Kernel Functional Maps

Functional maps provide a means of extracting correspondences between surfaces using linear‐algebraic machinery. While the functional framework suggests efficient algorithms for map computation, the basic technique does not incorporate the intuition that pointwise modifications of a descriptor funct...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 37; no. 5; pp. 27 - 36
Main Authors Wang, L., Gehre, A., Bronstein, M. M., Solomon, J.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional maps provide a means of extracting correspondences between surfaces using linear‐algebraic machinery. While the functional framework suggests efficient algorithms for map computation, the basic technique does not incorporate the intuition that pointwise modifications of a descriptor function (e.g. composition of a descriptor and a nonlinearity) should be preserved under the mapping; the end result is that the basic functional maps problem can be underdetermined without regularization or additional assumptions on the map. In this paper, we show how this problem can be addressed through kernelization, in which descriptors are lifted to higher‐dimensional vectors or even infinite‐length sequences of values. The key observation is that optimization problems for functional maps only depend on inner products between descriptors rather than descriptor values themselves. These inner products can be evaluated efficiently through use of kernel functions. In addition to deriving a kernelized version of functional maps including a recent extension in terms of pointwise multiplication operators, we provide an efficient conjugate gradient algorithm for optimizing our generalized problem as well as a strategy for low‐rank estimation of kernel matrices through the Nyström approximation.
AbstractList Functional maps provide a means of extracting correspondences between surfaces using linear‐algebraic machinery. While the functional framework suggests efficient algorithms for map computation, the basic technique does not incorporate the intuition that pointwise modifications of a descriptor function (e.g. composition of a descriptor and a nonlinearity) should be preserved under the mapping; the end result is that the basic functional maps problem can be underdetermined without regularization or additional assumptions on the map. In this paper, we show how this problem can be addressed through kernelization, in which descriptors are lifted to higher‐dimensional vectors or even infinite‐length sequences of values. The key observation is that optimization problems for functional maps only depend on inner products between descriptors rather than descriptor values themselves. These inner products can be evaluated efficiently through use of kernel functions. In addition to deriving a kernelized version of functional maps including a recent extension in terms of pointwise multiplication operators, we provide an efficient conjugate gradient algorithm for optimizing our generalized problem as well as a strategy for low‐rank estimation of kernel matrices through the Nyström approximation.
Functional maps provide a means of extracting correspondences between surfaces using linear‐algebraic machinery. While the functional framework suggests efficient algorithms for map computation, the basic technique does not incorporate the intuition that pointwise modifications of a descriptor function (e.g. composition of a descriptor and a nonlinearity) should be preserved under the mapping; the end result is that the basic functional maps problem can be underdetermined without regularization or additional assumptions on the map. In this paper, we show how this problem can be addressed through kernelization , in which descriptors are lifted to higher‐dimensional vectors or even infinite‐length sequences of values. The key observation is that optimization problems for functional maps only depend on inner products between descriptors rather than descriptor values themselves. These inner products can be evaluated efficiently through use of kernel functions. In addition to deriving a kernelized version of functional maps including a recent extension in terms of pointwise multiplication operators, we provide an efficient conjugate gradient algorithm for optimizing our generalized problem as well as a strategy for low‐rank estimation of kernel matrices through the Nyström approximation.
Author Bronstein, M. M.
Gehre, A.
Solomon, J.
Wang, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Wang
  fullname: Wang, L.
  organization: MIT
– sequence: 2
  givenname: A.
  surname: Gehre
  fullname: Gehre, A.
  organization: RWTH Aachen University
– sequence: 3
  givenname: M. M.
  surname: Bronstein
  fullname: Bronstein, M. M.
  organization: IAS TU Munich
– sequence: 4
  givenname: J.
  surname: Solomon
  fullname: Solomon, J.
  organization: MIT
BookMark eNp1j71PwzAQxS1UJNLCwMJciYkhre34KyOqSEEUscBsXR0bpQpJsBOh_vd1SScEd8Pd8HtP703RpGkbi9A1wQsSZ2k-3IJkTKkzlBAmZKoEzycowST-EnN-gaYh7DDGTAqeoJtn6xtbz4uhMX3VNlDPX6ALl-jcQR3s1enO0Hvx8LZ6TDev66fV_SY1NJcqBS6wBQVGAnGcG2vBUMeUy6gsuWU0yzEtc2rzUgq6BSwI3VIqnSGgytJlM3Q7-na-_Rps6PWuHXxMETTFisUVVEVqOVLGtyF467SpejjG7T1UtSZYH8vrWF7_lI-Ku1-Kzlef4Pd_sif376q2-_9BvVoXo-IAQq9o5w
CitedBy_id crossref_primary_10_1111_cgf_13788
crossref_primary_10_1016_j_cag_2020_09_004
crossref_primary_10_1007_s10044_024_01390_w
crossref_primary_10_1007_s00371_019_01760_0
crossref_primary_10_1109_TCSI_2022_3227727
crossref_primary_10_1145_3414685_3417800
crossref_primary_10_1111_cgf_13598
crossref_primary_10_1111_cgf_14359
crossref_primary_10_1145_3355089_3356524
Cites_doi 10.1007/978-3-319-46454-1_41
10.1145/3084873.3084877
10.1007/BF02547521
10.1109/3DV.2017.00061
10.1007/s11263-016-0883-8
10.1111/cgf.13253
10.1111/j.1467-8659.2011.01884.x
10.1111/j.1467-8659.2009.01515.x
10.1145/2185520.2185526
10.1111/cgf.12064
10.1080/10586458.1993.10504266
10.1111/cgf.12970
10.1109/3DV.2016.49
10.1007/BFb0020217
10.1111/cgf.12066
10.1109/ICCVW.2011.6130444
10.3233/IDA-160854
10.1017/CBO9780511801389
10.1111/cgf.13124
10.1145/2601097.2601111
10.1111/cgf.12797
10.1142/S012906570000034X
ContentType Journal Article
Copyright 2018 The Author(s) Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2018 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 The Author(s) Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2018 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13488
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 36
ExternalDocumentID 10_1111_cgf_13488
CGF13488
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2978-a560ea8ac7a1f55ceeac2f48f327d5e423902d92e9d762ba0612b227fc1a8ddf3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 25 08:40:59 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Tue Jul 01 02:23:10 EDT 2025
Wed Jan 22 16:19:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-a560ea8ac7a1f55ceeac2f48f327d5e423902d92e9d762ba0612b227fc1a8ddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2084848628
PQPubID 30877
PageCount 10
ParticipantIDs proquest_journals_2084848628
crossref_citationtrail_10_1111_cgf_13488
crossref_primary_10_1111_cgf_13488
wiley_primary_10_1111_cgf_13488_CGF13488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 2
2001
2011
2000
2017; 36
2013; 32
1930; 54
2016; 118
2000; 10
1998
2016; 20
1997
2011; 30
2018
2017
1964; 25
2016
2014
1993; 2
2014; 33
2016; 35
2012; 31
2009; 28
e_1_2_11_13_2
e_1_2_11_12_2
e_1_2_11_11_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
Aizerman M. A. (e_1_2_11_3_2) 1964; 25
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_14_2
Nogneng D. (e_1_2_11_18_2) 2018
Litany O. (e_1_2_11_16_2) 2017; 2
e_1_2_11_19_2
References_xml – volume: 31
  start-page: 30
  issue: 4
  year: 2012
  article-title: Functional maps: a flexible representation of maps between shapes
  publication-title: TOG
– volume: 20
  start-page: 997
  issue: 5
  year: 2016
  end-page: 1019
  article-title: Matrix compression using the Nyström method
  publication-title: Intelligent Data Analysis
– volume: 54
  start-page: 185
  issue: 1
  year: 1930
  end-page: 204
  article-title: Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben
  publication-title: Acta Mathematica
– volume: 30
  start-page: 1681
  issue: 6
  year: 2011
  end-page: 1707
  article-title: A survey on shape correspondence
  publication-title: Computer Graphics Forum
– year: 2000
– volume: 10
  start-page: 365
  issue: 05
  year: 2000
  end-page: 377
  article-title: Kernel and nonlinear canonical correlation analysis
  publication-title: Int. J. Neural Systems
– volume: 2
  year: 2017
  article-title: Deep functional maps: Structured prediction for dense shape correspondence
  publication-title: Proc. ICCV
– start-page: 1626
  year: 2011
  end-page: 1633
– volume: 36
  start-page: 151
  issue: 5
  year: 2017
  end-page: 163
  article-title: Adjoint map representation for shape analysis and matching
  publication-title: Computer Graphics Forum
– year: 2016
– volume: 118
  start-page: 380
  issue: 3
  year: 2016
  end-page: 392
  article-title: Spectral generalized multi‐dimensional scaling
  publication-title: IJCV
– volume: 35
  start-page: 135
  issue: 5
  year: 2016
  end-page: 143
  article-title: Non‐rigid puzzles
  publication-title: Computer Graphics Forum
– year: 2014
– year: 1998
– volume: 33
  start-page: 36
  issue: 4
  year: 2014
  article-title: Functional map networks for analyzing and exploring large shape collections
  publication-title: TOG
– volume: 2
  start-page: 15
  issue: 1
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces and their conjugates
  publication-title: Experimental mathematics
– volume: 32
  start-page: 439
  issue: 2
  year: 2013
  end-page: 448
  article-title: Coupled quasi‐harmonic bases
  publication-title: Computer Graphics Forum
– volume: 36
  start-page: 259
  issue: 2
  year: 2017
  end-page: 267
  article-title: Informative descriptor preservation via commutativity for shape matching
  publication-title: Computer Graphics Forum
– start-page: 682
  year: 2001
  end-page: 688
– year: 2018
  publication-title: Computer Graphics Forum
– volume: 25
  start-page: 821
  year: 1964
  end-page: 837
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automation and remote control
– volume: 28
  start-page: 1383
  issue: 5
  year: 2009
  end-page: 1392
  article-title: A concise and provably informative multi‐scale signature based on heat diffusion
  publication-title: Computer Graphics Forum
– start-page: 583
  year: 1997
  end-page: 588
– year: 2017
– volume: 32
  start-page: 459
  issue: 2
  year: 2013
  end-page: 468
  article-title: Sparse modeling of intrinsic correspondences
  publication-title: Computer Graphics Forum
– volume: 36
  start-page: 222
  issue: 1
  year: 2017
  end-page: 236
  article-title: Partial functional correspondence
  publication-title: Computer Graphics Forum
– volume: 25
  start-page: 821
  year: 1964
  ident: e_1_2_11_3_2
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automation and remote control
– ident: e_1_2_11_13_2
  doi: 10.1007/978-3-319-46454-1_41
– ident: e_1_2_11_29_2
– ident: e_1_2_11_6_2
  doi: 10.1145/3084873.3084877
– ident: e_1_2_11_20_2
  doi: 10.1007/BF02547521
– ident: e_1_2_11_9_2
  doi: 10.1109/3DV.2017.00061
– ident: e_1_2_11_25_2
– ident: e_1_2_11_2_2
  doi: 10.1007/s11263-016-0883-8
– ident: e_1_2_11_10_2
  doi: 10.1111/cgf.13253
– ident: e_1_2_11_28_2
  doi: 10.1111/j.1467-8659.2011.01884.x
– ident: e_1_2_11_26_2
  doi: 10.1111/j.1467-8659.2009.01515.x
– volume: 2
  year: 2017
  ident: e_1_2_11_16_2
  article-title: Deep functional maps: Structured prediction for dense shape correspondence
  publication-title: Proc. ICCV
– year: 2018
  ident: e_1_2_11_18_2
  publication-title: Computer Graphics Forum
– ident: e_1_2_11_21_2
  doi: 10.1145/2185520.2185526
– ident: e_1_2_11_12_2
  doi: 10.1111/cgf.12064
– ident: e_1_2_11_23_2
  doi: 10.1080/10586458.1993.10504266
– ident: e_1_2_11_15_2
  doi: 10.1111/cgf.12970
– ident: e_1_2_11_8_2
  doi: 10.1109/3DV.2016.49
– ident: e_1_2_11_27_2
  doi: 10.1007/BFb0020217
– ident: e_1_2_11_22_2
  doi: 10.1111/cgf.12066
– ident: e_1_2_11_4_2
  doi: 10.1109/ICCVW.2011.6130444
– ident: e_1_2_11_17_2
  doi: 10.3233/IDA-160854
– ident: e_1_2_11_7_2
  doi: 10.1017/CBO9780511801389
– ident: e_1_2_11_19_2
  doi: 10.1111/cgf.13124
– ident: e_1_2_11_11_2
  doi: 10.1145/2601097.2601111
– ident: e_1_2_11_24_2
  doi: 10.1111/cgf.12797
– ident: e_1_2_11_5_2
– ident: e_1_2_11_14_2
  doi: 10.1142/S012906570000034X
SSID ssj0004765
Score 2.3387423
Snippet Functional maps provide a means of extracting correspondences between surfaces using linear‐algebraic machinery. While the functional framework suggests...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms 1.3.5 [Computer Graphics]: Computer graphics—Computational Geometry and Object Modeling
Algorithms
Categories and Subject Descriptors (according to ACM CCS)
Kernel functions
Mathematical analysis
Operators (mathematics)
Optimization
Regularization
Vectors (mathematics)
Title Kernel Functional Maps
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13488
https://www.proquest.com/docview/2084848628
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KT3rwXaxWCeKhl5Rks-kmeJJiLEo9iIUehLBPD0otfVz89c5ukjaKgnhLyGTJbObxzTL7LcAlDYygEqOfxPTi0zRQPmbF2EcsohSTkghmdyOPHvrDMb2bxJMGXFV7YQp-iPWCm_UMF6-tg3OxqDm5fDG9MEL7w_hre7UsIHrcUEdR1o8rXm_LGFOyCtkunvWbX3PRBmDWYarLM9kuPFdfWLSXvPZWS9GTH9_IG_-pwh7slPjTuy4MZh8aenoA2zVWwkNo3es5juxlmPKKlUJvxGeLIxhnN0-DoV8en-BLYmtDjmBG84RLxkMTx5gNuSSGJiYiTMXaMv8FRKVEpwojouAW7AhCmJEhT5QyUQua0_epPgbPIA5TUcJNpEJqiOEMbzFUao31XEh0G7rVROay5Ba3R1y85VWNgarmTtU2XKxFZwWhxk9Cnepv5KVPLXJiqf8pVmD4uOum9fcB8sFt5i5O_i56CluIhpKiu68DzeV8pc8QcSzFuTOtT06kzww
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH38Vq1SAeeklpNptuCl6kGKt9HKSFXiRs9uFBqaWPi7_e2U3SVlEQbwnZLNnNPL4ZZr8BuKZ1nVCB1k-ge3Fpsy5d9IqBi1hESiYESZg5jdzrN9pD-jgKRgW4yc_CpPwQy4Sb0Qxrr42Cm4T0mpaLF13zfBTADdg0Hb1tQPW0Io-irBHkzN6GMybjFTJ1PMtXv3qjFcRcB6rW00R78Jx_Y1pg8lpbzJOa-PhG3_jfRezDbgZBndtUZg6goMaHsLNGTHgEpY6a4tROhF4vTRY6PT6ZHcMwuhu02m7WQcEVxISHHPGM4iEXjHs6CNAhckE0DbVPmAyUIf-rE9kkqinRKCbc4J2EEKaFx0MptV-C4vh9rE7A0QjFpB9y7UuPaqI5w1u0lkphSOcRVYZqvpOxyOjFTZeLtzgPM3CpsV1qGa6WQycpp8ZPgyr574gztZrFxLD_UwzC8HHV7uvvE8St-8henP596CVstQe9btx96HfOYBvBUZgW-1WgOJ8u1DkCkHlyYeXsE1NO0yc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBdGD72K1ahAPvaQkm02T4klaY7W2iFjoQVg2--hBqaWPi7_e2TzaKgriLSGTJbOZxzfL7LcAl9TRMRUY_QSmF5s2HGljVvRtxCJSBkKQODC7kbu9ertP7wf-oABX-V6YlB9iseBmPCOJ18bBx1KvOLkY6prrof2twTqtO6Ex6dbTkjuKBnU_J_Y2lDEZrZBp41m8-jUZLRHmKk5NEk20Ay_5J6b9Ja-1-SyuiY9v7I3_1GEXtjMAal2nFrMHBTXah60VWsIDKHXUBEe2Isx56VKh1eXj6SH0o5vnZtvOzk-wBTHFIUc0o3jIRcBd7fuYDrkgmobaI4H0laH-c4hsENWQGBJjbtBOTEighctDKbVXguLofaSOwNIIxKQXcu1Jl2qieYC3GCuVwoLOJaoM1XwimcjIxc0ZF28sLzJQVZaoWoaLheg4ZdT4SaiS_w2WOdWUEcP9T7EEw8fVZFp_H4A1b6Pk4vjvouew8diK2MNdr3MCm4iMwrTTrwLF2WSuThF9zOKzxMo-ARQj0d8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Functional+Maps&rft.jtitle=Computer+graphics+forum&rft.au=Wang%2C+L.&rft.au=Gehre%2C+A.&rft.au=Bronstein%2C+M.+M.&rft.au=Solomon%2C+J.&rft.date=2018-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=37&rft.issue=5&rft.spage=27&rft.epage=36&rft_id=info:doi/10.1111%2Fcgf.13488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon