Existence of maximal and minimal solutions initial value problem for the system of fractal differential equations

Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), dependi...

Full description

Saved in:
Bibliographic Details
Published inBoundary value problems Vol. 2025; no. 1; pp. 113 - 14
Main Authors Sajid, Mohammad, Kalita, Hemanta, Zengin, Gülizar Gülenay, Wangwe, Lucas
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Hindawi Limited
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject.
AbstractList Abstract Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject.
Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject.
ArticleNumber 113
Author Sajid, Mohammad
Kalita, Hemanta
Wangwe, Lucas
Zengin, Gülizar Gülenay
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Sajid
  fullname: Sajid, Mohammad
  organization: Department of Mechanical Engineering, College of Engineering, Qassim University
– sequence: 2
  givenname: Hemanta
  surname: Kalita
  fullname: Kalita, Hemanta
  email: hemanta30kalita@gmail.com
  organization: Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University
– sequence: 3
  givenname: Gülizar Gülenay
  surname: Zengin
  fullname: Zengin, Gülizar Gülenay
  organization: Department of Mathematics, Usak University
– sequence: 4
  givenname: Lucas
  surname: Wangwe
  fullname: Wangwe, Lucas
  organization: Department of Mathematics, Mbeya University of Science and Technology
BookMark eNp9kc1q3DAUhUVIoUnaF-hKkLVT_Vr2MoRJGgh0M3shS1dTD7Y0I9ll5u2jsUPbVRdCl8M5n3Q5t-g6xAAIfaPkgdKm_p4pr2taESbLoURWzRW6oXWjKqYUuf5n_oxuc94Twlsu2A06bk59niBYwNHj0Zz60QzYBIfHPixzjsM89TFkXISpL8pvM8yADyl2A4zYx4SnX4DzuXDGC8UnY6fic733kCAsITjOZsF8QZ-8GTJ8_bjv0PZ5s336Ub39fHl9enyrLGtVUznmvZQKRCtkJywDUztDFdAWmHPGeGWJ98xKI6xQXauAdJYQ3womJaP8Dr2uWBfNXh9S2SWddTS9XoSYdtqkqbcDaNYS4aySYJwQDRMN9W1Hpawtr60nTWHdr6yy83GGPOl9nFMov9ec8UZyyoQoLra6bIo5J_B_XqVEX1rSa0u6tKSXlvQFzddQLuawg_QX_Z_UOxfhmH8
Cites_doi 10.1090/S0025-5718-1985-0790649-9
10.1142/S0218348X09004181
10.3390/axioms14020092
10.1186/1687-2770-2012-7
10.1016/j.na.2008.03.037
10.1007/s00605-022-01735-9
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.1186/s13661-025-02105-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-2770
EndPage 14
ExternalDocumentID oai_doaj_org_article_2904dc75ead4482481f9b1556c36cf08
10_1186_s13661_025_02105_8
GrantInformation_xml – fundername: Prof M. Sajid
  grantid: QU-APC-2025; QU-APC-2025; QU-APC-2025; QU-APC-2025
GroupedDBID 0R~
23N
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EBLON
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
SMT
SOJ
U2A
~8M
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c2978-d2ff557e4945b4c2ea6da17e19e2ddaaf7c0ff2c5a4c47b97e0bc00f94255213
IEDL.DBID C24
ISSN 1687-2770
1687-2762
IngestDate Wed Aug 27 01:27:56 EDT 2025
Sat Aug 23 13:56:28 EDT 2025
Thu Aug 14 00:04:45 EDT 2025
Tue Aug 12 01:10:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Minimal solution
Initial value problem
34A12
Differential equations
28A80
Fractal differential inequalities
Comparison theorem
Maximal solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-d2ff557e4945b4c2ea6da17e19e2ddaaf7c0ff2c5a4c47b97e0bc00f94255213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13661-025-02105-8
PQID 3238531244
PQPubID 237307
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_2904dc75ead4482481f9b1556c36cf08
proquest_journals_3238531244
crossref_primary_10_1186_s13661_025_02105_8
springer_journals_10_1186_s13661_025_02105_8
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Boundary value problems
PublicationTitleAbbrev Bound Value Probl
PublicationYear 2025
Publisher Springer International Publishing
Hindawi Limited
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Hindawi Limited
– name: SpringerOpen
References I. Podlubny (2105_CR14) 1999
2105_CR4
R. Figueroa (2105_CR6) 2012; 2012
A.K. Golmankhaneh (2105_CR8) 2023; 449
K.S. Miller (2105_CR12) 1993
A.K. Golmankhaneh (2105_CR7) 2024; 22
K. Falconer (2105_CR5) 2004
A. Parvate (2105_CR13) 2009; 17
B.B. Mandelbrot (2105_CR11) 1982
N. Kosmatov (2105_CR9) 2009; 70
P. Chen (2105_CR3) 2025; 14
A.O.H. Axelsson (2105_CR1) 1985; 45
N. Kosmatov (2105_CR10) 2009; 70
S.A. Burrell (2105_CR2) 2022; 199
References_xml – volume: 45
  start-page: 153
  issue: 171
  year: 1985
  ident: 2105_CR1
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1985-0790649-9
– volume: 17
  start-page: 53
  issue: 01
  year: 2009
  ident: 2105_CR13
  publication-title: Fractals
  doi: 10.1142/S0218348X09004181
– volume: 14
  start-page: 1
  issue: 2
  year: 2025
  ident: 2105_CR3
  publication-title: Axioms
  doi: 10.3390/axioms14020092
– volume: 2012
  year: 2012
  ident: 2105_CR6
  publication-title: Bound. Value Probl.
  doi: 10.1186/1687-2770-2012-7
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 2105_CR14
– volume: 70
  start-page: 2521
  issue: 7
  year: 2009
  ident: 2105_CR9
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.03.037
– volume: 70
  start-page: 2521
  issue: 7
  year: 2009
  ident: 2105_CR10
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.03.037
– ident: 2105_CR4
– volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations
  year: 1993
  ident: 2105_CR12
– volume: 22
  start-page: 1
  year: 2024
  ident: 2105_CR7
  publication-title: J. Nonlinear Funct. Anal.
– volume: 199
  start-page: 1
  year: 2022
  ident: 2105_CR2
  publication-title: Monatshefte Math.
  doi: 10.1007/s00605-022-01735-9
– volume-title: The Fractal Geometry of Nature
  year: 1982
  ident: 2105_CR11
– volume: 449
  year: 2023
  ident: 2105_CR8
  publication-title: Appl. Math. Comput.
– volume-title: Fractal Geometry: Mathematical Foundations and Applications
  year: 2004
  ident: 2105_CR5
SSID ssj0039342
Score 2.357897
Snippet Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of...
Abstract Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 113
SubjectTerms Analysis
Applications
Applied mathematics
Approximations and Expansions
Boundary value problems
Calculus
Comparison theorem
Difference and Functional Equations
Differential equations
Euclidean space
Fractal differential inequalities
Fractals
Independent variables
Initial value problem
Mathematics
Mathematics and Statistics
Maximal solution
Minimal solution
Ordinary Differential Equations
Partial Differential Equations
Recent Advances in Nonlinear Elliptic Partial Differential Equations: Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcvCmSzePTTZHFUsR9FSht5AneGirVqE_38lmt1pBvHhbsknIziSZb9iZbxC6ELWMxHpWlKVV4KBUdWENMYWwngLcACckB8g-itETv59Uk2-lvlJMWKYHzoIbUFVy72QFXwyeBOU1icqCERSOCRdzmi_YvM6ZyncwU4zTLkWmFoMFYWCHilS6Nfk4VVGvmaGGrX8NYv74K9oYm-Eu2mlRIr7Oq9tDG2G2j7YfVhSriwP0erdMGgKd4XnEU7N8nsIIM_M4sYWk59Wuws8pQghaErN3wG0NGQxwFcOEOJM5p1liSpmCfl3VlGZQeM1s4ItDNB7ejW9HRVs_oXA0OYeexlhVMnDFK8sdDUZ4Q2QgKlDvjYnSlTFSVxnuuLRKhtK6sowKzjFYdXaENmfzWThG2FtCHKuNjMpzb5nlkZeWB8-kJ1GIHrrspKlfMkuGbryLWugsew2y143sdd1DN0ngq56J4bppAL3rVu_6L733UL9Tl26P3UIzACBwqQBk6aGrToVfr39f0sl_LOkUbdG0xZpglz7afH_7CGcAWd7tebM7PwGS_ufV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Na1QxMOj2ogfxE1er5OBNQ_P18nESK1uKYBGp0FvIp_TQ3W5fC_35TvLytlTQ2yMvGcJ8TzKZQeiDMrqwkAShNFgIUAZDgmeeqJA4uBsQhEwJsifq-Jf8djac9QO3sadVzjqxKeq0ifWM_ECAbQF-AWv0-XJLateoervaW2g8RHuggo1ZoL3D1cmPn7MuFla09jkMtkQ4yP38bMaog5EJsE2ktnOtcc9AzD3T1Cr433M7_7opbQbo6Cl60j1H_GUi9TP0IK-fo8ffd2VXxxdou7qtVAM64k3BF_72_AJW-HXCtYJI_d5xGj6vWUMwUqt9Z9z7ymBwYTEAxFOB5wql1GdUMG_upNIW5e1UIXx8iU6PVqdfj0nvqUAirwFj4qUMg87SyiHIyLNXyTOdmc08Je-LjrQUHgcvo9TB6kxDpLRYkG2w9OIVWqw36_wa4RQYi8J4XWySKYggi6RB5iR0YkWpJfo4Y9NdTpUzXIs4jHIT7h3g3jXcO7NEhxXhu5m16nUb2Fz9dl2IHLdUpqgH4H6IKrk0rNgADpGKQsVCAcj-TC7XRXF0d4yzRJ9mEt79_veW3vwf2lv0iFfmaakt-2hxfXWT34GDch3edy78A5fc4yg
  priority: 102
  providerName: ProQuest
Title Existence of maximal and minimal solutions initial value problem for the system of fractal differential equations
URI https://link.springer.com/article/10.1186/s13661-025-02105-8
https://www.proquest.com/docview/3238531244
https://doaj.org/article/2904dc75ead4482481f9b1556c36cf08
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEG6iXpJD0DzIJmbpg7dkSL8fR5XdiKCEoOCt6Wfw4G50DPjzU90zs2JIDrkUw0x3M9Sjq4ru-gqhA2V0oSHxjpBgIUGRpgue-k6FxCDcgCRkuCB7rk4uxemVvBqLwvrptvt0JNl26mbWRn3pKQdf0tX2qzVPkZ3ZQjuy5u71iLbWOAz7L7dcsKk85q_znrightT_JLz840S0OZrlLno5Roj4cBDpHnqWV6_Qi7MNvGr_Gt0uHqp0QF54XfCNf7i-gRl-lXBFCqnPG43C1_V2ELypqN4Zj_1jMISqGBbEA5BzXaXUcikYN3VMaZPy7YAE3r9BF8vFxfFJN_ZO6CKriWFipUips7BCBhFZ9ip5qjO1maXkfdGRlMKi9CIKHazOJERCigUbBo_O36Lt1XqV3yGcAqWRG6-LTSIFHkQRJIicuE60KDVDnyZuup8DQoZrmYVRbuC9A967xntnZuioMnwzsqJbtxfrux9uNBbHLBEpaglaDtkjE4YWGyDwUZGrWAgssj-Jy40m1zsOwQdsKBCuzNDnSYSPn__9S-__b_gH9JxVZWpXWvbR9v3dr_wRApP7MEdbgnwFapZAd44W59--z5tuVqqO5y3hB3rJDn8DWAPipg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxCoGCvgAJ7AaL7HjA0IsHaZ0OQ1Sb5ZX1ENnOk0R5UfxH3l24qmKBLfeIsd5Sp4_vyV-C0KvZKcSdYGTpnEaHJS2I85SS6QLDMwNcEKGANlDOfsmvh61Rxvod82FyWGVVSYWQR2WPv8j3-agWwAvoI3en65I7hqVT1drC40BFnvx109w2fp3u59hfV8zNt2Zf5qRsasA8Sy7TIGl1LYqCi1aJzyLVgZLVaQ6shCsTco3KTHfWuGFclrFxvmmSRrQDbqOA9kb6KbgoMhzYvr0SxX8XPPSq4fC9xMGQqbm6HRyu6ccFCHJvWOzk9WS7ooeLO0Crti4fx3LFm03vYfujmYq_jDg6j7aiIsH6M7BusZr_xCtdi4yRAA0eJnwib04PoEn7CLgXK4kX69hjY9ziBKM5NLiEY9NbDDYyxgI4qGadKaScs4WzKttW8pDcTWUI-8fofl1sPox2lwsF_EJwsFR6nlnVdJBBMedSKJxIgauAk1STtCbyk1zOpTpMMW96aQZeG-A96bw3nQT9DEzfD0zl9guA8uz72bcsYbpRgSvWthq4MIy0dGkHVhf0nPpUwNEtupymXHf9-YSpRP0ti7h5e1_v9LT_1N7iW7N5gf7Zn_3cO8Zus0ykEpMzRbaPD_7EZ-DZXTuXhQ8YmSuGf9_AERYHxc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8gBNYGz9iJweEKN1VS2FVoSL1ZvmJeuhutymi_DT-HeM8tioS3HqLHHsUjT97ZuLxfACvVKUTc0HQonA1BihlRZ1llioXOLobGIR0CbJztfdNfjoujzfg93AXJqdVDntiu1GHpc__yCcCbQviBa3RJPVpEYe7s_dnK5oZpPJJ60Cn0UHkIP76ieFb825_F-f6Neez6dHHPdozDFDPc_gUeEplqaOsZemk59GqYJmOrI48BGuT9kVK3JdWeqldrWPhfFGkGpGOdk-g2FuwqXNQNILNnen88OtgBkQtWuYehtqgHLec4cZOpSYNE2gWaWaSzSFXSatrVrElD7jm8f51SNvavtl9uNc7reRDh7IHsBEXD-Hul3XF1-YRrKaXGTAIIbJM5NRenpziCLsIJBcvyc9rkJOTnLCELbnQeCQ9pQ1B75mgQNLVls5SUr7Bhf0GEpd2UFx1xcmbx3B0E8p-AqPFchG3gATHmBeV1akOMjjhZJKFkzEIHVhSagxvBm2as65oh2mDnUqZTvcGdW9a3ZtqDDtZ4eueueB227A8_2769Wt4XcjgdYkLDwNaLiuWaoe-mPJC-VSgkO1huky_CzTmCrNjeDtM4dXrf3_S0_9Lewm3Efvm8_784Bnc4RlHbYLNNowuzn_E5-gmXbgXPSAJmBteAn8AWoAkqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+maximal+and+minimal+solutions+initial+value+problem+for+the+system+of+fractal+differential+equations&rft.jtitle=Boundary+value+problems&rft.au=Sajid%2C+Mohammad&rft.au=Kalita%2C+Hemanta&rft.au=Zengin%2C+G%C3%BClizar+G%C3%BClenay&rft.au=Wangwe%2C+Lucas&rft.date=2025-12-01&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-025-02105-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_025_02105_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon