Automated wall‐climbing robot for concrete construction inspection

Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can rea...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 40; no. 1; pp. 110 - 129
Main Authors Yang, Liang, Li, Bing, Feng, Jinglun, Yang, Guoyong, Chang, Yong, Jiang, Biao, Xiao, Jizhong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can reach difficult‐to‐access locations with a close‐up view for visual data collection and real‐time flaws detection and localization. The wall‐climbing robot is able to detect concrete surface flaws (i.e., cracks and spalls) and produce a defect‐highlighted 3D model with extracted location clues and metric measurements. The system encompasses four modules, including a data collection module to capture RGB‐D frames and inertial measurement unit data, a visual–inertial navigation system module to generate pose‐coupled keyframes, a deep neural network module (namely InspectionNet) to classify each pixel into three classes (background, crack, and spall), and a semantic reconstruction module to integrate per‐frame measurement into a global volumetric model with defects highlighted. We found that commercial RGB‐D camera output depth is noisy with holes, and a Gussian‐Bilateral filter for depth completion is introduced to inpaint the depth image. The method achieves the state‐of‐the‐art depth completion accuracy even with large holes. Based on the semantic mesh, we introduce a coherent defect metric evaluation approach to compute the metric measurement of crack and spall area (e.g., length, width, area, and depth). Field experiments on a concrete bridge demonstrate that our wall‐climbing robot is able to operate on a rough surface and can cross over shallow gaps. The robot is capable to detect and measure surface flaws under low illuminated environments and texture‐less environments. Besides the robot system, we create the first publicly accessible concrete structure spalls and cracks data set that includes 820 labeled images and over 10,000 field‐collected images and release it to the research community.
AbstractList Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can reach difficult‐to‐access locations with a close‐up view for visual data collection and real‐time flaws detection and localization. The wall‐climbing robot is able to detect concrete surface flaws (i.e., cracks and spalls) and produce a defect‐highlighted 3D model with extracted location clues and metric measurements. The system encompasses four modules, including a data collection module to capture RGB‐D frames and inertial measurement unit data, a visual–inertial navigation system module to generate pose‐coupled keyframes, a deep neural network module (namely InspectionNet) to classify each pixel into three classes (background, crack, and spall), and a semantic reconstruction module to integrate per‐frame measurement into a global volumetric model with defects highlighted. We found that commercial RGB‐D camera output depth is noisy with holes, and a Gussian‐Bilateral filter for depth completion is introduced to inpaint the depth image. The method achieves the state‐of‐the‐art depth completion accuracy even with large holes. Based on the semantic mesh, we introduce a coherent defect metric evaluation approach to compute the metric measurement of crack and spall area (e.g., length, width, area, and depth). Field experiments on a concrete bridge demonstrate that our wall‐climbing robot is able to operate on a rough surface and can cross over shallow gaps. The robot is capable to detect and measure surface flaws under low illuminated environments and texture‐less environments. Besides the robot system, we create the first publicly accessible concrete structure spalls and cracks data set that includes 820 labeled images and over 10,000 field‐collected images and release it to the research community.
Author Jiang, Biao
Yang, Guoyong
Xiao, Jizhong
Yang, Liang
Chang, Yong
Feng, Jinglun
Li, Bing
Author_xml – sequence: 1
  givenname: Liang
  surname: Yang
  fullname: Yang, Liang
  email: lyang1@ccny.cuny.edu
  organization: The City College of New York
– sequence: 2
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: Clemson University
– sequence: 3
  givenname: Jinglun
  surname: Feng
  fullname: Feng, Jinglun
  organization: The City College of New York
– sequence: 4
  givenname: Guoyong
  surname: Yang
  fullname: Yang, Guoyong
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yong
  surname: Chang
  fullname: Chang, Yong
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Biao
  surname: Jiang
  fullname: Jiang, Biao
  organization: Hostos Community College
– sequence: 7
  givenname: Jizhong
  surname: Xiao
  fullname: Xiao, Jizhong
  organization: The City College of New York
BookMark eNp9kM1KAzEUhYNUsFYXvsGAKxfTJjOTzGRZ6y8UCqLrkEluJGU6qUmG0p2P4DP6JE5bcSHo6p7FOd_lnFM0aF0LCF0QPCYYZxPv6nGWEcKP0JBQytKCs3Lwoyk_QachLDEu8orTIbqZdtGtZASdbGTTfL5_qMauatu-Jj3KxcQ4nyjXKg8RdiJE36loXZvYNqxhL8_QsZFNgPPvO0Ivd7fPs4d0vrh_nE3nqcp4ydOq0JJSU3ADSnNelFhiyDlowzQHkxupwShmKlZXVFUMtMpqk5ecmZIYTPIRujxw1969dRCiWLrOt_1LkZUFpXkP5b3r6uBS3oXgwYi1tyvpt4JgsRtJ9M3EfqTeO_nlVTbKXafopW3-S2xsA9u_0eJpcX1IfAFG1n1V
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_1016_j_autcon_2025_106049
crossref_primary_10_1016_j_inffus_2024_102880
crossref_primary_10_1016_j_fraope_2024_100148
crossref_primary_10_3390_app15052597
crossref_primary_10_3390_rs15143573
crossref_primary_10_1016_j_autcon_2023_105215
crossref_primary_10_1002_rob_22409
crossref_primary_10_1016_j_autcon_2024_105633
crossref_primary_10_3390_s23031419
crossref_primary_10_1017_S0263574724000493
crossref_primary_10_1016_j_autcon_2024_105829
crossref_primary_10_1088_1361_6501_ad90fb
crossref_primary_10_1109_ACCESS_2024_3402218
crossref_primary_10_1109_TIM_2024_3400345
crossref_primary_10_1002_rob_22493
crossref_primary_10_1109_TMECH_2024_3402054
crossref_primary_10_1002_aisy_202400745
Cites_doi 10.1145/37402.37422
10.1109/IROS40897.2019.8968195
10.1145/2513228.2513280
10.1177/0361198118782025
10.1111/mice.12564
10.23919/MIPRO52101.2021.9596717
10.1061/(ASCE)CP.1943-5487.0000890
10.1109/INDICON.2014.7030589
10.1016/j.autcon.2006.12.010
10.1016/j.aei.2015.01.008
10.1109/ICARCV.2016.7838682
10.1109/ROBOT.2007.364024
10.1109/ICCV.2001.937655
10.1016/j.patrec.2012.06.003
10.21105/joss.00432
10.1016/j.autcon.2005.02.006
10.1109/ICCV.2015.164
10.1007/978-3-319-24574-4_28
10.1109/34.888718
10.1177/0278364907079283
10.1109/MED.2016.7535885
10.1201/b17063-96
10.1109/TITS.2018.2791430
10.1109/TASE.2014.2354314
10.1109/CVPRW.2018.00204
10.1061/(ASCE)CP.1943-5487.0000451
10.1109/TPAMI.2010.161
10.21660/2018.51.35376
10.1109/TRO.2017.2705103
10.1109/ISMAR.2011.6092378
10.1002/rob.21725
10.1111/j.1467-8659.2007.01016.x
10.1016/j.autcon.2006.05.003
10.2355/isijinternational.ISIJINT-2015-041
10.1002/stc.2381
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22119
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 129
ExternalDocumentID 10_1002_rob_22119
ROB22119
Genre article
GrantInformation_xml – fundername: NSF Research Traineeship
– fundername: National Science Foundation
– fundername: U.S. Department of Transportation
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2979-84da55f49fecd99470a0e39edf6d9ef3fadefc6f86b85c86edc2bf3796f71f013
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 10:44:49 EDT 2025
Tue Jul 01 04:33:52 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
Wed Jan 22 16:22:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2979-84da55f49fecd99470a0e39edf6d9ef3fadefc6f86b85c86edc2bf3796f71f013
Notes Liang Yang, Bing Li, and Jinglun Feng equally contributed.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2745539949
PQPubID 1006410
PageCount 20
ParticipantIDs proquest_journals_2745539949
crossref_primary_10_1002_rob_22119
crossref_citationtrail_10_1002_rob_22119
wiley_primary_10_1002_rob_22119_ROB22119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2019; 2019
2017; 2
2012
2011
2000; 22
2015; 55
2006; 15
2011; 33
2007
2020; 36
2020; 34
2015b
2021; 1
2016; 13
2007; 16
2018; 19
2018; 2672
1987; 21
2014; 2
2015; 29
2015a
2021
2013; 34
2017; 33
2019; 26
2017; 34
2019
2018
2017
2014; 13
2016
2001; 2
2015
2014
2013
2014; 30
2018; 15
2007; 26
e_1_2_9_31_1
Garrido G. G. (e_1_2_9_13_1) 2021; 1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Dethe R. D (e_1_2_9_10_1) 2014; 2
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
Poynton C. (e_1_2_9_30_1) 2012
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
Yang L. (e_1_2_9_44_1) 2017
e_1_2_9_45_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
Li S. (e_1_2_9_21_1) 2019; 2019
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 22
  start-page: 1330–
  issue: 11
  year: 2000
  end-page: 1334
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  issue: 8
  year: 2019
  article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network
  publication-title: Structural Control and Health Monitoring
– start-page: 1
  year: 2015
  end-page: 14
– volume: 16
  start-page: 255
  issue: 3
  year: 2007
  end-page: 261
  article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel
  publication-title: Automation in Construction
– volume: 13
  start-page: 591
  issue: 2
  year: 2014
  end-page: 599
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 2849
  year: 2019
  end-page: 2854
  article-title: Deep neural network based visual inspection with 3d metric measurement of concrete defects using wall‐climbing robot
– year: 2011
  article-title: The pascal visual object classes challenge 2012 (voc2012) development kit. Pattern analysis
– start-page: 234
  year: 2015b
  end-page: 241
– volume: 33
  start-page: 1255
  issue: 5
  year: 2017
  end-page: 1262
  article-title: Orb‐slam2: an open‐source slam system for monocular, stereo, and rgb‐d cameras
  publication-title: IEEE Transactions on Robotics
– volume: 17
  start-page: 3
  issue: 1
  year: 2007
  end-page: 10
  article-title: A uav for bridge inspection: visual servoing control law with orientation limits
  publication-title: Automation in Construction
– volume: 26
  start-page: 214
  year: 2007
  end-page: 226
– volume: 2
  start-page: 1
  issue: 19
  year: 2017
  end-page: 5
  article-title: Augmentor: an image augmentation library for machine learning
  publication-title: The Journal of Open Source Software
– volume: 30
  issue: 1
  year: 2014
  article-title: Improvement of crack‐detection accuracy using a novel crack defragmentation technique in image‐based road assessment
  publication-title: Journal of Computing in Civil Engineering
– year: 2021
– start-page: 1543
  year: 2018
  end-page: 1551
  article-title: Semantic metric 3d reconstruction for concrete inspection
– volume: 2
  start-page: 416
  year: 2001
  end-page: 423
– start-page: 1395
  year: 2015
  end-page: 1403
  article-title: Holistically‐nested edge detection
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  end-page: 916
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 661
  year: 2014
  end-page: 667
  article-title: Visual inspection strategies for large bridges using unmanned aerial vehicles (UAV)
– start-page: 1
  year: 2014
  end-page: 6
– start-page: 220
  year: 2016
  end-page: 225
– year: 2015a
– year: 2012
– volume: 2
  start-page: 33
  issue: 3
  year: 2014
  end-page: 42
  article-title: Developments in wall climbing robots: a review
  publication-title: International Journal of Engineering Research and General Science
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  end-page: 169
  article-title: Marching cubes: a high resolution 3d surface construction algorithm
  publication-title: ACM Siggraph Computer Graphics
– volume: 19
  start-page: 1629
  issue: 5
  year: 2018
  end-page: 1639
  article-title: Collaborative mapping and autonomous parking for multi‐story parking garage
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 127
  year: 2011
  end-page: 136
– volume: 15
  start-page: 58
  issue: 1
  year: 2006
  end-page: 72
  article-title: Automated detection of cracks in buried concrete pipe images
  publication-title: Automation in Construction
– volume: 2019
  start-page: 1‐12
  issue: 2
  year: 2019
  article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique
  publication-title: Advances in Civil Engineering
– volume: 26
  start-page: 577
  issue: 6
  year: 2007
  end-page: 589
  article-title: Fast ego‐motion estimation with multi‐rate fusion of inertial and vision
  publication-title: The International Journal of Robotics Research
– volume: 34
  issue: 3
  year: 2020
  article-title: Crack detection and segmentation using deep learning with 3d reality mesh model for quantitative assessment and integrated visualization
  publication-title: Journal of Computing in Civil Engineering
– volume: 15
  start-page: 240
  issue: 51
  year: 2018
  end-page: 251
  article-title: Crack detection in historical structures based on convolutional neural network
  publication-title: International Journal of Geomate
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  end-page: 210
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Advanced Engineering Informatics
– volume: 1
  start-page: 188
  issue: 3
  year: 2021
  end-page: 196
  article-title: An autonomous wall‐climbing robot for inspection of reinforced concrete structures: sircaur
  publication-title: Journal of Artificial Intelligence and Technology
– volume: 2672
  start-page: 96
  issue: 26
  year: 2018
  end-page: 105
  article-title: Risk‐based prioritization of construction inspection
  publication-title: Transportation Research Record
– volume: 36
  start-page: 61
  issue: 1
  year: 2020
  end-page: 72
  article-title: Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 157
  year: 2013
  end-page: 164
  article-title: A real‐time system of lane detection and tracking based on optimized ransac b‐spline fitting
– year: 2018
  article-title: Open3D: a modern library for 3D data processing
– start-page: 1136
  year: 2021
  end-page: 1142
– volume: 13
  start-page: 591
  issue: 2
  year: 2016
  end-page: 599
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 2017
– start-page: 3565
  year: 2007
  end-page: 3572
– volume: 34
  start-page: 70
  issue: 1
  year: 2013
  end-page: 76
  article-title: Structure guided fusion for depth map inpainting
  publication-title: Pattern Recognition Letters
– start-page: 1
  year: 2016
  end-page: 6
– volume: 55
  start-page: 1950
  issue: 9
  year: 2015
  end-page: 1955
  article-title: Strip steel defect detection based on saliency map construction using Gaussian pyramid decomposition
  publication-title: ISIJ International
– volume: 34
  start-page: 1489
  issue: 8
  year: 2017
  end-page: 1504
  article-title: Development of an autonomous bridge deck inspection robotic system
  publication-title: Journal of Field Robotics
– ident: e_1_2_9_22_1
  doi: 10.1145/37402.37422
– ident: e_1_2_9_45_1
  doi: 10.1109/IROS40897.2019.8968195
– ident: e_1_2_9_9_1
  doi: 10.1145/2513228.2513280
– ident: e_1_2_9_47_1
  doi: 10.1177/0361198118782025
– ident: e_1_2_9_8_1
  doi: 10.1111/mice.12564
– ident: e_1_2_9_28_1
– ident: e_1_2_9_5_1
  doi: 10.23919/MIPRO52101.2021.9596717
– ident: e_1_2_9_16_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000890
– volume-title: IEEE/RSJ international conference on intelligent robots and systems
  year: 2017
  ident: e_1_2_9_44_1
– volume: 2019
  start-page: 1‐12
  issue: 2
  year: 2019
  ident: e_1_2_9_21_1
  article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique
  publication-title: Advances in Civil Engineering
– ident: e_1_2_9_37_1
  doi: 10.1109/INDICON.2014.7030589
– ident: e_1_2_9_24_1
  doi: 10.1016/j.autcon.2006.12.010
– ident: e_1_2_9_18_1
  doi: 10.1016/j.aei.2015.01.008
– ident: e_1_2_9_11_1
  doi: 10.1109/ICARCV.2016.7838682
– ident: e_1_2_9_25_1
  doi: 10.1109/ROBOT.2007.364024
– ident: e_1_2_9_23_1
  doi: 10.1109/ICCV.2001.937655
– ident: e_1_2_9_33_1
  doi: 10.1016/j.patrec.2012.06.003
– ident: e_1_2_9_4_1
  doi: 10.21105/joss.00432
– volume: 2
  start-page: 33
  issue: 3
  year: 2014
  ident: e_1_2_9_10_1
  article-title: Developments in wall climbing robots: a review
  publication-title: International Journal of Engineering Research and General Science
– ident: e_1_2_9_39_1
  doi: 10.1016/j.autcon.2005.02.006
– ident: e_1_2_9_40_1
– ident: e_1_2_9_42_1
  doi: 10.1109/ICCV.2015.164
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_48_1
  doi: 10.1109/34.888718
– ident: e_1_2_9_3_1
  doi: 10.1177/0278364907079283
– ident: e_1_2_9_38_1
– ident: e_1_2_9_6_1
  doi: 10.1109/MED.2016.7535885
– volume-title: Digital video and HD: algorithms and Interfaces
  year: 2012
  ident: e_1_2_9_30_1
– ident: e_1_2_9_15_1
  doi: 10.1201/b17063-96
– ident: e_1_2_9_20_1
  doi: 10.1109/TITS.2018.2791430
– ident: e_1_2_9_32_1
  doi: 10.1109/TASE.2014.2354314
– ident: e_1_2_9_43_1
  doi: 10.1109/CVPRW.2018.00204
– ident: e_1_2_9_49_1
– ident: e_1_2_9_12_1
– volume: 1
  start-page: 188
  issue: 3
  year: 2021
  ident: e_1_2_9_13_1
  article-title: An autonomous wall‐climbing robot for inspection of reinforced concrete structures: sircaur
  publication-title: Journal of Artificial Intelligence and Technology
– ident: e_1_2_9_35_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_41_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000451
– ident: e_1_2_9_2_1
  doi: 10.1109/TPAMI.2010.161
– ident: e_1_2_9_7_1
  doi: 10.21660/2018.51.35376
– ident: e_1_2_9_26_1
  doi: 10.1109/TRO.2017.2705103
– ident: e_1_2_9_27_1
  doi: 10.1109/ISMAR.2011.6092378
– ident: e_1_2_9_19_1
  doi: 10.1002/rob.21725
– ident: e_1_2_9_31_1
  doi: 10.1109/TASE.2014.2354314
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1467-8659.2007.01016.x
– ident: e_1_2_9_46_1
  doi: 10.1016/j.autcon.2006.05.003
– ident: e_1_2_9_14_1
  doi: 10.2355/isijinternational.ISIJINT-2015-041
– ident: e_1_2_9_29_1
– ident: e_1_2_9_17_1
  doi: 10.1002/stc.2381
SSID ssj0043895
Score 2.48019
Snippet Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms 3D robotic mapping
Area
artificial intelligence
Artificial neural networks
Building codes
Climbing
Concrete bridges
Concrete construction
Concrete structures
Construction inspection
Cracks
Data collection
Finite element method
Flaw detection
GPS denied
Image reconstruction
Inertial navigation
Inertial platforms
inspection robots
Modules
Navigation systems
Robots
Semantics
Surface defects
Three dimensional models
Title Automated wall‐climbing robot for concrete construction inspection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22119
https://www.proquest.com/docview/2745539949
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMfD2JM-eBenU4r44Et3aZu0wad5GUNQYTjYg1CSJpFhbcV1CD75EfyMfhJP0sumKIhveThNm_v_pMnvIHTkBoECWQueaoCZ7RElbUZlYBMN-PH0jzXDLbi6JoORdznG4xo6Ke_C5HyIasNNjwwzX-sBzvi0PYeGPqe85Wg-Gcy_-qyWFkTDCh2lg3pjw0rFxAYngJZUoY7Trp78uhbNBeaiTDXrTH8V3ZVfmB8veWjNMt6KXr_BG_9ZhDW0UuhPq5d3mHVUk8kGWl6gEm6i894sS0HISmG9sDj-eHuP4skjeND3FmSVZhboXAvcaNCbmdSJikFrTZL85maabKFR_-L2bGAXwRbsyKE-tQNPMIyVR5WMBKWe32Ed6VIpFBFUKlcxIVVEVEB4gKOASBE5XLk-JcrvKhCS26iepIncQZZ2wjj4dmAOa6RQzHcdn1Ofdx0iVYc20HFZ7WFUkMh1QIw4zBnKTgilCU3FNNBhZfqU4zd-MmqWbRcWI3AagreNNXXX068zjfB7BuHw5tQkdv9uuoeWdOT5fDemiepQ03If9EnGD0xH_ASWTuJV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsNAFIYPtS7UhXexWjWICzdp01wmGXBTL6VqW6G00I2EXGakWBPRFMGVj-Az-iSemTRpFQVxN4vJJHPL_P8k8x2AI8NxOMpadKqO5akm4Uz1KHNUIgA_pviwJrkF7Q5p9s2rgTUowEl2FiblQ-QbbmJmyPe1mOBiQ7o6pYY-xX5FF4CyOZgXEb2loerm8CgR1tuStFSLqGgDaMYV0vRqfunX1WgqMWeFqlxpGitwmz1j-oPJfWWc-JXg9Ru-8b-VWIXliQRV6umYWYMCi9ZhaQZMuAHn9XESo5ZlofLijUYfb-_BaPiAJvpOwaLiREGpq6CTRsmZMJHIMbTKMEoPb8bRJvQbF72zpjqJt6AGOrWp6pihZ1ncpJwFIaWmrXkaMygLOQkp4wb3QsYDwh3iO1bgEBYGus8NmxJu1zhqyS0oRnHEtkERPsxHe4fZcZkMuWcbuu1T26_phHGNluA4a3c3mMDIRUyMkZtilHUXa-PKhinBYZ71MSVw_JSpnHWeO5mEzy4abkuAd01xO9kLvxfgdm9OZWLn71kPYKHZa7fc1mXnehcWRSD6dHOmDEVsdbaHciXx9-Wo_AS3QuZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHXUH04FtcXbWIBy9du32kCZ7UdfGtiIIHobRNIou1XbSL4MmP4Gf0kzjpa1dREG85TNNmkjT_SZvfAGxalEqUtRipUsfXbSKF7jNBdaIAP7b6sJZxC87OyeGNfXzr3I7ATnkWJudDVBtuamZk72s1wXtcbg-goU9J0DQVn2wUxmxiUDWk21cVO0pl9XYyWKpDdIwCWIkVMszt6tKvi9FAYQ7r1Gyh6UzDXfmI-f8lD81-GjTD12_0xn-2YQamCgGq7eYjZhZGRDwHk0NYwnlo7_bTBJWs4NqLH0Ufb-9h1H3EEPpew6qSVEOhq2EcjYIzFapQQWi1bpwf3UziBbjpHFzvH-pFtgU9NJnLdGpz33GkzaQIOWO2a_iGsJjgknAmpCV9LmRIJCUBdUJKBA_NQFouI9JtSVSSi1CLk1gsgaaisACDOzTHRZJL37VMN2Bu0DKJkAarw1bpdi8sUOQqI0bk5RBl08PWeJlj6rBRmfZy_sZPRo2y77xiCj57GG47Crtrq9tlnfB7Bd7VxV5WWP676TqMX7Y73unR-ckKTKgs9PnOTANq6HSxilolDdayMfkJPAHlKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+wall%E2%80%90climbing+robot+for+concrete+construction+inspection&rft.jtitle=Journal+of+field+robotics&rft.au=Yang%2C+Liang&rft.au=Li%2C+Bing&rft.au=Feng%2C+Jinglun&rft.au=Yang%2C+Guoyong&rft.date=2023-01-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=1&rft.spage=110&rft.epage=129&rft_id=info:doi/10.1002%2Frob.22119&rft.externalDBID=10.1002%252Frob.22119&rft.externalDocID=ROB22119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon