An improved fuzzy‐controlled local path planning algorithm based on dynamic window approach

With the increasingly complex operating environment of mobile robots, the intelligent requirements of robots are getting higher and higher. Navigation technology is the core of mobile robot intelligent technology research, and path planning is an important function of mobile robot navigation. Dynami...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 42; no. 2; pp. 430 - 454
Main Authors Liu, Aizun, Liu, Chong, Li, Lei, Wang, Ruchao, Lu, Zhiguo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22419

Cover

Loading…
Abstract With the increasingly complex operating environment of mobile robots, the intelligent requirements of robots are getting higher and higher. Navigation technology is the core of mobile robot intelligent technology research, and path planning is an important function of mobile robot navigation. Dynamic window approach (DWA) is one of the most popular local path planning algorithms nowadays. However, there are also some problems. DWA algorithm is easy to fall into local optimal solution without the guidance of global path. The traditional solution is to use the key nodes of the global path as the temporary target points. However, the guiding ability of the temporary target points will be weakened in some cases, which still leads DWA to fall into local optimal solutions such as being trapped by a “C”‐shaped obstacle or go around outside of a dense obstacle area. In a complex operating environment, if the local path deviates too far from the global path, serious consequences may be caused. Therefore, we proposed a trajectory similarity evaluation function based on dynamic time warping method to provide better guidance. The other problem is poor adaptability to complex environments due to fixed evaluation function weights. And, we designed a fuzzy controller to improve the adaptability of the DWA algorithm in complex environments. Experiment results show that the trajectory similarity evaluation function reduces algorithm execution time by 0.7% and mileage by 2.1%, the fuzzy controller reduces algorithm execution time by 10.8% and improves the average distance between the mobile robot and obstacles at the global path's danger points by 50%, and in simulated complex terrain environment, the finishing rate of experiments improves by 25%.
AbstractList With the increasingly complex operating environment of mobile robots, the intelligent requirements of robots are getting higher and higher. Navigation technology is the core of mobile robot intelligent technology research, and path planning is an important function of mobile robot navigation. Dynamic window approach (DWA) is one of the most popular local path planning algorithms nowadays. However, there are also some problems. DWA algorithm is easy to fall into local optimal solution without the guidance of global path. The traditional solution is to use the key nodes of the global path as the temporary target points. However, the guiding ability of the temporary target points will be weakened in some cases, which still leads DWA to fall into local optimal solutions such as being trapped by a “C”‐shaped obstacle or go around outside of a dense obstacle area. In a complex operating environment, if the local path deviates too far from the global path, serious consequences may be caused. Therefore, we proposed a trajectory similarity evaluation function based on dynamic time warping method to provide better guidance. The other problem is poor adaptability to complex environments due to fixed evaluation function weights. And, we designed a fuzzy controller to improve the adaptability of the DWA algorithm in complex environments. Experiment results show that the trajectory similarity evaluation function reduces algorithm execution time by 0.7% and mileage by 2.1%, the fuzzy controller reduces algorithm execution time by 10.8% and improves the average distance between the mobile robot and obstacles at the global path's danger points by 50%, and in simulated complex terrain environment, the finishing rate of experiments improves by 25%.
Author Liu, Chong
Wang, Ruchao
Liu, Aizun
Li, Lei
Lu, Zhiguo
Author_xml – sequence: 1
  givenname: Aizun
  orcidid: 0000-0002-4448-3521
  surname: Liu
  fullname: Liu, Aizun
  email: liuaizun123@163.com
  organization: Aerospace Era Feihong Technology Company Ltd
– sequence: 2
  givenname: Chong
  orcidid: 0000-0001-9352-4994
  surname: Liu
  fullname: Liu, Chong
  organization: Northeastern University
– sequence: 3
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Northeastern University
– sequence: 4
  givenname: Ruchao
  surname: Wang
  fullname: Wang, Ruchao
  organization: Northeastern University
– sequence: 5
  givenname: Zhiguo
  surname: Lu
  fullname: Lu, Zhiguo
  organization: Northeastern University
BookMark eNp1kM1KAzEUhYMo2FYXvkHAlYtpk8lMZrKsxT8oFESXMiSZTJuSScbM1NKufASf0ScxtcWF6OpeLt85h3v64Ng6qwC4wGiIEYpH3olhHCeYHYEeTlMaJYxmxz97yk5Bv22XCCUkZ2kPvIwt1HXj3ZsqYbXabjef7x_S2c47Y8LJOMkNbHi3gI3h1mo7h9zMndfdooaCt4FxFpYby2st4Vrb0q0hb4Ijl4szcFJx06rzwxyA59ubp8l9NJ3dPUzG00jGLGNRriqGyyTlrEwkTahgQgmiRLjJPMuRoKXCgmSYlxVhFamoQCTlFMeKkEQSMgCXe98Q-7pSbVcs3crbEFkQTIMjyggO1GhPSe_a1quqkLrjnd59y7UpMCp2HRahw-K7w6C4-qVovK653_zJHtzX2qjN_2DxOLveK74AChyFZw
CitedBy_id crossref_primary_10_3390_sym17010085
crossref_primary_10_3390_app142210599
Cites_doi 10.1088/1742-6596/1884/1/012003
10.1109/access.2019.2949835
10.1109/ROBIO.2014.7090482
10.1109/access.2022.3197628
10.1155/2021/4511252
10.3390/mi13040616
10.1109/PHM-Yantai55411.2022.9942106
10.1016/j.asoc.2019.01.036
10.1007/978-3-030-32591-6_32
10.3390/s20071880
10.3934/mbe.2024096
10.1016/j.neucom.2017.12.015
10.3390/app14073103
10.1007/s00500-006-0068-4
10.1016/j.asoc.2020.106076
10.1371/journal.pone.0302026
10.3390/s22187079
10.1109/ICCCR54399.2022.9790216
10.3390/s23084102
10.1177/1729881419839596
10.1016/j.dt.2019.04.011
10.1007/s40998-018-0112-2
10.1177/01423312211024798
10.3182/20080706-5-kr-1001.01833
10.3934/mbe.2023846
10.1109/ACCESS.2018.2886245
10.1007/s10115-004-0154-9
10.1016/j.asoc.2019.02.021
10.3389/fnbot.2020.00044
10.1016/0165-0114(92)90113-I
10.3389/fbioe.2021.793782
10.1109/ICRA.2013.6630866
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
– notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22419
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 454
ExternalDocumentID 10_1002_rob_22419
ROB22419
Genre researchArticle
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
VXZ
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
AGHNM
AGYGG
CITATION
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2979-8ef91d45a9d4c646b9beb3eb1d4c8780b6de1b371adf39f3f6b035a612e334c33
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 09:03:32 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Tue Jul 01 04:33:54 EDT 2025
Fri Feb 14 09:50:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2979-8ef91d45a9d4c646b9beb3eb1d4c8780b6de1b371adf39f3f6b035a612e334c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9352-4994
0000-0002-4448-3521
PQID 3166460731
PQPubID 1006410
PageCount 25
ParticipantIDs proquest_journals_3166460731
crossref_citationtrail_10_1002_rob_22419
crossref_primary_10_1002_rob_22419
wiley_primary_10_1002_rob_22419_ROB22419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 44
2018; 282
2020; 20
2019; 77
2006; 11
2019; 78
2019; 15
2008
2019; 16
2020; 14
2005
2022; 22
2024; 14
2010; 41
2024; 19
2023; 20
2023; 1801
2009; 30
2020; 1075
2021; 1884
2023; 23
2022
2013; 2013
2019; 43
2022; 9
2022; 13
2005; 7
2003; 4
2016
2024; 21
2020; 89
2015
2022; 10
2013
1992; 45
2021; 2021
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_15_1
Ali H. (e_1_2_7_5_1) 2020; 14
e_1_2_7_12_1
Cai J. (e_1_2_7_8_1) 2022
Hao W. (e_1_2_7_13_1) 2019; 78
e_1_2_7_10_1
Agrawal R. (e_1_2_7_2_1) 2005
Chen L. (e_1_2_7_11_1) 2009
Klaassen B. (e_1_2_7_16_1) 2003
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Thabit S. (e_1_2_7_32_1) 2019; 7
Campion G. (e_1_2_7_9_1) 2008
Singh N.H. (e_1_2_7_29_1) 2019; 43
Bao J. (e_1_2_7_7_1) 2016
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
Maroti A. (e_1_2_7_22_1) 2013
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Trautman P. (e_1_2_7_33_1) 2013
Hu Y. (e_1_2_7_14_1) 2023
References_xml – volume: 282
  start-page: 42
  year: 2018
  end-page: 51
  article-title: Car‐like mobile robot path planning in rough terrain using multi‐objective particle swarm optimization algorithm
  publication-title: Neurocomputing
– volume: 23
  issue: 8
  year: 2023
  article-title: Dynamic path planning of AGV based on kinematical constraint A* algorithm and following DWA fusion algorithms
  publication-title: Sensors
– volume: 2013
  start-page: 95
  year: 2013
  end-page: 100
– volume: 20
  start-page: 1880
  year: 2020
  article-title: Grid‐based mobile robot path planning using aging‐based ant colony optimization algorithm in static and dynamic environments
  publication-title: Sensors
– volume: 4
  start-page: 3014
  year: 2003
  end-page: 3019
– volume: 44
  start-page: 121
  issue: 1
  year: 2021
  end-page: 132
  article-title: Path planning of mobile robot with PSO‐based APF and fuzzy‐based DWA subject to moving obstacles
  publication-title: Transactions of the Institute of Measurement and Control
– start-page: 2153
  year: 2013
  end-page: 2160
– volume: 14
  issue: 7
  year: 2024
  article-title: A path planning method based on improved A* and fuzzy control DWA of underground mine vehicles
  publication-title: Applied Sciences
– volume: 30
  start-page: 792
  year: 2009
  end-page: 803
– volume: 1801
  year: 2023
– start-page: 207
  year: 2005
  end-page: 216
– start-page: 20
  year: 2022
  end-page: 26
– volume: 45
  start-page: 135
  issue: 2
  year: 1992
  end-page: 156
  article-title: Stability analysis and design of fuzzy control systems
  publication-title: Fuzzy Sets and Systems
– volume: 21
  start-page: 2189
  issue: 2
  year: 2024
  end-page: 2211
  article-title: A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments
  publication-title: Mathematical Biosciences and Engineering
– volume: 11
  start-page: 269
  year: 2006
  end-page: 279
  article-title: Multiple objective genetic algorithms for path‐planning optimization in autonomous mobile robots
  publication-title: Soft Computing
– volume: 1075
  year: 2020
– volume: 15
  start-page: 582
  year: 2019
  end-page: 606
  article-title: A review: on path planning strategies for navigation of mobile robot
  publication-title: Defence Technology
– volume: 19
  issue: 4
  year: 2024
  article-title: Robot obstacle avoidance optimization by A* and DWA fusion algorithm
  publication-title: PLoS ONE
– volume: 13
  year: 2022
  article-title: Path planning algorithm for multi‐locomotion robot based on multi‐objective genetic algorithm with elitist strategy
  publication-title: Micromachines
– volume: 22
  issue: 18
  year: 2022
  article-title: Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm
  publication-title: Sensors
– volume: 78
  start-page: 109
  year: 2019
  end-page: 118
  article-title: Handling forecasting problems based on fuzzy time series model and model error learning
  publication-title: Applied Soft Computing Journal
– volume: 43
  start-page: 277
  year: 2019
  end-page: 294
  article-title: Mobile robot navigation using fuzzy‐GA approaches along with three path concept
  publication-title: The Iranian Journal of Science and Technology, Transactions of Electrical Engineering
– volume: 10
  start-page: 84648
  year: 2022
  end-page: 84663
  article-title: Mobile robot path planning using a QAPF learning algorithm for known and unknown environments
  publication-title: IEEE Access
– volume: 7
  start-page: 2138
  year: 2019
  end-page: 2147
  article-title: Multi‐robot path planning based on multi‐objective particle swarm optimization
  publication-title: IEEE Access
– volume: 89
  year: 2020
  article-title: Multi‐objective path planning of an autonomous mobile robot using hybrid PSO‐MFB optimization algorithm
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 156787
  year: 2019
  end-page: 156803
  article-title: Hybrid path planning algorithm based on membrane pseudo‐bacterial potential field for autonomous mobile robots
  publication-title: IEEE Access
– volume: 20
  start-page: 19152
  issue: 11
  year: 2023
  end-page: 19173
  article-title: Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA
  publication-title: Mathematical Biosciences and Engineering
– volume: 16
  issue: 2
  year: 2019
  article-title: A review of mobile robots: concepts, methods, theoretical framework, and applications
  publication-title: International Journal of Advanced Robotic Systems
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  article-title: UAV path planning based on improved A* and DWA algorithms
  publication-title: International Journal of Aerospace Engineering
– year: 2008
– volume: 77
  start-page: 236
  year: 2019
  end-page: 251
  article-title: Mobile robot path planning using membrane evolutionary artificial potential field
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 358
  year: 2005
  end-page: 386
  article-title: Exact indexing of dynamic time warping
  publication-title: Knowledge and Information Systems
– volume: 1884
  year: 2021
  article-title: An improved dynamic window approach for local trajectory planning in the environment with dense objects
  publication-title: Journal of Physics: Conference Series
– start-page: 1
  year: 2016
  end-page: 10
– volume: 14
  start-page: 44
  year: 2020
  article-title: Path planning of mobile robot with improved ant colony algorithm and MDP to produce smooth trajectory in grid‐based environment
  publication-title: Frontiers in Neurorobotics
– volume: 41
  start-page: 10822
  issue: 2
  year: 2010
  end-page: 10825
  article-title: BigDog, the rough‐terrain quadruped robot
  publication-title: IFAC Proceedings Volumes
– volume: 9
  year: 2022
  article-title: Genetic algorithm‐based trajectory optimization for digital twin robots
  publication-title: Frontiers in Bioengineering and Biotechnology
– start-page: 1
  year: 2022
  end-page: 7
– year: 2015
– ident: e_1_2_7_21_1
  doi: 10.1088/1742-6596/1884/1/012003
– ident: e_1_2_7_24_1
  doi: 10.1109/access.2019.2949835
– ident: e_1_2_7_12_1
  doi: 10.1109/ROBIO.2014.7090482
– ident: e_1_2_7_25_1
  doi: 10.1109/access.2022.3197628
– start-page: 792
  volume-title: Proceedings of the 2004 VLDB Conference
  year: 2009
  ident: e_1_2_7_11_1
– start-page: 3014
  volume-title: Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
  year: 2003
  ident: e_1_2_7_16_1
– ident: e_1_2_7_6_1
  doi: 10.1155/2021/4511252
– ident: e_1_2_7_19_1
  doi: 10.3390/mi13040616
– ident: e_1_2_7_37_1
  doi: 10.1109/PHM-Yantai55411.2022.9942106
– ident: e_1_2_7_23_1
  doi: 10.1016/j.asoc.2019.01.036
– ident: e_1_2_7_36_1
  doi: 10.1007/978-3-030-32591-6_32
– ident: e_1_2_7_3_1
  doi: 10.3390/s20071880
– ident: e_1_2_7_30_1
  doi: 10.3934/mbe.2024096
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neucom.2017.12.015
– ident: e_1_2_7_39_1
  doi: 10.3390/app14073103
– ident: e_1_2_7_10_1
  doi: 10.1007/s00500-006-0068-4
– ident: e_1_2_7_4_1
  doi: 10.1016/j.asoc.2020.106076
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0302026
– ident: e_1_2_7_35_1
  doi: 10.3390/s22187079
– volume-title: Springer handbook of robotics
  year: 2008
  ident: e_1_2_7_9_1
– volume-title: Bio‐Inspired Computing: Theories and Applications. BIC‐TA 2022. Communications in Computer and Information Science
  year: 2023
  ident: e_1_2_7_14_1
– start-page: 20
  volume-title: 2022 2nd International Conference on Computer, Control and Robotics (ICCCR)
  year: 2022
  ident: e_1_2_7_8_1
  doi: 10.1109/ICCCR54399.2022.9790216
– ident: e_1_2_7_38_1
  doi: 10.3390/s23084102
– ident: e_1_2_7_28_1
  doi: 10.1177/1729881419839596
– ident: e_1_2_7_26_1
  doi: 10.1016/j.dt.2019.04.011
– volume: 43
  start-page: 277
  year: 2019
  ident: e_1_2_7_29_1
  article-title: Mobile robot navigation using fuzzy‐GA approaches along with three path concept
  publication-title: The Iranian Journal of Science and Technology, Transactions of Electrical Engineering
  doi: 10.1007/s40998-018-0112-2
– start-page: 207
  volume-title: Mining association rules between sets of items in large databases
  year: 2005
  ident: e_1_2_7_2_1
– ident: e_1_2_7_18_1
  doi: 10.1177/01423312211024798
– ident: e_1_2_7_27_1
  doi: 10.3182/20080706-5-kr-1001.01833
– ident: e_1_2_7_40_1
  doi: 10.3934/mbe.2023846
– volume: 7
  start-page: 2138
  year: 2019
  ident: e_1_2_7_32_1
  article-title: Multi‐robot path planning based on multi‐objective particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886245
– ident: e_1_2_7_15_1
  doi: 10.1007/s10115-004-0154-9
– volume: 78
  start-page: 109
  year: 2019
  ident: e_1_2_7_13_1
  article-title: Handling forecasting problems based on fuzzy time series model and model error learning
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.02.021
– start-page: 95
  volume-title: 2013 IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI 2013)
  year: 2013
  ident: e_1_2_7_22_1
– volume: 14
  start-page: 44
  year: 2020
  ident: e_1_2_7_5_1
  article-title: Path planning of mobile robot with improved ant colony algorithm and MDP to produce smooth trajectory in grid‐based environment
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2020.00044
– ident: e_1_2_7_31_1
  doi: 10.1016/0165-0114(92)90113-I
– ident: e_1_2_7_20_1
  doi: 10.3389/fbioe.2021.793782
– start-page: 2153
  volume-title: 2013 IEEE International Conference on Robotics and Automation
  year: 2013
  ident: e_1_2_7_33_1
  doi: 10.1109/ICRA.2013.6630866
– start-page: 1
  volume-title: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
  year: 2016
  ident: e_1_2_7_7_1
SSID ssj0043895
Score 2.4313357
Snippet With the increasingly complex operating environment of mobile robots, the intelligent requirements of robots are getting higher and higher. Navigation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 430
SubjectTerms Algorithms
Barriers
Controllers
DWA algorithm
dynamic obstacle avoidance
Fuzzy control
local optimal
local path planning
mobile robot
Navigation
Path planning
Robot dynamics
Robots
Similarity
Trajectories
trajectory similarity
Title An improved fuzzy‐controlled local path planning algorithm based on dynamic window approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22419
https://www.proquest.com/docview/3166460731
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7DJ33wLs4bQXzwpVvTNGmCT14RQQVxsAelNE2iw9mOuSHuyZ_gb_SXmKTtpqIgPvXCaXM5OTkn4eT7ANiJKOGh8rUnFaNeGCDtiRQJL-GJTwUjXLgkmvMLetoKz9qkXQN71VmYAh9ivOFmLcPN19bAE_HUnICG9nPRsP7HHt5DmFrc_KOrMXSUJfUmDiuVmCpwwitUIT9ojr_86osmAebnMNX5mZM5cFPVsEgveWgMB6KRjr6BN_6zCfNgtow_4X4xYBZATWWLYOYTKuESuN3PYMftNSgJ9XA0enl_fStT2rvmlXN_0FIZw15JeQST7l3e7wzuH6F1ixLmGZQF1z18Nqv-_BlW4OXLoHVyfH146pUsDF4a8Ih7TGmOZEgSLsOUhlRwYRbgZoo3jyxivqBSIYEjlEiNucaaCh-TxEROCuMwxXgFTGV5plYBJILrkFKGsZbmmrKUMYmiJODCJybYq4PdSh9xWkKUW6aMblyAKwex6bHY9VgdbI9FewUux09CG5VS49I0n2KMqGmFmdmQKc5p5_cfxFeXB-5m7e-i62A6sBzBLk9tA0wN-kO1aQKXgdhyI_QD0VHraw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2isKAsyqNFQClYiEU3GZL4EVtiQwtoeEsIJDYoimMbRgwJGmaEOqt-At_Il9R2kuGhVqpY5SEnsX1t3-Orm3MA1hNGBdGhCZTmLCBxZAKZRzLIRBYyyamQPonm6Ji1z8n-Bb0Yg83mX5iKH2IUcHMzw6_XboK7gPTGM2tor5Qt54DEB5ggFmi4rdf26Yg8ysl6U8-WSm0lBBUNr1AYb4wefe2NniHmS6DqPc3uNFw2dawSTG5ag75s5cM39I3vbcQMfKohKNqqxswsjOliDqZeEBN-hsutAnV8uEErZAbD4a-n3491VnvX3vIeEDk1Y3RXqx6hrHtV9jr961vkPKNCZYFUJXePHuzGv3xADX_5Fzjf3Tn72Q5qIYYgj0UiAq6NiBShmVAkZ4RJIe0e3K7y9pInPJRM6UjiJMqUwcJgw2SIaWbBk8aY5BjPw3hRFnoBEJXCEMY4xkbZY85zzlWUZLGQIbV4bxG-NwZJ85ql3IlldNOKXzlObY-lvscWYW1U9K6i5vhboeXGqmk9O-9THDHbCru4RfZz3jz_fkF6evLDnyz9f9FVmGyfHR2mh3vHB1_hY-wkg33a2jKM93sD_c3imL5c8cP1D4sN74o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL0CKiFYQMtD5dHWqliwyZDEj9jqCtqOoA9ACCQWoCiO7YIYktEwI9RZ8Qn9xn4JtpMMD4GEWOWhm8T2tX2PrZtzANYSRgXRoQmU5iwgcWQCmUcyyEQWMsmpkD6J5vcu2z4iP47p8Rh8af6FqfghRhtubmT4-doN8K4yG3ekob1Stlz8EePwhjCLJBwiOhhxRzlVb-rJUqktg6CioRUK443Row-D0R3CvI9TfaBpz8JJU8Qqv-SiNejLVj58xN74yjq8hZkagKLNqse8gzFdzMH0PVrCeTjdLNC532zQCpnBcPj3_82_Oqe9Y2_5-IecljHq1ppHKOv8KXvn_bNL5OKiQmWBVCV2j67tsr-8Rg17-QIctb8fft0OahmGII9FIgKujYgUoZlQJGeESSHtCtzO8faSJzyUTOlI4iTKlMHCYMNkiGlmoZPGmOQYL8JEURb6PSAqhSGMcYyNssec55yrKMliIUNq0d4SrDf-SPOao9xJZXTSil05Tm2Lpb7FluDzyLRbEXM8ZbTaODWtx-ZViiNma2Gntsh-znvn-RekB3tb_mT55aafYHL_Wzv9tbP7cwWmYqcX7HPWVmGi3xvoDxbE9OVH31lvAdUZ7jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+fuzzy%E2%80%90controlled+local+path+planning+algorithm+based+on+dynamic+window+approach&rft.jtitle=Journal+of+field+robotics&rft.au=Liu%2C+Aizun&rft.au=Liu%2C+Chong&rft.au=Li%2C+Lei&rft.au=Wang%2C+Ruchao&rft.date=2025-03-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=2&rft.spage=430&rft.epage=454&rft_id=info:doi/10.1002%2Frob.22419&rft.externalDBID=10.1002%252Frob.22419&rft.externalDocID=ROB22419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon