Maximum odd induced subgraph of a graph concerning its chromatic number

Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that f o ( G ) ≥ n χ ( G ) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ ( G ) $\chi (G)$ is the chromatic number of G $G...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 107; no. 3; pp. 578 - 596
Main Authors Wang, Tao, Wu, Baoyindureng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23148

Cover

Abstract Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that f o ( G ) ≥ n χ ( G ) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ ( G ) $\chi (G)$ is the chromatic number of G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that f o ( G ) ≥ 2 n 4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph G $G$ of order n $n$. Scott's conjecture is open for graphs with chromatic number at least 3.
AbstractList Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that f o ( G ) ≥ n χ ( G ) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ ( G ) $\chi (G)$ is the chromatic number of G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that f o ( G ) ≥ 2 n 4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph G $G$ of order n $n$. Scott's conjecture is open for graphs with chromatic number at least 3.
Let be the maximum order of an odd induced subgraph of . In 1992, Scott proposed a conjecture that for a graph of order without isolated vertices, where is the chromatic number of . In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that for a connected graph of order . Scott's conjecture is open for graphs with chromatic number at least 3.
Let fo(G) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that fo(G)≥nχ(G) ${f}_{o}(G)\ge \frac{n}{\chi (G)}$ for a graph G $G$ of order n $n$ without isolated vertices, where χ(G) $\chi (G)$ is the chromatic number of G $G$. In this paper, we show that the conjecture is not true for bipartite graphs, but is true for all line graphs. In addition, we also disprove a conjecture of Berman, Wang, and Wargo in 1997, which states that fo(G)≥2n4 ${f}_{o}(G)\ge 2\unicode{x0230A}\frac{n}{4}\unicode{x0230B}$ for a connected graph G $G$ of order n $n$. Scott's conjecture is open for graphs with chromatic number at least 3.
Author Wu, Baoyindureng
Wang, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Xinjiang University
– sequence: 2
  givenname: Baoyindureng
  orcidid: 0000-0001-7164-3116
  surname: Wu
  fullname: Wu, Baoyindureng
  email: baoywu@163.com
  organization: Xinjiang University
BookMark eNp9kE9LAzEQxYNUsK0e_AYBTx62nST7L0cpWpWKl3oO2STbpnSTmuyi_fZuXU-CnmZ4_N4b5k3QyHlnELomMCMAdL7btDPKSFqeoTEBXiRASDlCY2B5mnCg6QWaxLiDXs6gHKPli_y0TddgrzW2TnfKaBy7ahPkYYt9jSUeVuWdMsFZt8G2jVhtg29kaxV2XVOZcInOa7mP5upnTtHbw_168ZisXpdPi7tVoigvykRBVnCeqZQVdcVZSWuZ5yyTNRBNjFZKnVRuoFC1gawqmEkZcJZWOi_zirIpuhlyD8G_dya2Yue74PqTghHKCWQ0g566HSgVfIzB1OIQbCPDURAQp55E35P47qln579YZdv-M-_aIO3-P8eH3Zvj39HiebkeHF_jnXrO
CitedBy_id crossref_primary_10_1016_j_amc_2025_129297
Cites_doi 10.1002/jgt.21897
10.1017/S0963548300000389
10.1016/j.aim.2022.108534
10.1007/s003730170028
10.1016/S0012-365X(96)00283-X
10.1016/0012-365X(92)00563-7
10.1016/0012-365X(94)90149-X
10.1007/s00373-018-1892-x
10.1002/jgt.10136
10.1007/s00453-021-00830-x
10.1007/978-1-84628-970-5
10.1007/s00373-022-02499-7
10.1016/0012-365X(93)E0186-8
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23148
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 596
ExternalDocumentID 10_1002_jgt_23148
JGT23148
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2978-c057995c437fb9382fa6635af01d1edcccb9389e07cfe05b73e430934bd686b23
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:24:44 EDT 2025
Tue Jul 01 01:47:46 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-c057995c437fb9382fa6635af01d1edcccb9389e07cfe05b73e430934bd686b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7164-3116
PQID 3129105250
PQPubID 1006407
PageCount 19
ParticipantIDs proquest_journals_3129105250
crossref_primary_10_1002_jgt_23148
crossref_citationtrail_10_1002_jgt_23148
wiley_primary_10_1002_jgt_23148_JGT23148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1994; 132
1994; 125
1997; 175
1997; 15
2004; 45
2008
2016; 82
2001; 17
2021; 83
2018; 34
2022; 406
1995; 140
1992; 1
2022; 38
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Berman D. M. (e_1_2_7_4_1) 1997; 15
References_xml – volume: 406
  year: 2022
  article-title: Every graph contains a linearly sized induced subgraph with all degrees odd
  publication-title: Adv. Math.
– volume: 82
  start-page: 233
  year: 2016
  end-page: 235
  article-title: Note on perfect forests
  publication-title: J. Graph Theory
– volume: 132
  start-page: 23
  year: 1994
  end-page: 28
  article-title: On induced subgraphs with odd degrees
  publication-title: Discrete Math
– volume: 175
  start-page: 35
  year: 1997
  end-page: 40
  article-title: All trees contain a large induced subgraph having all degrees 1 (mod )
  publication-title: Discrete Math
– year: 2008
– volume: 125
  start-page: 101
  year: 1994
  end-page: 106
  article-title: On induced subgraphs of trees with restricted degrees
  publication-title: Discrete Math
– volume: 17
  start-page: 539
  year: 2001
  end-page: 553
  article-title: On induced subgraphs with all degrees odd
  publication-title: Graphs Combin
– volume: 15
  start-page: 81
  year: 1997
  end-page: 85
  article-title: Odd induced subgraphs in graphs of maximum degree three
  publication-title: Australas. J. Combin
– volume: 1
  start-page: 335
  year: 1992
  end-page: 349
  article-title: Large induced subgraphs with all degrees odd
  publication-title: Combin. Probab. Comput
– volume: 38
  start-page: 12
  issue: 4
  year: 2022
– volume: 140
  start-page: 275
  year: 1995
  end-page: 279
  article-title: Every tree contains a large induced subgraph with all degrees odd
  publication-title: Discrete Math
– volume: 45
  start-page: 57
  year: 2004
  end-page: 79
  article-title: How many disjoint 2‐edge paths must a cubic graph have?
  publication-title: J. Graph Theory
– volume: 34
  start-page: 535
  year: 2018
  end-page: 544
  article-title: Odd induced subgraphs in graphs with treewidth at most two
  publication-title: Graphs Combin
– volume: 83
  start-page: 2351
  year: 2021
  end-page: 2373
  article-title: On the complexity of finding large odd induced subgraphs and odd colorings
  publication-title: Algorithmica
– volume: 15
  start-page: 81
  year: 1997
  ident: e_1_2_7_4_1
  article-title: Odd induced subgraphs in graphs of maximum degree three
  publication-title: Australas. J. Combin
– ident: e_1_2_7_9_1
  doi: 10.1002/jgt.21897
– ident: e_1_2_7_15_1
  doi: 10.1017/S0963548300000389
– ident: e_1_2_7_8_1
  doi: 10.1016/j.aim.2022.108534
– ident: e_1_2_7_16_1
  doi: 10.1007/s003730170028
– ident: e_1_2_7_3_1
  doi: 10.1016/S0012-365X(96)00283-X
– ident: e_1_2_7_6_1
  doi: 10.1016/0012-365X(92)00563-7
– ident: e_1_2_7_7_1
  doi: 10.1016/0012-365X(94)90149-X
– ident: e_1_2_7_10_1
  doi: 10.1007/s00373-018-1892-x
– ident: e_1_2_7_11_1
  doi: 10.1002/jgt.10136
– ident: e_1_2_7_12_1
– ident: e_1_2_7_2_1
  doi: 10.1007/s00453-021-00830-x
– ident: e_1_2_7_5_1
  doi: 10.1007/978-1-84628-970-5
– ident: e_1_2_7_14_1
  doi: 10.1007/s00373-022-02499-7
– ident: e_1_2_7_13_1
  doi: 10.1016/0012-365X(93)E0186-8
SSID ssj0011508
Score 2.3626926
Snippet Let f o ( G ) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that f o ( G ) ≥ n χ ( G )...
Let be the maximum order of an odd induced subgraph of . In 1992, Scott proposed a conjecture that for a graph of order without isolated vertices, where is the...
Let fo(G) ${f}_{o}(G)$ be the maximum order of an odd induced subgraph of G $G$. In 1992, Scott proposed a conjecture that fo(G)≥nχ(G) ${f}_{o}(G)\ge...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 578
SubjectTerms Apexes
chromatic number
Graph theory
Graphs
induced subgraphs
odd subgraphs
Title Maximum odd induced subgraph of a graph concerning its chromatic number
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23148
https://www.proquest.com/docview/3129105250
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jJz34FqdTgnjw0q1N0heeRN3GYB5kgx2E0jyqU7fK2oL415tH26koiLdQvqbN92h-Sfr9PgDOCPM59zG3wsROLEKoI0OKc4vFEpsiPw4wV4nCo1tvMCHDqTttgIsqF8bwQ9Qbbioy9PdaBXhMs-6KNPTpIe9IcEJUoq-DPcWbf31XU0cpoBOYc0pihXIiqliFbNSt7_w6F60A5meYqueZ3ia4r97Q_F7y3Cly2mHv38gb_zmELbBR4k94aRxmGzTEYgesj2ry1mwX9Efx22xezGHKOZRLdml8DrOCam5rmCYwhqbJVMqj3liBszyD7HGZ6j6gKTOyBya9m_HVwCrrLVgMqcUkU4mpocsI9hMa4gAlscIjcWI73BGcMaauhsL2WSJsl_pYEHWQSij3Ao8ivA-ai3QhDgBkgoTED1w74YTI_gImhYKASvTkcYZ4C5xXmo9YSUauamK8RIZGGUVSN5HWTQuc1qKvhoHjJ6F2Zb6oDMIswhLLOKpOny0fp-3wewfRsD_WjcO_ix6BNSQ9y2QmtkEzXxbiWEKUnJ5oX_wADg_hqQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDbyOKujEevBT7WOg28WJUQAQOBhIupunutooKGGgT4693H21Ro4nxtmmm0-7uTPfb2c43ACeYuZy7Dje8yIwMjKklXIpzgwUCm9puQBwuE4U73Vqzj1uD6qAA51kujOaHyANu0jPU91o6uAxIn81ZQ58e4opAJ5gswCIWQENuva7ucvIoCXWIPqnEhieWooxXyLTP8lu_rkZziPkZqKqVpr4G99k76h9MnitJTCvs_Rt94387sQ6rKQRFF9pmNqAQjjdhpZPzt862oNEJ3oajZIQmnCOxaxfzz9EsoYreGk0iFCDdZDLrUcVW0DCeIfY4nSgdSFca2YZ-_bp32TTSkgsGs-V-ksncVK_KsONG1HOIHQUSkgSRaXEr5IwxedULTZdFoVmlrhNieZaKKa-RGrWdHSiOJ-NwFxALsYddUjUjjrHQR5gQIoQKAFXjzOYlOM2G3mcpH7ksi_HiayZl2xdj46uxKcFxLvqqSTh-Eipn8-enfjjzHQFnLFmqzxSPUxPxuwK_1eipxt7fRY9gqdnrtP32Tfd2H5ZtYWY6UbEMxXiahAcCscT0UBnmBzkw5cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5MBdEH7-K8BvHBl25dm7UpPom6zcuGyAQfhNIkjU7dhbUF8deby1ovKIhvoZymzbk0X5Ke7wAcYOZz7rvcCoQtLIxpTYYU5xaLJDZ1_Ii4XCUKtzte6xZf3NXvSnCU58IYfohiw01Fhv5eqwAfcVH9IA19ekgrEpxgMgUz2JNIQiGim4I7SiEdYg4qsRXImSinFbKdanHr18noA2F-xql6omkswn3-iub_kudKltIKe_vG3vjPMSzBwgSAomPjMctQigcrMN8u2FuTVWi2o9deP-ujIedIrtml9TlKMqrJrdFQoAiZJlM5j3pnBfXSBLHH8VD3gUydkTW4bZx1T1rWpOCCxRy1mmQqMzWoM-z6ggYucUSkAEkk7BqvxZwxpq4Gse0zEdt16rsxViepmHKPeNRx12F6MBzEG4BYjAPsk7otOMayP8KkECFUwiePM4eX4TDXfMgmbOSqKMZLaHiUnVDqJtS6KcN-IToyFBw_CW3n5gsnUZiErgQzNVWoz5aP03b4vYPwotnVjc2_i-7B7PVpI7w671xuwZwjncxkKW7DdDrO4h0JV1K6q93yHaFo5Hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+odd+induced+subgraph+of+a+graph+concerning+its+chromatic+number&rft.jtitle=Journal+of+graph+theory&rft.au=Wang%2C+Tao&rft.au=Wu%2C+Baoyindureng&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=578&rft.epage=596&rft_id=info:doi/10.1002%2Fjgt.23148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon