
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 766
  year: 2020
  end-page: 780
  ident: b0960
  article-title: All-solid-state Z-scheme α-Fe
  publication-title: Chem
– volume: 9
  start-page: 2723
  year: 2016
  end-page: 2735
  ident: b0535
  article-title: Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications
  publication-title: ChemSusChem
– volume: 4
  start-page: 5913
  year: 2021
  end-page: 5917
  ident: b1120
  article-title: Morphology regulation and photocatalytic CO
  publication-title: ACS Appl. Energy Mater.
– volume: 397
  start-page: 27
  year: 2021
  end-page: 35
  ident: b1335
  article-title: High visible-light photocatalytic performance of stable lead-free Cs
  publication-title: J. Catal.
– volume: 49
  start-page: 6592
  year: 2020
  end-page: 6604
  ident: b0480
  article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 3608
  year: 2020
  end-page: 3614
  ident: b0500
  article-title: Facets and defects in perovskite nanocrystals for photocatalytic CO
  publication-title: J. Phys. Chem. Lett.
– volume: 58
  start-page: 9491
  year: 2019
  end-page: 9495
  ident: b0630
  article-title: Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 249
  year: 2020
  ident: b0290
  article-title: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system
  publication-title: J. Cleaner Prod.
– volume: 9
  year: 2021
  ident: b0265
  article-title: Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO
  publication-title: J. Environ. Chem. Eng.
– volume: 10
  start-page: 7965
  year: 2019
  end-page: 7969
  ident: b0965
  article-title: Doping iron in CsPbBr
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 1131
  year: 2021
  end-page: 1139
  ident: b1060
  article-title: Coupling CsPbBr
  publication-title: ChemSusChem
– volume: 7
  start-page: 5152
  year: 2019
  end-page: 5156
  ident: b1255
  article-title: Highly efficient photocatalytic degradation performance of CsPb(Br
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 8292
  year: 2021
  end-page: 8301
  ident: b1400
  article-title: Metal halide perovskites for solar fuel production and photoreactions
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 1116
  year: 2021
  end-page: 1125
  ident: b0870
  article-title: Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution
  publication-title: Nano Res.
– volume: 10
  start-page: 630
  year: 2019
  end-page: 636
  ident: b0200
  article-title: Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots
  publication-title: J. Phys. Chem. Lett.
– volume: 277
  year: 2020
  ident: b0970
  article-title: Immobilizing perovskite CsPbBr
  publication-title: Appl. Catal., B
– volume: 358
  start-page: 745
  year: 2017
  end-page: 750
  ident: b0340
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
– volume: 4
  start-page: 1900365
  year: 2019
  ident: b0900
  article-title: Immobilizing Re(CO)
  publication-title: Sol. RRL
– volume: 2
  start-page: 387
  year: 2019
  end-page: 399
  ident: b0075
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat. Catal.
– volume: 4
  start-page: 3898
  year: 2016
  end-page: 3904
  ident: b0115
  article-title: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 3514
  year: 2019
  end-page: 3522
  ident: b0505
  article-title: Efficient photoredox conversion of alcohol to aldehyde and H
  publication-title: Chem. Sci.
– volume: 65
  start-page: 2264
  year: 1992
  end-page: 2266
  ident: b0350
  article-title: Molecular motions in solid CD
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 2
  year: 2020
  ident: b0660
  article-title: MOF-based materials for photo- and electrocatalytic CO
  publication-title: EnergyChem
– volume: 369
  start-page: 201
  year: 2019
  end-page: 208
  ident: b0980
  article-title: Enhanced CO
  publication-title: J. Catal.
– volume: 7
  start-page: 3061
  year: 2014
  end-page: 3068
  ident: b1370
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 511
  year: 2012
  end-page: 518
  ident: b0005
  article-title: Artificial photosynthesis for solar water-splitting
  publication-title: Nat. Photonics
– volume: 10
  start-page: 407
  year: 2022
  end-page: 429
  ident: b0280
  article-title: Metal halide perovskites for photocatalysis applications
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 2363
  year: 2020
  end-page: 2385
  ident: b0440
  article-title: Lead-free perovskite solar cells enabled by hetero-valent substitutes
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 25438
  year: 2017
  end-page: 25449
  ident: b0195
  article-title: Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: e1601694
  year: 2017
  ident: b0060
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
– volume: 47
  start-page: 8829
  year: 2022
  end-page: 8840
  ident: b0820
  article-title: Efficient and long-term photocatalytic H
  publication-title: Int. J. Hydrogen Energy
– volume: 2
  year: 2020
  ident: b0230
  article-title: Halide perovskite materials as light harvesters for solar energy conversion
  publication-title: EnergyChem
– volume: 145
  year: 2021
  ident: b0245
  article-title: Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction
  publication-title: Renewable Sustainable Energy Rev.
– volume: 16
  start-page: e2002140
  year: 2020
  ident: b1055
  article-title: Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO
  publication-title: Small
– volume: 138
  start-page: 14202
  year: 2016
  end-page: 14205
  ident: b0420
  article-title: Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence
  publication-title: J. Am. Chem. Soc.
– volume: 162
  start-page: 494
  year: 2015
  end-page: 500
  ident: b0880
  article-title: Photocatalytic CO
  publication-title: Appl. Catal., B
– volume: 350
  start-page: 1222
  year: 2015
  end-page: 1225
  ident: b0125
  article-title: Overcoming the electroluminescence efficiency limitations ofperovskite light-emitting diodes
  publication-title: Science
– volume: 3
  start-page: 935
  year: 2020
  end-page: 949
  ident: b0800
  article-title: Perovskite microcrystals with intercalated monolayer MoS
  publication-title: Matter
– volume: 12
  start-page: 5864
  year: 2021
  end-page: 5870
  ident: b0220
  article-title: Artificial photosynthesis over metal halide perovskites: achievements, challenges, and prospects
  publication-title: J. Phys. Chem. Lett.
– volume: 61
  start-page: 6861
  year: 2022
  end-page: 6868
  ident: b0650
  article-title: Induction of chirality in boron imidazolate frameworks: The structure-directing effects of substituents
  publication-title: Inorg. Chem.
– volume: 3
  year: 2021
  ident: b1235
  article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis
  publication-title: EnergyChem
– volume: 3
  year: 2021
  ident: b1355
  article-title: Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts
  publication-title: EnergyChem
– volume: 9
  start-page: 4533
  year: 2015
  end-page: 4542
  ident: b0170
  article-title: Brightly luminescent and color tunable colloidal CH
  publication-title: ACS Nano
– volume: 310
  year: 2022
  ident: b1160
  article-title: Space-confined growth of lead-free halide perovskite Cs
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 2000691
  year: 2021
  ident: b0565
  article-title: In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs
  publication-title: Sol. RRL
– volume: 9
  start-page: 2200058
  year: 2022
  ident: b0255
  article-title: Metal halide perovskite heterojunction for photocatalytic hydrogen generation: progress and future opportunities
  publication-title: Adv. Mater. Interfaces
– volume: 143
  start-page: 14895
  year: 2021
  end-page: 14906
  ident: b0445
  article-title: Chemically spiraling CsPbBr
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1620
  year: 2021
  end-page: 1627
  ident: b0895
  article-title: Synthesis of lead-free Cs
  publication-title: Nano Lett.
– volume: 284
  year: 2021
  ident: b1215
  article-title: Mechanisms behind photocatalytic CO
  publication-title: Appl. Catal., B
– volume: 116
  start-page: 4558
  year: 2016
  end-page: 4596
  ident: b0335
  article-title: Organic-inorganic perovskites: Structural versatility for functional materials design
  publication-title: Chem. Rev.
– volume: 15
  start-page: 1271
  year: 2022
  end-page: 1281
  ident: b0840
  article-title: An organometal halide perovskite supported Pt single-atom photocatalyst for H
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 7395
  year: 2022
  end-page: 7402
  ident: b0815
  article-title: NiCoP modified lead-free double perovskite Cs
  publication-title: New J. Chem.
– volume: 118
  start-page: 16995
  year: 2014
  end-page: 17000
  ident: b0400
  article-title: Effects of surface blocking layer of Sb
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 665
  year: 2018
  end-page: 674
  ident: b0705
  article-title: PtI
  publication-title: Nano Energy
– volume: 2
  year: 2020
  ident: b0105
  article-title: Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation
  publication-title: EnergyChem
– volume: 23
  start-page: 9481
  year: 2017
  end-page: 9485
  ident: b0455
  article-title: Inorganic colloidal perovskite quantum dots for robust solar CO
  publication-title: Chem. Eur. J.
– volume: 58
  start-page: 1236
  year: 2013
  end-page: 1243
  ident: b0915
  article-title: Equilibrium properties of (carbon dioxide +
  publication-title: J. Chem. Eng. Data
– volume: 347
  start-page: 967
  year: 2015
  end-page: 970
  ident: b0160
  article-title: Electron-hole diffusion lengths >175 μm in solution-grown CH
  publication-title: Science
– volume: 1
  start-page: 5083
  year: 2018
  end-page: 5089
  ident: b0925
  article-title: Enhanced solar-driven gaseous CO
  publication-title: ACS Appl. Energy Mater.
– volume: 358
  start-page: 1287
  year: 2019
  end-page: 1295
  ident: b1085
  article-title: Perovskite-type CsPbBr
  publication-title: Chem. Eng. J.
– year: 2022
  ident: b0250
  article-title: Stabilisation and performance enhancement strategies for halide perovskite photocatalysts
  publication-title: Adv. Mater.
– volume: 3
  start-page: 8926
  year: 2015
  end-page: 8942
  ident: b0325
  article-title: Halide perovskite materials for solar cells: a theoretical review
  publication-title: J. Mater. Chem. A
– volume: 380
  year: 2019
  ident: b0530
  article-title: CsPbBrCl
  publication-title: J. Hazard. Mater
– volume: 5
  start-page: 14605
  year: 2022
  end-page: 14637
  ident: b0270
  article-title: A review on halide perovskite-based photocatalysts: Key factors and challenges
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 4769
  year: 2019
  end-page: 4774
  ident: b0010
  article-title: Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO
  publication-title: ChemSusChem
– volume: 10
  start-page: 1902500
  year: 2019
  ident: b0375
  article-title: Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free?
  publication-title: Adv. Energy Mater.
– volume: 481
  year: 2021
  ident: b1000
  article-title: Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO
  publication-title: J. Power Sources
– volume: 141
  start-page: 20434
  year: 2019
  end-page: 20442
  ident: b1220
  article-title: Mechanism of photocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 65
  start-page: 1550
  year: 2022
  end-page: 1559
  ident: b0945
  article-title: Construction of a ternary WO
  publication-title: Sci. China Mater.
– volume: 6
  start-page: 13725
  year: 2018
  end-page: 13734
  ident: b0320
  article-title: Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 5982
  year: 2015
  ident: b0730
  article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2987
  year: 2020
  end-page: 2991
  ident: b0910
  article-title: Synthesis of lead-free Cs
  publication-title: Nanoscale
– volume: 12
  start-page: 4216
  year: 2022
  end-page: 4226
  ident: b1350
  article-title: Atomically precise metal nanocluster-mediated photocatalysis
  publication-title: ACS Catal.
– volume: 2
  start-page: 16185
  year: 2016
  ident: b0180
  article-title: Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution
  publication-title: Nat. Energy
– volume: 13
  start-page: 22314
  year: 2021
  end-page: 22322
  ident: b0570
  article-title: Direct Z-scheme heterojunction of ligand-free FAPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 4300
  year: 2017
  end-page: 4307
  ident: b1270
  article-title: High-quality (CH
  publication-title: J. Phys. Chem. Lett.
– volume: 368
  start-page: 155
  year: 2020
  end-page: 160
  ident: b0100
  article-title: Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
  publication-title: Science
– volume: 39
  year: 2021
  ident: b0905
  article-title: Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites
  publication-title: Nano Today
– volume: 7
  start-page: 2719
  year: 2020
  end-page: 2725
  ident: b0795
  article-title: Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 10037
  year: 2021
  end-page: 10046
  ident: b0805
  article-title: In situ synthesis of lead-free halide perovskite Cs
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 2937
  year: 2019
  end-page: 2947
  ident: b1395
  article-title: The technology horizon for photocatalytic water treatment: sunrise or sunset?
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 3376
  year: 2022
  end-page: 3386
  ident: b1390
  article-title: Solar panel technologies for light-to-chemical conversion
  publication-title: Acc. Chem. Res.
– volume: 67
  year: 2020
  ident: b0365
  article-title: Stability of all-inorganic perovskite solar cells
  publication-title: Nano Energy
– volume: 434
  year: 2022
  ident: b1035
  article-title: In-situ fabrication of Cu doped dual-phase CsPbBr
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: e1803230
  year: 2019
  ident: b1365
  article-title: “Unleaded” perovskites: Status quo and future prospects of tin-based perovskite solar cells
  publication-title: Adv. Mater.
– volume: 10
  start-page: 115
  year: 2020
  ident: b1310
  article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications
  publication-title: Nanomaterials
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  ident: b0310
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2915
  year: 2022
  end-page: 2926
  ident: b1040
  article-title: Frustrated lewis pair sites boosting CO
  publication-title: ACS Catal.
– volume: 245
  start-page: 522
  year: 2019
  end-page: 527
  ident: b0775
  article-title: Perovskite photocatalyst CsPbBr
  publication-title: Appl. Catal., B
– volume: 911
  year: 2022
  ident: b0305
  article-title: A brief review on metal halide perovskite photocatalysts: History, applications and prospects
  publication-title: J. Alloys Compd.
– volume: 208
  start-page: 296
  year: 2020
  end-page: 311
  ident: b1385
  article-title: Halide perovskite-based photocatalysis systems for solar-driven fuel generation
  publication-title: Solar Energy
– volume: 1
  year: 2019
  ident: b0670
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 61
  start-page: 3351
  year: 2022
  end-page: 3360
  ident: b1155
  article-title: Step-scheme photocatalyst of CsPbBr
  publication-title: Inorg. Chem.
– volume: 2018
  start-page: 2350
  year: 2018
  end-page: 2355
  ident: b1265
  article-title: An inverse opal structured halide perovskite photocatalyst
  publication-title: Eur. J. Inorg. Chem.
– volume: 9
  start-page: 8144
  year: 2019
  end-page: 8152
  ident: b0600
  article-title: Ni
  publication-title: ACS Catal.
– volume: 30
  start-page: 2004293
  year: 2020
  ident: b0940
  article-title: Z-scheme 2D/2D heterojunction of CsPbBr
  publication-title: Adv. Funct. Mater.
– volume: 492
  start-page: 449
  year: 2019
  end-page: 454
  ident: b0615
  article-title: Highly sensitive and low detection limit of resistive NO
  publication-title: Appl. Surf. Sci.
– volume: 48
  start-page: 14115
  year: 2019
  end-page: 14121
  ident: b0985
  article-title: All-inorganic perovskite/graphitic carbon nitride composites for CO
  publication-title: Dalton Trans.
– volume: 58
  start-page: 7263
  year: 2019
  end-page: 7267
  ident: b0690
  article-title: Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2354
  year: 2016
  end-page: 2371
  ident: b0720
  article-title: A comparative technoeconomic analysis of renewable hydrogen production using solar energy
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 13762
  year: 2019
  end-page: 13769
  ident: b0955
  article-title: Hierarchical CsPbBr
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4244
  year: 2015
  end-page: 4251
  ident: b0605
  article-title: Graphene-based photocatalysts for CO
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 4412
  year: 2021
  ident: b0810
  article-title: Single-atom Pt-I
  publication-title: Nat. Commun.
– volume: 623
  start-page: 974
  year: 2022
  end-page: 984
  ident: b0635
  article-title: Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis
  publication-title: J. Colloid Interface Sci.
– volume: 268
  year: 2020
  ident: b0785
  article-title: Lead-free double perovskite Cs
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 4509
  year: 2020
  end-page: 4522
  ident: b0990
  article-title: All-inorganic CsPbBr
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  year: 2022
  ident: b1230
  article-title: Application of MOFs and COFs for photocatalysis in CO
  publication-title: EnergyChem
– volume: 5
  start-page: 2000419
  year: 2020
  ident: b0210
  article-title: Perovskite nanocrystals-based heterostructures: Synthesis strategies, interfacial effects, and photocatalytic applications
  publication-title: Sol. RRL
– volume: 3
  start-page: 2656
  year: 2018
  end-page: 2662
  ident: b0625
  article-title: Core@shell CsPbBr
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 1352
  year: 2020
  ident: b1130
  article-title: Efficient photocatalytic CO
  publication-title: Catalysts
– volume: 21
  start-page: 1643
  year: 2021
  end-page: 1650
  ident: b0845
  article-title: A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis
  publication-title: Nano Lett.
– volume: 13
  start-page: 51161
  year: 2021
  end-page: 51173
  ident: b1185
  article-title: Assembling an affinal 0D CsPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1845
  year: 2021
  end-page: 1852
  ident: b1075
  article-title: Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO
  publication-title: Nano Res.
– volume: 46a
  start-page: 240
  year: 1991
  end-page: 246
  ident: b0345
  article-title: Molecular motions and phase transitions in solid CH
  publication-title: Naturforsch. A
– volume: 15
  start-page: 5953
  year: 2022
  end-page: 5961
  ident: b1195
  article-title: Layered double hydroxide nanosheets activate CsPbBr
  publication-title: Nano Res.
– volume: 11
  start-page: 4613
  year: 2020
  ident: b1175
  article-title: Unique S-scheme heterojunctions in self-assembled TiO
  publication-title: Nat. Commun.
– volume: 51
  start-page: 8036
  year: 2022
  end-page: 8045
  ident: b0920
  article-title: Monochromatic light-enhanced photocatalytic CO
  publication-title: Dalton Trans.
– volume: 4
  start-page: 2249
  year: 2020
  end-page: 2255
  ident: b0950
  article-title: Solvent selection and Pt decoration towards enhanced photocatalytic CO
  publication-title: Energy Fuels
– volume: 259
  year: 2019
  ident: b0780
  article-title: Few-layer black phosphorus-on-MAPbI
  publication-title: Appl. Catal., B
– volume: 9
  start-page: e2202408
  year: 2022
  ident: b1375
  article-title: Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu
  publication-title: Adv. Sci.
– volume: 12
  start-page: 50464
  year: 2020
  end-page: 50471
  ident: b0645
  article-title: In situ coating CsPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 207
  year: 2021
  end-page: 213
  ident: b0875
  article-title: Multidimensional perovskite for visible light driven hydrogen production in aqueous HI solution
  publication-title: ACS Appl. Energy Mater.
– volume: 30
  start-page: 2001478
  year: 2020
  ident: b0855
  article-title: In situ photosynthesis of an MAPbI
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 34342
  year: 2019
  end-page: 34348
  ident: b1045
  article-title: Engineering a CsPbBr
  publication-title: RSC Adv.
– volume: 44
  start-page: 7808
  year: 2015
  end-page: 7828
  ident: b0035
  article-title: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1175
  year: 2022
  end-page: 1182
  ident: b1140
  article-title: Composite of CsPbBr
  publication-title: ACS Appl. Energy Mater.
– volume: 40
  start-page: 102
  year: 2011
  end-page: 113
  ident: b0090
  article-title: Visible light photoredox catalysis: applications in organic synthesis
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1159
  year: 2018
  end-page: 1164
  ident: b0700
  article-title: Dynamic interaction between methylammonium lead iodide and TiO
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 40
  year: 2018
  end-page: 47
  ident: b0710
  article-title: Promoting photocatalytic H
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 7187
  year: 2021
  end-page: 7209
  ident: b0225
  article-title: Photocatalytic reduction of CO
  publication-title: Mater. Adv.
– volume: 13
  start-page: 6180
  year: 2021
  end-page: 6187
  ident: b1015
  article-title: Anchoring of formamidinium lead bromide quantum dots on Ti
  publication-title: ACS Appl. Mater. Interfaces
– volume: 446
  year: 2022
  ident: b1205
  article-title: Embedding Cs
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 10349
  year: 2018
  end-page: 10357
  ident: b0770
  article-title: Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH
  publication-title: ACS Catal.
– volume: 33
  start-page: 3039
  year: 2022
  end-page: 3042
  ident: b1080
  article-title: In-situ growth of PbI
  publication-title: Chin. Chem. Lett.
– volume: 10
  start-page: 59
  year: 1979
  end-page: 75
  ident: b0545
  article-title: Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors
  publication-title: J. Photochem.
– volume: 3
  start-page: 8970
  year: 2015
  end-page: 8980
  ident: b0390
  article-title: Review of recent progress in chemical stability of perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 1246
  year: 2018
  end-page: 1252
  ident: b0415
  article-title: Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform
  publication-title: Nano Lett.
– volume: 57
  start-page: 10034
  year: 2018
  end-page: 10072
  ident: b0085
  article-title: Visible-light photocatalysis: Does it make a difference in organic synthesis?
  publication-title: Angew. Chem. Int. Ed.
– volume: 429
  year: 2022
  ident: b0490
  article-title: Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1801015
  year: 2018
  ident: b0935
  article-title: Amorphous-TiO
  publication-title: Adv. Mater. Interfaces
– volume: 50
  start-page: 13692
  year: 2021
  end-page: 13729
  ident: b0040
  article-title: Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2095
  year: 2017
  end-page: 2102
  ident: b0740
  article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping
  publication-title: Energy Environ. Sci.
– volume: 458
  start-page: 1158
  year: 2009
  end-page: 1162
  ident: b0025
  article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C
  publication-title: Nature
– volume: 12
  start-page: 8763
  year: 2021
  end-page: 8769
  ident: b1225
  article-title: Facile fabrication of highly stable and wavelength-tunable tin based perovskite materials with enhanced quantum yield via the cation transformation reaction
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: e12079
  year: 2021
  ident: b0300
  article-title: Halide perovskite composites for photocatalysis: A mini review
  publication-title: EcoMat
– volume: 11
  start-page: 433
  year: 2021
  ident: b0330
  article-title: Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions
  publication-title: Nanomaterials
– volume: 31
  start-page: e1805337
  year: 2019
  ident: b0355
  article-title: Intrinsic instability of inorganic-organic hybrid halide perovskite materials
  publication-title: Adv. Mater.
– volume: 132
  start-page: 14385
  year: 2010
  end-page: 14387
  ident: b0460
  article-title: High-yield synthesis of ultralong and ultrathin Zn
  publication-title: J. Am. Chem. Soc.
– volume: 358
  start-page: 745
  year: 2017
  end-page: 750
  ident: b0130
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
– volume: 310
  year: 2022
  ident: b0675
  article-title: Synthesis of chiral boron imidazolate frameworks with second-order nonlinear optics
  publication-title: J. Solid State Chem.
– volume: 267
  year: 2020
  ident: b1260
  article-title: Ambient processed CsPbX
  publication-title: Mater. Lett.
– volume: 435
  year: 2022
  ident: b1150
  article-title: A novel S-scheme heterojunction of CsPbBr
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 4005
  year: 2020
  end-page: 4025
  ident: b0260
  article-title: Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis
  publication-title: ChemSusChem
– volume: 14
  start-page: 13103
  year: 2020
  end-page: 13114
  ident: b1005
  article-title: Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO
  publication-title: ACS Nano
– volume: 362
  start-page: 449
  year: 2018
  end-page: 453
  ident: b0685
  article-title: Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
  publication-title: Science
– volume: 10
  start-page: 2570
  year: 2017
  end-page: 2578
  ident: b0315
  article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 24495
  year: 2020
  end-page: 24503
  ident: b1095
  article-title: Incorporation of cesium lead halide perovskites into g-C
  publication-title: ACS Omega
– volume: 32
  start-page: 1517
  year: 2020
  end-page: 1525
  ident: b1050
  article-title: Boosting photocatalytic CO
  publication-title: Chem. Mater.
– volume: 9
  start-page: 12032
  year: 2017
  end-page: 12038
  ident: b0190
  article-title: Novel inorganic perovskite quantum dots for photocatalysis
  publication-title: Nanoscale
– volume: 551
  year: 2021
  ident: b0620
  article-title: CsPbBr
  publication-title: Appl. Surf. Sci.
– volume: 253
  start-page: 41
  year: 2019
  end-page: 48
  ident: b0715
  article-title: Stable hybrid perovskite MAPb(I
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 2100263
  year: 2021
  ident: b0475
  article-title: Two-dimensional metal halide perovskite nanosheets for efficient photocatalytic CO
  publication-title: Sol. RRL
– volume: 406
  year: 2021
  ident: b1330
  article-title: Amino-mediated anchoring of FAPbBr
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 16207
  year: 2017
  ident: b0135
  article-title: Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films
  publication-title: Nat. Energy
– volume: 29
  start-page: 1905683
  year: 2019
  ident: b0735
  article-title: Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation
  publication-title: Adv. Funct. Mater.
– volume: 2007423
  year: 2020
  ident: b1360
  article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 763
  year: 2020
  ident: b1295
  article-title: Pb-free Cs
  publication-title: Nanomaterials
– volume: 243
  start-page: 576
  year: 2019
  end-page: 584
  ident: b1325
  article-title: Integration of 3D macroscopic graphene aerogel with 0D–2D AgVO
  publication-title: Appl. Catal., B
– volume: 14
  start-page: e1703762
  year: 2018
  ident: b0890
  article-title: Synthesis and photocatalytic application of stable lead-free Cs
  publication-title: Small
– volume: 2201721
  year: 2022
  ident: b0765
  article-title: In-depth understanding of the effect of halogen-induced stable 2D bismuth-based perovskites for photocatalytic hydrogen evolution activity
  publication-title: Adv. Funct. Mater.
– volume: 2018
  start-page: 13570
  year: 2018
  end-page: 13574
  ident: b0885
  article-title: Amino-assisted anchoring of CsPbBr
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1021
  year: 2021
  end-page: 1027
  ident: b1340
  article-title: CsPbBr
  publication-title: ACS EST Engg
– volume: 282
  year: 2021
  ident: b0560
  article-title: Lead-free perovskite Cs
  publication-title: Appl. Catal., B
– volume: 419
  year: 2021
  ident: b1115
  article-title: Boosting charge separation and photocatalytic CO
  publication-title: Chem. Eng. J.
– volume: 483
  year: 2020
  ident: b0755
  article-title: CsPbBr
  publication-title: Mol. Catal.
– volume: 3
  start-page: e1700255
  year: 2017
  ident: b0150
  article-title: Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy
  publication-title: Sci. Adv.
– volume: 430
  year: 2022
  ident: b0510
  article-title: Fabrication of an FAPbBr
  publication-title: Chem. Eng. J.
– volume: 125
  start-page: 2382
  year: 2021
  end-page: 2392
  ident: b1245
  article-title: Potential application of perovskite glass material in photocatalysis field
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2043
  year: 2022
  end-page: 2059
  ident: b0235
  article-title: Rational design of metal halide perovskite nanocrystals for photocatalytic CO
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 982
  year: 2014
  end-page: 988
  ident: b0405
  article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: e202102295
  year: 2022
  ident: b1165
  article-title: In-situ generated CsPbBr
  publication-title: ChemSusChem
– volume: 7
  start-page: 15080
  year: 2019
  end-page: 15085
  ident: b0830
  article-title: Stable lead-free (CH
  publication-title: ACS Sustainable Chem. Eng.
– volume: 610
  start-page: 538
  year: 2022
  end-page: 545
  ident: b1135
  article-title: 2D/2D Schottky heterojunction of in-situ growth FAPbBr
  publication-title: J. Colloid Interface Sci.
– start-page: e2207835
  year: 2022
  ident: b0380
  article-title: Unravelling the interfacial dynamics of bandgap funneling in bismuth-based halide perovskites
  publication-title: Adv. Mater.
– volume: 342
  start-page: 344
  year: 2013
  end-page: 347
  ident: b0155
  article-title: Long-range balanced electronand hole-transport lengths in organic-inorganic CH
  publication-title: Science
– volume: 13
  start-page: 4017
  year: 2021
  end-page: 4025
  ident: b1250
  article-title: Highly stable CsPbBr
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  start-page: 13434
  year: 2019
  end-page: 13441
  ident: b0520
  article-title: In situ construction of a Cs
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 348
  year: 2022
  end-page: 355
  ident: b1190
  article-title: Self-template-oriented synthesis of lead-free perovskite Cs
  publication-title: J. Energy Chem.
– volume: 18
  start-page: e2106001
  year: 2022
  ident: b1145
  article-title: Synthesis of stable lead-free Cs
  publication-title: Small
– volume: 10
  start-page: 12317
  year: 2022
  end-page: 12333
  ident: b0215
  article-title: Can perovskites be efficient photocatalysts in organic transformations?
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 9154
  year: 2021
  end-page: 9165
  ident: b1180
  article-title: Efficient photocatalytic CO
  publication-title: ACS Appl. Energy Mater.
– volume: 153
  year: 2020
  ident: b1320
  article-title: Gamma-phase CsPbBr
  publication-title: J. Chem. Phys.
– volume: 416
  year: 2021
  ident: b1105
  article-title: CsPbBr
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 6590
  year: 2019
  end-page: 6597
  ident: b1090
  article-title: CsPbBr
  publication-title: J. Phys. Chem. Lett.
– volume: 446
  year: 2022
  ident: b1210
  article-title: A heterostructure of halide and oxide double perovskites Cs
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 17236
  year: 2019
  end-page: 17240
  ident: b0485
  article-title: Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 9431
  year: 2021
  end-page: 9439
  ident: b1290
  article-title: Surfactant-free synthesis of the full inorganic perovskite CsPbBr
  publication-title: ACS Appl. Energy Mater.
– volume: 49
  start-page: 951
  year: 2020
  end-page: 982
  ident: b0120
  article-title: Materials chemistry and engineering in metal halide perovskite lasers
  publication-title: Chem. Soc. Rev.
– volume: 297
  year: 2021
  ident: b1170
  article-title: Aspect ratio dependent photocatalytic enhancement of CsPbBr
  publication-title: Appl. Catal., B
– volume: 2
  year: 2020
  ident: b0055
  article-title: Recent advances on TiO
  publication-title: EnergyChem
– volume: 61
  start-page: e202200872
  year: 2022
  ident: b0640
  article-title: Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  ident: b0695
  article-title: Composite of CH
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1778
  year: 2009
  end-page: 1780
  ident: b0590
  article-title: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles
  publication-title: Chem. Mater.
– volume: 32
  start-page: e2002137
  year: 2020
  ident: b0790
  article-title: Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites
  publication-title: Adv. Mater.
– volume: 2
  start-page: e12015
  year: 2020
  ident: b0825
  article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H
  publication-title: EcoMat
– volume: 83
  start-page: 12
  year: 2018
  end-page: 17
  ident: b1305
  article-title: Fe-modified perovskite-type NaMgF
  publication-title: Mater. Sci. Semicond. Process.
– volume: 376
  start-page: 116
  year: 2019
  end-page: 126
  ident: b1240
  article-title: Methylammonium iodo bismuthate perovskite (CH
  publication-title: J. Photochem. Photobiol., A
– volume: 4
  year: 2022
  ident: b0080
  article-title: Facet-engineering of materials for photocatalytic application: status and future prospects
  publication-title: EnergyChem
– volume: 1
  start-page: 665
  year: 2016
  end-page: 671
  ident: b0175
  article-title: Band edge energies and excitonic transition probabilities of colloidal CsPbX
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 2200294
  year: 2022
  ident: b1200
  article-title: Mn-doped perovskite nanocrystals for photocatalytic CO
  publication-title: Sol. RRL
– volume: 3
  year: 2021
  ident: b0065
  article-title: Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts
  publication-title: EnergyChem
– volume: 9
  start-page: 4892
  year: 2022
  end-page: 4898
  ident: b0745
  article-title: “Breathing” organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites
  publication-title: Inorg. Chem. Front.
– volume: 6
  start-page: 7961
  year: 2015
  ident: b0145
  article-title: Low surface recombination velocity in solution-grown CH
  publication-title: Nat. Commun.
– volume: 596
  start-page: 376
  year: 2021
  end-page: 383
  ident: b1300
  article-title: Highly-efficient and stable photocatalytic activity of lead-free Cs
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 2422
  year: 2021
  ident: b1285
  article-title: Photocatalytic degradation of tobacco tar using CsPbBr
  publication-title: Nanomaterials
– volume: 44
  start-page: 5371
  year: 2015
  end-page: 5408
  ident: b0030
  article-title: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 1701503
  year: 2018
  ident: b0070
  article-title: g-C
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: e12015
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0825
  article-title: Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation
  publication-title: EcoMat
  doi: 10.1002/eom2.12015
– volume: 9
  start-page: 34342
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1045
  article-title: Engineering a CsPbBr3-based nanocomposite for efficient photocatalytic CO2 reduction: improved charge separation concomitant with increased activity sites
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07236E
– start-page: e2207835
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0380
  article-title: Unravelling the interfacial dynamics of bandgap funneling in bismuth-based halide perovskites
  publication-title: Adv. Mater.
– volume: 15
  start-page: 16883
  year: 2013
  ident: 10.1016/j.ccr.2023.215031_b0550
  article-title: Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53131g
– volume: 13
  start-page: 22314
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0570
  article-title: Direct Z-scheme heterojunction of ligand-free FAPbBr3/alpha-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01718
– volume: 11
  start-page: 433
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0330
  article-title: Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions
  publication-title: Nanomaterials
  doi: 10.3390/nano11020433
– volume: 61
  start-page: 3351
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1155
  article-title: Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00012
– volume: 11
  start-page: 2422
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1285
  article-title: Photocatalytic degradation of tobacco tar using CsPbBr3 quantum dots modified Bi2WO6 composite photocatalyst
  publication-title: Nanomaterials
  doi: 10.3390/nano11092422
– volume: 145
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0245
  article-title: Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.111047
– volume: 3
  start-page: e1700255
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0150
  article-title: Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700255
– volume: 12
  start-page: 8292
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1400
  article-title: Metal halide perovskites for solar fuel production and photoreactions
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02373
– volume: 434
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1035
  article-title: In-situ fabrication of Cu doped dual-phase CsPbBr3-Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134811
– volume: 65
  start-page: 1550
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0945
  article-title: Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-021-1962-9
– volume: 60
  start-page: 3611
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0760
  article-title: Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007584
– volume: 12
  start-page: 2987
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0910
  article-title: Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity
  publication-title: Nanoscale
  doi: 10.1039/C9NR07722G
– volume: 18
  start-page: e2106001
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1145
  article-title: Synthesis of stable lead-free Cs3Sb2(BrxI1–x)9 (0 ≤ x ≤ 1) perovskite nanoplatelets and their application in CO2 photocatalytic reduction
  publication-title: Small
  doi: 10.1002/smll.202106001
– volume: 30
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0695
  article-title: Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution
  publication-title: Adv. Mater.
– volume: 118
  start-page: 16995
  year: 2014
  ident: 10.1016/j.ccr.2023.215031_b0400
  article-title: Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500449z
– volume: 10
  start-page: 59
  year: 1979
  ident: 10.1016/j.ccr.2023.215031_b0545
  article-title: Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors
  publication-title: J. Photochem.
  doi: 10.1016/0047-2670(79)80037-4
– volume: 253
  start-page: 41
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0715
  article-title: Stable hybrid perovskite MAPb(I1−xBrx)3 for photocatalytic hydrogen evolution
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.04.050
– volume: 5
  start-page: 1801015
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0935
  article-title: Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801015
– volume: 414
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1110
  article-title: Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128889
– volume: 6
  start-page: 4244
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0605
  article-title: Graphene-based photocatalysts for CO2 reduction to solar fuel
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01610
– volume: 16
  start-page: e2002140
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1055
  article-title: Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction
  publication-title: Small
  doi: 10.1002/smll.202002140
– volume: 10
  start-page: 6590
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1090
  article-title: CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02605
– volume: 9
  start-page: 2723
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0535
  article-title: Graphitic carbon nitride film: An emerging star for catalytic and optoelectronic applications
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600863
– volume: 362
  start-page: 449
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0685
  article-title: Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
  publication-title: Science
  doi: 10.1126/science.aat3583
– volume: 7
  start-page: 2043
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0235
  article-title: Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: recent advances, challenges, and prospects
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00752
– volume: 62
  start-page: 1092
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0045
  article-title: Solar energy for future world: - A review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.05.022
– volume: 315
  start-page: 798
  year: 2007
  ident: 10.1016/j.ccr.2023.215031_b0015
  article-title: Toward cost-effective solar energy use
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 21
  start-page: 1778
  year: 2009
  ident: 10.1016/j.ccr.2023.215031_b0590
  article-title: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm802978z
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0105
  article-title: Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100032
– volume: 5
  start-page: 1107
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0205
  article-title: Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00058
– volume: 911
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0305
  article-title: A brief review on metal halide perovskite photocatalysts: History, applications and prospects
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165062
– volume: 6
  start-page: 511
  year: 2012
  ident: 10.1016/j.ccr.2023.215031_b0005
  article-title: Artificial photosynthesis for solar water-splitting
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.175
– volume: 9
  start-page: 4533
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0170
  article-title: Brightly luminescent and color tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01154
– volume: 9
  start-page: 1901801
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0860
  article-title: Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901801
– volume: 492
  start-page: 449
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0615
  article-title: Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.06.230
– volume: 623
  start-page: 974
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0635
  article-title: Construction of core-shell cesium lead bromide-silica by precipitation coating method with applications in aqueous photocatalysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.05.116
– volume: 21
  start-page: 1620
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0895
  article-title: Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04148
– volume: 12
  start-page: 50464
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0645
  article-title: In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14826
– volume: 10
  start-page: 12317
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0215
  article-title: Can perovskites be efficient photocatalysts in organic transformations?
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09383E
– volume: 30
  start-page: 2006919
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0525
  article-title: In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006919
– volume: 69
  start-page: 348
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1190
  article-title: Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.01.015
– volume: 23
  start-page: 9481
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0455
  article-title: Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201702237
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0660
  article-title: MOF-based materials for photo- and electrocatalytic CO2 reduction
  publication-title: EnergyChem
– volume: 446
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1210
  article-title: A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137197
– volume: 12
  start-page: 11842
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0995
  article-title: Synthesis of monodisperse water-stable surface Pb-rich CsPbCl3 nanocrystals for efficient photocatalytic CO2 reduction
  publication-title: Nanoscale
  doi: 10.1039/D0NR02917C
– volume: 2
  start-page: 16207
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0135
  article-title: Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.207
– volume: 227
  start-page: 218
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0595
  article-title: Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.01.031
– volume: 58
  start-page: 9491
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0630
  article-title: Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904537
– volume: 113
  start-page: 11694
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0165
  article-title: Metal halide perovskite light emitters
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1607471113
– volume: 10
  start-page: 965
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0435
  article-title: Prospects for low-toxicity lead-free perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08918-3
– volume: 1
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0670
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 56
  start-page: 3281
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0865
  article-title: A noble-metal-free MoS2 nanosheet-coupled MAPbI3 photocatalyst for efficient and stable visible-light-driven hydrogen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00095G
– volume: 347
  start-page: 967
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0160
  article-title: Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals
  publication-title: Science
  doi: 10.1126/science.aaa5760
– volume: 50
  start-page: 13692
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0040
  article-title: Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00684C
– volume: 13
  start-page: 51161
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1185
  article-title: Assembling an affinal 0D CsPbBr3/2D CsPb2Br5 architecture by synchronously in situ growing CsPbBr3 QDs and CsPb2Br5 nanosheets: Enhanced activity and reusability for photocatalytic CO2 reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c17870
– volume: 15
  start-page: e202102295
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1165
  article-title: In-situ generated CsPbBr3 nanocrystals on O-defective WO3 for photocatalytic CO2 reduction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202102295
– volume: 50
  start-page: 665
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0705
  article-title: PtIx/[(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.033
– volume: 545
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1010
  article-title: Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149012
– volume: 15
  start-page: 1271
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0840
  article-title: An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03679C
– volume: 245
  start-page: 522
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0775
  article-title: Perovskite photocatalyst CsPbBr3–xIx with a bandgap funnel structure for H2 evolution under visible light
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.01.019
– volume: 12
  start-page: 4412
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0810
  article-title: Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24702-8
– volume: 5
  start-page: 1423
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1280
  article-title: Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: Precisely controllable structure and improved catalytic activity for dye degradation
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00520-4
– volume: 21
  start-page: 597
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0725
  article-title: Fabricating MAPbI3/MoS2 composites for improved photocatalytic performance
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04073
– volume: 141
  start-page: 20434
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1220
  article-title: Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas-solid interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11089
– volume: 15
  start-page: 1845
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1075
  article-title: Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3775-3
– volume: 28
  start-page: 50813
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1275
  article-title: Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-14188-8
– volume: 430
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1025
  article-title: An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr3 perovskite catalysts embedded in a porous copper scaffold
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132807
– volume: 3
  start-page: e12079
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0300
  article-title: Halide perovskite composites for photocatalysis: A mini review
  publication-title: EcoMat
  doi: 10.1002/eom2.12079
– volume: 32
  start-page: e2001344
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0835
  article-title: Lead-free halide perovskite Cs3Bi2xSb2–2xI9 (x ≈ 0.3) possessing the photocatalytic activity for hydrogen evolution comparable to that of (CH3NH3)PbI3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001344
– volume: 259
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0780
  article-title: Few-layer black phosphorus-on-MAPbI3 for superb visible-light photocatalytic hydrogen evolution from HI splitting
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118075
– volume: 12
  start-page: 27578
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1315
  article-title: Growing poly(norepinephrine) layer over individual nanoparticles to boost hybrid perovskite photocatalysts
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06081
– volume: 6
  start-page: 1543
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0540
  article-title: S-scheme heterojunction photocatalyst
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.010
– volume: 14
  start-page: 13103
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1005
  article-title: Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO photoreduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04659
– volume: 32
  start-page: e2002137
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0790
  article-title: Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002137
– volume: 284
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1215
  article-title: Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119751
– volume: 10
  start-page: 14923
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0295
  article-title: Water-driven boost in the visible light photocatalytic performance of Cs2AgBiBr6 double perovskite nanocrystals
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03217A
– volume: 39
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0905
  article-title: Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101179
– volume: 29
  start-page: 201603885
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0580
  article-title: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1246
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0415
  article-title: Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04838
– volume: 60
  start-page: 22693
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0850
  article-title: Controlling photoluminescence and photocatalysis activities in lead-free Cs2PtxSn1–xCl6 perovskites via ion substitution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108133
– volume: 610
  start-page: 538
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1135
  article-title: 2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.11.094
– volume: 6
  start-page: 766
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0960
  article-title: All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.01.005
– volume: 6
  start-page: 13725
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0320
  article-title: Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03953D
– volume: 15
  start-page: 5953
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1195
  article-title: Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4268-8
– volume: 7
  start-page: 982
  year: 2014
  ident: 10.1016/j.ccr.2023.215031_b0405
  article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 7
  start-page: 13762
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0955
  article-title: Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03478A
– volume: 6
  start-page: 2200294
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1200
  article-title: Mn-doped perovskite nanocrystals for photocatalytic CO2 reduction: Insight into the role of the charge carriers with prolonged lifetime
  publication-title: Sol. RRL
  doi: 10.1002/solr.202200294
– volume: 267
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1260
  article-title: Ambient processed CsPbX3 perovskite cubes for photocatalysis
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127501
– volume: 16
  start-page: 3332
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0515
  article-title: ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11442
– volume: 368
  start-page: 155
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0100
  article-title: Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
  publication-title: Science
  doi: 10.1126/science.aba3433
– volume: 350
  start-page: 1222
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0125
  article-title: Overcoming the electroluminescence efficiency limitations ofperovskite light-emitting diodes
  publication-title: Science
  doi: 10.1126/science.aad1818
– volume: 47
  start-page: 8829
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0820
  article-title: Efficient and long-term photocatalytic H2 evolution stability enabled by Cs2AgBiBr6/MoS2 in aqueous HBr solution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.255
– volume: 182
  start-page: 454
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1125
  article-title: CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.06.040
– volume: 45
  start-page: 5951
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0050
  article-title: Inorganic perovskite photocatalysts for solar energy utilization
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00769K
– volume: 10
  start-page: 630
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0200
  article-title: Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03849
– volume: 7
  start-page: 3061
  year: 2014
  ident: 10.1016/j.ccr.2023.215031_b1370
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01076K
– volume: 58
  start-page: 17236
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0485
  article-title: Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909707
– volume: 429
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0490
  article-title: Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132137
– volume: 40
  start-page: 102
  year: 2011
  ident: 10.1016/j.ccr.2023.215031_b0090
  article-title: Visible light photoredox catalysis: applications in organic synthesis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B913880N
– volume: 6
  start-page: 1097
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0495
  article-title: Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02098
– volume: 13
  start-page: 2363
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0440
  article-title: Lead-free perovskite solar cells enabled by hetero-valent substitutes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01153C
– volume: 1
  start-page: 5083
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0925
  article-title: Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet schottky-junction photocatalyst
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01133
– volume: 44
  start-page: 5371
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0030
  article-title: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00113G
– volume: 10
  start-page: 2570
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0315
  article-title: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02685D
– volume: 10
  start-page: 115
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1310
  article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications
  publication-title: Nanomaterials
  doi: 10.3390/nano10010115
– volume: 8
  start-page: 1701503
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0070
  article-title: g-C3N4-based heterostructured photocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701503
– volume: 53
  start-page: 2937
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1395
  article-title: The technology horizon for photocatalytic water treatment: sunrise or sunset?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05041
– volume: 10
  start-page: 5413
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0110
  article-title: Flexible hybrid organic-inorganic perovskite memory
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01643
– volume: 7
  start-page: 15080
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0830
  article-title: Stable lead-free (CH3NH-3)3Bi2I9 perovskite for photocatalytic hydrogen generation
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03761
– volume: 14
  start-page: 1116
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0870
  article-title: Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3159-0
– volume: 33
  start-page: 3039
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1080
  article-title: In-situ growth of PbI2 on ligand-free FAPbBr3 nanocrystals to significantly ameliorate the stability of CO2 photoreduction
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.09.033
– volume: 9
  start-page: 12179
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1020
  article-title: Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr 6-Cu-RGO nanocomposite for photocatalytic CO2 reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01281A
– volume: 10
  start-page: 3514
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0505
  article-title: Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal-semiconductor hybrids
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05813J
– volume: 369
  start-page: 201
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0980
  article-title: Enhanced CO2 photoreduction via tuning halides in perovskites
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.11.004
– volume: 58
  start-page: 1236
  year: 2013
  ident: 10.1016/j.ccr.2023.215031_b0915
  article-title: Equilibrium properties of (carbon dioxide + n-decane + n-octadecane) systems: experiments and thermodynamic modeling
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je4000394
– volume: 310
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0675
  article-title: Synthesis of chiral boron imidazolate frameworks with second-order nonlinear optics
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2022.123001
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0055
  article-title: Recent advances on TiO2-based photocatalytic CO2 reduction
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100044
– volume: 61
  start-page: e202200872
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0640
  article-title: Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200872
– volume: 125
  start-page: 2382
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1245
  article-title: Potential application of perovskite glass material in photocatalysis field
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c11241
– volume: 4
  start-page: 5913
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1120
  article-title: Morphology regulation and photocatalytic CO2 reduction of lead-free perovskite Cs3Sb2I9 microcrystals
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c00722
– volume: 3
  start-page: 4509
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0990
  article-title: All-inorganic CsPbBr3 nanocrystals: Gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00195
– volume: 143
  start-page: 14895
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0445
  article-title: Chemically spiraling CsPbBr3 perovskite nanorods
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07231
– volume: 376
  start-page: 116
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1240
  article-title: Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2019.03.009
– volume: 310
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1160
  article-title: Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas−solid condition under visible light
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121375
– volume: 13
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0575
  article-title: Multichannel charge transfer and mechanistic insight in metal decorated 2D–2D Bi2WO6-TiO2 cascade with enhanced photocatalytic performance
  publication-title: Small
  doi: 10.1002/smll.201702253
– volume: 61
  start-page: 6861
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0650
  article-title: Induction of chirality in boron imidazolate frameworks: The structure-directing effects of substituents
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00188
– volume: 116
  start-page: 4558
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0335
  article-title: Organic-inorganic perovskites: Structural versatility for functional materials design
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 14
  start-page: e1703762
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0890
  article-title: Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals
  publication-title: Small
  doi: 10.1002/smll.201703762
– volume: 12
  start-page: 2915
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1040
  article-title: Frustrated lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00037
– volume: 9
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0265
  article-title: Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106264
– volume: 268
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0785
  article-title: Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118399
– volume: 51
  start-page: 8036
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0920
  article-title: Monochromatic light-enhanced photocatalytic CO2 reduction based on exciton properties of two-dimensional lead halide perovskites
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00972B
– volume: 2
  start-page: 16185
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0180
  article-title: Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.185
– volume: 5
  start-page: 14605
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0270
  article-title: A review on halide perovskite-based photocatalysts: Key factors and challenges
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c02680
– volume: 31
  start-page: e1803230
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1365
  article-title: “Unleaded” perovskites: Status quo and future prospects of tin-based perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803230
– volume: 132
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0275
  article-title: Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2020.110073
– volume: 277
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0970
  article-title: Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119230
– volume: 3
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1235
  article-title: Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100047
– volume: 58
  start-page: 15596
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0360
  article-title: All-inorganic CsPbX3 perovskite solar cells: Progress and prospects
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901081
– volume: 358
  start-page: 1287
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1085
  article-title: Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.120
– volume: 139
  start-page: 5660
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0185
  article-title: A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00489
– volume: 13
  start-page: 4005
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0260
  article-title: Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000953
– volume: 32
  start-page: 1517
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1050
  article-title: Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04582
– volume: 243
  start-page: 576
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1325
  article-title: Integration of 3D macroscopic graphene aerogel with 0D–2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.11.012
– volume: 29
  start-page: e1601694
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0060
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601694
– volume: 209
  start-page: 476
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0680
  article-title: Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.03.018
– volume: 12
  start-page: 4216
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1350
  article-title: Atomically precise metal nanocluster-mediated photocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00841
– volume: 3
  start-page: 935
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0800
  article-title: Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanced photocatalyst for solar-powered hydrogen generation
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.004
– volume: 3
  start-page: 8970
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0390
  article-title: Review of recent progress in chemical stability of perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04994B
– volume: 9
  start-page: 12032
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0190
  article-title: Novel inorganic perovskite quantum dots for photocatalysis
  publication-title: Nanoscale
  doi: 10.1039/C7NR04421F
– volume: 551
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0620
  article-title: CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149452
– volume: 11
  start-page: 10373
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0140
  article-title: Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05442
– volume: 10
  start-page: 407
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0280
  article-title: Metal halide perovskites for photocatalysis applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09148D
– volume: 282
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0560
  article-title: Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119570
– volume: 26
  start-page: 2435
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0450
  article-title: CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600109
– volume: 4
  start-page: 9431
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1290
  article-title: Surfactant-free synthesis of the full inorganic perovskite CsPbBr3: evolution and phase stability of CsPbBr3 vs CsPb2Br5 and their photocatalytic properties
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01636
– volume: 10
  start-page: 7965
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0965
  article-title: Doping iron in CsPbBr3 perovskite nanocrystals for efficient and product selective CO2 reduction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03176
– volume: 30
  start-page: 2004293
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0940
  article-title: Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004293
– volume: 458
  start-page: 1158
  year: 2009
  ident: 10.1016/j.ccr.2023.215031_b0025
  article-title: Greenhouse-gas emission targets for limiting global warming to 2 °C
  publication-title: Nature
  doi: 10.1038/nature08017
– volume: 55
  start-page: 3376
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1390
  article-title: Solar panel technologies for light-to-chemical conversion
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00477
– volume: 1
  start-page: 1014
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0410
  article-title: Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00457
– volume: 6
  start-page: 7961
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0145
  article-title: Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8961
– volume: 9
  start-page: 4892
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0745
  article-title: “Breathing” organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01247B
– volume: 12
  start-page: 4769
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0010
  article-title: Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902192
– volume: 54
  start-page: 13971
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0465
  article-title: Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506966
– volume: 2018
  start-page: 2350
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b1265
  article-title: An inverse opal structured halide perovskite photocatalyst
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201800078
– volume: 9
  start-page: 2354
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0720
  article-title: A comparative technoeconomic analysis of renewable hydrogen production using solar energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02573G
– volume: 11
  start-page: 3608
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0500
  article-title: Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01088
– volume: 2
  start-page: 7187
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0225
  article-title: Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00703C
– volume: 4
  start-page: 1900365
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0900
  article-title: Immobilizing Re(CO)3 Br(dcbpy) complex on CsPbBr3 nanocrystal for boosted charge separation and photocatalytic CO2 reduction
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900365
– volume: 5
  start-page: 1175
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1140
  article-title: Composite of CsPbBr3 with boron imidazolate frameworks as an efficient visible-light photocatalyst for CO2 reduction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03552
– volume: 60
  start-page: 7376
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0750
  article-title: Mechanistic understanding of efficient photocatalytic H2 evolution on two-dimensional layered lead iodide hybrid perovskites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014623
– volume: 358
  start-page: 745
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0340
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
  doi: 10.1126/science.aam7093
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0665
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100027
– volume: 58
  start-page: 7263
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0690
  article-title: Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201900658
– volume: 2
  start-page: 509
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b1405
  article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation
  publication-title: Joule
  doi: 10.1016/j.joule.2017.12.009
– volume: 4
  start-page: 3898
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0115
  article-title: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04116C
– volume: 9
  start-page: 411
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0095
  article-title: Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02575C
– volume: 2
  start-page: 387
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0075
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0242-6
– volume: 5
  start-page: 2000419
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0210
  article-title: Perovskite nanocrystals-based heterostructures: Synthesis strategies, interfacial effects, and photocatalytic applications
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000419
– volume: 297
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1170
  article-title: Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120411
– volume: 10
  start-page: 1902500
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0375
  article-title: Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free?
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902500
– volume: 29
  start-page: 10
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0395
  article-title: A chain is as strong as its weakest link-Stability study of MAPbI3 under light and temperature
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.10.017
– volume: 10
  start-page: 1352
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1130
  article-title: Efficient photocatalytic CO2 reduction with MIL-100(Fe)-CsPbBr3 composites
  publication-title: Catalysts
  doi: 10.3390/catal10111352
– volume: 153
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1320
  article-title: Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0012938
– volume: 31
  start-page: e1805337
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0355
  article-title: Intrinsic instability of inorganic-organic hybrid halide perovskite materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805337
– volume: 12
  start-page: 31477
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0555
  article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08152
– volume: 481
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1000
  article-title: Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO2 reduction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228838
– volume: 397
  start-page: 27
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1335
  article-title: High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2021.03.007
– volume: 342
  start-page: 344
  year: 2013
  ident: 10.1016/j.ccr.2023.215031_b0155
  article-title: Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 4
  start-page: 40
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0710
  article-title: Promoting photocatalytic H2 evolution on organic-inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01830
– volume: 1
  start-page: 1021
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1340
  article-title: CsPbBr3 perovskite nanocrystal: A robust photocatalyst for realizing NO abatement
  publication-title: ACS EST Engg
  doi: 10.1021/acsestengg.1c00089
– year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0250
  article-title: Stabilisation and performance enhancement strategies for halide perovskite photocatalysts
  publication-title: Adv. Mater.
– volume: 419
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1115
  article-title: Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129543
– volume: 49
  start-page: 951
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0120
  article-title: Materials chemistry and engineering in metal halide perovskite lasers
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00598F
– volume: 31
  start-page: e1803792
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0370
  article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803792
– volume: 596
  start-page: 376
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1300
  article-title: Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.03.144
– volume: 12
  start-page: 5864
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0220
  article-title: Artificial photosynthesis over metal halide perovskites: achievements, challenges, and prospects
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c01527
– volume: 132
  start-page: 14385
  year: 2010
  ident: 10.1016/j.ccr.2023.215031_b0460
  article-title: High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1068596
– volume: 7
  start-page: 2719
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0795
  article-title: Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00955E
– volume: 11
  start-page: 4613
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1175
  article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18350-7
– volume: 2007423
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1360
  article-title: “More is different:” Synergistic effect and structural engineering in double-atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 3036
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0310
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00539
– volume: 21
  start-page: 1643
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0845
  article-title: A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04299
– volume: 16
  start-page: e1903398
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0285
  article-title: Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications
  publication-title: Small
  doi: 10.1002/smll.201903398
– volume: 208
  start-page: 296
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1385
  article-title: Halide perovskite-based photocatalysis systems for solar-driven fuel generation
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2020.08.007
– volume: 6
  start-page: 5982
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0730
  article-title: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6982
– volume: 54
  start-page: 1409
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1345
  article-title: Effect of surface ligands in perovskite nanocrystals: extending in and reaching out
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00712
– volume: 5
  start-page: 207
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0875
  article-title: Multidimensional perovskite for visible light driven hydrogen production in aqueous HI solution
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c02751
– volume: 12
  start-page: 8763
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1225
  article-title: Facile fabrication of highly stable and wavelength-tunable tin based perovskite materials with enhanced quantum yield via the cation transformation reaction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02542
– volume: 46a
  start-page: 240
  year: 1991
  ident: 10.1016/j.ccr.2023.215031_b0345
  article-title: Molecular motions and phase transitions in solid CH3NH3PbX3 (X = CI, Br, I) as studied by NMR and NQR, Z
  publication-title: Naturforsch. A
  doi: 10.1515/zna-1991-0305
– volume: 5
  start-page: 2100263
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0475
  article-title: Two-dimensional metal halide perovskite nanosheets for efficient photocatalytic CO2 reduction
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100263
– volume: 27
  start-page: 2305
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1065
  article-title: Glycine-functionalized CsPbBr3 nanocrystals for efficient visible-light photocatalysis of CO2 reduction
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202004682
– volume: 8
  start-page: 4300
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b1270
  article-title: High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64%
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01952
– volume: 138
  start-page: 14202
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0420
  article-title: Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08900
– volume: 13
  start-page: 10037
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0805
  article-title: In situ synthesis of lead-free halide perovskite Cs2AgBiBr6 supported on nitrogen-doped carbon for efficient hydrogen evolution in aqueous HBr solution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21588
– volume: 406
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1330
  article-title: Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126740
– volume: 65
  start-page: 2264
  year: 1992
  ident: 10.1016/j.ccr.2023.215031_b0350
  article-title: Molecular motions in solid CD3NH3PbBr3 as studied by 1H NMR
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.65.2264
– volume: 483
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0755
  article-title: CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting
  publication-title: Mol. Catal.
– volume: 249
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0290
  article-title: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.119335
– volume: 7
  start-page: 167
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0430
  article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02597
– volume: 78
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0610
  article-title: Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105388
– volume: 4
  start-page: 9154
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1180
  article-title: Efficient photocatalytic CO2 reduction by the construction of Ti3C2/CsPbBr3 QD composites
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01406
– volume: 4
  start-page: 2249
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0950
  article-title: Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals, Sustainable
  publication-title: Energy Fuels
– volume: 8
  start-page: 10349
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0770
  article-title: Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3–xIx achieved by bandgap funneling of charge carriers
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02374
– volume: 435
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1150
  article-title: A novel S-scheme heterojunction of CsPbBr3 nanocrystals/AgBr nanorods for artificial photosynthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135014
– volume: 380
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0530
  article-title: CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2019.120855
– volume: 5
  start-page: 25438
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0195
  article-title: Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08190A
– volume: 13
  start-page: 6180
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1015
  article-title: Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18391
– volume: 446
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1205
  article-title: Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137102
– volume: 81
  start-page: 1879
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0020
  article-title: Forecasting the impact of renewable energies in competition with non-renewable sources
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.05.284
– volume: 282
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1100
  article-title: Colloidal formamidinium lead bromide quantum dots for photocatalytic CO2 reduction
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128695
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0230
  article-title: Halide perovskite materials as light harvesters for solar energy conversion
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100026
– volume: 9
  start-page: 188
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0385
  article-title: A Review: Thermal stability of methylammonium lead halide based perovskite solar cells
  publication-title: Appl. Sci.
  doi: 10.3390/app9010188
– volume: 4
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0080
  article-title: Facet-engineering of materials for photocatalytic application: status and future prospects
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100084
– volume: 415
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1380
  article-title: Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213316
– volume: 58
  start-page: 11752
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0655
  article-title: Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905869
– volume: 5
  start-page: 2100154
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1070
  article-title: Surface defect engineering of CsPbBr3 nanocrystals for high efficient photocatalytic CO2 reduction
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100154
– volume: 9
  start-page: e2202408
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1375
  article-title: Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu2I3-based yellow LEDs
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202202408
– volume: 358
  start-page: 745
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0130
  article-title: Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
  publication-title: Science
  doi: 10.1126/science.aam7093
– volume: 141
  start-page: 13434
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0520
  article-title: In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04482
– volume: 10
  start-page: 763
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1295
  article-title: Pb-free Cs3Bi2I9 perovskite as a visible-light-active photocatalyst for organic pollutant degradation
  publication-title: Nanomaterials
  doi: 10.3390/nano10040763
– volume: 2018
  start-page: 13570
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0885
  article-title: Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808930
– volume: 14
  start-page: 1131
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1060
  article-title: Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002847
– volume: 3
  start-page: 8926
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0325
  article-title: Halide perovskite materials for solar cells: a theoretical review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05033A
– volume: 430
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0510
  article-title: Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132968
– volume: 899
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1030
  article-title: Multi-dimensional collaborations boost lead halide perovskite driven superior and long-period CO2 photoreduction under liquid-phase H2O environment
  publication-title: J. Alloys Compd.
– volume: 3
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1355
  article-title: Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2021.100056
– volume: 3
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0065
  article-title: Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2021.100051
– volume: 7
  start-page: 5152
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b1255
  article-title: Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06023
– volume: 49
  start-page: 6592
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0480
  article-title: Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00332H
– volume: 46
  start-page: 7395
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0815
  article-title: NiCoP modified lead-free double perovskite Cs2AgBiBr6 for efficient photocatalytic hydrogen generation
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ00435F
– volume: 3
  start-page: 1159
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0700
  article-title: Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00488
– volume: 83
  start-page: 12
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b1305
  article-title: Fe-modified perovskite-type NaMgF3 photocatalyst: Synthesis and photocatalytic properties
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2018.04.001
– volume: 53
  start-page: 309
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0930
  article-title: Plasmonic CsPbBr3-Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.017
– volume: 57
  start-page: 10034
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0085
  article-title: Visible-light photocatalysis: Does it make a difference in organic synthesis?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709766
– volume: 31
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0975
  article-title: Mn-doped CsPb(Br/Cl)3 mixed-halide perovskites for CO2 photoreduction
  publication-title: Nanotechnology
– volume: 19
  start-page: 53
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0425
  article-title: Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films
  publication-title: J. Inf. Disp.
  doi: 10.1080/15980316.2018.1424652
– volume: 4
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b1230
  article-title: Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2022.100078
– volume: 1
  start-page: 665
  year: 2016
  ident: 10.1016/j.ccr.2023.215031_b0175
  article-title: Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00337
– volume: 67
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0365
  article-title: Stability of all-inorganic perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104249
– volume: 48
  start-page: 14115
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0985
  article-title: All-inorganic perovskite/graphitic carbon nitride composites for CO2 photoreduction into C1 compounds under low concentrations of CO2
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02468A
– volume: 3
  start-page: 2656
  year: 2018
  ident: 10.1016/j.ccr.2023.215031_b0625
  article-title: Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01658
– volume: 9
  start-page: 2200058
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0255
  article-title: Metal halide perovskite heterojunction for photocatalytic hydrogen generation: progress and future opportunities
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202200058
– volume: 141
  start-page: 4209
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0470
  article-title: Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13673
– volume: 29
  start-page: 1905683
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0735
  article-title: Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light-driven hydrogen generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905683
– volume: 10
  start-page: 2095
  year: 2017
  ident: 10.1016/j.ccr.2023.215031_b0740
  article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01145H
– volume: 5
  start-page: 24495
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b1095
  article-title: Incorporation of cesium lead halide perovskites into g-C3N4 for photocatalytic CO2 reduction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c02960
– volume: 6
  start-page: 2101058
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0240
  article-title: Tailoring inorganic halide perovskite photocatalysts toward carbon dioxide reduction
  publication-title: Sol. RRL
  doi: 10.1002/solr.202101058
– volume: 416
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1105
  article-title: CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128077
– volume: 25
  start-page: 1465
  year: 2013
  ident: 10.1016/j.ccr.2023.215031_b0585
  article-title: Oleylamine in nanoparticle synthesis
  publication-title: Chem. Mater.
  doi: 10.1021/cm4000476
– volume: 13
  start-page: 4017
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b1250
  article-title: Highly stable CsPbBr3 colloidal nanocrystal clusters as photocatalysts in polar solvents
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20349
– volume: 2201721
  year: 2022
  ident: 10.1016/j.ccr.2023.215031_b0765
  article-title: In-depth understanding of the effect of halogen-induced stable 2D bismuth-based perovskites for photocatalytic hydrogen evolution activity
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 2001478
  year: 2020
  ident: 10.1016/j.ccr.2023.215031_b0855
  article-title: In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001478
– volume: 162
  start-page: 494
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0880
  article-title: Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.07.026
– volume: 44
  start-page: 7808
  year: 2015
  ident: 10.1016/j.ccr.2023.215031_b0035
  article-title: Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00380F
– volume: 5
  start-page: 2000691
  year: 2021
  ident: 10.1016/j.ccr.2023.215031_b0565
  article-title: In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000691
– volume: 9
  start-page: 8144
  year: 2019
  ident: 10.1016/j.ccr.2023.215031_b0600
  article-title: Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01605
SSID ssj0016992
Score 2.6395273
SecondaryResourceType review_article
Snippet In this review, we firstly overview the photocatalytic fundamentals, crystal structures, coordination environments and characteristics of metal halide...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 215031
SubjectTerms CO2 reduction
H2 evolution
Metal halide perovskites (MHPs)
Organics degradation
Photocatalysis
Title Metal halide perovskite materials in photocatalysis: Design strategies and applications
URI https://dx.doi.org/10.1016/j.ccr.2023.215031
Volume 481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPehFfGJ9lBw8CdtuNvtovJVqqYo9WewtJNmEVmRb7OrR325mH6WCevC4SwLLx-zMN8mXLwCXidER87n0uAq1F3L3z0mqtBeb2PqRVTTShcp3HI8m4f00mjZgUJ-FQVlllfvLnF5k6-pNt0Kzu5zP8YwvKudDXNZE0oO222GYYJR3PtcyDxpzXjqGu3yDo-udzULjpTVaggas4wqfz-jPtWmj3gz3YLciiqRffss-NEx2ANuD-n62Q3h-NI44k5kj0qkh6Pf9scKlWOI4aBlWZJ6R5WyRL4o1GrQeuSY3hWKDrPLaIoLILCWb29hHMBnePg1GXnVNgqcDnuQeDbALkMZRHRmzuKeUtVanNlAqsRTt8pnfkz7ViWuHZM-lOJ5EOpAssNI1Z4odQzNbZOYEiOV4mFoxlqLtn7Ic3eUKiCPpK5O0wK8BErryEMerLF5FLRZ7EQ5TgZiKEtMWXK2nLEsDjb8GhzXq4lsUCJfgf592-r9pZ7CDT7g3RKNzaOZv7-bCUYxctYsYasNW_-5hNP4CbyHO7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9lAuiFWU1QdOSKFJnKXmVhWqlC6nVvQW2Y6tFqG0ooHvx5MFFQk4cE0yUvRkj99szwA3oZI-tRm3mPCk5TGz57gjpBWoQNu-Fo4v8y7fSRDNvKe5P69Br5qFwbbK0vcXPj331uWTdolme71c4owvds57mNZE0hPsQAPVqfw6NLqDYTT5KiYEjBWi4cbloEFV3MzbvKREVVCX3pmzz6bOz8fT1pHT34e9kiuSbvE7B1BT6SE0e9UVbUfwPFaGO5OF4dKJIij5_bHBbCwxNLRYWWSZkvVila3yNA2qj9yTh7xpg2yySiWC8DQh25XsY5j1H6e9yCpvSrCky8LMclwMBLgybIcHNOgIobWWiXaFCLWDivnU7nDbkaGJiHjHeDkW-tLl1NXcxGeCnkA9XaXqFIhmOE8tKE1Q-U9ohgJzOco-t4UKW2BXAMWylBHH2yxe46pf7CU2mMaIaVxg2oLbL5N1oaHx18dehXr8bSHExsf_bnb2P7NraEbT8SgeDSbDc9jFN1gqcvwLqGdv7-rSMI5MXJUr6hObrNGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+halide+perovskite+materials+in+photocatalysis%3A+Design+strategies+and+applications&rft.jtitle=Coordination+chemistry+reviews&rft.au=Chen%2C+Zhen-Yu&rft.au=Huang%2C+Ning-Yu&rft.au=Xu%2C+Qiang&rft.date=2023-04-15&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=481&rft_id=info:doi/10.1016%2Fj.ccr.2023.215031&rft.externalDocID=S0010854523000206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon