Tensor–tensor products with invertible linear transforms

Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 485; pp. 545 - 570
Main Authors Kernfeld, Eric, Kilmer, Misha, Aeron, Shuchin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or the operator in its natural, multidimensional form. In recent work [1], the authors introduced the notion of the t-product, a generalization of matrix multiplication for tensors of order three, which can be extended to multiply tensors of arbitrary order [2]. The multiplication is based on a convolution-like operation, which can be implemented efficiently using the Fast Fourier Transform (FFT). The corresponding linear algebraic framework from the original work was further developed in [3], and it allows one to elegantly generalize all classical algorithms from numerical linear algebra. In this paper, we extend this development so that tensor–tensor products can be defined in a so-called transform domain for any invertible linear transform. In order to properly motivate this transform-based approach, we begin by defining a new tensor–tensor product alternative to the t-product. We then show that it can be implemented efficiently using DCTs, and that subsequent definitions and factorizations can be formulated by appealing to the transform domain. Using this new product as our guide, we then generalize the transform-based approach to any invertible linear transform. We introduce the algebraic structures induced by each new multiplication in the family, which is that of C⁎-algebras and modules. Finally, in the spirit of [4], we give a matrix–algebra based interpretation of the new family of tensor–tensor products, and from an applied perspective, we briefly discuss how to choose a transform. We demonstrate the convenience of our new framework within the context of an image deblurring problem and we show the potential for using one of these new tensor–tensor products and resulting tensor-SVD for hyperspectral image compression.
AbstractList Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or the operator in its natural, multidimensional form. In recent work [1], the authors introduced the notion of the t-product, a generalization of matrix multiplication for tensors of order three, which can be extended to multiply tensors of arbitrary order [2]. The multiplication is based on a convolution-like operation, which can be implemented efficiently using the Fast Fourier Transform (FFT). The corresponding linear algebraic framework from the original work was further developed in [3], and it allows one to elegantly generalize all classical algorithms from numerical linear algebra. In this paper, we extend this development so that tensor–tensor products can be defined in a so-called transform domain for any invertible linear transform. In order to properly motivate this transform-based approach, we begin by defining a new tensor–tensor product alternative to the t-product. We then show that it can be implemented efficiently using DCTs, and that subsequent definitions and factorizations can be formulated by appealing to the transform domain. Using this new product as our guide, we then generalize the transform-based approach to any invertible linear transform. We introduce the algebraic structures induced by each new multiplication in the family, which is that of C⁎-algebras and modules. Finally, in the spirit of [4], we give a matrix–algebra based interpretation of the new family of tensor–tensor products, and from an applied perspective, we briefly discuss how to choose a transform. We demonstrate the convenience of our new framework within the context of an image deblurring problem and we show the potential for using one of these new tensor–tensor products and resulting tensor-SVD for hyperspectral image compression.
Author Kilmer, Misha
Kernfeld, Eric
Aeron, Shuchin
Author_xml – sequence: 1
  givenname: Eric
  orcidid: 0000-0002-2310-8191
  surname: Kernfeld
  fullname: Kernfeld, Eric
  email: ekernf01@uw.edu
  organization: Department of Statistics, University of Washington, Seattle, WA, United States
– sequence: 2
  givenname: Misha
  surname: Kilmer
  fullname: Kilmer, Misha
  email: misha.kilmer@tufts.edu
  organization: Department of Mathematics, Tufts University, Medford, MA, United States
– sequence: 3
  givenname: Shuchin
  surname: Aeron
  fullname: Aeron, Shuchin
  organization: Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
BookMark eNp9j01OwzAQhS1UJNrCAdjlAgkzbhI3sEIVf1IlNmVtOfZEuErtyjZF7LgDN-QkpJQVi67maaTv6X0TNnLeEWOXCAUC1lfroleq4IBVAaIAjidsjHMxy3Fe1SM2BuBlPhNNdcYmMa4BoBTAx-x6RS768P35lX5Dtg3evOkUs3ebXjPrdhSSbXvKeutIhSwF5WLnwyaes9NO9ZEu_u6UvdzfrRaP-fL54Wlxu8w1b0TKEcEYUq0xdYPDp1Q1ElfQcjCat7wjagXpRqOiktS8ARS6xbJryw6rRs-mDA-9OvgYA3VyG-xGhQ-JIPfyci0HebmXlyDkID8w4h-jbVLJejfst_1R8uZA0qC0sxRk1JacJmMD6SSNt0foH6qveRQ
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108901
crossref_primary_10_1109_TCSVT_2024_3401134
crossref_primary_10_1109_TIP_2021_3062995
crossref_primary_10_1109_TETCI_2023_3300522
crossref_primary_10_1109_TSP_2016_2639466
crossref_primary_10_1137_19M1297026
crossref_primary_10_1109_TGRS_2021_3075968
crossref_primary_10_1007_s10044_024_01291_y
crossref_primary_10_1016_j_apm_2023_02_012
crossref_primary_10_1109_TCSVT_2024_3413992
crossref_primary_10_1007_s10994_021_05987_8
crossref_primary_10_1007_s10444_024_10117_8
crossref_primary_10_1007_s10092_022_00469_2
crossref_primary_10_1007_s40314_022_02107_7
crossref_primary_10_2139_ssrn_4133647
crossref_primary_10_3389_fdata_2024_1363978
crossref_primary_10_1016_j_rinam_2023_100372
crossref_primary_10_1109_JIOT_2024_3415612
crossref_primary_10_3390_math12071086
crossref_primary_10_1109_TNNLS_2023_3236641
crossref_primary_10_1109_TPAMI_2021_3059299
crossref_primary_10_1007_s40305_023_00522_z
crossref_primary_10_1016_j_patcog_2023_110241
crossref_primary_10_1109_TSP_2024_3454115
crossref_primary_10_3390_rs13193829
crossref_primary_10_1016_j_compbiomed_2024_108034
crossref_primary_10_1016_j_neucom_2020_12_110
crossref_primary_10_1088_1361_6420_abd85b
crossref_primary_10_1002_nla_2574
crossref_primary_10_1002_nla_2299
crossref_primary_10_1109_TCSVT_2023_3316279
crossref_primary_10_1109_TSP_2022_3164837
crossref_primary_10_1109_TSP_2024_3427136
crossref_primary_10_1016_j_dsp_2022_103741
crossref_primary_10_1002_nla_2179
crossref_primary_10_1109_JSTSP_2021_3058763
crossref_primary_10_1016_j_knosys_2024_111917
crossref_primary_10_1007_s10543_016_0607_z
crossref_primary_10_1007_s42967_019_00055_4
crossref_primary_10_1007_s10543_023_00990_y
crossref_primary_10_1007_s40314_022_02114_8
crossref_primary_10_1109_TCI_2021_3126232
crossref_primary_10_1109_LGRS_2024_3425479
crossref_primary_10_1016_j_patcog_2019_107181
crossref_primary_10_1016_j_amc_2024_128627
crossref_primary_10_1007_s11075_025_02011_1
crossref_primary_10_1109_TNNLS_2021_3104837
crossref_primary_10_1007_s10915_024_02637_8
crossref_primary_10_1137_22M150071X
crossref_primary_10_1109_TNET_2019_2940147
crossref_primary_10_1016_j_cam_2022_114866
crossref_primary_10_1016_j_cam_2023_115439
crossref_primary_10_1109_TIP_2022_3155949
crossref_primary_10_1109_TIP_2024_3388969
crossref_primary_10_1109_TNET_2018_2797094
crossref_primary_10_3390_math9111249
crossref_primary_10_1007_s10915_023_02411_2
crossref_primary_10_1016_j_patcog_2022_109169
crossref_primary_10_1109_TIP_2024_3475738
crossref_primary_10_1016_j_cam_2024_116048
crossref_primary_10_1007_s42967_022_00218_w
crossref_primary_10_1002_nla_2290
crossref_primary_10_1109_ACCESS_2020_3008903
crossref_primary_10_1016_j_sigpro_2023_109014
crossref_primary_10_1137_23M1552115
crossref_primary_10_1109_LGRS_2023_3322946
crossref_primary_10_1007_s10915_021_01719_1
crossref_primary_10_1142_S2010326322500381
crossref_primary_10_1109_LGRS_2023_3294933
crossref_primary_10_1007_s40314_024_03068_9
crossref_primary_10_1109_TKDE_2024_3469782
crossref_primary_10_3390_app142411895
crossref_primary_10_1109_TNNLS_2022_3217198
crossref_primary_10_1007_s10915_022_02006_3
crossref_primary_10_1016_j_mlwa_2023_100479
crossref_primary_10_1016_j_neucom_2018_08_038
crossref_primary_10_1109_TNSE_2024_3514171
crossref_primary_10_1109_TSP_2024_3524568
crossref_primary_10_1109_TNNLS_2024_3373384
crossref_primary_10_1137_22M1531907
crossref_primary_10_3390_sym14050854
crossref_primary_10_1016_j_apnum_2023_07_011
crossref_primary_10_1109_TGRS_2022_3149545
crossref_primary_10_1016_j_neucom_2024_129266
crossref_primary_10_1016_j_ymssp_2024_111662
crossref_primary_10_1109_TNET_2023_3268982
crossref_primary_10_1109_TNSE_2023_3253163
crossref_primary_10_1109_TGRS_2024_3457673
crossref_primary_10_1016_j_jmaa_2024_128864
crossref_primary_10_1109_TGRS_2024_3449130
crossref_primary_10_2298_FIL2326909J
crossref_primary_10_3389_fphy_2022_885402
crossref_primary_10_3390_s19235335
crossref_primary_10_1016_j_apnum_2021_04_007
crossref_primary_10_1145_3465454
crossref_primary_10_1002_nla_2544
crossref_primary_10_1142_S0218001424550048
crossref_primary_10_1016_j_patcog_2024_110735
crossref_primary_10_1016_j_asoc_2024_111322
crossref_primary_10_1109_TIP_2024_3385284
crossref_primary_10_1109_TNNLS_2018_2851444
crossref_primary_10_1109_TGRS_2023_3237865
crossref_primary_10_1109_TII_2021_3129526
crossref_primary_10_1073_pnas_2015851118
crossref_primary_10_1016_j_neucom_2024_129036
crossref_primary_10_1109_TMI_2017_2778230
crossref_primary_10_1007_s13042_024_02096_5
crossref_primary_10_1016_j_neunet_2023_10_031
crossref_primary_10_1007_s10543_021_00877_w
crossref_primary_10_1109_LSP_2020_2983305
crossref_primary_10_1007_s10915_022_02009_0
crossref_primary_10_1109_TNNLS_2023_3248156
crossref_primary_10_1002_nla_2530
crossref_primary_10_1109_TPAMI_2023_3259640
crossref_primary_10_1016_j_cam_2024_116297
crossref_primary_10_1016_j_neucom_2021_06_020
crossref_primary_10_1002_nla_2412
crossref_primary_10_1007_s10543_023_00964_0
crossref_primary_10_1007_s10915_022_01956_y
crossref_primary_10_1016_j_acha_2023_03_007
crossref_primary_10_1109_TIP_2023_3284673
crossref_primary_10_1109_TIP_2022_3176220
crossref_primary_10_1109_TGRS_2024_3385448
crossref_primary_10_12677_aam_2025_141024
crossref_primary_10_1109_TIP_2020_3000349
crossref_primary_10_1007_s10444_023_10036_0
crossref_primary_10_1007_s40314_023_02427_2
crossref_primary_10_1109_TSP_2022_3183466
crossref_primary_10_3390_math11071682
crossref_primary_10_3390_rs13183671
crossref_primary_10_1007_s11760_020_01752_x
crossref_primary_10_1109_TBDATA_2023_3254156
crossref_primary_10_1016_j_sigpro_2022_108888
crossref_primary_10_1016_j_apm_2021_02_032
crossref_primary_10_1016_j_neucom_2021_02_002
crossref_primary_10_1007_s10915_023_02308_0
crossref_primary_10_1007_s13042_024_02224_1
crossref_primary_10_1016_j_sigpro_2023_109176
crossref_primary_10_1109_TITS_2021_3098637
crossref_primary_10_1109_TNNLS_2024_3356228
crossref_primary_10_1016_j_media_2021_102152
crossref_primary_10_1016_j_knosys_2022_108468
crossref_primary_10_1007_s10915_024_02653_8
crossref_primary_10_1007_s11075_023_01607_9
crossref_primary_10_1016_j_trc_2021_103226
crossref_primary_10_1016_j_sigpro_2024_109407
crossref_primary_10_1002_nla_2594
crossref_primary_10_1137_23M1620326
crossref_primary_10_1007_s10489_023_04477_9
crossref_primary_10_1016_j_sigpro_2022_108910
crossref_primary_10_1109_ACCESS_2020_3024635
crossref_primary_10_1007_s10915_024_02509_1
crossref_primary_10_1016_j_sigpro_2024_109400
crossref_primary_10_1109_TPAMI_2019_2891760
crossref_primary_10_1007_s10915_022_01937_1
crossref_primary_10_1109_TGRS_2023_3234608
crossref_primary_10_1016_j_neunet_2022_03_038
crossref_primary_10_1007_s10915_021_01437_8
crossref_primary_10_1007_s10915_025_02801_8
Cites_doi 10.1109/MSP.2013.2297439
10.1109/78.295213
10.1371/journal.pone.0028072
10.1137/110841229
10.1016/j.laa.2010.05.025
10.1109/78.482113
10.1016/j.laa.2010.09.020
10.1137/110842570
10.1137/07070111X
10.1002/nla.1845
10.1137/S0895479896305696
10.1109/TNSRE.2008.2008394
10.1137/S1064827598341384
10.1137/110837711
10.1016/j.laa.2004.01.016
10.1137/S0036144598336745
10.1137/S0895479896312560
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.laa.2015.07.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 570
ExternalDocumentID 10_1016_j_laa_2015_07_021
S0024379515004358
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c297t-110ddeabdd6912974a61e2a0b20dc2b2feeb7ec9c1ae4ea89017cb14fb4f159c3
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 03:18:01 EDT 2025
Fri Feb 23 02:35:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SVD
Tensor
DCT
94A08
Multiway
Linear transformation
15A69
5B05
Module
06F25
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-110ddeabdd6912974a61e2a0b20dc2b2feeb7ec9c1ae4ea89017cb14fb4f159c3
ORCID 0000-0002-2310-8191
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0024379515004358
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_laa_2015_07_021
crossref_citationtrail_10_1016_j_laa_2015_07_021
elsevier_sciencedirect_doi_10_1016_j_laa_2015_07_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-15
PublicationDateYYYYMMDD 2015-11-15
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Linear algebra and its applications
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gleich, Greif, Varah (br0040) 2013; 20
De Lathauwer, Vandewalle (br0150) 2004; 391
Blackadar (br0250) 2010
Strang (br0130) 1999; 41
Martucci (br0100) 1994; 42
Hao, Kilmer, Braman, Hoover (br0050) 2013; 6
Li, Zhang, Tao, Sun, Zhao (br0140) 2009; 17
Braman (br0080) 2010; 433
Navasca, Opperman, Penderghest, Tamon (br0090) May 2010
Zhang, Ely, Aeron, Hao, Kilmer (br0070) 2014
Kolda, Bader (br0200) 2009; 51
Cichocki, Mandic, Phan, Caiafa, Zhou, Zhao, De Lathauwer (br0160) 2015; 32
Anandkumar, Ge, Hsu, Kakade, Telgarsky (br0180) 2014; 15
Kailath, Olshevsky (br0120) 2005; 26
Nagy, Berisha, Chung, Palmer, Perrone, Wright (br0270) 2012
Martin, Shafer, LaRue (br0020) 2013; 35
Ponnapalli, Saunders, Van Loan, Alter (br0190) 2011; 6
Ely, Aeron, Hao, Kilmer (br0060) 2013
Lim (br0220) 2013
Hungerford (br0240) 1974
Sánchez, García, Peinado, Segura, Rubio (br0110) 1995; 43
De Lathauwer, De Moor, Vandewalle (br0210) 2000; 21
Ng, Chan, Tang (br0230) 1999
Hansen (br0260) 1998
Kilmer, Martin (br0010) 2011; 435
Kernfeld, Aeron, Kilmer (br0280) 2014
Kilmer, Braman, Hao, Hoover (br0030) 2013; 34
Yang, Dunson (br0170)
Martin (10.1016/j.laa.2015.07.021_br0020) 2013; 35
Kailath (10.1016/j.laa.2015.07.021_br0120) 2005; 26
Braman (10.1016/j.laa.2015.07.021_br0080) 2010; 433
De Lathauwer (10.1016/j.laa.2015.07.021_br0150) 2004; 391
Ely (10.1016/j.laa.2015.07.021_br0060) 2013
Kilmer (10.1016/j.laa.2015.07.021_br0030) 2013; 34
Hao (10.1016/j.laa.2015.07.021_br0050) 2013; 6
Sánchez (10.1016/j.laa.2015.07.021_br0110) 1995; 43
Lim (10.1016/j.laa.2015.07.021_br0220) 2013
Zhang (10.1016/j.laa.2015.07.021_br0070) 2014
Strang (10.1016/j.laa.2015.07.021_br0130) 1999; 41
Yang (10.1016/j.laa.2015.07.021_br0170)
Anandkumar (10.1016/j.laa.2015.07.021_br0180) 2014; 15
Kolda (10.1016/j.laa.2015.07.021_br0200) 2009; 51
Ng (10.1016/j.laa.2015.07.021_br0230) 1999
Nagy (10.1016/j.laa.2015.07.021_br0270)
Ponnapalli (10.1016/j.laa.2015.07.021_br0190) 2011; 6
Navasca (10.1016/j.laa.2015.07.021_br0090)
Cichocki (10.1016/j.laa.2015.07.021_br0160) 2015; 32
Kilmer (10.1016/j.laa.2015.07.021_br0010) 2011; 435
Hungerford (10.1016/j.laa.2015.07.021_br0240) 1974
Martucci (10.1016/j.laa.2015.07.021_br0100) 1994; 42
Blackadar (10.1016/j.laa.2015.07.021_br0250) 2010
Kernfeld (10.1016/j.laa.2015.07.021_br0280)
Hansen (10.1016/j.laa.2015.07.021_br0260) 1998
Gleich (10.1016/j.laa.2015.07.021_br0040) 2013; 20
De Lathauwer (10.1016/j.laa.2015.07.021_br0210) 2000; 21
Li (10.1016/j.laa.2015.07.021_br0140) 2009; 17
References_xml – volume: 433
  start-page: 1241
  year: 2010
  end-page: 1253
  ident: br0080
  article-title: Third-order tensors as linear operators on a space of matrices
  publication-title: Linear Algebra Appl.
– year: May 2010
  ident: br0090
  article-title: Tensors as module homomorphisms over group rings
– volume: 6
  start-page: e28072
  year: 2011
  ident: br0190
  article-title: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms
  publication-title: PLoS One
– volume: 34
  start-page: 148
  year: 2013
  end-page: 172
  ident: br0030
  article-title: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 3842
  year: 2014
  end-page: 3849
  ident: br0070
  article-title: Novel methods for multilinear data completion and de-noising based on tensor-SVD
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 6
  start-page: 437
  year: 2013
  end-page: 463
  ident: br0050
  article-title: Facial recognition using tensor–tensor decompositions
  publication-title: SIAM J. Imaging Sci.
– volume: 43
  start-page: 2631
  year: 1995
  end-page: 2641
  ident: br0110
  article-title: Diagonalizing properties of the discrete cosine transforms
  publication-title: IEEE Trans. Signal Process.
– volume: 32
  start-page: 145
  year: 2015
  end-page: 163
  ident: br0160
  article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 26
  start-page: 706
  year: 2005
  end-page: 734
  ident: br0120
  article-title: Displacement structure approach to discrete-trigonometric-transform based preconditioners of G. Strang type and of T. Chan type
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2012
  ident: br0270
  article-title: RestoreTools: an object oriented Matlab package for image restoration
– volume: 41
  start-page: 135
  year: 1999
  end-page: 147
  ident: br0130
  article-title: The discrete cosine transform
  publication-title: SIAM Rev.
– start-page: 851
  year: 1999
  end-page: 866
  ident: br0230
  article-title: A fast algorithm for deblurring models with Neumann boundary conditions
  publication-title: SIAM J. Sci. Comput.
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: br0210
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 35
  start-page: A474
  year: 2013
  end-page: A490
  ident: br0020
  article-title: An order-
  publication-title: SIAM J. Sci. Comput.
– volume: 391
  start-page: 31
  year: 2004
  end-page: 55
  ident: br0150
  article-title: Dimensionality reduction in higher-order signal processing and rank-(
  publication-title: Special Issue on Linear Algebra in Signal and Image Processing
– volume: 20
  start-page: 809
  year: 2013
  end-page: 831
  ident: br0040
  article-title: The power and Arnoldi methods in an algebra of circulants
  publication-title: Numer. Linear Algebra Appl.
– ident: br0170
  article-title: Bayesian conditional tensor factorizations for high-dimensional classification
– volume: 15
  start-page: 2773
  year: 2014
  end-page: 2832
  ident: br0180
  article-title: Tensor decompositions for learning latent variable models
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: br0060
  article-title: 5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN)
  publication-title: SEG International Exposition and Eighty-Third Annual Meeting at Houston, TX
– volume: 42
  start-page: 1038
  year: 1994
  end-page: 1051
  ident: br0100
  article-title: Symmetric convolution and the discrete sine and cosine transforms
  publication-title: IEEE Trans. Signal Process.
– year: 1998
  ident: br0260
  article-title: Rank Deficient and Discrete Ill-Posed Problems
– volume: 17
  start-page: 107
  year: 2009
  end-page: 115
  ident: br0140
  article-title: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: br0200
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 435
  start-page: 641
  year: 2011
  end-page: 658
  ident: br0010
  article-title: Factorization strategies for third-order tensors
  publication-title: Linear Algebra Appl.
– year: 2010
  ident: br0250
  article-title: Operator Algebras: Theory of C
– year: 1974
  ident: br0240
  article-title: Algebra
– year: 2014
  ident: br0280
  article-title: Clustering multi-way data: a novel algebraic approach
– start-page: 231
  year: 2013
  end-page: 260
  ident: br0220
  article-title: Tensors and hypermatrices
  publication-title: Handbook of Linear Algebra
– year: 1974
  ident: 10.1016/j.laa.2015.07.021_br0240
– year: 2010
  ident: 10.1016/j.laa.2015.07.021_br0250
– volume: 32
  start-page: 145
  year: 2015
  ident: 10.1016/j.laa.2015.07.021_br0160
  article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 42
  start-page: 1038
  issue: 5
  year: 1994
  ident: 10.1016/j.laa.2015.07.021_br0100
  article-title: Symmetric convolution and the discrete sine and cosine transforms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.295213
– year: 1998
  ident: 10.1016/j.laa.2015.07.021_br0260
– ident: 10.1016/j.laa.2015.07.021_br0270
– ident: 10.1016/j.laa.2015.07.021_br0090
– volume: 6
  start-page: e28072
  issue: 12
  year: 2011
  ident: 10.1016/j.laa.2015.07.021_br0190
  article-title: A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028072
– volume: 35
  start-page: A474
  issue: 1
  year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0020
  article-title: An order-p tensor factorization with applications in imaging
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110841229
– year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0060
  article-title: 5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN)
– volume: 15
  start-page: 2773
  issue: 1
  year: 2014
  ident: 10.1016/j.laa.2015.07.021_br0180
  article-title: Tensor decompositions for learning latent variable models
  publication-title: J. Mach. Learn. Res.
– volume: 433
  start-page: 1241
  issue: 7
  year: 2010
  ident: 10.1016/j.laa.2015.07.021_br0080
  article-title: Third-order tensors as linear operators on a space of matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.05.025
– start-page: 231
  year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0220
  article-title: Tensors and hypermatrices
– volume: 43
  start-page: 2631
  issue: 11
  year: 1995
  ident: 10.1016/j.laa.2015.07.021_br0110
  article-title: Diagonalizing properties of the discrete cosine transforms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.482113
– volume: 435
  start-page: 641
  issue: 3
  year: 2011
  ident: 10.1016/j.laa.2015.07.021_br0010
  article-title: Factorization strategies for third-order tensors
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.09.020
– volume: 6
  start-page: 437
  issue: 1
  year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0050
  article-title: Facial recognition using tensor–tensor decompositions
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/110842570
– start-page: 3842
  year: 2014
  ident: 10.1016/j.laa.2015.07.021_br0070
  article-title: Novel methods for multilinear data completion and de-noising based on tensor-SVD
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.laa.2015.07.021_br0200
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 20
  start-page: 809
  issue: 5
  year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0040
  article-title: The power and Arnoldi methods in an algebra of circulants
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1845
– ident: 10.1016/j.laa.2015.07.021_br0280
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 10.1016/j.laa.2015.07.021_br0210
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 17
  start-page: 107
  issue: 2
  year: 2009
  ident: 10.1016/j.laa.2015.07.021_br0140
  article-title: A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.2008394
– start-page: 851
  year: 1999
  ident: 10.1016/j.laa.2015.07.021_br0230
  article-title: A fast algorithm for deblurring models with Neumann boundary conditions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827598341384
– volume: 34
  start-page: 148
  issue: 1
  year: 2013
  ident: 10.1016/j.laa.2015.07.021_br0030
  article-title: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110837711
– volume: 391
  start-page: 31
  year: 2004
  ident: 10.1016/j.laa.2015.07.021_br0150
  article-title: Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,Rn) reduction in multilinear algebra
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2004.01.016
– volume: 41
  start-page: 135
  issue: 1
  year: 1999
  ident: 10.1016/j.laa.2015.07.021_br0130
  article-title: The discrete cosine transform
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144598336745
– ident: 10.1016/j.laa.2015.07.021_br0170
– volume: 26
  start-page: 706
  issue: 3
  year: 2005
  ident: 10.1016/j.laa.2015.07.021_br0120
  article-title: Displacement structure approach to discrete-trigonometric-transform based preconditioners of G. Strang type and of T. Chan type
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896312560
SSID ssj0004702
Score 2.5598788
Snippet Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms DCT
Linear transformation
Module
Multiway
SVD
Tensor
Title Tensor–tensor products with invertible linear transforms
URI https://dx.doi.org/10.1016/j.laa.2015.07.021
Volume 485
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KXvQgPrE-Sg6ehNg8NtnEWy2WVmlPLfS2zG42UClpaeNV_A_-Q3-Ju5tNVVAP3rJhB8LsMt9MZuYbgCuFCDLOuHRpGOYuyWLuItXBCs0xETJK0PDMDkdxf0IeptG0Ad26F0aXVVrbX9l0Y63tm7bVZns5m-keX0OmpwBZp7Mi3fBLCNW3_Obls8yDUM8yhhNX764zm6bGa46aesiPDH9n4P-MTV_wprcPe9ZRdDrVtxxAQxaHsDvcsKyuj-B2rGLQxer99a00D86yom9dO_rvqjMrzKxlPpeO9iVx5ZS1l7o-hknvftztu3YWgiuClJauQmlliJBnWZwqiKYEY18G6PHAy0TAg1xKTqVIhY-SSEwUzFPBfZJzkiuPRYQnsFUsCnkKTpT4AhOkGbVZ0TglscQwJSo8QUyb4NVaYMIShet5FXNWV4Q9MaU4phXHPMqU4ppwvRFZViwZf20mtWrZt6Nmyor_Lnb2P7Fz2NEr3T7oRxewVa6e5aXyI0reMhelBdudwWN_pFaD6d0H36zJUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8Ylvc9CLEJvHJpsIHsQHrX2cKnhbdzcbqJRa2oh4Ef-DP8V_5C9xNtlUBfUgeAtJNiRfNvPNZGa_AdhDRlBhIpRNfT-1SRIKm1MdrNCUR1IFEc91ZtudsH5FLq-D6wq8lmthdFmlsf2FTc-ttdlTM2jWhr2eXuObi-khIet0VhCZysqmenzAuG183DjDl7zveRfn3dO6bVoL2NKLaWYj6eF3zUWShDEyHiU8dJXHHeE5ifSElyolqJKxdLkiikfImlQKl6SCpOgASB-vOwXTBM2Fbptw-PRRV0KoYyTKia1vr0yl5kVlfa61jtwgFwz13O_J8BPBXSzAvPFMrZPi4RehogZLMNeeyLqOl-Goi0Hv3ejt-SXLN6xhoRc7tvTvXKs3yJs7i76ytPPKR1ZWusXjFbj6F4RWoTq4G6g1sILIlTziNKEmDRvGJFTcjwnGQ5zH6-CUKDBplMl1g4w-K0vQbhkCxzRwzKEMgVuHg8mQYSHL8dvJpISWfZlbDGnj52Ebfxu2CzP1brvFWo1OcxNm9RG9dtENtqCaje7VNjoxmdjJJ40FN_89S98BiS4GMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor%E2%80%93tensor+products+with+invertible+linear+transforms&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Kernfeld%2C+Eric&rft.au=Kilmer%2C+Misha&rft.au=Aeron%2C+Shuchin&rft.date=2015-11-15&rft.issn=0024-3795&rft.volume=485&rft.spage=545&rft.epage=570&rft_id=info:doi/10.1016%2Fj.laa.2015.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2015_07_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon