Automated wall‐climbing robot for concrete construction inspection
Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can rea...
Saved in:
Published in | Journal of field robotics Vol. 40; no. 1; pp. 110 - 129 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can reach difficult‐to‐access locations with a close‐up view for visual data collection and real‐time flaws detection and localization. The wall‐climbing robot is able to detect concrete surface flaws (i.e., cracks and spalls) and produce a defect‐highlighted 3D model with extracted location clues and metric measurements. The system encompasses four modules, including a data collection module to capture RGB‐D frames and inertial measurement unit data, a visual–inertial navigation system module to generate pose‐coupled keyframes, a deep neural network module (namely InspectionNet) to classify each pixel into three classes (background, crack, and spall), and a semantic reconstruction module to integrate per‐frame measurement into a global volumetric model with defects highlighted. We found that commercial RGB‐D camera output depth is noisy with holes, and a Gussian‐Bilateral filter for depth completion is introduced to inpaint the depth image. The method achieves the state‐of‐the‐art depth completion accuracy even with large holes. Based on the semantic mesh, we introduce a coherent defect metric evaluation approach to compute the metric measurement of crack and spall area (e.g., length, width, area, and depth). Field experiments on a concrete bridge demonstrate that our wall‐climbing robot is able to operate on a rough surface and can cross over shallow gaps. The robot is capable to detect and measure surface flaws under low illuminated environments and texture‐less environments. Besides the robot system, we create the first publicly accessible concrete structure spalls and cracks data set that includes 820 labeled images and over 10,000 field‐collected images and release it to the research community. |
---|---|
AbstractList | Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to maintain the sustainability of the aging infrastructure. This paper introduces a wall‐climbing robot for metric concrete inspection that can reach difficult‐to‐access locations with a close‐up view for visual data collection and real‐time flaws detection and localization. The wall‐climbing robot is able to detect concrete surface flaws (i.e., cracks and spalls) and produce a defect‐highlighted 3D model with extracted location clues and metric measurements. The system encompasses four modules, including a data collection module to capture RGB‐D frames and inertial measurement unit data, a visual–inertial navigation system module to generate pose‐coupled keyframes, a deep neural network module (namely InspectionNet) to classify each pixel into three classes (background, crack, and spall), and a semantic reconstruction module to integrate per‐frame measurement into a global volumetric model with defects highlighted. We found that commercial RGB‐D camera output depth is noisy with holes, and a Gussian‐Bilateral filter for depth completion is introduced to inpaint the depth image. The method achieves the state‐of‐the‐art depth completion accuracy even with large holes. Based on the semantic mesh, we introduce a coherent defect metric evaluation approach to compute the metric measurement of crack and spall area (e.g., length, width, area, and depth). Field experiments on a concrete bridge demonstrate that our wall‐climbing robot is able to operate on a rough surface and can cross over shallow gaps. The robot is capable to detect and measure surface flaws under low illuminated environments and texture‐less environments. Besides the robot system, we create the first publicly accessible concrete structure spalls and cracks data set that includes 820 labeled images and over 10,000 field‐collected images and release it to the research community. |
Author | Jiang, Biao Yang, Guoyong Xiao, Jizhong Yang, Liang Chang, Yong Feng, Jinglun Li, Bing |
Author_xml | – sequence: 1 givenname: Liang surname: Yang fullname: Yang, Liang email: lyang1@ccny.cuny.edu organization: The City College of New York – sequence: 2 givenname: Bing surname: Li fullname: Li, Bing organization: Clemson University – sequence: 3 givenname: Jinglun surname: Feng fullname: Feng, Jinglun organization: The City College of New York – sequence: 4 givenname: Guoyong surname: Yang fullname: Yang, Guoyong organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yong surname: Chang fullname: Chang, Yong organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Biao surname: Jiang fullname: Jiang, Biao organization: Hostos Community College – sequence: 7 givenname: Jizhong surname: Xiao fullname: Xiao, Jizhong organization: The City College of New York |
BookMark | eNp9kM1KAzEUhYNUsFYXvsGAKxfTJjOTzGRZ6y8UCqLrkEluJGU6qUmG0p2P4DP6JE5bcSHo6p7FOd_lnFM0aF0LCF0QPCYYZxPv6nGWEcKP0JBQytKCs3Lwoyk_QachLDEu8orTIbqZdtGtZASdbGTTfL5_qMauatu-Jj3KxcQ4nyjXKg8RdiJE36loXZvYNqxhL8_QsZFNgPPvO0Ivd7fPs4d0vrh_nE3nqcp4ydOq0JJSU3ADSnNelFhiyDlowzQHkxupwShmKlZXVFUMtMpqk5ecmZIYTPIRujxw1969dRCiWLrOt_1LkZUFpXkP5b3r6uBS3oXgwYi1tyvpt4JgsRtJ9M3EfqTeO_nlVTbKXafopW3-S2xsA9u_0eJpcX1IfAFG1n1V |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105186 crossref_primary_10_1016_j_autcon_2025_106049 crossref_primary_10_1016_j_inffus_2024_102880 crossref_primary_10_1016_j_fraope_2024_100148 crossref_primary_10_3390_app15052597 crossref_primary_10_3390_rs15143573 crossref_primary_10_1016_j_autcon_2023_105215 crossref_primary_10_1002_rob_22409 crossref_primary_10_1016_j_autcon_2024_105633 crossref_primary_10_3390_s23031419 crossref_primary_10_1017_S0263574724000493 crossref_primary_10_1016_j_autcon_2024_105829 crossref_primary_10_1088_1361_6501_ad90fb crossref_primary_10_1109_ACCESS_2024_3402218 crossref_primary_10_1109_TIM_2024_3400345 crossref_primary_10_1002_rob_22493 crossref_primary_10_1109_TMECH_2024_3402054 crossref_primary_10_1002_aisy_202400745 |
Cites_doi | 10.1145/37402.37422 10.1109/IROS40897.2019.8968195 10.1145/2513228.2513280 10.1177/0361198118782025 10.1111/mice.12564 10.23919/MIPRO52101.2021.9596717 10.1061/(ASCE)CP.1943-5487.0000890 10.1109/INDICON.2014.7030589 10.1016/j.autcon.2006.12.010 10.1016/j.aei.2015.01.008 10.1109/ICARCV.2016.7838682 10.1109/ROBOT.2007.364024 10.1109/ICCV.2001.937655 10.1016/j.patrec.2012.06.003 10.21105/joss.00432 10.1016/j.autcon.2005.02.006 10.1109/ICCV.2015.164 10.1007/978-3-319-24574-4_28 10.1109/34.888718 10.1177/0278364907079283 10.1109/MED.2016.7535885 10.1201/b17063-96 10.1109/TITS.2018.2791430 10.1109/TASE.2014.2354314 10.1109/CVPRW.2018.00204 10.1061/(ASCE)CP.1943-5487.0000451 10.1109/TPAMI.2010.161 10.21660/2018.51.35376 10.1109/TRO.2017.2705103 10.1109/ISMAR.2011.6092378 10.1002/rob.21725 10.1111/j.1467-8659.2007.01016.x 10.1016/j.autcon.2006.05.003 10.2355/isijinternational.ISIJINT-2015-041 10.1002/stc.2381 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22119 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 129 |
ExternalDocumentID | 10_1002_rob_22119 ROB22119 |
Genre | article |
GrantInformation_xml | – fundername: NSF Research Traineeship – fundername: National Science Foundation – fundername: U.S. Department of Transportation |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2979-84da55f49fecd99470a0e39edf6d9ef3fadefc6f86b85c86edc2bf3796f71f013 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 10:44:49 EDT 2025 Tue Jul 01 04:33:52 EDT 2025 Thu Apr 24 23:12:14 EDT 2025 Wed Jan 22 16:22:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2979-84da55f49fecd99470a0e39edf6d9ef3fadefc6f86b85c86edc2bf3796f71f013 |
Notes | Liang Yang, Bing Li, and Jinglun Feng equally contributed. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2745539949 |
PQPubID | 1006410 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2745539949 crossref_primary_10_1002_rob_22119 crossref_citationtrail_10_1002_rob_22119 wiley_primary_10_1002_rob_22119_ROB22119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2019; 2019 2017; 2 2012 2011 2000; 22 2015; 55 2006; 15 2011; 33 2007 2020; 36 2020; 34 2015b 2021; 1 2016; 13 2007; 16 2018; 19 2018; 2672 1987; 21 2014; 2 2015; 29 2015a 2021 2013; 34 2017; 33 2019; 26 2017; 34 2019 2018 2017 2014; 13 2016 2001; 2 2015 2014 2013 2014; 30 2018; 15 2007; 26 e_1_2_9_31_1 Garrido G. G. (e_1_2_9_13_1) 2021; 1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Dethe R. D (e_1_2_9_10_1) 2014; 2 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 Poynton C. (e_1_2_9_30_1) 2012 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 Yang L. (e_1_2_9_44_1) 2017 e_1_2_9_45_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 Li S. (e_1_2_9_21_1) 2019; 2019 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 22 start-page: 1330– issue: 11 year: 2000 end-page: 1334 article-title: A flexible new technique for camera calibration publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 26 issue: 8 year: 2019 article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network publication-title: Structural Control and Health Monitoring – start-page: 1 year: 2015 end-page: 14 – volume: 16 start-page: 255 issue: 3 year: 2007 end-page: 261 article-title: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel publication-title: Automation in Construction – volume: 13 start-page: 591 issue: 2 year: 2014 end-page: 599 article-title: Automated crack detection on concrete bridges publication-title: IEEE Transactions on Automation Science and Engineering – start-page: 2849 year: 2019 end-page: 2854 article-title: Deep neural network based visual inspection with 3d metric measurement of concrete defects using wall‐climbing robot – year: 2011 article-title: The pascal visual object classes challenge 2012 (voc2012) development kit. Pattern analysis – start-page: 234 year: 2015b end-page: 241 – volume: 33 start-page: 1255 issue: 5 year: 2017 end-page: 1262 article-title: Orb‐slam2: an open‐source slam system for monocular, stereo, and rgb‐d cameras publication-title: IEEE Transactions on Robotics – volume: 17 start-page: 3 issue: 1 year: 2007 end-page: 10 article-title: A uav for bridge inspection: visual servoing control law with orientation limits publication-title: Automation in Construction – volume: 26 start-page: 214 year: 2007 end-page: 226 – volume: 2 start-page: 1 issue: 19 year: 2017 end-page: 5 article-title: Augmentor: an image augmentation library for machine learning publication-title: The Journal of Open Source Software – volume: 30 issue: 1 year: 2014 article-title: Improvement of crack‐detection accuracy using a novel crack defragmentation technique in image‐based road assessment publication-title: Journal of Computing in Civil Engineering – year: 2021 – start-page: 1543 year: 2018 end-page: 1551 article-title: Semantic metric 3d reconstruction for concrete inspection – volume: 2 start-page: 416 year: 2001 end-page: 423 – start-page: 1395 year: 2015 end-page: 1403 article-title: Holistically‐nested edge detection – volume: 33 start-page: 898 issue: 5 year: 2011 end-page: 916 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 661 year: 2014 end-page: 667 article-title: Visual inspection strategies for large bridges using unmanned aerial vehicles (UAV) – start-page: 1 year: 2014 end-page: 6 – start-page: 220 year: 2016 end-page: 225 – year: 2015a – year: 2012 – volume: 2 start-page: 33 issue: 3 year: 2014 end-page: 42 article-title: Developments in wall climbing robots: a review publication-title: International Journal of Engineering Research and General Science – volume: 21 start-page: 163 issue: 4 year: 1987 end-page: 169 article-title: Marching cubes: a high resolution 3d surface construction algorithm publication-title: ACM Siggraph Computer Graphics – volume: 19 start-page: 1629 issue: 5 year: 2018 end-page: 1639 article-title: Collaborative mapping and autonomous parking for multi‐story parking garage publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 127 year: 2011 end-page: 136 – volume: 15 start-page: 58 issue: 1 year: 2006 end-page: 72 article-title: Automated detection of cracks in buried concrete pipe images publication-title: Automation in Construction – volume: 2019 start-page: 1‐12 issue: 2 year: 2019 article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique publication-title: Advances in Civil Engineering – volume: 26 start-page: 577 issue: 6 year: 2007 end-page: 589 article-title: Fast ego‐motion estimation with multi‐rate fusion of inertial and vision publication-title: The International Journal of Robotics Research – volume: 34 issue: 3 year: 2020 article-title: Crack detection and segmentation using deep learning with 3d reality mesh model for quantitative assessment and integrated visualization publication-title: Journal of Computing in Civil Engineering – volume: 15 start-page: 240 issue: 51 year: 2018 end-page: 251 article-title: Crack detection in historical structures based on convolutional neural network publication-title: International Journal of Geomate – volume: 29 start-page: 196 issue: 2 year: 2015 end-page: 210 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Advanced Engineering Informatics – volume: 1 start-page: 188 issue: 3 year: 2021 end-page: 196 article-title: An autonomous wall‐climbing robot for inspection of reinforced concrete structures: sircaur publication-title: Journal of Artificial Intelligence and Technology – volume: 2672 start-page: 96 issue: 26 year: 2018 end-page: 105 article-title: Risk‐based prioritization of construction inspection publication-title: Transportation Research Record – volume: 36 start-page: 61 issue: 1 year: 2020 end-page: 72 article-title: Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 157 year: 2013 end-page: 164 article-title: A real‐time system of lane detection and tracking based on optimized ransac b‐spline fitting – year: 2018 article-title: Open3D: a modern library for 3D data processing – start-page: 1136 year: 2021 end-page: 1142 – volume: 13 start-page: 591 issue: 2 year: 2016 end-page: 599 article-title: Automated crack detection on concrete bridges publication-title: IEEE Transactions on Automation Science and Engineering – year: 2017 – start-page: 3565 year: 2007 end-page: 3572 – volume: 34 start-page: 70 issue: 1 year: 2013 end-page: 76 article-title: Structure guided fusion for depth map inpainting publication-title: Pattern Recognition Letters – start-page: 1 year: 2016 end-page: 6 – volume: 55 start-page: 1950 issue: 9 year: 2015 end-page: 1955 article-title: Strip steel defect detection based on saliency map construction using Gaussian pyramid decomposition publication-title: ISIJ International – volume: 34 start-page: 1489 issue: 8 year: 2017 end-page: 1504 article-title: Development of an autonomous bridge deck inspection robotic system publication-title: Journal of Field Robotics – ident: e_1_2_9_22_1 doi: 10.1145/37402.37422 – ident: e_1_2_9_45_1 doi: 10.1109/IROS40897.2019.8968195 – ident: e_1_2_9_9_1 doi: 10.1145/2513228.2513280 – ident: e_1_2_9_47_1 doi: 10.1177/0361198118782025 – ident: e_1_2_9_8_1 doi: 10.1111/mice.12564 – ident: e_1_2_9_28_1 – ident: e_1_2_9_5_1 doi: 10.23919/MIPRO52101.2021.9596717 – ident: e_1_2_9_16_1 doi: 10.1061/(ASCE)CP.1943-5487.0000890 – volume-title: IEEE/RSJ international conference on intelligent robots and systems year: 2017 ident: e_1_2_9_44_1 – volume: 2019 start-page: 1‐12 issue: 2 year: 2019 ident: e_1_2_9_21_1 article-title: Image‐based concrete crack detection using convolutional neural network and exhaustive search technique publication-title: Advances in Civil Engineering – ident: e_1_2_9_37_1 doi: 10.1109/INDICON.2014.7030589 – ident: e_1_2_9_24_1 doi: 10.1016/j.autcon.2006.12.010 – ident: e_1_2_9_18_1 doi: 10.1016/j.aei.2015.01.008 – ident: e_1_2_9_11_1 doi: 10.1109/ICARCV.2016.7838682 – ident: e_1_2_9_25_1 doi: 10.1109/ROBOT.2007.364024 – ident: e_1_2_9_23_1 doi: 10.1109/ICCV.2001.937655 – ident: e_1_2_9_33_1 doi: 10.1016/j.patrec.2012.06.003 – ident: e_1_2_9_4_1 doi: 10.21105/joss.00432 – volume: 2 start-page: 33 issue: 3 year: 2014 ident: e_1_2_9_10_1 article-title: Developments in wall climbing robots: a review publication-title: International Journal of Engineering Research and General Science – ident: e_1_2_9_39_1 doi: 10.1016/j.autcon.2005.02.006 – ident: e_1_2_9_40_1 – ident: e_1_2_9_42_1 doi: 10.1109/ICCV.2015.164 – ident: e_1_2_9_34_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_48_1 doi: 10.1109/34.888718 – ident: e_1_2_9_3_1 doi: 10.1177/0278364907079283 – ident: e_1_2_9_38_1 – ident: e_1_2_9_6_1 doi: 10.1109/MED.2016.7535885 – volume-title: Digital video and HD: algorithms and Interfaces year: 2012 ident: e_1_2_9_30_1 – ident: e_1_2_9_15_1 doi: 10.1201/b17063-96 – ident: e_1_2_9_20_1 doi: 10.1109/TITS.2018.2791430 – ident: e_1_2_9_32_1 doi: 10.1109/TASE.2014.2354314 – ident: e_1_2_9_43_1 doi: 10.1109/CVPRW.2018.00204 – ident: e_1_2_9_49_1 – ident: e_1_2_9_12_1 – volume: 1 start-page: 188 issue: 3 year: 2021 ident: e_1_2_9_13_1 article-title: An autonomous wall‐climbing robot for inspection of reinforced concrete structures: sircaur publication-title: Journal of Artificial Intelligence and Technology – ident: e_1_2_9_35_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_41_1 doi: 10.1061/(ASCE)CP.1943-5487.0000451 – ident: e_1_2_9_2_1 doi: 10.1109/TPAMI.2010.161 – ident: e_1_2_9_7_1 doi: 10.21660/2018.51.35376 – ident: e_1_2_9_26_1 doi: 10.1109/TRO.2017.2705103 – ident: e_1_2_9_27_1 doi: 10.1109/ISMAR.2011.6092378 – ident: e_1_2_9_19_1 doi: 10.1002/rob.21725 – ident: e_1_2_9_31_1 doi: 10.1109/TASE.2014.2354314 – ident: e_1_2_9_36_1 doi: 10.1111/j.1467-8659.2007.01016.x – ident: e_1_2_9_46_1 doi: 10.1016/j.autcon.2006.05.003 – ident: e_1_2_9_14_1 doi: 10.2355/isijinternational.ISIJINT-2015-041 – ident: e_1_2_9_29_1 – ident: e_1_2_9_17_1 doi: 10.1002/stc.2381 |
SSID | ssj0043895 |
Score | 2.48019 |
Snippet | Human‐made concrete structures require cutting‐edge inspection tools to ensure the quality of the construction to meet the applicable building codes and to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | 3D robotic mapping Area artificial intelligence Artificial neural networks Building codes Climbing Concrete bridges Concrete construction Concrete structures Construction inspection Cracks Data collection Finite element method Flaw detection GPS denied Image reconstruction Inertial navigation Inertial platforms inspection robots Modules Navigation systems Robots Semantics Surface defects Three dimensional models |
Title | Automated wall‐climbing robot for concrete construction inspection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22119 https://www.proquest.com/docview/2745539949 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMfD2JM-eBenU4r44Et3aZu0wad5GUNQYTjYg1CSJpFhbcV1CD75EfyMfhJP0sumKIhveThNm_v_pMnvIHTkBoECWQueaoCZ7RElbUZlYBMN-PH0jzXDLbi6JoORdznG4xo6Ke_C5HyIasNNjwwzX-sBzvi0PYeGPqe85Wg-Gcy_-qyWFkTDCh2lg3pjw0rFxAYngJZUoY7Trp78uhbNBeaiTDXrTH8V3ZVfmB8veWjNMt6KXr_BG_9ZhDW0UuhPq5d3mHVUk8kGWl6gEm6i894sS0HISmG9sDj-eHuP4skjeND3FmSVZhboXAvcaNCbmdSJikFrTZL85maabKFR_-L2bGAXwRbsyKE-tQNPMIyVR5WMBKWe32Ed6VIpFBFUKlcxIVVEVEB4gKOASBE5XLk-JcrvKhCS26iepIncQZZ2wjj4dmAOa6RQzHcdn1Ofdx0iVYc20HFZ7WFUkMh1QIw4zBnKTgilCU3FNNBhZfqU4zd-MmqWbRcWI3AagreNNXXX068zjfB7BuHw5tQkdv9uuoeWdOT5fDemiepQ03If9EnGD0xH_ASWTuJV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsNAFIYPtS7UhXexWjWICzdp01wmGXBTL6VqW6G00I2EXGakWBPRFMGVj-Az-iSemTRpFQVxN4vJJHPL_P8k8x2AI8NxOMpadKqO5akm4Uz1KHNUIgA_pviwJrkF7Q5p9s2rgTUowEl2FiblQ-QbbmJmyPe1mOBiQ7o6pYY-xX5FF4CyOZgXEb2loerm8CgR1tuStFSLqGgDaMYV0vRqfunX1WgqMWeFqlxpGitwmz1j-oPJfWWc-JXg9Ru-8b-VWIXliQRV6umYWYMCi9ZhaQZMuAHn9XESo5ZlofLijUYfb-_BaPiAJvpOwaLiREGpq6CTRsmZMJHIMbTKMEoPb8bRJvQbF72zpjqJt6AGOrWp6pihZ1ncpJwFIaWmrXkaMygLOQkp4wb3QsYDwh3iO1bgEBYGus8NmxJu1zhqyS0oRnHEtkERPsxHe4fZcZkMuWcbuu1T26_phHGNluA4a3c3mMDIRUyMkZtilHUXa-PKhinBYZ71MSVw_JSpnHWeO5mEzy4abkuAd01xO9kLvxfgdm9OZWLn71kPYKHZa7fc1mXnehcWRSD6dHOmDEVsdbaHciXx9-Wo_AS3QuZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHXUH04FtcXbWIBy9du32kCZ7UdfGtiIIHobRNIou1XbSL4MmP4Gf0kzjpa1dREG85TNNmkjT_SZvfAGxalEqUtRipUsfXbSKF7jNBdaIAP7b6sJZxC87OyeGNfXzr3I7ATnkWJudDVBtuamZk72s1wXtcbg-goU9J0DQVn2wUxmxiUDWk21cVO0pl9XYyWKpDdIwCWIkVMszt6tKvi9FAYQ7r1Gyh6UzDXfmI-f8lD81-GjTD12_0xn-2YQamCgGq7eYjZhZGRDwHk0NYwnlo7_bTBJWs4NqLH0Ufb-9h1H3EEPpew6qSVEOhq2EcjYIzFapQQWi1bpwf3UziBbjpHFzvH-pFtgU9NJnLdGpz33GkzaQIOWO2a_iGsJjgknAmpCV9LmRIJCUBdUJKBA_NQFouI9JtSVSSi1CLk1gsgaaisACDOzTHRZJL37VMN2Bu0DKJkAarw1bpdi8sUOQqI0bk5RBl08PWeJlj6rBRmfZy_sZPRo2y77xiCj57GG47Crtrq9tlnfB7Bd7VxV5WWP676TqMX7Y73unR-ckKTKgs9PnOTANq6HSxilolDdayMfkJPAHlKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+wall%E2%80%90climbing+robot+for+concrete+construction+inspection&rft.jtitle=Journal+of+field+robotics&rft.au=Yang%2C+Liang&rft.au=Li%2C+Bing&rft.au=Feng%2C+Jinglun&rft.au=Yang%2C+Guoyong&rft.date=2023-01-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=1&rft.spage=110&rft.epage=129&rft_id=info:doi/10.1002%2Frob.22119&rft.externalDBID=10.1002%252Frob.22119&rft.externalDocID=ROB22119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |