Maximum odd induced subgraph of a graph concerning its chromatic number
Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that f o ( G ) ≥ n χ ( G ) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ ( G ) $\chi (G)$ is the chromatic number of G $G...
Saved in:
Published in | Journal of graph theory Vol. 107; no. 3; pp. 578 - 596 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23148 |
Cover
Abstract | Let
f
o
(
G
) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of
G $G$. In 1992, Scott proposed a conjecture that
f
o
(
G
)
≥
n
χ
(
G
) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph
G $G$ of order
n $n$ without isolated vertices, where
χ
(
G
) $\chi (G)$ is the chromatic number of
G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that
f
o
(
G
)
≥
2
n
4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph
G $G$ of order
n $n$. Scott's conjecture is open for graphs with chromatic number at least 3. |
---|---|
AbstractList | Let
f
o
(
G
) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of
G $G$. In 1992, Scott proposed a conjecture that
f
o
(
G
)
≥
n
χ
(
G
) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph
G $G$ of order
n $n$ without isolated vertices, where
χ
(
G
) $\chi (G)$ is the chromatic number of
G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that
f
o
(
G
)
≥
2
n
4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph
G $G$ of order
n $n$. Scott's conjecture is open for graphs with chromatic number at least 3. Let be the maximum order of an odd induced subgraph of . In 1992, Scott proposed a conjecture that for a graph of order without isolated vertices, where is the chromatic number of . In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that for a connected graph of order . Scott's conjecture is open for graphs with chromatic number at least 3. Let fo(G) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that fo(G)≥nχ(G) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ(G) $\chi (G)$ is the chromatic number of G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that fo(G)≥2n4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph G $G$ of order n $n$. Scott's conjecture is open for graphs with chromatic number at least 3. |
Author | Wu, Baoyindureng Wang, Tao |
Author_xml | – sequence: 1 givenname: Tao surname: Wang fullname: Wang, Tao organization: Xinjiang University – sequence: 2 givenname: Baoyindureng orcidid: 0000-0001-7164-3116 surname: Wu fullname: Wu, Baoyindureng email: baoywu@163.com organization: Xinjiang University |
BookMark | eNp9kE9LAzEQxYNUsK0e_AYBTx62nST7L0cpWpWKl3oO2STbpnSTmuyi_fZuXU-CnmZ4_N4b5k3QyHlnELomMCMAdL7btDPKSFqeoTEBXiRASDlCY2B5mnCg6QWaxLiDXs6gHKPli_y0TddgrzW2TnfKaBy7ahPkYYt9jSUeVuWdMsFZt8G2jVhtg29kaxV2XVOZcInOa7mP5upnTtHbw_168ZisXpdPi7tVoigvykRBVnCeqZQVdcVZSWuZ5yyTNRBNjFZKnVRuoFC1gawqmEkZcJZWOi_zirIpuhlyD8G_dya2Yue74PqTghHKCWQ0g566HSgVfIzB1OIQbCPDURAQp55E35P47qln579YZdv-M-_aIO3-P8eH3Zvj39HiebkeHF_jnXrO |
CitedBy_id | crossref_primary_10_1016_j_amc_2025_129297 |
Cites_doi | 10.1002/jgt.21897 10.1017/S0963548300000389 10.1016/j.aim.2022.108534 10.1007/s003730170028 10.1016/S0012-365X(96)00283-X 10.1016/0012-365X(92)00563-7 10.1016/0012-365X(94)90149-X 10.1007/s00373-018-1892-x 10.1002/jgt.10136 10.1007/s00453-021-00830-x 10.1007/978-1-84628-970-5 10.1007/s00373-022-02499-7 10.1016/0012-365X(93)E0186-8 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23148 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 596 |
ExternalDocumentID | 10_1002_jgt_23148 JGT23148 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2978-c057995c437fb9382fa6635af01d1edcccb9389e07cfe05b73e430934bd686b23 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:24:44 EDT 2025 Tue Jul 01 01:47:46 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2978-c057995c437fb9382fa6635af01d1edcccb9389e07cfe05b73e430934bd686b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7164-3116 |
PQID | 3129105250 |
PQPubID | 1006407 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3129105250 crossref_primary_10_1002_jgt_23148 crossref_citationtrail_10_1002_jgt_23148 wiley_primary_10_1002_jgt_23148_JGT23148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1994; 132 1994; 125 1997; 175 1997; 15 2004; 45 2008 2016; 82 2001; 17 2021; 83 2018; 34 2022; 406 1995; 140 1992; 1 2022; 38 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Berman D. M. (e_1_2_7_4_1) 1997; 15 |
References_xml | – volume: 406 year: 2022 article-title: Every graph contains a linearly sized induced subgraph with all degrees odd publication-title: Adv. Math. – volume: 82 start-page: 233 year: 2016 end-page: 235 article-title: Note on perfect forests publication-title: J. Graph Theory – volume: 132 start-page: 23 year: 1994 end-page: 28 article-title: On induced subgraphs with odd degrees publication-title: Discrete Math – volume: 175 start-page: 35 year: 1997 end-page: 40 article-title: All trees contain a large induced subgraph having all degrees 1 (mod ) publication-title: Discrete Math – year: 2008 – volume: 125 start-page: 101 year: 1994 end-page: 106 article-title: On induced subgraphs of trees with restricted degrees publication-title: Discrete Math – volume: 17 start-page: 539 year: 2001 end-page: 553 article-title: On induced subgraphs with all degrees odd publication-title: Graphs Combin – volume: 15 start-page: 81 year: 1997 end-page: 85 article-title: Odd induced subgraphs in graphs of maximum degree three publication-title: Australas. J. Combin – volume: 1 start-page: 335 year: 1992 end-page: 349 article-title: Large induced subgraphs with all degrees odd publication-title: Combin. Probab. Comput – volume: 38 start-page: 12 issue: 4 year: 2022 – volume: 140 start-page: 275 year: 1995 end-page: 279 article-title: Every tree contains a large induced subgraph with all degrees odd publication-title: Discrete Math – volume: 45 start-page: 57 year: 2004 end-page: 79 article-title: How many disjoint 2‐edge paths must a cubic graph have? publication-title: J. Graph Theory – volume: 34 start-page: 535 year: 2018 end-page: 544 article-title: Odd induced subgraphs in graphs with treewidth at most two publication-title: Graphs Combin – volume: 83 start-page: 2351 year: 2021 end-page: 2373 article-title: On the complexity of finding large odd induced subgraphs and odd colorings publication-title: Algorithmica – volume: 15 start-page: 81 year: 1997 ident: e_1_2_7_4_1 article-title: Odd induced subgraphs in graphs of maximum degree three publication-title: Australas. J. Combin – ident: e_1_2_7_9_1 doi: 10.1002/jgt.21897 – ident: e_1_2_7_15_1 doi: 10.1017/S0963548300000389 – ident: e_1_2_7_8_1 doi: 10.1016/j.aim.2022.108534 – ident: e_1_2_7_16_1 doi: 10.1007/s003730170028 – ident: e_1_2_7_3_1 doi: 10.1016/S0012-365X(96)00283-X – ident: e_1_2_7_6_1 doi: 10.1016/0012-365X(92)00563-7 – ident: e_1_2_7_7_1 doi: 10.1016/0012-365X(94)90149-X – ident: e_1_2_7_10_1 doi: 10.1007/s00373-018-1892-x – ident: e_1_2_7_11_1 doi: 10.1002/jgt.10136 – ident: e_1_2_7_12_1 – ident: e_1_2_7_2_1 doi: 10.1007/s00453-021-00830-x – ident: e_1_2_7_5_1 doi: 10.1007/978-1-84628-970-5 – ident: e_1_2_7_14_1 doi: 10.1007/s00373-022-02499-7 – ident: e_1_2_7_13_1 doi: 10.1016/0012-365X(93)E0186-8 |
SSID | ssj0011508 |
Score | 2.3626926 |
Snippet | Let
f
o
(
G
) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of
G $G$. In 1992, Scott proposed a conjecture that
f
o
(
G
)
≥
n
χ
(
G
)... Let be the maximum order of an odd induced subgraph of . In 1992, Scott proposed a conjecture that for a graph of order without isolated vertices, where is the... Let fo(G) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that fo(G)≥nχ(G) ${f}_{o}(G)\ge... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 578 |
SubjectTerms | Apexes chromatic number Graph theory Graphs induced subgraphs odd subgraphs |
Title | Maximum odd induced subgraph of a graph concerning its chromatic number |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23148 https://www.proquest.com/docview/3129105250 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jJz34FqdTgnjw0q1N0heeRN3GYB5kgx2E0jyqU7fK2oL415tH26koiLdQvqbN92h-Sfr9PgDOCPM59zG3wsROLEKoI0OKc4vFEpsiPw4wV4nCo1tvMCHDqTttgIsqF8bwQ9Qbbioy9PdaBXhMs-6KNPTpIe9IcEJUoq-DPcWbf31XU0cpoBOYc0pihXIiqliFbNSt7_w6F60A5meYqueZ3ia4r97Q_F7y3Cly2mHv38gb_zmELbBR4k94aRxmGzTEYgesj2ry1mwX9Efx22xezGHKOZRLdml8DrOCam5rmCYwhqbJVMqj3liBszyD7HGZ6j6gKTOyBya9m_HVwCrrLVgMqcUkU4mpocsI9hMa4gAlscIjcWI73BGcMaauhsL2WSJsl_pYEHWQSij3Ao8ivA-ai3QhDgBkgoTED1w74YTI_gImhYKASvTkcYZ4C5xXmo9YSUauamK8RIZGGUVSN5HWTQuc1qKvhoHjJ6F2Zb6oDMIswhLLOKpOny0fp-3wewfRsD_WjcO_ix6BNSQ9y2QmtkEzXxbiWEKUnJ5oX_wADg_hqQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDbyOKujEevBT7WOg28WJUQAQOBhIupunutooKGGgT4693H21Ro4nxtmmm0-7uTPfb2c43ACeYuZy7Dje8yIwMjKklXIpzgwUCm9puQBwuE4U73Vqzj1uD6qAA51kujOaHyANu0jPU91o6uAxIn81ZQ58e4opAJ5gswCIWQENuva7ucvIoCXWIPqnEhieWooxXyLTP8lu_rkZziPkZqKqVpr4G99k76h9MnitJTCvs_Rt94387sQ6rKQRFF9pmNqAQjjdhpZPzt862oNEJ3oajZIQmnCOxaxfzz9EsoYreGk0iFCDdZDLrUcVW0DCeIfY4nSgdSFca2YZ-_bp32TTSkgsGs-V-ksncVK_KsONG1HOIHQUSkgSRaXEr5IwxedULTZdFoVmlrhNieZaKKa-RGrWdHSiOJ-NwFxALsYddUjUjjrHQR5gQIoQKAFXjzOYlOM2G3mcpH7ksi_HiayZl2xdj46uxKcFxLvqqSTh-Eipn8-enfjjzHQFnLFmqzxSPUxPxuwK_1eipxt7fRY9gqdnrtP32Tfd2H5ZtYWY6UbEMxXiahAcCscT0UBnmBzkw5cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5MBdEH7-K8BvHBl25dm7UpPom6zcuGyAQfhNIkjU7dhbUF8deby1ovKIhvoZymzbk0X5Ke7wAcYOZz7rvcCoQtLIxpTYYU5xaLJDZ1_Ii4XCUKtzte6xZf3NXvSnCU58IYfohiw01Fhv5eqwAfcVH9IA19ekgrEpxgMgUz2JNIQiGim4I7SiEdYg4qsRXImSinFbKdanHr18noA2F-xql6omkswn3-iub_kudKltIKe_vG3vjPMSzBwgSAomPjMctQigcrMN8u2FuTVWi2o9deP-ujIedIrtml9TlKMqrJrdFQoAiZJlM5j3pnBfXSBLHH8VD3gUydkTW4bZx1T1rWpOCCxRy1mmQqMzWoM-z6ggYucUSkAEkk7BqvxZwxpq4Gse0zEdt16rsxViepmHKPeNRx12F6MBzEG4BYjAPsk7otOMayP8KkECFUwiePM4eX4TDXfMgmbOSqKMZLaHiUnVDqJtS6KcN-IToyFBw_CW3n5gsnUZiErgQzNVWoz5aP03b4vYPwotnVjc2_i-7B7PVpI7w671xuwZwjncxkKW7DdDrO4h0JV1K6q93yHaFo5Hc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+odd+induced+subgraph+of+a+graph+concerning+its+chromatic+number&rft.jtitle=Journal+of+graph+theory&rft.au=Wang%2C+Tao&rft.au=Wu%2C+Baoyindureng&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=578&rft.epage=596&rft_id=info:doi/10.1002%2Fjgt.23148&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |