Learning to represent causality in recommender systems driven by large language models (LLMs)

Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance bo...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 9; pp. 960 - 27
Main Authors Aman, Serge Stéphane, Kone, Tiemoman, N’guessan, Behou Gerald, Kimou, Kouadio Prosper
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements ( p  < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems.
AbstractList Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements (p < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems.
Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements (p < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems.
Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences and item suggestions. In this paper, we propose a hybrid model that combines a Bayesian network with a large language model (LLM) to enhance both the relevance and interpretability of recommendations. The Bayesian network captures causal dependencies among user-item interactions, while the LLM injects contextual semantics from user reviews and product descriptions. Our method was evaluated on a dataset of 1.2 million interactions and showed significant improvements over baseline models, with gains of 84.44% in precision, 88.37% in recall, and 89.36% in NDCG. A statistical t-test confirmed the significance of these improvements ( p  < 0.05). We further provide an error analysis and discuss the implications of using causal modeling for scalable, transparent, and GDPR-compliant recommender systems. Our results underscore the potential of causal representation learning to improve personalization and decision-making in recommender systems.
ArticleNumber 960
Author Kone, Tiemoman
N’guessan, Behou Gerald
Kimou, Kouadio Prosper
Aman, Serge Stéphane
Author_xml – sequence: 1
  givenname: Serge Stéphane
  orcidid: 0000-0002-7922-2444
  surname: Aman
  fullname: Aman, Serge Stéphane
  email: serge.aman@uvci.edu.ci
  organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire
– sequence: 2
  givenname: Tiemoman
  orcidid: 0009-0007-1323-8578
  surname: Kone
  fullname: Kone, Tiemoman
  organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire
– sequence: 3
  givenname: Behou Gerald
  orcidid: 0000-0001-6007-1933
  surname: N’guessan
  fullname: N’guessan, Behou Gerald
  organization: Computer Science and Digital Sciences, Université Virtuelle de Côte d’Ivoire
– sequence: 4
  givenname: Kouadio Prosper
  surname: Kimou
  fullname: Kimou, Kouadio Prosper
  organization: UMRI MSN Felix Houphouët Boigny Polytechnic Institute, Côte d’ivoire
BookMark eNp9kUtv1TAQhS1UJErpH2BliQ0sUvyY2M4SVRQqBbGBJbL8mES5SuyLnYt0_z1pg4BVNzOjozPfjHRekouUExLymrMbzph-X0FAKxom2obptuWNeUYuJWPQdELxi__mF-S61gNjTEqmddtdkh89upKmNNI104LHghXTSoM7VTdP65lOaZNDXhZMEQut57riUmks0y9M1J_p7MqIW03jyW3DkiPOlb7t-y_13SvyfHBzxes__Yp8v_v47fZz03_9dH_7oW-C6LRp4iCDxwgcOymEB8-d4Y5LE2BwSrURIPJgpJeKDxw6Hh0aBQxk9MIJkFfkfufG7A72WKbFlbPNbrKPQi6jdWWdwozWdxKGiKi8HiAy2RkVdFA6YPA6KrOx3uysY8k_T1hXe8inkrb3rRTAoQWj9OYSuyuUXGvB4e9VzuxDKnZPxW6p2MdU7ANa7kt1M6cRyz_0E1u_Adq0kT0
Cites_doi 10.46234/ccdcw2020.033
10.1108/IJPDLM-09-2016-0245
10.7551/mitpress/1754.001.0001
10.1145/1125451.1125659
10.1109/JPROC.2021.3058954
10.1002/widm.70020
10.1007/s10489-023-04667-5
10.1109/MC.2009.263
10.1007/s10489-024-05426-w
10.1145/371920.372071
10.1145/3501714.3501732
10.3389/fgene.2019.00524
10.1007/978-3-319-29659-3
10.1145/1772690.1772758
10.1007/s10462-018-09679-z
10.1007/978-3-540-72079-9_10
10.1017/CBO9780511803161
10.1145/3736404
10.1002/oby.22850
10.1007/s41870-024-01743-y
10.1007/s10115-025-02404-7
10.1631/FITEE.2300443
10.48550/arXiv.2211.12701
10.1145/2843948
10.1145/564376.564421
10.1016/j.neunet.2024.107071
10.1007/978-1-0716-2197-4_1
10.1109/TKDE.2005.99
10.1016/j.neunet.2023.08.052
10.1214/ss/1009213726
10.1016/j.artint.2018.07.007
10.1023/A:1021240730564
10.1109/IJCNN48605.2020.9207662
10.18637/jss.v047.i11
10.1109/IROS58592.2024.10802420
10.1007/978-0-387-85820-3_3
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-025-07551-8
DatabaseName Springer Nature OA Free Journals (Freely Accessible)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
ProQuest Science Database (NC LIVE)
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 27
ExternalDocumentID oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68
10_1007_s42452_025_07551_8
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
C6C
GROUPED_DOAJ
M~E
SOJ
AAYXX
BGNMA
CITATION
M4Y
NU0
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c2978-df3cbed41e9322b4b1a81a138c4fa665d44d1c83b361f1491dae864043db2a243
IEDL.DBID DOA
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 27 01:32:47 EDT 2025
Thu Aug 21 07:08:10 EDT 2025
Wed Aug 27 16:39:17 EDT 2025
Thu Aug 21 01:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Causal representation
Causal inference
Large language models (LLMs)
Machine learning
Reinforcement learning
Personalized recommendation
Natural language processing (NLP)
Bayesian network
Artificial intelligence
Recommender systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-df3cbed41e9322b4b1a81a138c4fa665d44d1c83b361f1491dae864043db2a243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7922-2444
0009-0007-1323-8578
0000-0001-6007-1933
OpenAccessLink https://doaj.org/article/b934fdee6b7f4d03986c7c67cecb7d68
PQID 3241454867
PQPubID 5758472
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68
proquest_journals_3241454867
crossref_primary_10_1007_s42452_025_07551_8
springer_journals_10_1007_s42452_025_07551_8
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References RS Sutton (7551_CR35) 1998
7551_CR51
7551_CR52
7551_CR53
7551_CR10
7551_CR16
MJ Pazzani (7551_CR30) 2007
G Zhang (7551_CR47) 2025
C Glymour (7551_CR14) 2019; 10
A Faroughi (7551_CR11) 2025; 184
J Pearl (7551_CR32) 2009
7551_CR50
I Altawaiha (7551_CR1) 2024; 1
7551_CR45
7551_CR46
D Koller (7551_CR18) 2009
G Adomavicius (7551_CR3) 2005; 17
7551_CR42
7551_CR43
J Pearl (7551_CR31) 2018
H Sasaki (7551_CR38) 2024; 4
Y Tian (7551_CR41) 2023; 167
7551_CR49
Y Koren (7551_CR19) 2009; 42
CC Aggarwal (7551_CR2) 2016
L Breiman (7551_CR4) 2001; 16
X Liang (7551_CR23) 2024; 25
P Spirtes (7551_CR36) 2001
B Schölkopf (7551_CR40) 2021; 109
G Zhang (7551_CR48) 2025
CM Bishop (7551_CR7) 2006
S Choi (7551_CR8) 2022; 36
R Burke (7551_CR6) 2002; 12
M Yang (7551_CR44) 2023; 53
7551_CR5
T Miller (7551_CR27) 2019; 267
7551_CR9
P Lops (7551_CR21) 2011
7551_CR33
7551_CR34
Y Li (7551_CR24) 2025; 15
WL Shiau (7551_CR39) 2024; 74
7551_CR37
N Nawaz (7551_CR28) 2024; 4
CA Gomez- Uribe (7551_CR12) 2015; 6
M Kalisch (7551_CR17) 2012; 47
7551_CR22
7551_CR25
P Jiang (7551_CR15) 2024; 16
7551_CR20
7551_CR26
7551_CR29
Q Gao (7551_CR13) 2024
References_xml – volume: 4
  issue: 1
  year: 2024
  ident: 7551_CR28
  publication-title: Int J Inf Manag Data Insights
– ident: 7551_CR52
  doi: 10.46234/ccdcw2020.033
– ident: 7551_CR49
  doi: 10.1108/IJPDLM-09-2016-0245
– volume-title: Causation, prediction, and search
  year: 2001
  ident: 7551_CR36
  doi: 10.7551/mitpress/1754.001.0001
– ident: 7551_CR45
– ident: 7551_CR26
  doi: 10.1145/1125451.1125659
– ident: 7551_CR25
– volume: 109
  start-page: 612
  issue: 5
  year: 2021
  ident: 7551_CR40
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2021.3058954
– volume: 15
  issue: 2
  year: 2025
  ident: 7551_CR24
  publication-title: WIREs Data Min Knowl Discov
  doi: 10.1002/widm.70020
– volume-title: Probabilistic graphical models: principles and techniques
  year: 2009
  ident: 7551_CR18
– volume: 53
  start-page: 21422
  issue: 18
  year: 2023
  ident: 7551_CR44
  publication-title: Appl Intell
  doi: 10.1007/s10489-023-04667-5
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 7551_CR19
  publication-title: IEEE Comput Soc
  doi: 10.1109/MC.2009.263
– volume: 74
  year: 2024
  ident: 7551_CR39
  publication-title: Int J Inf Manage
– year: 2024
  ident: 7551_CR13
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-05426-w
– volume: 36
  start-page: 10526
  issue: 10
  year: 2022
  ident: 7551_CR8
  publication-title: Proc AAAI Conf Artif Intell
– ident: 7551_CR37
  doi: 10.1145/371920.372071
– ident: 7551_CR43
  doi: 10.1145/3501714.3501732
– volume: 10
  year: 2019
  ident: 7551_CR14
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00524
– volume-title: Recommender systems
  year: 2016
  ident: 7551_CR2
  doi: 10.1007/978-3-319-29659-3
– volume-title: Reinforcement learning: an introduction
  year: 1998
  ident: 7551_CR35
– ident: 7551_CR22
  doi: 10.1145/1772690.1772758
– ident: 7551_CR51
  doi: 10.1007/s10462-018-09679-z
– start-page: 325
  volume-title: The adaptive web: methods and strategies of web personalization
  year: 2007
  ident: 7551_CR30
  doi: 10.1007/978-3-540-72079-9_10
– volume-title: Causality: models, reasoning, and inference
  year: 2009
  ident: 7551_CR32
  doi: 10.1017/CBO9780511803161
– year: 2025
  ident: 7551_CR47
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/3736404
– volume: 16
  start-page: 1279
  issue: 3
  year: 2024
  ident: 7551_CR15
  publication-title: Int J Inf Technol
– ident: 7551_CR46
  doi: 10.1145/3736404
– ident: 7551_CR20
– ident: 7551_CR50
  doi: 10.1002/oby.22850
– volume: 1
  start-page: 1
  year: 2024
  ident: 7551_CR1
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-024-01743-y
– year: 2025
  ident: 7551_CR48
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-025-02404-7
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 7551_CR7
– volume: 25
  start-page: 323
  issue: 2
  year: 2024
  ident: 7551_CR23
  publication-title: Front Inf Technol Electron Eng
  doi: 10.1631/FITEE.2300443
– ident: 7551_CR53
  doi: 10.48550/arXiv.2211.12701
– volume-title: The book of why: the new science of cause and effect
  year: 2018
  ident: 7551_CR31
– volume: 6
  start-page: 1
  issue: 4
  year: 2015
  ident: 7551_CR12
  publication-title: ACM Trans Manag Inf Syst
  doi: 10.1145/2843948
– ident: 7551_CR29
  doi: 10.1145/564376.564421
– volume: 184
  year: 2025
  ident: 7551_CR11
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2024.107071
– ident: 7551_CR9
– ident: 7551_CR34
  doi: 10.1007/978-1-0716-2197-4_1
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 7551_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.99
– volume: 167
  start-page: 626
  year: 2023
  ident: 7551_CR41
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.08.052
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 7551_CR4
  publication-title: Stat Sci
  doi: 10.1214/ss/1009213726
– volume: 267
  start-page: 1
  year: 2019
  ident: 7551_CR27
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
– ident: 7551_CR5
– ident: 7551_CR42
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 7551_CR6
  publication-title: User Model User-Adap Inter
  doi: 10.1023/A:1021240730564
– volume: 4
  issue: 1
  year: 2024
  ident: 7551_CR38
  publication-title: Int J Inf Manag Data Insights
– ident: 7551_CR16
  doi: 10.1109/IJCNN48605.2020.9207662
– volume: 47
  start-page: 1
  year: 2012
  ident: 7551_CR17
  publication-title: J Stat Softw
  doi: 10.18637/jss.v047.i11
– ident: 7551_CR33
  doi: 10.1109/IROS58592.2024.10802420
– start-page: 73
  volume-title: Recommender systems handbook
  year: 2011
  ident: 7551_CR21
  doi: 10.1007/978-0-387-85820-3_3
– ident: 7551_CR10
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3021424
Snippet Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user preferences...
Abstract Current recommender systems mainly rely on correlation-based models, which limit their ability to uncover true causal relationships between user...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 960
SubjectTerms Algorithms
Applied and Technical Physics
Artificial intelligence
Bayesian analysis
Bayesian network
Causal representation
Causality
Chemistry/Food Science
Collaboration
Data processing
Decision making
Deep learning
Earth Sciences
Engineering
Environment
Error analysis
Language
Large language models
Large language models (LLMs)
Machine learning
Materials Science
Mathematical models
Natural language
Probability
Product reviews
Recommender systems
Semantics
User behavior
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEA8-LnoQn7i-yMGDH1rcpGmankRFEVH5EAUvEvKqKLqr2_Xgf-9MNvUFem1LKDOTmfllMr8hZLMyzlplFIAc4wGgmDqzvKqzUlYQ7SE_8AKbk88v5Mm1OL0pbtKBW5OuVbY-MTpq33d4Rr4LgZ-JAvnh9p5fMpwahdXVNEJjnEyCC1YAviYPji7-X7YWVTDsQkkB7yGW2apcRG5ODggsy8H8UidN7KfDMiDPcMIrRNKCZepbtIqk_t8y0R_F0xiTjmfJTEom6f5I-3NkLPTmyfQXisEFcpsIVO_osE8jgyV2G1FnXpuYgdP7HkVQ_PQUZ8rREbNzQ_0A3SC1b_QR74rT9lyTxtE5Dd06Oztv_i2S6-Ojq8OTLI1UyBxHvOjr3NngBQuQt3ErLDOKGZYrJ2ojJWhGeOZUbnPJagBPzJugJDLweMsNF_kSmej1e2GZUAGyk6EbutxXwgHQgDVMUcgacrgCUE2HbLei088j5gz9wZEcBa1B0DoKWqsOOUDpfnyJrNfxQX9wp9Mm0haUV_sQpC1r4bt5paQrnSxdcLb0EhZZa3Wj01Zs9KfhdMhOq6_P17__0srfq62SKR4tBe-brZGJ4eA1rEOCMrQbyQrfAbZi3u4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Freely Accessible)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDAgPkWhIA8MIIioE9txRqioKtQyUakLsvwVhERT1LQD_56zmxSKYGBNbCu6s3Pv2b53CJ1nymgtlACSoywQFJVHOs7yKOUZRHvAB5b65OTBI-8N6cOIjSqZHJ8L8-P8_qb0J3Nx5IuuQnBjJBLraIORhPsZ3OGd5X4K8PI0ZVmVF_N715XYEyT6V3Dlj6PQEGG6O2i7gob4duHLXbTmij209U0wcB89V3KoL3g2wUGP0ucOYaPmZcDT-LXAnuKOx6FCHF7oNJfYTv1PDesP_OZvfuN6lxKHQjglvuj3B-XlARp27586vagqkBCZ2LM_mydGO0uJAxQWa6qJEkSRRBiaK87BztQSIxKdcJIDFSJWOcG9no7VsYppcogaxaRwRwhTWIjctV07thk1QBtgDMUYzwGRMeAoTXRVm06-L3Qw5FLxOBhagqFlMLQUTXTnrbts6TWswwNwrayWhNRZQnPrHNdpTm07yQQ3qeGpcUanlsMgrdo3slpYpQT8RyjzMoFNdF376-v13590_L_mJ2gzDjPH3yZrocZsOnenAD9m-izMu0_14tDz
  priority: 102
  providerName: Springer Nature
Title Learning to represent causality in recommender systems driven by large language models (LLMs)
URI https://link.springer.com/article/10.1007/s42452-025-07551-8
https://www.proquest.com/docview/3241454867
https://doaj.org/article/b934fdee6b7f4d03986c7c67cecb7d68
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9-XLyIomL9GDl4ULS4tGmaHnVuimwi6mAXCfmqCK6TdR78731JW52CePFUSEMJ7yV5v1-T93sIHWRSK8UlB5IjDRAUmYcqyvIwZRlEe8AHhrrk5MENuxrS61Eymiv15e6EVfLAleFOVRbT3FjLVJpT044zznSqWaqtVqlhPs0XYt4cmXJ7MLD0NE2yOkvG58q5I74odNVbIUomJOTfIpEX7P-GMn8cjPp401tDqzVQxGfVANfRgi020GMth_qEZxPs9Shd7hDW8q30eBo_F9hR3PHYV4jDlU5zic3UbWpYveMXd_MbN38psS-EU-LDfn9QHm2iYa_70LkK6wIJoY4c-zN5rJU1lFhAYZGiikhOJIm5prlkDOxMDdE8VjEjOVAhYqTlzOnpGBXJiMZbaKmYFHYbYQoLkdm2bUcmoxpoA3xDJgnLAZElwFECdNwYS7xWOhjiU_HYm1aAaYU3reABOnf2_OzpNKx9A3hW1J4Vf3k2QHuNN0S9sEoB-I_QxMkEBuik8dDX69-HtPMfQ9pFK5GfQe6O2R5amk3f7D6AkplqoUXeu2yh5bOLQf8enufdm9s7aO2wTsvPzQ9wZuJw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPABJBCsiB_r9R4Q4hVSmvTUSr0g16-tQDQp2VSof4rfyIyz21IkuPW6j5E1nvHMZ3u-AXhSu-C9cQZBjosIUFxTeFE3RaVrjPaYH0RFxcnTbT3eVZ_3yr01-NXXwtC1yn5NzAt1nAfaI3-FgZ-rkvjh3hz9KKhrFJ2u9i00VmaxlU5-ImRrX29-wPl9KsTo4877cdF1FSiCIMgUGxl8ioonTF2EV547wx2XJqjGaY2DU5EHI73UvEH8wKNLRhMJTfTCCSVR7iW4rKSsyaPM6FNvvyWnmpcuvH7Lh3q1VJkJVCDeK_AH2dXt5Oo9OnQUBfWTxbhd8sKci425hcC5vPevo9ocAUc34HqXurK3K1u7CWtpdguu_UFoeBu-dHStB2w5Z5kvk2qbWHDHbc732dcZIwh-eJg72LEVj3TL4oIWXeZP2He6mc76XVSWG_W07NlkMm2f34HdC1H1XVifzWfpHjCFutNpmIYi1iogrEEZrix1gxljiRhqAC961dmjFU-HPWVkzoq2qGibFW3NAN6Rdk-_JI7t_GC-OLCdy1qPk9fElLSvGhWHsjY6VEFXIQVfRY1CNvq5sZ3jt_bMTAfwsp-vs9f_HtL9_0t7DFfGO9OJnWxubz2AqyJbDd1024D15eI4PcTUaOkfZXtksH_RDvAbykYZ-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUQfxE-8WjUPCoouvWSz2eyDiLU9Wns9iljoi6T5LEp7V2-vSP81_zonuWxrBX3r6-4SwswkM7-dmd8AvGi0NUZqiSBHOwQoOhSGNaGoRYPeHuMDx2Nz8u5YbO3zTwfVwRL86nphYllldyemi9pNbfxHvoaOn_Iq8sOthVwWsbcxfH_6o4gTpGKmtRunsTCRHX_-E-Fb-257A3X9krHh5pePW0WeMFBYFuGTC6U13nHqMYxhhhuqJdW0lJYHLQRulDtqZWlKQQNiCeq0lyIS0jjDNOMlrnsDlmtERYMeLK9vjvc-d9Zc0dgBk53t95Tia0qeeEEZor-iRNPPXTyply-mIFkRp8uiF69oIa94yjRQ4EoU_FfiNvnD4V24kwNZ8mFhefdgyU_uw-0_6A0fwNdM3npE5lOS2DNjpxOx-qxN0T_5NiERkJ-cpHl2ZMEq3RI3i1cwMefkONapk-6fKklje1ryajTabV8_hP1rEfYj6E2mE_8YCEfZCT_wA-YabhHk4Bq6qkTA-LFCRNWHN53o1OmCtUNd8DMnQSsUtEqCVrIP61G6F19Gxu30YDo7UvkAK4PKC857YerA3aBspLC1FbX11tRO4CKrnW5UvgZadWm0fXjb6evy9b-3tPL_1Z7DTTR-Ndoe7zyBWywZTSx7W4XefHbmn2KcNDfPskESOLzuM_Ab8EMfiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+represent+causality+in+recommender+systems+driven+by+large+language+models+%28LLMs%29&rft.jtitle=Discover+applied+sciences&rft.au=Serge+St%C3%A9phane+Aman&rft.au=Tiemoman+Kone&rft.au=Behou+Gerald+N%E2%80%99guessan&rft.au=Kouadio+Prosper+Kimou&rft.date=2025-09-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=9&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2Fs42452-025-07551-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b934fdee6b7f4d03986c7c67cecb7d68
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon