Topological pumping of light governed by Fibonacci numbers

Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, pro...

Full description

Saved in:
Bibliographic Details
Published ineLight Vol. 5; no. 1; pp. 16 - 11
Main Authors Peng, Ruihan, Yang, Kai, Fu, Qidong, Chen, Yanli, Wang, Peng, Kartashov, Yaroslav V., Konotop, Vladimir V., Ye, Fangwei
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio.
AbstractList Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio.
Abstract Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio.
ArticleNumber 16
Author Peng, Ruihan
Wang, Peng
Chen, Yanli
Kartashov, Yaroslav V.
Konotop, Vladimir V.
Yang, Kai
Fu, Qidong
Ye, Fangwei
Author_xml – sequence: 1
  givenname: Ruihan
  surname: Peng
  fullname: Peng, Ruihan
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 2
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 3
  givenname: Qidong
  surname: Fu
  fullname: Fu, Qidong
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 4
  givenname: Yanli
  surname: Chen
  fullname: Chen, Yanli
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 6
  givenname: Yaroslav V.
  surname: Kartashov
  fullname: Kartashov, Yaroslav V.
  organization: Institute of Spectroscopy, Russian Academy of Sciences
– sequence: 7
  givenname: Vladimir V.
  surname: Konotop
  fullname: Konotop, Vladimir V.
  organization: Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa
– sequence: 8
  givenname: Fangwei
  orcidid: 0000-0003-2263-9000
  surname: Ye
  fullname: Ye, Fangwei
  email: fangweiye@sjtu.edu.cn
  organization: School of Physics and Astronomy, Shanghai Jiao Tong University, School of Physics, Chengdu University of Technology
BookMark eNp9kEtLAzEUhYMoWGv_gKsB16N5TR7upPgoFNzUdchznDKdjEkr-O-NHdGdq3u5nPPdw7kAp0McPABXCN4gJNhtpqSRpIa4qSGEsqnlCZhhxnAtGCWnZYeS14gjeA4WOW-LCEsCqSQzcLeJY-xj21ndV-NhN3ZDW8VQ9V37tq_a-OHT4F1lPqvHzsRBW9tVw2FnfMqX4CzoPvvFz5yD18eHzfK5Xr88rZb369piyWXJQFz5jTxlHDuKGhOQNZ4aRjW0FEPXIMkFJh4KEkRAxglJG2Yd5xZBT-ZgNXFd1Fs1pm6n06eKulPHQ0yt0mnf2d4rgY1hiGrhg6HQcR2I8zZIwaVw7si6nlhjiu8Hn_dqGw9pKPEVwYQJRChvigpPKptizsmH368Iqu_K1VS5KpWrY-VKFhOZTLmIh9anP_Q_ri8nE4Qm
Cites_doi 10.1103/PhysRevB.27.6083
10.1038/nphys3622
10.1038/s41467-021-25305-z
10.1103/PhysRevLett.49.405
10.1038/s41567-019-0615-4
10.1016/j.physrep.2008.04.004
10.1038/nature25000
10.1103/PhysRevE.66.046602
10.1103/PhysRevA.105.063323
10.1103/PhysRevE.66.046608
10.1103/PhysRevResearch.2.042035
10.1063/1.3051235
10.1038/s41467-021-27773-9
10.1103/PhysRevB.91.064201
10.1038/s41586-019-1851-6
10.1038/s41467-020-17510-z
10.1038/s41377-020-00408-2
10.1103/PhysRevLett.95.073003
10.1103/PhysRevE.93.062205
10.1103/PhysRevLett.120.150601
10.1002/lpor.201600119
10.1103/PhysRev.115.809
10.1038/s42254-022-00545-0
10.1103/PhysRevB.105.L220202
10.1038/s41467-022-34394-3
10.1103/PhysRevLett.127.166804
10.1103/PhysRevLett.50.1873
10.1038/nature25011
10.1038/ncomms10440
10.1103/PhysRevA.64.033416
10.1007/BF01209015
10.1088/1367-2630/11/3/033023
10.1038/nphys3584
10.1103/PhysRevLett.90.094101
10.1103/PhysRevLett.118.230402
10.1038/s41567-021-01229-9
10.1038/nature01452
10.1103/PhysRevLett.129.053201
10.1103/PhysRevB.105.195129
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1186/s43593-025-00095-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: WRHA-SpringerOpen Free
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2662-8643
EndPage 11
ExternalDocumentID oai_doaj_org_article_82bb614a8efb40d7af3decf98798dd0e
10_1186_s43593_025_00095_9
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: No.BX20230218,No.2024M751950
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Shanghai Leading Talent Program 1 of Eastern Talent Plan (The 16th Shanghai Leading Talent Program)
– fundername: National Natural Science Foundation of China
  grantid: No.12304366
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Portuguese Foundation for Science and Technology (FCT)
  grantid: UIDB/00618/2020 (DOI:10.54499/UIDB/00618/2020), PTDC/FIS-OUT/3882/2020 (DOI:10.54499/PTDC/FIS-OUT/3882/2020)
– fundername: National Natural Science Foundation of China
  grantid: No.12404385
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: No.BX20230217,No.2023M742295
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Institute of Spectroscopy of the Russian Academy of Sciences
  grantid: FFUU-2024-0003
– fundername: Shanghai Outstanding Academic Leaders Plan
  grantid: No.20XD1402000
GroupedDBID 0R~
AAKKN
ABEEZ
ACACY
ACULB
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
C24
C6C
CCPQU
GROUPED_DOAJ
M~E
PHGZM
PHGZT
PIMPY
SOJ
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c2979-863d1711e4672d415bf1cbe4b64a0c420d5197823e083f8f1bd89456cd77c10e3
IEDL.DBID BENPR
ISSN 2097-1710
IngestDate Wed Aug 27 01:29:37 EDT 2025
Wed Aug 06 17:19:43 EDT 2025
Wed Aug 06 19:22:56 EDT 2025
Wed Aug 06 16:37:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2979-863d1711e4672d415bf1cbe4b64a0c420d5197823e083f8f1bd89456cd77c10e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2263-9000
OpenAccessLink https://www.proquest.com/docview/3236813475?pq-origsite=%requestingapplication%
PQID 3236813475
PQPubID 5642826
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_82bb614a8efb40d7af3decf98798dd0e
proquest_journals_3236813475
crossref_primary_10_1186_s43593_025_00095_9
springer_journals_10_1186_s43593_025_00095_9
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle eLight
PublicationTitleAbbrev eLight
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References M Schiavoni (95_CR25) 2003; 90
JW Fleischer (95_CR46) 2003; 422
JE Avron (95_CR23) 1987; 110
F Görg (95_CR28) 2019; 15
F Nathan (95_CR37) 2021; 127
R Citro (95_CR2) 2023; 5
M Lohse (95_CR8) 2016; 12
P Wang (95_CR4) 2022; 13
A Cerjan (95_CR20) 2020; 9
S Nakajima (95_CR21) 2021; 17
NK Efremidis (95_CR45) 2002; 66
DV Else (95_CR32) 2020; 10
P Marra (95_CR43) 2020; 2
W Ma (95_CR12) 2018; 120
MIN Rosa (95_CR13) 2019; 123
DM Long (95_CR34) 2021; 126
H Zhao (95_CR31) 2022; 105
C Grossert (95_CR27) 2016; 7
M Lohse (95_CR11) 2018; 553
WA Benalcazar (95_CR5) 2022; 105
O Zilberberg (95_CR3) 2018; 553
F Nathan (95_CR33) 2021; 127
RB Diener (95_CR41) 2001; 64
H Chen (95_CR15) 2021; 12
R Gommers (95_CR26) 2005; 95
Q Cheng (95_CR6) 2022; 13
Q Fu (95_CR24) 2022; 129
J Minguzzi (95_CR29) 2022; 129
YE Kraus (95_CR16) 2012; 109
AY Khinchin (95_CR39) 1964; 17
DJ Thouless (95_CR1) 1983; 27
M Verbin (95_CR17) 2015; 91
Z Fedorova (95_CR47) 2020; 11
YE Kraus (95_CR18) 2013; 111
S Ostlund (95_CR40) 1983; 50
L Taddia (95_CR10) 2017; 118
DJ Thouless (95_CR22) 1982; 49
Z Qi (95_CR35) 2021; 104
H Hatami (95_CR30) 2016; 93
F Lederer (95_CR50) 2008; 463
W Kohn (95_CR52) 1959; 115
P Hu (95_CR38) 2024; 110
S Nakajima (95_CR9) 2016; 12
MH Kolodrubetz (95_CR36) 2018; 120
K Yang (95_CR19) 2024; 121
Q Fu (95_CR48) 2022; 128
GL Alfimov (95_CR51) 2002; 66
W Cheng (95_CR14) 2020; 125
Y Ke (95_CR7) 2016; 10
DA Zezyulin (95_CR44) 2022; 105
P Wang (95_CR49) 2020; 577
M Modugno (95_CR42) 2009; 11
References_xml – volume: 27
  start-page: 6083
  year: 1983
  ident: 95_CR1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.27.6083
– volume: 12
  start-page: 296
  year: 2016
  ident: 95_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3622
– volume: 12
  start-page: 5028
  year: 2021
  ident: 95_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25305-z
– volume: 49
  start-page: 405
  year: 1982
  ident: 95_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 15
  start-page: 1161
  year: 2019
  ident: 95_CR28
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0615-4
– volume: 463
  start-page: 1
  year: 2008
  ident: 95_CR50
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2008.04.004
– volume: 104
  year: 2021
  ident: 95_CR35
  publication-title: Phys. Rev. B
– volume: 553
  start-page: 55
  year: 2018
  ident: 95_CR11
  publication-title: Nature
  doi: 10.1038/nature25000
– volume: 129
  year: 2022
  ident: 95_CR24
  publication-title: Phys. Rev. Lett.
– volume: 125
  year: 2020
  ident: 95_CR14
  publication-title: Phys. Rev. Lett.
– volume: 66
  issue: 4
  year: 2002
  ident: 95_CR45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.046602
– volume: 105
  year: 2022
  ident: 95_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.063323
– volume: 66
  year: 2002
  ident: 95_CR51
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.046608
– volume: 2
  start-page: 042035(R)
  year: 2020
  ident: 95_CR43
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.042035
– volume: 110
  year: 2024
  ident: 95_CR38
  publication-title: Phys. Rev. B
– volume: 111
  year: 2013
  ident: 95_CR18
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 70
  year: 1964
  ident: 95_CR39
  publication-title: Phys. Today
  doi: 10.1063/1.3051235
– volume: 13
  start-page: 249
  year: 2022
  ident: 95_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27773-9
– volume: 91
  year: 2015
  ident: 95_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.064201
– volume: 577
  start-page: 42
  year: 2020
  ident: 95_CR49
  publication-title: Nature
  doi: 10.1038/s41586-019-1851-6
– volume: 11
  start-page: 3758
  year: 2020
  ident: 95_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17510-z
– volume: 10
  year: 2020
  ident: 95_CR32
  publication-title: Phys. Rev. X
– volume: 9
  start-page: 178
  year: 2020
  ident: 95_CR20
  publication-title: Light. Sci. Appl.
  doi: 10.1038/s41377-020-00408-2
– volume: 95
  year: 2005
  ident: 95_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.073003
– volume: 93
  year: 2016
  ident: 95_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.062205
– volume: 126
  year: 2021
  ident: 95_CR34
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2018
  ident: 95_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.150601
– volume: 10
  start-page: 995
  year: 2016
  ident: 95_CR7
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201600119
– volume: 115
  start-page: 809
  year: 1959
  ident: 95_CR52
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.115.809
– volume: 5
  start-page: 87
  year: 2023
  ident: 95_CR2
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-022-00545-0
– volume: 109
  year: 2012
  ident: 95_CR16
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: L220202
  year: 2022
  ident: 95_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.L220202
– volume: 13
  start-page: 6738
  year: 2022
  ident: 95_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34394-3
– volume: 127
  year: 2021
  ident: 95_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.166804
– volume: 127
  year: 2021
  ident: 95_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.166804
– volume: 128
  year: 2022
  ident: 95_CR48
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 1873
  year: 1983
  ident: 95_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1873
– volume: 553
  start-page: 59
  year: 2018
  ident: 95_CR3
  publication-title: Nature
  doi: 10.1038/nature25011
– volume: 123
  year: 2019
  ident: 95_CR13
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 10440
  year: 2016
  ident: 95_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10440
– volume: 64
  year: 2001
  ident: 95_CR41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.033416
– volume: 110
  start-page: 33
  year: 1987
  ident: 95_CR23
  publication-title: Com. Math. Phys.
  doi: 10.1007/BF01209015
– volume: 11
  year: 2009
  ident: 95_CR42
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/3/033023
– volume: 121
  year: 2024
  ident: 95_CR19
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 350
  year: 2016
  ident: 95_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3584
– volume: 90
  year: 2003
  ident: 95_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.094101
– volume: 118
  year: 2017
  ident: 95_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.230402
– volume: 17
  start-page: 844
  year: 2021
  ident: 95_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01229-9
– volume: 422
  start-page: 147
  year: 2003
  ident: 95_CR46
  publication-title: Nature
  doi: 10.1038/nature01452
– volume: 120
  year: 2018
  ident: 95_CR12
  publication-title: Phys. Rev. Lett.
– volume: 129
  year: 2022
  ident: 95_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.053201
– volume: 105
  year: 2022
  ident: 95_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.195129
SSID ssj0002930493
Score 2.3103101
Snippet Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It...
Abstract Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 16
SubjectTerms Approximation
Electrons
Lasers
Light
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Propagation
Research Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsoKlar5OBNQ7PZbB7eVCzFg6cWegublxSkLbYe_PdOsrvaCuLF62YDk2-SzDdkHghdSVFF76gltpKMcF6XRHsViArRsSrEWsZc7fNZjCb8aVpNN1p9pZiwpjxwA9xAMWvBhNQw2XLqZR1LH1wEV1kr72lIty_YvA1nKt3BYMSA-qbnZRhMVRAL2mXMKDFYAUdIYWusIpljEL1llXLx_i3G-eORNNue4QHab0kjvmuEPUQ7YX6EbsdNf4OEMl6CVmAqXkT8mtxt_JJ76AaP7QcezizwbedmuOn_sTpGk-Hj-GFE2k4IxDEtNVGi9LCGIsC1xjzYXBsLZwO3gtfUcUZ9yj9VrAzAqKKKhfVKAzVyXkpX0FCeoN35Yh5OEdbUVV4EyuGoc1E6nThUUJFLzVytfA9dd0iYZVPwwmRHQQnT4GYAN5NxM7qH7hNYX3-mYtX5A6jQtCo0f6mwh_od1KY9QStTslKolOda9dBNB__38O8inf2HSOdoj6XtkeNW-mh3_fYeLoB9rO1l3mifYhnTPg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uCF7EFceNHLxpME3TLN5UHAYPnmZgbqHZhgGZEasH_70vaasoevDahtB-eS_ve7wNoXMpqugdtcRWkhHO65JorwJRITpWhVjLmLt9PorRhD9Mq2lXFNb02e59SDLf1FmtlbhqwLCnXDNWkUwMiF5F6xX47kmu77oah3T_ggED2ptCy4zq1AGxoH21zK_bfLNIuXH_N7b5I0Ca7c5wG211hBHftCe8g1bCYhdt5MRN1-yh63E75SBhjZ_hbGATvIz4KTndeJYn6QaP7Tsezi2wbufmuJ0C0uyjyfB-fDci3TwE4piWmihRevibIsDlxjxYXhsLZwO3gtfUcUZ9qkJVrAzAq6KKhfVKA0FyXkpX0FAeoLXFchEOEdbUVV4EykHhuSidTkwqqMilZq5WfoAuekzMc9v2wmR3QQnTImgAQZMRNHqAbhNsnytTy-r8YPkyM50GGMWsBS5QgxRYTr2sY-mDi1pJrbynYYBOetBNp0eNKVkpVKp2rQbosj-Ir9d_f9LR_5Yfo02WRCLnqZygtdeXt3AKbOPVnmXh-gBHAsjU
  priority: 102
  providerName: Springer Nature
Title Topological pumping of light governed by Fibonacci numbers
URI https://link.springer.com/article/10.1186/s43593-025-00095-9
https://www.proquest.com/docview/3236813475
https://doaj.org/article/82bb614a8efb40d7af3decf98798dd0e
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA7qXryIouL6WHLwpsE2SfPwIrrssngQEQVvoXmJILurqwf_vZO0VVbQSw9tWso3ycw3k8wMQsdSVNG7whJbSUo4rxnRXgWiQnS0CrGWMVf7vBGTB379WD22AbdFe6yy04lZUfuZSzHyM0aZUCnvsbqYv5LUNSrtrrYtNFZRD1SwAuerdzW6ub37jrKAMQMKzLpsGSXOFsAP0pE1WpHML4heski5cP8S2_y1QZrtzngTbbSEEV82Et5CK2G6jc7vm94GCWE8B4nAq3gW8UtytfFT7p8bPLafePxsgWs794yb3h-LHfQwHt0PJ6TtgkAc1VITJZgvZVkGUGnUg721sXQ2cCt4XThOC59yTxVlAdhUVLG0XmmgRc5L6coisF20Np1Nwx7CunCVF6HgsMy5YE4n_hRU5FJTVyvfRycdEmbeFLsw2UlQwjS4GcDNZNyM7qOrBNb3yFSoOt-YvT2Zdt4bRa0FBlCD7C0vvKwj88FFraRW3hehjw47qE27ehbmR9Z9dNrB__P471_a__9rB2idJsHn0yiHaO397SMcAad4t4N24gzQ6pDydBXDQfbPvwA7sMs0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3U7YO-iKLi1qp50CcNnUky-RBErHbZ2rqIbKFvcfJVCrK7divSP-Vv9CYz01JB3_o6MwnDycm95ya5uQAvlGxS8JWjrlGMCtFyaoKOVMfkWRNTq1K57XMmp0fi03FzvAG_h1yYfKxysInFUIelz2vkO5xxqXPeY_Nu9YPmqlF5d3UoodHR4iBe_MKQbf12_yOO70vGJnvzD1PaVxWgnhllqJY81KquI5oIFtB_uVR7F4WToq28YFXIuZya8YjqJOlUu6ANygwflPJ1FTn2ews2BcdQZgSbu3uzL18vV3XQeaLk5kN2jpY7a9Qj-Ygca2jRM9Rc84ClUMA1dfvXhmzxc5N7cLcXqOR9x6j7sBEXD-DNvKulkEeUrJAB2JQsE_meQ3tyUur1xkDcBZmcOtT23p-SrtbI-iEc3Qg-j2C0WC7iYyCm8k2QsRJoVoTk3mS9FnUSyjDf6jCGVwMSdtVdrmFLUKKl7XCziJstuFkzht0M1uWX-WLs8mB5dmL7eWY1cw4VR4tcc6IKqk08RJ-MVkaHUMUxbA9Q2362ru0Vt8bweoD_6vW_f2nr_709h9vT-edDe7g_O3gCd1gmQTkJsw2j87Of8SnqmXP3rCcRgW83zds_tRkDug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFcQXUVS8WjUP-qThskl2kwgi1vZorRxFWuhb3PwqBbk7ey2l_5p_nZPsbksFfevr_gjLly8z32xmMgBvVFOn4JmjrlacStkKaoKOVMfkeR1Tq1I57XPW7B7Jr8f18Rr8HmphclrlYBOLoQ4Ln_-RTwQXjc51j_Uk9WkRB9vTT8tfNHeQyjutQzuNjiL78eoSw7fVx71tnOu3nE93Dr_s0r7DAPXcKEN1I0KlqiqiueABfZlLlXdRuka2zEvOQq7r1FxEVCpJp8oFbVBy-KCUr1gUOO49WFcYFbERrG_tzA6-X__hQUeK8lsMlTq6maxQm-R0OV7Tom2oueUNS9OAW0r3r83Z4vOmj-BhL1bJ545dj2Etzp_Ah8Our0KeXbJENuCrZJHIzxzmk5PSuzcG4q7I9NShzvf-lHR9R1ZP4ehO8HkGo_liHp8DMczXoYlMoomRjfAma7eok1SG-1aHMbwbkLDL7qANWwIU3dgON4u42YKbNWPYymBdP5kPyS4XFmcntl9zVnPnUH20yDsnWVBtEiH6ZLQyOgQWx7A5QG37lbuyNzwbw_sB_pvb__6kjf-P9hruI1_tt73Z_gt4wDMHSlLMJozOzy7iS5Q25-5VzyECP-6atn8A0X0H7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+pumping+of+light+governed+by+Fibonacci+numbers&rft.jtitle=eLight&rft.au=Peng%2C+Ruihan&rft.au=Yang%2C+Kai&rft.au=Fu%2C+Qidong&rft.au=Chen%2C+Yanli&rft.date=2025-12-01&rft.issn=2097-1710&rft.eissn=2662-8643&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1186%2Fs43593-025-00095-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s43593_025_00095_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2097-1710&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2097-1710&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2097-1710&client=summon