Tensor–tensor products with invertible linear transforms
Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or...
Saved in:
Published in | Linear algebra and its applications Vol. 485; pp. 545 - 570 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or the operator in its natural, multidimensional form. In recent work [1], the authors introduced the notion of the t-product, a generalization of matrix multiplication for tensors of order three, which can be extended to multiply tensors of arbitrary order [2]. The multiplication is based on a convolution-like operation, which can be implemented efficiently using the Fast Fourier Transform (FFT). The corresponding linear algebraic framework from the original work was further developed in [3], and it allows one to elegantly generalize all classical algorithms from numerical linear algebra. In this paper, we extend this development so that tensor–tensor products can be defined in a so-called transform domain for any invertible linear transform. In order to properly motivate this transform-based approach, we begin by defining a new tensor–tensor product alternative to the t-product. We then show that it can be implemented efficiently using DCTs, and that subsequent definitions and factorizations can be formulated by appealing to the transform domain. Using this new product as our guide, we then generalize the transform-based approach to any invertible linear transform. We introduce the algebraic structures induced by each new multiplication in the family, which is that of C⁎-algebras and modules. Finally, in the spirit of [4], we give a matrix–algebra based interpretation of the new family of tensor–tensor products, and from an applied perspective, we briefly discuss how to choose a transform. We demonstrate the convenience of our new framework within the context of an image deblurring problem and we show the potential for using one of these new tensor–tensor products and resulting tensor-SVD for hyperspectral image compression. |
---|---|
AbstractList | Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or the operator in its natural, multidimensional form. In recent work [1], the authors introduced the notion of the t-product, a generalization of matrix multiplication for tensors of order three, which can be extended to multiply tensors of arbitrary order [2]. The multiplication is based on a convolution-like operation, which can be implemented efficiently using the Fast Fourier Transform (FFT). The corresponding linear algebraic framework from the original work was further developed in [3], and it allows one to elegantly generalize all classical algorithms from numerical linear algebra. In this paper, we extend this development so that tensor–tensor products can be defined in a so-called transform domain for any invertible linear transform. In order to properly motivate this transform-based approach, we begin by defining a new tensor–tensor product alternative to the t-product. We then show that it can be implemented efficiently using DCTs, and that subsequent definitions and factorizations can be formulated by appealing to the transform domain. Using this new product as our guide, we then generalize the transform-based approach to any invertible linear transform. We introduce the algebraic structures induced by each new multiplication in the family, which is that of C⁎-algebras and modules. Finally, in the spirit of [4], we give a matrix–algebra based interpretation of the new family of tensor–tensor products, and from an applied perspective, we briefly discuss how to choose a transform. We demonstrate the convenience of our new framework within the context of an image deblurring problem and we show the potential for using one of these new tensor–tensor products and resulting tensor-SVD for hyperspectral image compression. |
Author | Kilmer, Misha Kernfeld, Eric Aeron, Shuchin |
Author_xml | – sequence: 1 givenname: Eric orcidid: 0000-0002-2310-8191 surname: Kernfeld fullname: Kernfeld, Eric email: ekernf01@uw.edu organization: Department of Statistics, University of Washington, Seattle, WA, United States – sequence: 2 givenname: Misha surname: Kilmer fullname: Kilmer, Misha email: misha.kilmer@tufts.edu organization: Department of Mathematics, Tufts University, Medford, MA, United States – sequence: 3 givenname: Shuchin surname: Aeron fullname: Aeron, Shuchin organization: Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States |
BookMark | eNp9j01OwzAQhS1UJNrCAdjlAgkzbhI3sEIVf1IlNmVtOfZEuErtyjZF7LgDN-QkpJQVi67maaTv6X0TNnLeEWOXCAUC1lfroleq4IBVAaIAjidsjHMxy3Fe1SM2BuBlPhNNdcYmMa4BoBTAx-x6RS768P35lX5Dtg3evOkUs3ebXjPrdhSSbXvKeutIhSwF5WLnwyaes9NO9ZEu_u6UvdzfrRaP-fL54Wlxu8w1b0TKEcEYUq0xdYPDp1Q1ElfQcjCat7wjagXpRqOiktS8ARS6xbJryw6rRs-mDA-9OvgYA3VyG-xGhQ-JIPfyci0HebmXlyDkID8w4h-jbVLJejfst_1R8uZA0qC0sxRk1JacJmMD6SSNt0foH6qveRQ |
CitedBy_id | crossref_primary_10_1016_j_sigpro_2022_108901 crossref_primary_10_1109_TCSVT_2024_3401134 crossref_primary_10_1109_TIP_2021_3062995 crossref_primary_10_1109_TETCI_2023_3300522 crossref_primary_10_1109_TSP_2016_2639466 crossref_primary_10_1137_19M1297026 crossref_primary_10_1109_TGRS_2021_3075968 crossref_primary_10_1007_s10044_024_01291_y crossref_primary_10_1016_j_apm_2023_02_012 crossref_primary_10_1109_TCSVT_2024_3413992 crossref_primary_10_1007_s10994_021_05987_8 crossref_primary_10_1007_s10444_024_10117_8 crossref_primary_10_1007_s10092_022_00469_2 crossref_primary_10_1007_s40314_022_02107_7 crossref_primary_10_2139_ssrn_4133647 crossref_primary_10_3389_fdata_2024_1363978 crossref_primary_10_1016_j_rinam_2023_100372 crossref_primary_10_1109_JIOT_2024_3415612 crossref_primary_10_3390_math12071086 crossref_primary_10_1109_TNNLS_2023_3236641 crossref_primary_10_1109_TPAMI_2021_3059299 crossref_primary_10_1007_s40305_023_00522_z crossref_primary_10_1016_j_patcog_2023_110241 crossref_primary_10_1109_TSP_2024_3454115 crossref_primary_10_3390_rs13193829 crossref_primary_10_1016_j_compbiomed_2024_108034 crossref_primary_10_1016_j_neucom_2020_12_110 crossref_primary_10_1088_1361_6420_abd85b crossref_primary_10_1002_nla_2574 crossref_primary_10_1002_nla_2299 crossref_primary_10_1109_TCSVT_2023_3316279 crossref_primary_10_1109_TSP_2022_3164837 crossref_primary_10_1109_TSP_2024_3427136 crossref_primary_10_1016_j_dsp_2022_103741 crossref_primary_10_1002_nla_2179 crossref_primary_10_1109_JSTSP_2021_3058763 crossref_primary_10_1016_j_knosys_2024_111917 crossref_primary_10_1007_s10543_016_0607_z crossref_primary_10_1007_s42967_019_00055_4 crossref_primary_10_1007_s10543_023_00990_y crossref_primary_10_1007_s40314_022_02114_8 crossref_primary_10_1109_TCI_2021_3126232 crossref_primary_10_1109_LGRS_2024_3425479 crossref_primary_10_1016_j_patcog_2019_107181 crossref_primary_10_1016_j_amc_2024_128627 crossref_primary_10_1007_s11075_025_02011_1 crossref_primary_10_1109_TNNLS_2021_3104837 crossref_primary_10_1007_s10915_024_02637_8 crossref_primary_10_1137_22M150071X crossref_primary_10_1109_TNET_2019_2940147 crossref_primary_10_1016_j_cam_2022_114866 crossref_primary_10_1016_j_cam_2023_115439 crossref_primary_10_1109_TIP_2022_3155949 crossref_primary_10_1109_TIP_2024_3388969 crossref_primary_10_1109_TNET_2018_2797094 crossref_primary_10_3390_math9111249 crossref_primary_10_1007_s10915_023_02411_2 crossref_primary_10_1016_j_patcog_2022_109169 crossref_primary_10_1109_TIP_2024_3475738 crossref_primary_10_1016_j_cam_2024_116048 crossref_primary_10_1007_s42967_022_00218_w crossref_primary_10_1002_nla_2290 crossref_primary_10_1109_ACCESS_2020_3008903 crossref_primary_10_1016_j_sigpro_2023_109014 crossref_primary_10_1137_23M1552115 crossref_primary_10_1109_LGRS_2023_3322946 crossref_primary_10_1007_s10915_021_01719_1 crossref_primary_10_1142_S2010326322500381 crossref_primary_10_1109_LGRS_2023_3294933 crossref_primary_10_1007_s40314_024_03068_9 crossref_primary_10_1109_TKDE_2024_3469782 crossref_primary_10_3390_app142411895 crossref_primary_10_1109_TNNLS_2022_3217198 crossref_primary_10_1007_s10915_022_02006_3 crossref_primary_10_1016_j_mlwa_2023_100479 crossref_primary_10_1016_j_neucom_2018_08_038 crossref_primary_10_1109_TNSE_2024_3514171 crossref_primary_10_1109_TSP_2024_3524568 crossref_primary_10_1109_TNNLS_2024_3373384 crossref_primary_10_1137_22M1531907 crossref_primary_10_3390_sym14050854 crossref_primary_10_1016_j_apnum_2023_07_011 crossref_primary_10_1109_TGRS_2022_3149545 crossref_primary_10_1016_j_neucom_2024_129266 crossref_primary_10_1016_j_ymssp_2024_111662 crossref_primary_10_1109_TNET_2023_3268982 crossref_primary_10_1109_TNSE_2023_3253163 crossref_primary_10_1109_TGRS_2024_3457673 crossref_primary_10_1016_j_jmaa_2024_128864 crossref_primary_10_1109_TGRS_2024_3449130 crossref_primary_10_2298_FIL2326909J crossref_primary_10_3389_fphy_2022_885402 crossref_primary_10_3390_s19235335 crossref_primary_10_1016_j_apnum_2021_04_007 crossref_primary_10_1145_3465454 crossref_primary_10_1002_nla_2544 crossref_primary_10_1142_S0218001424550048 crossref_primary_10_1016_j_patcog_2024_110735 crossref_primary_10_1016_j_asoc_2024_111322 crossref_primary_10_1109_TIP_2024_3385284 crossref_primary_10_1109_TNNLS_2018_2851444 crossref_primary_10_1109_TGRS_2023_3237865 crossref_primary_10_1109_TII_2021_3129526 crossref_primary_10_1073_pnas_2015851118 crossref_primary_10_1016_j_neucom_2024_129036 crossref_primary_10_1109_TMI_2017_2778230 crossref_primary_10_1007_s13042_024_02096_5 crossref_primary_10_1016_j_neunet_2023_10_031 crossref_primary_10_1007_s10543_021_00877_w crossref_primary_10_1109_LSP_2020_2983305 crossref_primary_10_1007_s10915_022_02009_0 crossref_primary_10_1109_TNNLS_2023_3248156 crossref_primary_10_1002_nla_2530 crossref_primary_10_1109_TPAMI_2023_3259640 crossref_primary_10_1016_j_cam_2024_116297 crossref_primary_10_1016_j_neucom_2021_06_020 crossref_primary_10_1002_nla_2412 crossref_primary_10_1007_s10543_023_00964_0 crossref_primary_10_1007_s10915_022_01956_y crossref_primary_10_1016_j_acha_2023_03_007 crossref_primary_10_1109_TIP_2023_3284673 crossref_primary_10_1109_TIP_2022_3176220 crossref_primary_10_1109_TGRS_2024_3385448 crossref_primary_10_12677_aam_2025_141024 crossref_primary_10_1109_TIP_2020_3000349 crossref_primary_10_1007_s10444_023_10036_0 crossref_primary_10_1007_s40314_023_02427_2 crossref_primary_10_1109_TSP_2022_3183466 crossref_primary_10_3390_math11071682 crossref_primary_10_3390_rs13183671 crossref_primary_10_1007_s11760_020_01752_x crossref_primary_10_1109_TBDATA_2023_3254156 crossref_primary_10_1016_j_sigpro_2022_108888 crossref_primary_10_1016_j_apm_2021_02_032 crossref_primary_10_1016_j_neucom_2021_02_002 crossref_primary_10_1007_s10915_023_02308_0 crossref_primary_10_1007_s13042_024_02224_1 crossref_primary_10_1016_j_sigpro_2023_109176 crossref_primary_10_1109_TITS_2021_3098637 crossref_primary_10_1109_TNNLS_2024_3356228 crossref_primary_10_1016_j_media_2021_102152 crossref_primary_10_1016_j_knosys_2022_108468 crossref_primary_10_1007_s10915_024_02653_8 crossref_primary_10_1007_s11075_023_01607_9 crossref_primary_10_1016_j_trc_2021_103226 crossref_primary_10_1016_j_sigpro_2024_109407 crossref_primary_10_1002_nla_2594 crossref_primary_10_1137_23M1620326 crossref_primary_10_1007_s10489_023_04477_9 crossref_primary_10_1016_j_sigpro_2022_108910 crossref_primary_10_1109_ACCESS_2020_3024635 crossref_primary_10_1007_s10915_024_02509_1 crossref_primary_10_1016_j_sigpro_2024_109400 crossref_primary_10_1109_TPAMI_2019_2891760 crossref_primary_10_1007_s10915_022_01937_1 crossref_primary_10_1109_TGRS_2023_3234608 crossref_primary_10_1016_j_neunet_2022_03_038 crossref_primary_10_1007_s10915_021_01437_8 crossref_primary_10_1007_s10915_025_02801_8 |
Cites_doi | 10.1109/MSP.2013.2297439 10.1109/78.295213 10.1371/journal.pone.0028072 10.1137/110841229 10.1016/j.laa.2010.05.025 10.1109/78.482113 10.1016/j.laa.2010.09.020 10.1137/110842570 10.1137/07070111X 10.1002/nla.1845 10.1137/S0895479896305696 10.1109/TNSRE.2008.2008394 10.1137/S1064827598341384 10.1137/110837711 10.1016/j.laa.2004.01.016 10.1137/S0036144598336745 10.1137/S0895479896312560 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.laa.2015.07.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 570 |
ExternalDocumentID | 10_1016_j_laa_2015_07_021 S0024379515004358 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FGOYB G-2 HZ~ MVM OHT R2- SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c297t-110ddeabdd6912974a61e2a0b20dc2b2feeb7ec9c1ae4ea89017cb14fb4f159c3 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 03:18:01 EDT 2025 Fri Feb 23 02:35:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SVD Tensor DCT 94A08 Multiway Linear transformation 15A69 5B05 Module 06F25 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-110ddeabdd6912974a61e2a0b20dc2b2feeb7ec9c1ae4ea89017cb14fb4f159c3 |
ORCID | 0000-0002-2310-8191 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0024379515004358 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_j_laa_2015_07_021 crossref_citationtrail_10_1016_j_laa_2015_07_021 elsevier_sciencedirect_doi_10_1016_j_laa_2015_07_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-15 |
PublicationDateYYYYMMDD | 2015-11-15 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gleich, Greif, Varah (br0040) 2013; 20 De Lathauwer, Vandewalle (br0150) 2004; 391 Blackadar (br0250) 2010 Strang (br0130) 1999; 41 Martucci (br0100) 1994; 42 Hao, Kilmer, Braman, Hoover (br0050) 2013; 6 Li, Zhang, Tao, Sun, Zhao (br0140) 2009; 17 Braman (br0080) 2010; 433 Navasca, Opperman, Penderghest, Tamon (br0090) May 2010 Zhang, Ely, Aeron, Hao, Kilmer (br0070) 2014 Kolda, Bader (br0200) 2009; 51 Cichocki, Mandic, Phan, Caiafa, Zhou, Zhao, De Lathauwer (br0160) 2015; 32 Anandkumar, Ge, Hsu, Kakade, Telgarsky (br0180) 2014; 15 Kailath, Olshevsky (br0120) 2005; 26 Nagy, Berisha, Chung, Palmer, Perrone, Wright (br0270) 2012 Martin, Shafer, LaRue (br0020) 2013; 35 Ponnapalli, Saunders, Van Loan, Alter (br0190) 2011; 6 Ely, Aeron, Hao, Kilmer (br0060) 2013 Lim (br0220) 2013 Hungerford (br0240) 1974 Sánchez, García, Peinado, Segura, Rubio (br0110) 1995; 43 De Lathauwer, De Moor, Vandewalle (br0210) 2000; 21 Ng, Chan, Tang (br0230) 1999 Hansen (br0260) 1998 Kilmer, Martin (br0010) 2011; 435 Kernfeld, Aeron, Kilmer (br0280) 2014 Kilmer, Braman, Hao, Hoover (br0030) 2013; 34 Yang, Dunson (br0170) Martin (10.1016/j.laa.2015.07.021_br0020) 2013; 35 Kailath (10.1016/j.laa.2015.07.021_br0120) 2005; 26 Braman (10.1016/j.laa.2015.07.021_br0080) 2010; 433 De Lathauwer (10.1016/j.laa.2015.07.021_br0150) 2004; 391 Ely (10.1016/j.laa.2015.07.021_br0060) 2013 Kilmer (10.1016/j.laa.2015.07.021_br0030) 2013; 34 Hao (10.1016/j.laa.2015.07.021_br0050) 2013; 6 Sánchez (10.1016/j.laa.2015.07.021_br0110) 1995; 43 Lim (10.1016/j.laa.2015.07.021_br0220) 2013 Zhang (10.1016/j.laa.2015.07.021_br0070) 2014 Strang (10.1016/j.laa.2015.07.021_br0130) 1999; 41 Yang (10.1016/j.laa.2015.07.021_br0170) Anandkumar (10.1016/j.laa.2015.07.021_br0180) 2014; 15 Kolda (10.1016/j.laa.2015.07.021_br0200) 2009; 51 Ng (10.1016/j.laa.2015.07.021_br0230) 1999 Nagy (10.1016/j.laa.2015.07.021_br0270) Ponnapalli (10.1016/j.laa.2015.07.021_br0190) 2011; 6 Navasca (10.1016/j.laa.2015.07.021_br0090) Cichocki (10.1016/j.laa.2015.07.021_br0160) 2015; 32 Kilmer (10.1016/j.laa.2015.07.021_br0010) 2011; 435 Hungerford (10.1016/j.laa.2015.07.021_br0240) 1974 Martucci (10.1016/j.laa.2015.07.021_br0100) 1994; 42 Blackadar (10.1016/j.laa.2015.07.021_br0250) 2010 Kernfeld (10.1016/j.laa.2015.07.021_br0280) Hansen (10.1016/j.laa.2015.07.021_br0260) 1998 Gleich (10.1016/j.laa.2015.07.021_br0040) 2013; 20 De Lathauwer (10.1016/j.laa.2015.07.021_br0210) 2000; 21 Li (10.1016/j.laa.2015.07.021_br0140) 2009; 17 |
References_xml | – volume: 433 start-page: 1241 year: 2010 end-page: 1253 ident: br0080 article-title: Third-order tensors as linear operators on a space of matrices publication-title: Linear Algebra Appl. – year: May 2010 ident: br0090 article-title: Tensors as module homomorphisms over group rings – volume: 6 start-page: e28072 year: 2011 ident: br0190 article-title: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms publication-title: PLoS One – volume: 34 start-page: 148 year: 2013 end-page: 172 ident: br0030 article-title: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging publication-title: SIAM J. Matrix Anal. Appl. – start-page: 3842 year: 2014 end-page: 3849 ident: br0070 article-title: Novel methods for multilinear data completion and de-noising based on tensor-SVD publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 6 start-page: 437 year: 2013 end-page: 463 ident: br0050 article-title: Facial recognition using tensor–tensor decompositions publication-title: SIAM J. Imaging Sci. – volume: 43 start-page: 2631 year: 1995 end-page: 2641 ident: br0110 article-title: Diagonalizing properties of the discrete cosine transforms publication-title: IEEE Trans. Signal Process. – volume: 32 start-page: 145 year: 2015 end-page: 163 ident: br0160 article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. – volume: 26 start-page: 706 year: 2005 end-page: 734 ident: br0120 article-title: Displacement structure approach to discrete-trigonometric-transform based preconditioners of G. Strang type and of T. Chan type publication-title: SIAM J. Matrix Anal. Appl. – year: 2012 ident: br0270 article-title: RestoreTools: an object oriented Matlab package for image restoration – volume: 41 start-page: 135 year: 1999 end-page: 147 ident: br0130 article-title: The discrete cosine transform publication-title: SIAM Rev. – start-page: 851 year: 1999 end-page: 866 ident: br0230 article-title: A fast algorithm for deblurring models with Neumann boundary conditions publication-title: SIAM J. Sci. Comput. – volume: 21 start-page: 1253 year: 2000 end-page: 1278 ident: br0210 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 35 start-page: A474 year: 2013 end-page: A490 ident: br0020 article-title: An order- publication-title: SIAM J. Sci. Comput. – volume: 391 start-page: 31 year: 2004 end-page: 55 ident: br0150 article-title: Dimensionality reduction in higher-order signal processing and rank-( publication-title: Special Issue on Linear Algebra in Signal and Image Processing – volume: 20 start-page: 809 year: 2013 end-page: 831 ident: br0040 article-title: The power and Arnoldi methods in an algebra of circulants publication-title: Numer. Linear Algebra Appl. – ident: br0170 article-title: Bayesian conditional tensor factorizations for high-dimensional classification – volume: 15 start-page: 2773 year: 2014 end-page: 2832 ident: br0180 article-title: Tensor decompositions for learning latent variable models publication-title: J. Mach. Learn. Res. – year: 2013 ident: br0060 article-title: 5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN) publication-title: SEG International Exposition and Eighty-Third Annual Meeting at Houston, TX – volume: 42 start-page: 1038 year: 1994 end-page: 1051 ident: br0100 article-title: Symmetric convolution and the discrete sine and cosine transforms publication-title: IEEE Trans. Signal Process. – year: 1998 ident: br0260 article-title: Rank Deficient and Discrete Ill-Posed Problems – volume: 17 start-page: 107 year: 2009 end-page: 115 ident: br0140 article-title: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: br0200 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 435 start-page: 641 year: 2011 end-page: 658 ident: br0010 article-title: Factorization strategies for third-order tensors publication-title: Linear Algebra Appl. – year: 2010 ident: br0250 article-title: Operator Algebras: Theory of C – year: 1974 ident: br0240 article-title: Algebra – year: 2014 ident: br0280 article-title: Clustering multi-way data: a novel algebraic approach – start-page: 231 year: 2013 end-page: 260 ident: br0220 article-title: Tensors and hypermatrices publication-title: Handbook of Linear Algebra – year: 1974 ident: 10.1016/j.laa.2015.07.021_br0240 – year: 2010 ident: 10.1016/j.laa.2015.07.021_br0250 – volume: 32 start-page: 145 year: 2015 ident: 10.1016/j.laa.2015.07.021_br0160 article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2297439 – volume: 42 start-page: 1038 issue: 5 year: 1994 ident: 10.1016/j.laa.2015.07.021_br0100 article-title: Symmetric convolution and the discrete sine and cosine transforms publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.295213 – year: 1998 ident: 10.1016/j.laa.2015.07.021_br0260 – ident: 10.1016/j.laa.2015.07.021_br0270 – ident: 10.1016/j.laa.2015.07.021_br0090 – volume: 6 start-page: e28072 issue: 12 year: 2011 ident: 10.1016/j.laa.2015.07.021_br0190 article-title: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms publication-title: PLoS One doi: 10.1371/journal.pone.0028072 – volume: 35 start-page: A474 issue: 1 year: 2013 ident: 10.1016/j.laa.2015.07.021_br0020 article-title: An order-p tensor factorization with applications in imaging publication-title: SIAM J. Sci. Comput. doi: 10.1137/110841229 – year: 2013 ident: 10.1016/j.laa.2015.07.021_br0060 article-title: 5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN) – volume: 15 start-page: 2773 issue: 1 year: 2014 ident: 10.1016/j.laa.2015.07.021_br0180 article-title: Tensor decompositions for learning latent variable models publication-title: J. Mach. Learn. Res. – volume: 433 start-page: 1241 issue: 7 year: 2010 ident: 10.1016/j.laa.2015.07.021_br0080 article-title: Third-order tensors as linear operators on a space of matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.05.025 – start-page: 231 year: 2013 ident: 10.1016/j.laa.2015.07.021_br0220 article-title: Tensors and hypermatrices – volume: 43 start-page: 2631 issue: 11 year: 1995 ident: 10.1016/j.laa.2015.07.021_br0110 article-title: Diagonalizing properties of the discrete cosine transforms publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.482113 – volume: 435 start-page: 641 issue: 3 year: 2011 ident: 10.1016/j.laa.2015.07.021_br0010 article-title: Factorization strategies for third-order tensors publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.09.020 – volume: 6 start-page: 437 issue: 1 year: 2013 ident: 10.1016/j.laa.2015.07.021_br0050 article-title: Facial recognition using tensor–tensor decompositions publication-title: SIAM J. Imaging Sci. doi: 10.1137/110842570 – start-page: 3842 year: 2014 ident: 10.1016/j.laa.2015.07.021_br0070 article-title: Novel methods for multilinear data completion and de-noising based on tensor-SVD – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.laa.2015.07.021_br0200 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 20 start-page: 809 issue: 5 year: 2013 ident: 10.1016/j.laa.2015.07.021_br0040 article-title: The power and Arnoldi methods in an algebra of circulants publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1845 – ident: 10.1016/j.laa.2015.07.021_br0280 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 10.1016/j.laa.2015.07.021_br0210 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 17 start-page: 107 issue: 2 year: 2009 ident: 10.1016/j.laa.2015.07.021_br0140 article-title: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.2008394 – start-page: 851 year: 1999 ident: 10.1016/j.laa.2015.07.021_br0230 article-title: A fast algorithm for deblurring models with Neumann boundary conditions publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827598341384 – volume: 34 start-page: 148 issue: 1 year: 2013 ident: 10.1016/j.laa.2015.07.021_br0030 article-title: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110837711 – volume: 391 start-page: 31 year: 2004 ident: 10.1016/j.laa.2015.07.021_br0150 article-title: Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,Rn) reduction in multilinear algebra publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2004.01.016 – volume: 41 start-page: 135 issue: 1 year: 1999 ident: 10.1016/j.laa.2015.07.021_br0130 article-title: The discrete cosine transform publication-title: SIAM Rev. doi: 10.1137/S0036144598336745 – ident: 10.1016/j.laa.2015.07.021_br0170 – volume: 26 start-page: 706 issue: 3 year: 2005 ident: 10.1016/j.laa.2015.07.021_br0120 article-title: Displacement structure approach to discrete-trigonometric-transform based preconditioners of G. Strang type and of T. Chan type publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896312560 |
SSID | ssj0004702 |
Score | 2.5598788 |
Snippet | Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | DCT Linear transformation Module Multiway SVD Tensor |
Title | Tensor–tensor products with invertible linear transforms |
URI | https://dx.doi.org/10.1016/j.laa.2015.07.021 |
Volume | 485 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KXvQgPrE-Sg6ehNg8NtnEWy2WVmlPLfS2zG42UClpaeNV_A_-Q3-Ju5tNVVAP3rJhB8LsMt9MZuYbgCuFCDLOuHRpGOYuyWLuItXBCs0xETJK0PDMDkdxf0IeptG0Ad26F0aXVVrbX9l0Y63tm7bVZns5m-keX0OmpwBZp7Mi3fBLCNW3_Obls8yDUM8yhhNX764zm6bGa46aesiPDH9n4P-MTV_wprcPe9ZRdDrVtxxAQxaHsDvcsKyuj-B2rGLQxer99a00D86yom9dO_rvqjMrzKxlPpeO9iVx5ZS1l7o-hknvftztu3YWgiuClJauQmlliJBnWZwqiKYEY18G6PHAy0TAg1xKTqVIhY-SSEwUzFPBfZJzkiuPRYQnsFUsCnkKTpT4AhOkGbVZ0TglscQwJSo8QUyb4NVaYMIShet5FXNWV4Q9MaU4phXHPMqU4ppwvRFZViwZf20mtWrZt6Nmyor_Lnb2P7Fz2NEr3T7oRxewVa6e5aXyI0reMhelBdudwWN_pFaD6d0H36zJUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8Ylvc9CLEJvHJpsIHsQHrX2cKnhbdzcbqJRa2oh4Ef-DP8V_5C9xNtlUBfUgeAtJNiRfNvPNZGa_AdhDRlBhIpRNfT-1SRIKm1MdrNCUR1IFEc91ZtudsH5FLq-D6wq8lmthdFmlsf2FTc-ttdlTM2jWhr2eXuObi-khIet0VhCZysqmenzAuG183DjDl7zveRfn3dO6bVoL2NKLaWYj6eF3zUWShDEyHiU8dJXHHeE5ifSElyolqJKxdLkiikfImlQKl6SCpOgASB-vOwXTBM2Fbptw-PRRV0KoYyTKia1vr0yl5kVlfa61jtwgFwz13O_J8BPBXSzAvPFMrZPi4RehogZLMNeeyLqOl-Goi0Hv3ejt-SXLN6xhoRc7tvTvXKs3yJs7i76ytPPKR1ZWusXjFbj6F4RWoTq4G6g1sILIlTziNKEmDRvGJFTcjwnGQ5zH6-CUKDBplMl1g4w-K0vQbhkCxzRwzKEMgVuHg8mQYSHL8dvJpISWfZlbDGnj52Ebfxu2CzP1brvFWo1OcxNm9RG9dtENtqCaje7VNjoxmdjJJ40FN_89S98BiS4GMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor%E2%80%93tensor+products+with+invertible+linear+transforms&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Kernfeld%2C+Eric&rft.au=Kilmer%2C+Misha&rft.au=Aeron%2C+Shuchin&rft.date=2015-11-15&rft.issn=0024-3795&rft.volume=485&rft.spage=545&rft.epage=570&rft_id=info:doi/10.1016%2Fj.laa.2015.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2015_07_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |