Learning to represent causality in recommender systems driven by large language models (LLMs)
Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance bo...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 9; pp. 960 - 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements (
p
< 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems. |
---|---|
AbstractList | Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements (p < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems. Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements (p < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems. Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements ( p < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems. |
ArticleNumber | 960 |
Author | Kone, Tiemoman N’guessan, Behou Gerald Kimou, Kouadio Prosper Aman, Serge Stéphane |
Author_xml | – sequence: 1 givenname: Serge Stéphane orcidid: 0000-0002-7922-2444 surname: Aman fullname: Aman, Serge Stéphane email: serge.aman@uvci.edu.ci organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire – sequence: 2 givenname: Tiemoman orcidid: 0009-0007-1323-8578 surname: Kone fullname: Kone, Tiemoman organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire – sequence: 3 givenname: Behou Gerald orcidid: 0000-0001-6007-1933 surname: N’guessan fullname: N’guessan, Behou Gerald organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire – sequence: 4 givenname: Kouadio Prosper surname: Kimou fullname: Kimou, Kouadio Prosper organization: UMRI MSN Felix Houphouët Boigny Polytechnic Institute, Côte d’ivoire |
BookMark | eNp9kUtv1TAQhS1UJErpH2BliQ0sUvyY2M4SVRQqBbGBJbL8mES5SuyLnYt0_z1pg4BVNzOjozPfjHRekouUExLymrMbzph-X0FAKxom2obptuWNeUYuJWPQdELxi__mF-S61gNjTEqmddtdkh89upKmNNI104LHghXTSoM7VTdP65lOaZNDXhZMEQut57riUmks0y9M1J_p7MqIW03jyW3DkiPOlb7t-y_13SvyfHBzxes__Yp8v_v47fZz03_9dH_7oW-C6LRp4iCDxwgcOymEB8-d4Y5LE2BwSrURIPJgpJeKDxw6Hh0aBQxk9MIJkFfkfufG7A72WKbFlbPNbrKPQi6jdWWdwozWdxKGiKi8HiAy2RkVdFA6YPA6KrOx3uysY8k_T1hXe8inkrb3rRTAoQWj9OYSuyuUXGvB4e9VzuxDKnZPxW6p2MdU7ANa7kt1M6cRyz_0E1u_Adq0kT0 |
Cites_doi | 10.46234/ccdcw2020.033 10.1108/IJPDLM-09-2016-0245 10.7551/mitpress/1754.001.0001 10.1145/1125451.1125659 10.1109/JPROC.2021.3058954 10.1002/widm.70020 10.1007/s10489-023-04667-5 10.1109/MC.2009.263 10.1007/s10489-024-05426-w 10.1145/371920.372071 10.1145/3501714.3501732 10.3389/fgene.2019.00524 10.1007/978-3-319-29659-3 10.1145/1772690.1772758 10.1007/s10462-018-09679-z 10.1007/978-3-540-72079-9_10 10.1017/CBO9780511803161 10.1145/3736404 10.1002/oby.22850 10.1007/s41870-024-01743-y 10.1007/s10115-025-02404-7 10.1631/FITEE.2300443 10.48550/arXiv.2211.12701 10.1145/2843948 10.1145/564376.564421 10.1016/j.neunet.2024.107071 10.1007/978-1-0716-2197-4_1 10.1109/TKDE.2005.99 10.1016/j.neunet.2023.08.052 10.1214/ss/1009213726 10.1016/j.artint.2018.07.007 10.1023/A:1021240730564 10.1109/IJCNN48605.2020.9207662 10.18637/jss.v047.i11 10.1109/IROS58592.2024.10802420 10.1007/978-0-387-85820-3_3 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-025-07551-8 |
DatabaseName | Springer Nature OA Free Journals (Freely Accessible) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection ProQuest Science Database (NC LIVE) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
EndPage | 27 |
ExternalDocumentID | oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68 10_1007_s42452_025_07551_8 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX BGNMA CITATION M4Y NU0 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c2978-df3cbed41e9322b4b1a81a138c4fa665d44d1c83b361f1491dae864043db2a243 |
IEDL.DBID | DOA |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 27 01:32:47 EDT 2025 Thu Aug 21 07:08:10 EDT 2025 Wed Aug 27 16:39:17 EDT 2025 Thu Aug 21 01:12:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Causal representation Causal inference Large language models (LLMs) Machine learning Reinforcement learning Personalized recommendation Natural language processing (NLP) Bayesian network Artificial intelligence Recommender systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2978-df3cbed41e9322b4b1a81a138c4fa665d44d1c83b361f1491dae864043db2a243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7922-2444 0009-0007-1323-8578 0000-0001-6007-1933 |
OpenAccessLink | https://doaj.org/article/b934fdee6b7f4d03986c7c67cecb7d68 |
PQID | 3241454867 |
PQPubID | 5758472 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68 proquest_journals_3241454867 crossref_primary_10_1007_s42452_025_07551_8 springer_journals_10_1007_s42452_025_07551_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | RS Sutton (7551_CR35) 1998 7551_CR51 7551_CR52 7551_CR53 7551_CR10 7551_CR16 MJ Pazzani (7551_CR30) 2007 G Zhang (7551_CR47) 2025 C Glymour (7551_CR14) 2019; 10 A Faroughi (7551_CR11) 2025; 184 J Pearl (7551_CR32) 2009 7551_CR50 I Altawaiha (7551_CR1) 2024; 1 7551_CR45 7551_CR46 D Koller (7551_CR18) 2009 G Adomavicius (7551_CR3) 2005; 17 7551_CR42 7551_CR43 J Pearl (7551_CR31) 2018 H Sasaki (7551_CR38) 2024; 4 Y Tian (7551_CR41) 2023; 167 7551_CR49 Y Koren (7551_CR19) 2009; 42 CC Aggarwal (7551_CR2) 2016 L Breiman (7551_CR4) 2001; 16 X Liang (7551_CR23) 2024; 25 P Spirtes (7551_CR36) 2001 B Schölkopf (7551_CR40) 2021; 109 G Zhang (7551_CR48) 2025 CM Bishop (7551_CR7) 2006 S Choi (7551_CR8) 2022; 36 R Burke (7551_CR6) 2002; 12 M Yang (7551_CR44) 2023; 53 7551_CR5 T Miller (7551_CR27) 2019; 267 7551_CR9 P Lops (7551_CR21) 2011 7551_CR33 7551_CR34 Y Li (7551_CR24) 2025; 15 WL Shiau (7551_CR39) 2024; 74 7551_CR37 N Nawaz (7551_CR28) 2024; 4 CA Gomez- Uribe (7551_CR12) 2015; 6 M Kalisch (7551_CR17) 2012; 47 7551_CR22 7551_CR25 P Jiang (7551_CR15) 2024; 16 7551_CR20 7551_CR26 7551_CR29 Q Gao (7551_CR13) 2024 |
References_xml | – volume: 4 issue: 1 year: 2024 ident: 7551_CR28 publication-title: Int J Inf Manag Data Insights – ident: 7551_CR52 doi: 10.46234/ccdcw2020.033 – ident: 7551_CR49 doi: 10.1108/IJPDLM-09-2016-0245 – volume-title: Causation, prediction, and search year: 2001 ident: 7551_CR36 doi: 10.7551/mitpress/1754.001.0001 – ident: 7551_CR45 – ident: 7551_CR26 doi: 10.1145/1125451.1125659 – ident: 7551_CR25 – volume: 109 start-page: 612 issue: 5 year: 2021 ident: 7551_CR40 publication-title: Proc IEEE doi: 10.1109/JPROC.2021.3058954 – volume: 15 issue: 2 year: 2025 ident: 7551_CR24 publication-title: WIREs Data Min Knowl Discov doi: 10.1002/widm.70020 – volume-title: Probabilistic graphical models: principles and techniques year: 2009 ident: 7551_CR18 – volume: 53 start-page: 21422 issue: 18 year: 2023 ident: 7551_CR44 publication-title: Appl Intell doi: 10.1007/s10489-023-04667-5 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 7551_CR19 publication-title: IEEE Comput Soc doi: 10.1109/MC.2009.263 – volume: 74 year: 2024 ident: 7551_CR39 publication-title: Int J Inf Manage – year: 2024 ident: 7551_CR13 publication-title: Appl Intell doi: 10.1007/s10489-024-05426-w – volume: 36 start-page: 10526 issue: 10 year: 2022 ident: 7551_CR8 publication-title: Proc AAAI Conf Artif Intell – ident: 7551_CR37 doi: 10.1145/371920.372071 – ident: 7551_CR43 doi: 10.1145/3501714.3501732 – volume: 10 year: 2019 ident: 7551_CR14 publication-title: Front Genet doi: 10.3389/fgene.2019.00524 – volume-title: Recommender systems year: 2016 ident: 7551_CR2 doi: 10.1007/978-3-319-29659-3 – volume-title: Reinforcement learning: an introduction year: 1998 ident: 7551_CR35 – ident: 7551_CR22 doi: 10.1145/1772690.1772758 – ident: 7551_CR51 doi: 10.1007/s10462-018-09679-z – start-page: 325 volume-title: The adaptive web: methods and strategies of web personalization year: 2007 ident: 7551_CR30 doi: 10.1007/978-3-540-72079-9_10 – volume-title: Causality: models, reasoning, and inference year: 2009 ident: 7551_CR32 doi: 10.1017/CBO9780511803161 – year: 2025 ident: 7551_CR47 publication-title: ACM Trans Inf Syst doi: 10.1145/3736404 – volume: 16 start-page: 1279 issue: 3 year: 2024 ident: 7551_CR15 publication-title: Int J Inf Technol – ident: 7551_CR46 doi: 10.1145/3736404 – ident: 7551_CR20 – ident: 7551_CR50 doi: 10.1002/oby.22850 – volume: 1 start-page: 1 year: 2024 ident: 7551_CR1 publication-title: Int J Inf Technol doi: 10.1007/s41870-024-01743-y – year: 2025 ident: 7551_CR48 publication-title: Knowl Inf Syst doi: 10.1007/s10115-025-02404-7 – volume-title: Pattern recognition and machine learning year: 2006 ident: 7551_CR7 – volume: 25 start-page: 323 issue: 2 year: 2024 ident: 7551_CR23 publication-title: Front Inf Technol Electron Eng doi: 10.1631/FITEE.2300443 – ident: 7551_CR53 doi: 10.48550/arXiv.2211.12701 – volume-title: The book of why: the new science of cause and effect year: 2018 ident: 7551_CR31 – volume: 6 start-page: 1 issue: 4 year: 2015 ident: 7551_CR12 publication-title: ACM Trans Manag Inf Syst doi: 10.1145/2843948 – ident: 7551_CR29 doi: 10.1145/564376.564421 – volume: 184 year: 2025 ident: 7551_CR11 publication-title: Neural Netw doi: 10.1016/j.neunet.2024.107071 – ident: 7551_CR9 – ident: 7551_CR34 doi: 10.1007/978-1-0716-2197-4_1 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 7551_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.99 – volume: 167 start-page: 626 year: 2023 ident: 7551_CR41 publication-title: Neural Netw doi: 10.1016/j.neunet.2023.08.052 – volume: 16 start-page: 199 issue: 3 year: 2001 ident: 7551_CR4 publication-title: Stat Sci doi: 10.1214/ss/1009213726 – volume: 267 start-page: 1 year: 2019 ident: 7551_CR27 publication-title: Artif Intell doi: 10.1016/j.artint.2018.07.007 – ident: 7551_CR5 – ident: 7551_CR42 – volume: 12 start-page: 331 issue: 4 year: 2002 ident: 7551_CR6 publication-title: User Model User-Adap Inter doi: 10.1023/A:1021240730564 – volume: 4 issue: 1 year: 2024 ident: 7551_CR38 publication-title: Int J Inf Manag Data Insights – ident: 7551_CR16 doi: 10.1109/IJCNN48605.2020.9207662 – volume: 47 start-page: 1 year: 2012 ident: 7551_CR17 publication-title: J Stat Softw doi: 10.18637/jss.v047.i11 – ident: 7551_CR33 doi: 10.1109/IROS58592.2024.10802420 – start-page: 73 volume-title: Recommender systems handbook year: 2011 ident: 7551_CR21 doi: 10.1007/978-0-387-85820-3_3 – ident: 7551_CR10 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.3021424 |
Snippet | Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences... Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 960 |
SubjectTerms | Algorithms Applied and Technical Physics Artificial intelligence Bayesian analysis Bayesian network Causal representation Causality Chemistry/Food Science Collaboration Data processing Decision making Deep learning Earth Sciences Engineering Environment Error analysis Language Large language models Large language models (LLMs) Machine learning Materials Science Mathematical models Natural language Probability Product reviews Recommender systems Semantics User behavior Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEA8-LnoQn7i-yMGDH1rcpGmankRFEVH5EAUvEvKqKLqr2_Xgf-9MNvUFem1LKDOTmfllMr8hZLMyzlplFIAc4wGgmDqzvKqzUlYQ7SE_8AKbk88v5Mm1OL0pbtKBW5OuVbY-MTpq33d4Rr4LgZ-JAvnh9p5fMpwahdXVNEJjnEyCC1YAviYPji7-X7YWVTDsQkkB7yGW2apcRG5ODggsy8H8UidN7KfDMiDPcMIrRNKCZepbtIqk_t8y0R_F0xiTjmfJTEom6f5I-3NkLPTmyfQXisEFcpsIVO_osE8jgyV2G1FnXpuYgdP7HkVQ_PQUZ8rREbNzQ_0A3SC1b_QR74rT9lyTxtE5Dd06Oztv_i2S6-Ojq8OTLI1UyBxHvOjr3NngBQuQt3ErLDOKGZYrJ2ojJWhGeOZUbnPJagBPzJugJDLweMsNF_kSmej1e2GZUAGyk6EbutxXwgHQgDVMUcgacrgCUE2HbLei088j5gz9wZEcBa1B0DoKWqsOOUDpfnyJrNfxQX9wp9Mm0haUV_sQpC1r4bt5paQrnSxdcLb0EhZZa3Wj01Zs9KfhdMhOq6_P17__0srfq62SKR4tBe-brZGJ4eA1rEOCMrQbyQrfAbZi3u4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (Freely Accessible) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhIA8MIIioE9txRqioKtQyUakLsvwVhERT1LQD_56zmxSKYGBNbCu6s3Pv2b53CJ1nymgtlACSoywQFJVHOs7yKOUZRHvAB5b65OTBI-8N6cOIjSqZHJ8L8-P8_qb0J3Nx5IuuQnBjJBLraIORhPsZ3OGd5X4K8PI0ZVmVF_N715XYEyT6V3Dlj6PQEGG6O2i7gob4duHLXbTmij209U0wcB89V3KoL3g2wUGP0ucOYaPmZcDT-LXAnuKOx6FCHF7oNJfYTv1PDesP_OZvfuN6lxKHQjglvuj3B-XlARp27586vagqkBCZ2LM_mydGO0uJAxQWa6qJEkSRRBiaK87BztQSIxKdcJIDFSJWOcG9no7VsYppcogaxaRwRwhTWIjctV07thk1QBtgDMUYzwGRMeAoTXRVm06-L3Qw5FLxOBhagqFlMLQUTXTnrbts6TWswwNwrayWhNRZQnPrHNdpTm07yQQ3qeGpcUanlsMgrdo3slpYpQT8RyjzMoFNdF376-v13590_L_mJ2gzDjPH3yZrocZsOnenAD9m-izMu0_14tDz priority: 102 providerName: Springer Nature |
Title | Learning to represent causality in recommender systems driven by large language models (LLMs) |
URI | https://link.springer.com/article/10.1007/s42452-025-07551-8 https://www.proquest.com/docview/3241454867 https://doaj.org/article/b934fdee6b7f4d03986c7c67cecb7d68 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9-XLyIomL9GDl4ULS4tGmaHnVuimwi6mAXCfmqCK6TdR78731JW52CePFUSEMJ7yV5v1-T93sIHWRSK8UlB5IjDRAUmYcqyvIwZRlEe8AHhrrk5MENuxrS61Eymiv15e6EVfLAleFOVRbT3FjLVJpT044zznSqWaqtVqlhPs0XYt4cmXJ7MLD0NE2yOkvG58q5I74odNVbIUomJOTfIpEX7P-GMn8cjPp401tDqzVQxGfVANfRgi020GMth_qEZxPs9Shd7hDW8q30eBo_F9hR3PHYV4jDlU5zic3UbWpYveMXd_MbN38psS-EU-LDfn9QHm2iYa_70LkK6wIJoY4c-zN5rJU1lFhAYZGiikhOJIm5prlkDOxMDdE8VjEjOVAhYqTlzOnpGBXJiMZbaKmYFHYbYQoLkdm2bUcmoxpoA3xDJgnLAZElwFECdNwYS7xWOhjiU_HYm1aAaYU3reABOnf2_OzpNKx9A3hW1J4Vf3k2QHuNN0S9sEoB-I_QxMkEBuik8dDX69-HtPMfQ9pFK5GfQe6O2R5amk3f7D6AkplqoUXeu2yh5bOLQf8enufdm9s7aO2wTsvPzQ9wZuJw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPABJBCsiB_r9R4Q4hVSmvTUSr0g16-tQDQp2VSof4rfyIyz21IkuPW6j5E1nvHMZ3u-AXhSu-C9cQZBjosIUFxTeFE3RaVrjPaYH0RFxcnTbT3eVZ_3yr01-NXXwtC1yn5NzAt1nAfaI3-FgZ-rkvjh3hz9KKhrFJ2u9i00VmaxlU5-ImRrX29-wPl9KsTo4877cdF1FSiCIMgUGxl8ioonTF2EV547wx2XJqjGaY2DU5EHI73UvEH8wKNLRhMJTfTCCSVR7iW4rKSsyaPM6FNvvyWnmpcuvH7Lh3q1VJkJVCDeK_AH2dXt5Oo9OnQUBfWTxbhd8sKci425hcC5vPevo9ocAUc34HqXurK3K1u7CWtpdguu_UFoeBu-dHStB2w5Z5kvk2qbWHDHbc732dcZIwh-eJg72LEVj3TL4oIWXeZP2He6mc76XVSWG_W07NlkMm2f34HdC1H1XVifzWfpHjCFutNpmIYi1iogrEEZrix1gxljiRhqAC961dmjFU-HPWVkzoq2qGibFW3NAN6Rdk-_JI7t_GC-OLCdy1qPk9fElLSvGhWHsjY6VEFXIQVfRY1CNvq5sZ3jt_bMTAfwsp-vs9f_HtL9_0t7DFfGO9OJnWxubz2AqyJbDd1024D15eI4PcTUaOkfZXtksH_RDvAbykYZ-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUQfxE-8WjUPCoouvWSz2eyDiLU9Wns9iljoi6T5LEp7V2-vSP81_zonuWxrBX3r6-4SwswkM7-dmd8AvGi0NUZqiSBHOwQoOhSGNaGoRYPeHuMDx2Nz8u5YbO3zTwfVwRL86nphYllldyemi9pNbfxHvoaOn_Iq8sOthVwWsbcxfH_6o4gTpGKmtRunsTCRHX_-E-Fb-257A3X9krHh5pePW0WeMFBYFuGTC6U13nHqMYxhhhuqJdW0lJYHLQRulDtqZWlKQQNiCeq0lyIS0jjDNOMlrnsDlmtERYMeLK9vjvc-d9Zc0dgBk53t95Tia0qeeEEZor-iRNPPXTyply-mIFkRp8uiF69oIa94yjRQ4EoU_FfiNvnD4V24kwNZ8mFhefdgyU_uw-0_6A0fwNdM3npE5lOS2DNjpxOx-qxN0T_5NiERkJ-cpHl2ZMEq3RI3i1cwMefkONapk-6fKklje1ryajTabV8_hP1rEfYj6E2mE_8YCEfZCT_wA-YabhHk4Bq6qkTA-LFCRNWHN53o1OmCtUNd8DMnQSsUtEqCVrIP61G6F19Gxu30YDo7UvkAK4PKC857YerA3aBspLC1FbX11tRO4CKrnW5UvgZadWm0fXjb6evy9b-3tPL_1Z7DTTR-Ndoe7zyBWywZTSx7W4XefHbmn2KcNDfPskESOLzuM_Ab8EMfiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+represent+causality+in+recommender+systems+driven+by+large+language+models+%28LLMs%29&rft.jtitle=Discover+applied+sciences&rft.au=Serge+St%C3%A9phane+Aman&rft.au=Tiemoman+Kone&rft.au=Behou+Gerald+N%E2%80%99guessan&rft.au=Kouadio+Prosper+Kimou&rft.date=2025-09-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=9&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2Fs42452-025-07551-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |