Existence of maximal and minimal solutions initial value problem for the system of fractal differential equations
Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), dependi...
Saved in:
Published in | Boundary value problems Vol. 2025; no. 1; pp. 113 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2025
Hindawi Limited SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject. |
---|---|
AbstractList | Abstract Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject. Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject. |
ArticleNumber | 113 |
Author | Sajid, Mohammad Kalita, Hemanta Wangwe, Lucas Zengin, Gülizar Gülenay |
Author_xml | – sequence: 1 givenname: Mohammad surname: Sajid fullname: Sajid, Mohammad organization: Department of Mechanical Engineering, College of Engineering, Qassim University – sequence: 2 givenname: Hemanta surname: Kalita fullname: Kalita, Hemanta email: hemanta30kalita@gmail.com organization: Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University – sequence: 3 givenname: Gülizar Gülenay surname: Zengin fullname: Zengin, Gülizar Gülenay organization: Department of Mathematics, Usak University – sequence: 4 givenname: Lucas surname: Wangwe fullname: Wangwe, Lucas organization: Department of Mathematics, Mbeya University of Science and Technology |
BookMark | eNp9kc1q3DAUhUVIoUnaF-hKkLVT_Vr2MoRJGgh0M3shS1dTD7Y0I9ll5u2jsUPbVRdCl8M5n3Q5t-g6xAAIfaPkgdKm_p4pr2taESbLoURWzRW6oXWjKqYUuf5n_oxuc94Twlsu2A06bk59niBYwNHj0Zz60QzYBIfHPixzjsM89TFkXISpL8pvM8yADyl2A4zYx4SnX4DzuXDGC8UnY6fic733kCAsITjOZsF8QZ-8GTJ8_bjv0PZ5s336Ub39fHl9enyrLGtVUznmvZQKRCtkJywDUztDFdAWmHPGeGWJ98xKI6xQXauAdJYQ3womJaP8Dr2uWBfNXh9S2SWddTS9XoSYdtqkqbcDaNYS4aySYJwQDRMN9W1Hpawtr60nTWHdr6yy83GGPOl9nFMov9ec8UZyyoQoLra6bIo5J_B_XqVEX1rSa0u6tKSXlvQFzddQLuawg_QX_Z_UOxfhmH8 |
Cites_doi | 10.1090/S0025-5718-1985-0790649-9 10.1142/S0218348X09004181 10.3390/axioms14020092 10.1186/1687-2770-2012-7 10.1016/j.na.2008.03.037 10.1007/s00605-022-01735-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.1186/s13661-025-02105-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection (ProQuest) ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1687-2770 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_2904dc75ead4482481f9b1556c36cf08 10_1186_s13661_025_02105_8 |
GrantInformation_xml | – fundername: Prof M. Sajid grantid: QU-APC-2025; QU-APC-2025; QU-APC-2025; QU-APC-2025 |
GroupedDBID | 0R~ 23N 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIPV ACIWK ACUHS ACULB ADBBV AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EBLON EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS Q2X REM RHU RNS SMT SOJ U2A ~8M AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N PKEHL PQEST PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c2978-d2ff557e4945b4c2ea6da17e19e2ddaaf7c0ff2c5a4c47b97e0bc00f94255213 |
IEDL.DBID | C24 |
ISSN | 1687-2770 1687-2762 |
IngestDate | Wed Aug 27 01:27:56 EDT 2025 Sat Aug 23 13:56:28 EDT 2025 Thu Aug 14 00:04:45 EDT 2025 Tue Aug 12 01:10:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Minimal solution Initial value problem 34A12 Differential equations 28A80 Fractal differential inequalities Comparison theorem Maximal solution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2978-d2ff557e4945b4c2ea6da17e19e2ddaaf7c0ff2c5a4c47b97e0bc00f94255213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1186/s13661-025-02105-8 |
PQID | 3238531244 |
PQPubID | 237307 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2904dc75ead4482481f9b1556c36cf08 proquest_journals_3238531244 crossref_primary_10_1186_s13661_025_02105_8 springer_journals_10_1186_s13661_025_02105_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Boundary value problems |
PublicationTitleAbbrev | Bound Value Probl |
PublicationYear | 2025 |
Publisher | Springer International Publishing Hindawi Limited SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Hindawi Limited – name: SpringerOpen |
References | I. Podlubny (2105_CR14) 1999 2105_CR4 R. Figueroa (2105_CR6) 2012; 2012 A.K. Golmankhaneh (2105_CR8) 2023; 449 K.S. Miller (2105_CR12) 1993 A.K. Golmankhaneh (2105_CR7) 2024; 22 K. Falconer (2105_CR5) 2004 A. Parvate (2105_CR13) 2009; 17 B.B. Mandelbrot (2105_CR11) 1982 N. Kosmatov (2105_CR9) 2009; 70 P. Chen (2105_CR3) 2025; 14 A.O.H. Axelsson (2105_CR1) 1985; 45 N. Kosmatov (2105_CR10) 2009; 70 S.A. Burrell (2105_CR2) 2022; 199 |
References_xml | – volume: 45 start-page: 153 issue: 171 year: 1985 ident: 2105_CR1 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1985-0790649-9 – volume: 17 start-page: 53 issue: 01 year: 2009 ident: 2105_CR13 publication-title: Fractals doi: 10.1142/S0218348X09004181 – volume: 14 start-page: 1 issue: 2 year: 2025 ident: 2105_CR3 publication-title: Axioms doi: 10.3390/axioms14020092 – volume: 2012 year: 2012 ident: 2105_CR6 publication-title: Bound. Value Probl. doi: 10.1186/1687-2770-2012-7 – volume-title: Fractional Differential Equations year: 1999 ident: 2105_CR14 – volume: 70 start-page: 2521 issue: 7 year: 2009 ident: 2105_CR9 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2008.03.037 – volume: 70 start-page: 2521 issue: 7 year: 2009 ident: 2105_CR10 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2008.03.037 – ident: 2105_CR4 – volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations year: 1993 ident: 2105_CR12 – volume: 22 start-page: 1 year: 2024 ident: 2105_CR7 publication-title: J. Nonlinear Funct. Anal. – volume: 199 start-page: 1 year: 2022 ident: 2105_CR2 publication-title: Monatshefte Math. doi: 10.1007/s00605-022-01735-9 – volume-title: The Fractal Geometry of Nature year: 1982 ident: 2105_CR11 – volume: 449 year: 2023 ident: 2105_CR8 publication-title: Appl. Math. Comput. – volume-title: Fractal Geometry: Mathematical Foundations and Applications year: 2004 ident: 2105_CR5 |
SSID | ssj0039342 |
Score | 2.357897 |
Snippet | Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of... Abstract Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 113 |
SubjectTerms | Analysis Applications Applied mathematics Approximations and Expansions Boundary value problems Calculus Comparison theorem Difference and Functional Equations Differential equations Euclidean space Fractal differential inequalities Fractals Independent variables Initial value problem Mathematics Mathematics and Statistics Maximal solution Minimal solution Ordinary Differential Equations Partial Differential Equations Recent Advances in Nonlinear Elliptic Partial Differential Equations: Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVcvCmSzePTTZHFUsR9FSht5AneGirVqE_38lmt1pBvHhbsknIziSZb9iZbxC6ELWMxHpWlKVV4KBUdWENMYWwngLcACckB8g-itETv59Uk2-lvlJMWKYHzoIbUFVy72QFXwyeBOU1icqCERSOCRdzmi_YvM6ZyncwU4zTLkWmFoMFYWCHilS6Nfk4VVGvmaGGrX8NYv74K9oYm-Eu2mlRIr7Oq9tDG2G2j7YfVhSriwP0erdMGgKd4XnEU7N8nsIIM_M4sYWk59Wuws8pQghaErN3wG0NGQxwFcOEOJM5p1liSpmCfl3VlGZQeM1s4ItDNB7ejW9HRVs_oXA0OYeexlhVMnDFK8sdDUZ4Q2QgKlDvjYnSlTFSVxnuuLRKhtK6sowKzjFYdXaENmfzWThG2FtCHKuNjMpzb5nlkZeWB8-kJ1GIHrrspKlfMkuGbryLWugsew2y143sdd1DN0ngq56J4bppAL3rVu_6L733UL9Tl26P3UIzACBwqQBk6aGrToVfr39f0sl_LOkUbdG0xZpglz7afH_7CGcAWd7tebM7PwGS_ufV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Na1QxMOj2ogfxE1er5OBNQ_P18nESK1uKYBGp0FvIp_TQ3W5fC_35TvLytlTQ2yMvGcJ8TzKZQeiDMrqwkAShNFgIUAZDgmeeqJA4uBsQhEwJsifq-Jf8djac9QO3sadVzjqxKeq0ifWM_ECAbQF-AWv0-XJLateoervaW2g8RHuggo1ZoL3D1cmPn7MuFla09jkMtkQ4yP38bMaog5EJsE2ktnOtcc9AzD3T1Cr433M7_7opbQbo6Cl60j1H_GUi9TP0IK-fo8ffd2VXxxdou7qtVAM64k3BF_72_AJW-HXCtYJI_d5xGj6vWUMwUqt9Z9z7ymBwYTEAxFOB5wql1GdUMG_upNIW5e1UIXx8iU6PVqdfj0nvqUAirwFj4qUMg87SyiHIyLNXyTOdmc08Je-LjrQUHgcvo9TB6kxDpLRYkG2w9OIVWqw36_wa4RQYi8J4XWySKYggi6RB5iR0YkWpJfo4Y9NdTpUzXIs4jHIT7h3g3jXcO7NEhxXhu5m16nUb2Fz9dl2IHLdUpqgH4H6IKrk0rNgADpGKQsVCAcj-TC7XRXF0d4yzRJ9mEt79_veW3vwf2lv0iFfmaakt-2hxfXWT34GDch3edy78A5fc4yg priority: 102 providerName: ProQuest |
Title | Existence of maximal and minimal solutions initial value problem for the system of fractal differential equations |
URI | https://link.springer.com/article/10.1186/s13661-025-02105-8 https://www.proquest.com/docview/3238531244 https://doaj.org/article/2904dc75ead4482481f9b1556c36cf08 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEG6iXpJD0DzIJmbpg7dkSL8fR5XdiKCEoOCt6Wfw4G50DPjzU90zs2JIDrkUw0x3M9Sjq4ru-gqhA2V0oSHxjpBgIUGRpgue-k6FxCDcgCRkuCB7rk4uxemVvBqLwvrptvt0JNl26mbWRn3pKQdf0tX2qzVPkZ3ZQjuy5u71iLbWOAz7L7dcsKk85q_znrightT_JLz840S0OZrlLno5Roj4cBDpHnqWV6_Qi7MNvGr_Gt0uHqp0QF54XfCNf7i-gRl-lXBFCqnPG43C1_V2ELypqN4Zj_1jMISqGBbEA5BzXaXUcikYN3VMaZPy7YAE3r9BF8vFxfFJN_ZO6CKriWFipUips7BCBhFZ9ip5qjO1maXkfdGRlMKi9CIKHazOJERCigUbBo_O36Lt1XqV3yGcAqWRG6-LTSIFHkQRJIicuE60KDVDnyZuup8DQoZrmYVRbuC9A967xntnZuioMnwzsqJbtxfrux9uNBbHLBEpaglaDtkjE4YWGyDwUZGrWAgssj-Jy40m1zsOwQdsKBCuzNDnSYSPn__9S-__b_gH9JxVZWpXWvbR9v3dr_wRApP7MEdbgnwFapZAd44W59--z5tuVqqO5y3hB3rJDn8DWAPipg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxCoGCvgAJ7AaL7HjA0IsHaZ0OQ1Sb5ZX1ENnOk0R5UfxH3l24qmKBLfeIsd5Sp4_vyV-C0KvZKcSdYGTpnEaHJS2I85SS6QLDMwNcEKGANlDOfsmvh61Rxvod82FyWGVVSYWQR2WPv8j3-agWwAvoI3en65I7hqVT1drC40BFnvx109w2fp3u59hfV8zNt2Zf5qRsasA8Sy7TIGl1LYqCi1aJzyLVgZLVaQ6shCsTco3KTHfWuGFclrFxvmmSRrQDbqOA9kb6KbgoMhzYvr0SxX8XPPSq4fC9xMGQqbm6HRyu6ccFCHJvWOzk9WS7ooeLO0Crti4fx3LFm03vYfujmYq_jDg6j7aiIsH6M7BusZr_xCtdi4yRAA0eJnwib04PoEn7CLgXK4kX69hjY9ziBKM5NLiEY9NbDDYyxgI4qGadKaScs4WzKttW8pDcTWUI-8fofl1sPox2lwsF_EJwsFR6nlnVdJBBMedSKJxIgauAk1STtCbyk1zOpTpMMW96aQZeG-A96bw3nQT9DEzfD0zl9guA8uz72bcsYbpRgSvWthq4MIy0dGkHVhf0nPpUwNEtupymXHf9-YSpRP0ti7h5e1_v9LT_1N7iW7N5gf7Zn_3cO8Zus0ykEpMzRbaPD_7EZ-DZXTuXhQ8YmSuGf9_AERYHxc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwV8gBNYGz9iJweEKN1VS2FVoSL1ZvmJeuhutymi_DT-HeM8tioS3HqLHHsUjT97ZuLxfACvVKUTc0HQonA1BihlRZ1llioXOLobGIR0CbJztfdNfjoujzfg93AXJqdVDntiu1GHpc__yCcCbQviBa3RJPVpEYe7s_dnK5oZpPJJ60Cn0UHkIP76ieFb825_F-f6Neez6dHHPdozDFDPc_gUeEplqaOsZemk59GqYJmOrI48BGuT9kVK3JdWeqldrWPhfFGkGpGOdk-g2FuwqXNQNILNnen88OtgBkQtWuYehtqgHLec4cZOpSYNE2gWaWaSzSFXSatrVrElD7jm8f51SNvavtl9uNc7reRDh7IHsBEXD-Hul3XF1-YRrKaXGTAIIbJM5NRenpziCLsIJBcvyc9rkJOTnLCELbnQeCQ9pQ1B75mgQNLVls5SUr7Bhf0GEpd2UFx1xcmbx3B0E8p-AqPFchG3gATHmBeV1akOMjjhZJKFkzEIHVhSagxvBm2as65oh2mDnUqZTvcGdW9a3ZtqDDtZ4eueueB227A8_2769Wt4XcjgdYkLDwNaLiuWaoe-mPJC-VSgkO1huky_CzTmCrNjeDtM4dXrf3_S0_9Lewm3Efvm8_784Bnc4RlHbYLNNowuzn_E5-gmXbgXPSAJmBteAn8AWoAkqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+maximal+and+minimal+solutions+initial+value+problem+for+the+system+of+fractal+differential+equations&rft.jtitle=Boundary+value+problems&rft.au=Sajid%2C+Mohammad&rft.au=Kalita%2C+Hemanta&rft.au=Zengin%2C+G%C3%BClizar+G%C3%BClenay&rft.au=Wangwe%2C+Lucas&rft.date=2025-12-01&rft.issn=1687-2770&rft.eissn=1687-2770&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13661-025-02105-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13661_025_02105_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-2770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-2770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-2770&client=summon |