Topological pumping of light governed by Fibonacci numbers
Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, pro...
Saved in:
Published in | eLight Vol. 5; no. 1; pp. 16 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio. |
---|---|
AbstractList | Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio. Abstract Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It is a ubiquitous wave phenomenon typically considered subject to exactly periodic adiabatic variation of the system parameters. Recently, proposals for generalizing quasi-periodic topological pumping and identifying possible physical settings for its implementation have emerged. In a strict sense, pumping with incommensurate frequencies can only manifest over infinite evolution distances, raising a fundamental question about its observability in real-world finite-dimensional systems. Here we demonstrate that bi-chromatic topological pumping with two frequencies, whose ratio is an irrational number, can be viewed as the convergence limit of pumping with two commensurate frequencies representing the best rational approximations of that irrational number. In our experiment, this phenomenon is observed as the displacement of a light beam center in photorefractive crystals induced by two optical lattices. The longitudinal periods of the lattices, that in the paraxial approximation emulate two pumping frequencies, are related as Fibonacci numbers, successively approaching the golden ratio. We observed that a one-cycle displacement of the beam center at each successive approximation is determined by the relation between successive Fibonacci numbers, while the average direction of propagation (emulating average pumping velocity) of the beam is determined by the golden ratio. |
ArticleNumber | 16 |
Author | Peng, Ruihan Wang, Peng Chen, Yanli Kartashov, Yaroslav V. Konotop, Vladimir V. Yang, Kai Fu, Qidong Ye, Fangwei |
Author_xml | – sequence: 1 givenname: Ruihan surname: Peng fullname: Peng, Ruihan organization: School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 2 givenname: Kai surname: Yang fullname: Yang, Kai organization: School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 3 givenname: Qidong surname: Fu fullname: Fu, Qidong organization: School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 4 givenname: Yanli surname: Chen fullname: Chen, Yanli organization: School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 5 givenname: Peng surname: Wang fullname: Wang, Peng organization: School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 6 givenname: Yaroslav V. surname: Kartashov fullname: Kartashov, Yaroslav V. organization: Institute of Spectroscopy, Russian Academy of Sciences – sequence: 7 givenname: Vladimir V. surname: Konotop fullname: Konotop, Vladimir V. organization: Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa – sequence: 8 givenname: Fangwei orcidid: 0000-0003-2263-9000 surname: Ye fullname: Ye, Fangwei email: fangweiye@sjtu.edu.cn organization: School of Physics and Astronomy, Shanghai Jiao Tong University, School of Physics, Chengdu University of Technology |
BookMark | eNp9kEtLAzEUhYMoWGv_gKsB16N5TR7upPgoFNzUdchznDKdjEkr-O-NHdGdq3u5nPPdw7kAp0McPABXCN4gJNhtpqSRpIa4qSGEsqnlCZhhxnAtGCWnZYeS14gjeA4WOW-LCEsCqSQzcLeJY-xj21ndV-NhN3ZDW8VQ9V37tq_a-OHT4F1lPqvHzsRBW9tVw2FnfMqX4CzoPvvFz5yD18eHzfK5Xr88rZb369piyWXJQFz5jTxlHDuKGhOQNZ4aRjW0FEPXIMkFJh4KEkRAxglJG2Yd5xZBT-ZgNXFd1Fs1pm6n06eKulPHQ0yt0mnf2d4rgY1hiGrhg6HQcR2I8zZIwaVw7si6nlhjiu8Hn_dqGw9pKPEVwYQJRChvigpPKptizsmH368Iqu_K1VS5KpWrY-VKFhOZTLmIh9anP_Q_ri8nE4Qm |
Cites_doi | 10.1103/PhysRevB.27.6083 10.1038/nphys3622 10.1038/s41467-021-25305-z 10.1103/PhysRevLett.49.405 10.1038/s41567-019-0615-4 10.1016/j.physrep.2008.04.004 10.1038/nature25000 10.1103/PhysRevE.66.046602 10.1103/PhysRevA.105.063323 10.1103/PhysRevE.66.046608 10.1103/PhysRevResearch.2.042035 10.1063/1.3051235 10.1038/s41467-021-27773-9 10.1103/PhysRevB.91.064201 10.1038/s41586-019-1851-6 10.1038/s41467-020-17510-z 10.1038/s41377-020-00408-2 10.1103/PhysRevLett.95.073003 10.1103/PhysRevE.93.062205 10.1103/PhysRevLett.120.150601 10.1002/lpor.201600119 10.1103/PhysRev.115.809 10.1038/s42254-022-00545-0 10.1103/PhysRevB.105.L220202 10.1038/s41467-022-34394-3 10.1103/PhysRevLett.127.166804 10.1103/PhysRevLett.50.1873 10.1038/nature25011 10.1038/ncomms10440 10.1103/PhysRevA.64.033416 10.1007/BF01209015 10.1088/1367-2630/11/3/033023 10.1038/nphys3584 10.1103/PhysRevLett.90.094101 10.1103/PhysRevLett.118.230402 10.1038/s41567-021-01229-9 10.1038/nature01452 10.1103/PhysRevLett.129.053201 10.1103/PhysRevB.105.195129 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1186/s43593-025-00095-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: WRHA-SpringerOpen Free url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2662-8643 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_82bb614a8efb40d7af3decf98798dd0e 10_1186_s43593_025_00095_9 |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: No.BX20230218,No.2024M751950 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Shanghai Leading Talent Program 1 of Eastern Talent Plan (The 16th Shanghai Leading Talent Program) – fundername: National Natural Science Foundation of China grantid: No.12304366 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Portuguese Foundation for Science and Technology (FCT) grantid: UIDB/00618/2020 (DOI:10.54499/UIDB/00618/2020), PTDC/FIS-OUT/3882/2020 (DOI:10.54499/PTDC/FIS-OUT/3882/2020) – fundername: National Natural Science Foundation of China grantid: No.12404385 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: No.BX20230217,No.2023M742295 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Institute of Spectroscopy of the Russian Academy of Sciences grantid: FFUU-2024-0003 – fundername: Shanghai Outstanding Academic Leaders Plan grantid: No.20XD1402000 |
GroupedDBID | 0R~ AAKKN ABEEZ ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR C24 C6C CCPQU GROUPED_DOAJ M~E PHGZM PHGZT PIMPY SOJ AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c2979-863d1711e4672d415bf1cbe4b64a0c420d5197823e083f8f1bd89456cd77c10e3 |
IEDL.DBID | BENPR |
ISSN | 2097-1710 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Wed Aug 06 17:19:43 EDT 2025 Wed Aug 06 19:22:56 EDT 2025 Wed Aug 06 16:37:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2979-863d1711e4672d415bf1cbe4b64a0c420d5197823e083f8f1bd89456cd77c10e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2263-9000 |
OpenAccessLink | https://www.proquest.com/docview/3236813475?pq-origsite=%requestingapplication% |
PQID | 3236813475 |
PQPubID | 5642826 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82bb614a8efb40d7af3decf98798dd0e proquest_journals_3236813475 crossref_primary_10_1186_s43593_025_00095_9 springer_journals_10_1186_s43593_025_00095_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | eLight |
PublicationTitleAbbrev | eLight |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | M Schiavoni (95_CR25) 2003; 90 JW Fleischer (95_CR46) 2003; 422 JE Avron (95_CR23) 1987; 110 F Görg (95_CR28) 2019; 15 F Nathan (95_CR37) 2021; 127 R Citro (95_CR2) 2023; 5 M Lohse (95_CR8) 2016; 12 P Wang (95_CR4) 2022; 13 A Cerjan (95_CR20) 2020; 9 S Nakajima (95_CR21) 2021; 17 NK Efremidis (95_CR45) 2002; 66 DV Else (95_CR32) 2020; 10 P Marra (95_CR43) 2020; 2 W Ma (95_CR12) 2018; 120 MIN Rosa (95_CR13) 2019; 123 DM Long (95_CR34) 2021; 126 H Zhao (95_CR31) 2022; 105 C Grossert (95_CR27) 2016; 7 M Lohse (95_CR11) 2018; 553 WA Benalcazar (95_CR5) 2022; 105 O Zilberberg (95_CR3) 2018; 553 F Nathan (95_CR33) 2021; 127 RB Diener (95_CR41) 2001; 64 H Chen (95_CR15) 2021; 12 R Gommers (95_CR26) 2005; 95 Q Cheng (95_CR6) 2022; 13 Q Fu (95_CR24) 2022; 129 J Minguzzi (95_CR29) 2022; 129 YE Kraus (95_CR16) 2012; 109 AY Khinchin (95_CR39) 1964; 17 DJ Thouless (95_CR1) 1983; 27 M Verbin (95_CR17) 2015; 91 Z Fedorova (95_CR47) 2020; 11 YE Kraus (95_CR18) 2013; 111 S Ostlund (95_CR40) 1983; 50 L Taddia (95_CR10) 2017; 118 DJ Thouless (95_CR22) 1982; 49 Z Qi (95_CR35) 2021; 104 H Hatami (95_CR30) 2016; 93 F Lederer (95_CR50) 2008; 463 W Kohn (95_CR52) 1959; 115 P Hu (95_CR38) 2024; 110 S Nakajima (95_CR9) 2016; 12 MH Kolodrubetz (95_CR36) 2018; 120 K Yang (95_CR19) 2024; 121 Q Fu (95_CR48) 2022; 128 GL Alfimov (95_CR51) 2002; 66 W Cheng (95_CR14) 2020; 125 Y Ke (95_CR7) 2016; 10 DA Zezyulin (95_CR44) 2022; 105 P Wang (95_CR49) 2020; 577 M Modugno (95_CR42) 2009; 11 |
References_xml | – volume: 27 start-page: 6083 year: 1983 ident: 95_CR1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.6083 – volume: 12 start-page: 296 year: 2016 ident: 95_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys3622 – volume: 12 start-page: 5028 year: 2021 ident: 95_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25305-z – volume: 49 start-page: 405 year: 1982 ident: 95_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 15 start-page: 1161 year: 2019 ident: 95_CR28 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0615-4 – volume: 463 start-page: 1 year: 2008 ident: 95_CR50 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2008.04.004 – volume: 104 year: 2021 ident: 95_CR35 publication-title: Phys. Rev. B – volume: 553 start-page: 55 year: 2018 ident: 95_CR11 publication-title: Nature doi: 10.1038/nature25000 – volume: 129 year: 2022 ident: 95_CR24 publication-title: Phys. Rev. Lett. – volume: 125 year: 2020 ident: 95_CR14 publication-title: Phys. Rev. Lett. – volume: 66 issue: 4 year: 2002 ident: 95_CR45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.046602 – volume: 105 year: 2022 ident: 95_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.063323 – volume: 66 year: 2002 ident: 95_CR51 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.046608 – volume: 2 start-page: 042035(R) year: 2020 ident: 95_CR43 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.042035 – volume: 110 year: 2024 ident: 95_CR38 publication-title: Phys. Rev. B – volume: 111 year: 2013 ident: 95_CR18 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 70 year: 1964 ident: 95_CR39 publication-title: Phys. Today doi: 10.1063/1.3051235 – volume: 13 start-page: 249 year: 2022 ident: 95_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27773-9 – volume: 91 year: 2015 ident: 95_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.064201 – volume: 577 start-page: 42 year: 2020 ident: 95_CR49 publication-title: Nature doi: 10.1038/s41586-019-1851-6 – volume: 11 start-page: 3758 year: 2020 ident: 95_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17510-z – volume: 10 year: 2020 ident: 95_CR32 publication-title: Phys. Rev. X – volume: 9 start-page: 178 year: 2020 ident: 95_CR20 publication-title: Light. Sci. Appl. doi: 10.1038/s41377-020-00408-2 – volume: 95 year: 2005 ident: 95_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.073003 – volume: 93 year: 2016 ident: 95_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.062205 – volume: 126 year: 2021 ident: 95_CR34 publication-title: Phys. Rev. Lett. – volume: 120 year: 2018 ident: 95_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.150601 – volume: 10 start-page: 995 year: 2016 ident: 95_CR7 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201600119 – volume: 115 start-page: 809 year: 1959 ident: 95_CR52 publication-title: Phys. Rev. doi: 10.1103/PhysRev.115.809 – volume: 5 start-page: 87 year: 2023 ident: 95_CR2 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00545-0 – volume: 109 year: 2012 ident: 95_CR16 publication-title: Phys. Rev. Lett. – volume: 105 start-page: L220202 year: 2022 ident: 95_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.L220202 – volume: 13 start-page: 6738 year: 2022 ident: 95_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34394-3 – volume: 127 year: 2021 ident: 95_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.166804 – volume: 127 year: 2021 ident: 95_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.166804 – volume: 128 year: 2022 ident: 95_CR48 publication-title: Phys. Rev. Lett. – volume: 50 start-page: 1873 year: 1983 ident: 95_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1873 – volume: 553 start-page: 59 year: 2018 ident: 95_CR3 publication-title: Nature doi: 10.1038/nature25011 – volume: 123 year: 2019 ident: 95_CR13 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 10440 year: 2016 ident: 95_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms10440 – volume: 64 year: 2001 ident: 95_CR41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.033416 – volume: 110 start-page: 33 year: 1987 ident: 95_CR23 publication-title: Com. Math. Phys. doi: 10.1007/BF01209015 – volume: 11 year: 2009 ident: 95_CR42 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/3/033023 – volume: 121 year: 2024 ident: 95_CR19 publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 350 year: 2016 ident: 95_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys3584 – volume: 90 year: 2003 ident: 95_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.094101 – volume: 118 year: 2017 ident: 95_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.230402 – volume: 17 start-page: 844 year: 2021 ident: 95_CR21 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01229-9 – volume: 422 start-page: 147 year: 2003 ident: 95_CR46 publication-title: Nature doi: 10.1038/nature01452 – volume: 120 year: 2018 ident: 95_CR12 publication-title: Phys. Rev. Lett. – volume: 129 year: 2022 ident: 95_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.053201 – volume: 105 year: 2022 ident: 95_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.195129 |
SSID | ssj0002930493 |
Score | 2.3103101 |
Snippet | Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred quantities. It... Abstract Topological pumping refers to transfer of a physical quantity governed by the system topology, resulting in quantized amounts of the transferred... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 16 |
SubjectTerms | Approximation Electrons Lasers Light Optical Devices Optics Photonics Physics Physics and Astronomy Propagation Research Article |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYsoKlar5OBNQ7PZbB7eVCzFg6cWegublxSkLbYe_PdOsrvaCuLF62YDk2-SzDdkHghdSVFF76gltpKMcF6XRHsViArRsSrEWsZc7fNZjCb8aVpNN1p9pZiwpjxwA9xAMWvBhNQw2XLqZR1LH1wEV1kr72lIty_YvA1nKt3BYMSA-qbnZRhMVRAL2mXMKDFYAUdIYWusIpljEL1llXLx_i3G-eORNNue4QHab0kjvmuEPUQ7YX6EbsdNf4OEMl6CVmAqXkT8mtxt_JJ76AaP7QcezizwbedmuOn_sTpGk-Hj-GFE2k4IxDEtNVGi9LCGIsC1xjzYXBsLZwO3gtfUcUZ9yj9VrAzAqKKKhfVKAzVyXkpX0FCeoN35Yh5OEdbUVV4EyuGoc1E6nThUUJFLzVytfA9dd0iYZVPwwmRHQQnT4GYAN5NxM7qH7hNYX3-mYtX5A6jQtCo0f6mwh_od1KY9QStTslKolOda9dBNB__38O8inf2HSOdoj6XtkeNW-mh3_fYeLoB9rO1l3mifYhnTPg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uCF7EFceNHLxpME3TLN5UHAYPnmZgbqHZhgGZEasH_70vaasoevDahtB-eS_ve7wNoXMpqugdtcRWkhHO65JorwJRITpWhVjLmLt9PorRhD9Mq2lXFNb02e59SDLf1FmtlbhqwLCnXDNWkUwMiF5F6xX47kmu77oah3T_ggED2ptCy4zq1AGxoH21zK_bfLNIuXH_N7b5I0Ca7c5wG211hBHftCe8g1bCYhdt5MRN1-yh63E75SBhjZ_hbGATvIz4KTndeJYn6QaP7Tsezi2wbufmuJ0C0uyjyfB-fDci3TwE4piWmihRevibIsDlxjxYXhsLZwO3gtfUcUZ9qkJVrAzAq6KKhfVKA0FyXkpX0FAeoLXFchEOEdbUVV4EykHhuSidTkwqqMilZq5WfoAuekzMc9v2wmR3QQnTImgAQZMRNHqAbhNsnytTy-r8YPkyM50GGMWsBS5QgxRYTr2sY-mDi1pJrbynYYBOetBNp0eNKVkpVKp2rQbosj-Ir9d_f9LR_5Yfo02WRCLnqZygtdeXt3AKbOPVnmXh-gBHAsjU priority: 102 providerName: Springer Nature |
Title | Topological pumping of light governed by Fibonacci numbers |
URI | https://link.springer.com/article/10.1186/s43593-025-00095-9 https://www.proquest.com/docview/3236813475 https://doaj.org/article/82bb614a8efb40d7af3decf98798dd0e |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA7qXryIouL6WHLwpsE2SfPwIrrssngQEQVvoXmJILurqwf_vZO0VVbQSw9tWso3ycw3k8wMQsdSVNG7whJbSUo4rxnRXgWiQnS0CrGWMVf7vBGTB379WD22AbdFe6yy04lZUfuZSzHyM0aZUCnvsbqYv5LUNSrtrrYtNFZRD1SwAuerdzW6ub37jrKAMQMKzLpsGSXOFsAP0pE1WpHML4heski5cP8S2_y1QZrtzngTbbSEEV82Et5CK2G6jc7vm94GCWE8B4nAq3gW8UtytfFT7p8bPLafePxsgWs794yb3h-LHfQwHt0PJ6TtgkAc1VITJZgvZVkGUGnUg721sXQ2cCt4XThOC59yTxVlAdhUVLG0XmmgRc5L6coisF20Np1Nwx7CunCVF6HgsMy5YE4n_hRU5FJTVyvfRycdEmbeFLsw2UlQwjS4GcDNZNyM7qOrBNb3yFSoOt-YvT2Zdt4bRa0FBlCD7C0vvKwj88FFraRW3hehjw47qE27ehbmR9Z9dNrB__P471_a__9rB2idJsHn0yiHaO397SMcAad4t4N24gzQ6pDydBXDQfbPvwA7sMs0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3U7YO-iKLi1qp50CcNnUky-RBErHbZ2rqIbKFvcfJVCrK7divSP-Vv9CYz01JB3_o6MwnDycm95ya5uQAvlGxS8JWjrlGMCtFyaoKOVMfkWRNTq1K57XMmp0fi03FzvAG_h1yYfKxysInFUIelz2vkO5xxqXPeY_Nu9YPmqlF5d3UoodHR4iBe_MKQbf12_yOO70vGJnvzD1PaVxWgnhllqJY81KquI5oIFtB_uVR7F4WToq28YFXIuZya8YjqJOlUu6ANygwflPJ1FTn2ews2BcdQZgSbu3uzL18vV3XQeaLk5kN2jpY7a9Qj-Ygca2jRM9Rc84ClUMA1dfvXhmzxc5N7cLcXqOR9x6j7sBEXD-DNvKulkEeUrJAB2JQsE_meQ3tyUur1xkDcBZmcOtT23p-SrtbI-iEc3Qg-j2C0WC7iYyCm8k2QsRJoVoTk3mS9FnUSyjDf6jCGVwMSdtVdrmFLUKKl7XCziJstuFkzht0M1uWX-WLs8mB5dmL7eWY1cw4VR4tcc6IKqk08RJ-MVkaHUMUxbA9Q2362ru0Vt8bweoD_6vW_f2nr_709h9vT-edDe7g_O3gCd1gmQTkJsw2j87Of8SnqmXP3rCcRgW83zds_tRkDug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFcQXUVS8WjUP-qThskl2kwgi1vZorRxFWuhb3PwqBbk7ey2l_5p_nZPsbksFfevr_gjLly8z32xmMgBvVFOn4JmjrlacStkKaoKOVMfkeR1Tq1I57XPW7B7Jr8f18Rr8HmphclrlYBOLoQ4Ln_-RTwQXjc51j_Uk9WkRB9vTT8tfNHeQyjutQzuNjiL78eoSw7fVx71tnOu3nE93Dr_s0r7DAPXcKEN1I0KlqiqiueABfZlLlXdRuka2zEvOQq7r1FxEVCpJp8oFbVBy-KCUr1gUOO49WFcYFbERrG_tzA6-X__hQUeK8lsMlTq6maxQm-R0OV7Tom2oueUNS9OAW0r3r83Z4vOmj-BhL1bJ545dj2Etzp_Ah8Our0KeXbJENuCrZJHIzxzmk5PSuzcG4q7I9NShzvf-lHR9R1ZP4ehO8HkGo_liHp8DMczXoYlMoomRjfAma7eok1SG-1aHMbwbkLDL7qANWwIU3dgON4u42YKbNWPYymBdP5kPyS4XFmcntl9zVnPnUH20yDsnWVBtEiH6ZLQyOgQWx7A5QG37lbuyNzwbw_sB_pvb__6kjf-P9hruI1_tt73Z_gt4wDMHSlLMJozOzy7iS5Q25-5VzyECP-6atn8A0X0H7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+pumping+of+light+governed+by+Fibonacci+numbers&rft.jtitle=eLight&rft.au=Peng%2C+Ruihan&rft.au=Yang%2C+Kai&rft.au=Fu%2C+Qidong&rft.au=Chen%2C+Yanli&rft.date=2025-12-01&rft.issn=2097-1710&rft.eissn=2662-8643&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1186%2Fs43593-025-00095-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s43593_025_00095_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2097-1710&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2097-1710&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2097-1710&client=summon |