Novel drag and Nusselt number models based on direct numerical simulations of a bidisperse gas–solid system

Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing pol...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 70; no. 5
Main Authors Wang, Dong, Wang, Shuai, Jin, Tai, Luo, Kun, Fan, Jianren
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2024
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing polydisperse drag correction model developed from static systems combined with various monodisperse drag models underestimates the drag force on dynamic arrays of particles. The existing Nusselt number correction model developed from static systems combined with various monodisperse models overestimates the Nusselt number of dynamic arrays of particles. Sensitivity analysis indicates that the effects of the granular temperature on the drag force and Nusselt number are negligible. Novel polydisperse drag and Nusselt number models are derived based on the database. The advantages of the derived polydisperse drag and Nusselt number models are demonstrated and confirmed by comparing the results of the computational fluid dynamics–discrete element method using various drag and Nusselt number models with experimental or additional PR‐DNS data.
AbstractList Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing polydisperse drag correction model developed from static systems combined with various monodisperse drag models underestimates the drag force on dynamic arrays of particles. The existing Nusselt number correction model developed from static systems combined with various monodisperse models overestimates the Nusselt number of dynamic arrays of particles. Sensitivity analysis indicates that the effects of the granular temperature on the drag force and Nusselt number are negligible. Novel polydisperse drag and Nusselt number models are derived based on the database. The advantages of the derived polydisperse drag and Nusselt number models are demonstrated and confirmed by comparing the results of the computational fluid dynamics–discrete element method using various drag and Nusselt number models with experimental or additional PR‐DNS data.
Abstract Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing polydisperse drag correction model developed from static systems combined with various monodisperse drag models underestimates the drag force on dynamic arrays of particles. The existing Nusselt number correction model developed from static systems combined with various monodisperse models overestimates the Nusselt number of dynamic arrays of particles. Sensitivity analysis indicates that the effects of the granular temperature on the drag force and Nusselt number are negligible. Novel polydisperse drag and Nusselt number models are derived based on the database. The advantages of the derived polydisperse drag and Nusselt number models are demonstrated and confirmed by comparing the results of the computational fluid dynamics–discrete element method using various drag and Nusselt number models with experimental or additional PR‐DNS data.
Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS). Gas–solid coupling is enforced by the direct‐forcing immersed boundary method. Compard with the DNS database, it is found that the existing polydisperse drag correction model developed from static systems combined with various monodisperse drag models underestimates the drag force on dynamic arrays of particles. The existing Nusselt number correction model developed from static systems combined with various monodisperse models overestimates the Nusselt number of dynamic arrays of particles. Sensitivity analysis indicates that the effects of the granular temperature on the drag force and Nusselt number are negligible. Novel polydisperse drag and Nusselt number models are derived based on the database. The advantages of the derived polydisperse drag and Nusselt number models are demonstrated and confirmed by comparing the results of the computational fluid dynamics–discrete element method using various drag and Nusselt number models with experimental or additional PR‐DNS data.
Author Luo, Kun
Wang, Dong
Wang, Shuai
Fan, Jianren
Jin, Tai
Author_xml – sequence: 1
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Zhejiang University
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0002-6026-2139
  surname: Wang
  fullname: Wang, Shuai
  organization: Zhejiang University
– sequence: 3
  givenname: Tai
  surname: Jin
  fullname: Jin, Tai
  organization: Zhejiang University
– sequence: 4
  givenname: Kun
  orcidid: 0000-0003-3644-9400
  surname: Luo
  fullname: Luo, Kun
  email: zjulk@zju.edu.cn
  organization: Zhejiang University
– sequence: 5
  givenname: Jianren
  surname: Fan
  fullname: Fan, Jianren
  organization: Zhejiang University
BookMark eNp1kEtOwzAQhi1UJNrCghtYYsUirR07cbKsKh6VqrKBdeTHpHKVxMXTgLrjDtyQkxAoW1ajmf-bGembkFEXOiDkmrMZZyyda29nvBCsOCNjnkmVZCXLRmTMGOPJMOAXZIK4G7pUFemYtJvwBg11UW-p7hzd9IjQHGjXtwYibYODBqnRCI6Gjjofwf6mEL3VDUXf9o0--NAhDTXV1HjncQ8RgW41fn18Ymi8o3jEA7SX5LzWDcLVX52Sl_u75-Vjsn56WC0X68SmpSoSIVSmBAfpmGHWQCZcyZ0tmNUCrJQqk4XUhVQyNQwyUytZG57nttZKmjoXU3JzuruP4bUHPFS70MdueFkJJopclBljA3V7omwMiBHqah99q-Ox4qz6sVkNNqtfmwM7P7HvvoHj_2C1WC1PG98rUnnY
CitedBy_id crossref_primary_10_1063_5_0207053
Cites_doi 10.1002/aic.14645
10.1016/0009-2509(81)80162-5
10.1680/geot.1979.29.1.47
10.1002/aic.16786
10.1016/j.ces.2009.02.045
10.1002/aic.11800
10.1002/aic.15186
10.1016/j.jcp.2012.02.026
10.1016/0017-9310(78)90080-7
10.1063/1.1616031
10.1017/S0022112004003295
10.1016/S0263-8762(97)80003-2
10.1017/S0022112001005936
10.1016/j.ces.2021.116645
10.1016/j.ces.2018.12.031
10.1016/j.ces.2020.115550
10.1063/1.4944629
10.1016/j.ijmultiphaseflow.2013.06.009
10.1063/1.4927552
10.1017/jfm.2014.732
10.1016/j.jcp.2018.09.037
10.1002/aic.12127
10.1016/j.ijmultiphaseflow.2022.104139
10.1017/S0022112004000989
10.1016/j.powtec.2017.08.035
10.1016/j.powtec.2011.09.020
10.1162/neco.1989.1.4.541
10.1016/j.powtec.2007.08.015
10.1016/j.ijmultiphaseflow.2011.05.010
10.1017/S0022112080001723
10.1002/aic.690490423
10.1016/j.powtec.2011.09.019
10.1016/j.ces.2020.116245
10.1016/j.ijheatmasstransfer.2012.11.006
10.1002/9781119005315
10.1016/j.powtec.2003.09.003
10.1016/j.ces.2019.05.047
10.1016/j.cpc.2009.09.018
10.1016/j.ijmultiphaseflow.2007.10.004
10.1017/S0022112002003531
10.1016/0021-9991(77)90100-0
10.1021/acs.iecr.7b04638
10.1016/0009-2509(74)80201-0
10.1016/S0065-2377(06)31002-2
10.1016/j.ces.2012.06.055
10.1016/j.jcp.2005.03.017
10.1002/aic.15197
10.1002/aic.11065
10.1016/j.ijheatmasstransfer.2015.03.046
10.1016/j.powtec.2016.09.088
10.1016/0009-2509(74)80160-0
ContentType Journal Article
Copyright 2024 American Institute of Chemical Engineers.
2024 American Institute of Chemical Engineers
Copyright_xml – notice: 2024 American Institute of Chemical Engineers.
– notice: 2024 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.18308
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 10_1002_aic_18308
AIC18308
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51925603
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c2978-3375731e4d0b0cbe53d91dc80ca3ec4475484a84742b0e5bf74fb166cfa74bf63
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Thu Oct 10 23:01:57 EDT 2024
Fri Aug 23 01:47:35 EDT 2024
Sat Aug 24 00:51:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-3375731e4d0b0cbe53d91dc80ca3ec4475484a84742b0e5bf74fb166cfa74bf63
ORCID 0000-0003-3644-9400
0000-0002-6026-2139
PQID 3038639500
PQPubID 7879
PageCount 23
ParticipantIDs proquest_journals_3038639500
crossref_primary_10_1002_aic_18308
wiley_primary_10_1002_aic_18308_AIC18308
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2024
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2010; 56
2006; 31
1977; 25
2008; 34
2003; 15
2010; 181
2019; 206
2008; 184
2017; 314
2009; 55
1979; 29
2013; 58
1982; 1
1978; 21
2013; 57
2015; 86
2021; 239
1981; 36
2003; 480
2020; 217
2003; 49
2021; 231
2017; 321
1980; 101
2019; 197
2012; 81
2022; 153
1968; 46
2012; 220
1989; 1
2009; 64
2003; 138
2015; 765
1997
2005
1994
2011; 37
2003
2007; 53
2001; 448
2012; 231
2015; 27
1952; 48
1997; 75
2015; 61
2005; 528
2016; 62
2005; 209
2016
2020; 66
2016; 28
1962; 62
2019; 376
1974; 29
2004; 518
2018; 57
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
Wen CY (e_1_2_9_7_1) 1962; 62
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Gidaspow D (e_1_2_9_44_1) 1994
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Wakao N (e_1_2_9_24_1) 1982
e_1_2_9_28_1
e_1_2_9_47_1
Mohd‐Yusof J (e_1_2_9_36_1) 1997
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Ranz W (e_1_2_9_60_1) 1952; 48
Ergun S (e_1_2_9_6_1) 1952; 48
e_1_2_9_29_1
Handly D (e_1_2_9_21_1) 1968; 46
References_xml – volume: 81
  start-page: 329
  year: 2012
  end-page: 344
  article-title: Direct numerical simulation of flow and heat transfer in dense fluid–particle systems
  publication-title: Chem Eng Sci
– volume: 27
  issue: 7
  year: 2015
  article-title: Direct numerical simulation of moderate‐Reynolds‐number flow past arrays of rotating spheres
  publication-title: Phys Fluids
– volume: 62
  start-page: 1917
  issue: 6
  year: 2016
  end-page: 1932
  article-title: Particle‐resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds
  publication-title: AIChE J
– year: 2005
– volume: 62
  start-page: 1958
  issue: 6
  year: 2016
  end-page: 1969
  article-title: Direct numerical simulations of dynamic gas‐solid suspensions
  publication-title: AIChE J
– volume: 86
  start-page: 898
  year: 2015
  end-page: 913
  article-title: Modeling average gas–solid heat transfer using particle‐resolved direct numerical simulation
  publication-title: Int J Heat Mass Transf
– volume: 57
  start-page: 29
  year: 2013
  end-page: 37
  article-title: Direct numerical simulation of particulate flow with heat transfer
  publication-title: Int J Multiphase Flow
– volume: 29
  start-page: 827
  issue: 3
  year: 1974
  end-page: 832
  article-title: Computation of forced convection in slow flow through ducts and packed beds—III. Heat and mass transfer in a simple cubic array of spheres
  publication-title: Chem Eng Sci
– volume: 58
  start-page: 471
  issue: 1–2
  year: 2013
  end-page: 479
  article-title: Role of fluid heating in dense gas–solid flow as revealed by particle‐resolved direct numerical simulation
  publication-title: Int J Heat Mass Transf
– volume: 28
  issue: 3
  year: 2016
  article-title: Constant‐energetics physical‐space forcing methods for improved convergence to homogeneous‐isotropic turbulence with application to particle‐laden flows
  publication-title: Phys Fluids
– volume: 239
  year: 2021
  article-title: Direct numerical simulation of flow and heat transfer in bidisperse gas‐solid systems
  publication-title: Chem Eng Sci
– volume: 480
  start-page: 95
  year: 2003
  end-page: 118
  article-title: Rheology of suspensions with high particle inertia and moderate fluid inertia
  publication-title: J Fluid Mech
– volume: 61
  start-page: 688
  issue: 2
  year: 2015
  end-page: 698
  article-title: A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres
  publication-title: AIChE J
– volume: 29
  start-page: 1363
  issue: 6
  year: 1974
  end-page: 1371
  article-title: Heat transfer and axial dispersion in packed beds
  publication-title: Chem Eng Sci
– volume: 197
  start-page: 280
  year: 2019
  end-page: 295
  article-title: CFD‐DEM simulation of heat transfer in fluidized beds: model verification, validation, and application
  publication-title: Chem Eng Sci
– volume: 21
  start-page: 467
  issue: 4
  year: 1978
  end-page: 476
  article-title: Transfer of heat or mass to particles in fixed and fluidised beds
  publication-title: Int J Heat Mass Transf
– year: 1994
– volume: 75
  start-page: S32
  year: 1997
  end-page: S48
  article-title: Fluid flow through granular beds
  publication-title: Chem Eng Res Des
– volume: 46
  start-page: 251
  year: 1968
  end-page: 259
  article-title: Momentum and heat transfer mechanisms in regular shaped packings
  publication-title: Trans Inst Chem Eng
– volume: 1
  year: 1982
– volume: 528
  start-page: 233
  year: 2005
  end-page: 254
  article-title: Lattice‐Boltzmann simulations of low‐Reynolds‐number flow past mono‐and bidisperse arrays of spheres: results for the permeability and drag force
  publication-title: J Fluid Mech
– volume: 66
  issue: 1
  year: 2020
  article-title: Direct numerical simulation of mass transfer in bidisperse arrays of spheres
  publication-title: AIChE J
– volume: 56
  start-page: 1995
  issue: 8
  year: 2010
  end-page: 2004
  article-title: Fluid‐particle drag in inertial polydisperse gas–solid suspensions
  publication-title: AIChE J
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  article-title: Fluid flow through packed columns
  publication-title: Chem Eng Prog
– volume: 153
  year: 2022
  article-title: An improved direct‐forcing immersed boundary method for simulations of flow and heat transfer in particle‐laden flows
  publication-title: Int J Multiphase Flow
– volume: 217
  year: 2020
  article-title: CFD‐DEM coupled with thermochemical sub‐models for biomass gasification: validation and sensitivity analysis
  publication-title: Chem Eng Sci
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– volume: 220
  start-page: 138
  year: 2012
  end-page: 150
  article-title: Open‐source MFIX‐DEM software for gas‐solids flows: part II—validation studies
  publication-title: Powder Technol
– year: 1997
– volume: 184
  start-page: 275
  issue: 3
  year: 2008
  end-page: 290
  article-title: The influence of binary drag laws on simulations of species segregation in gas‐fluidized beds
  publication-title: Powder Technol
– volume: 31
  start-page: 65
  year: 2006
  end-page: 149
  article-title: Multiscale modeling of gas‐fluidized beds
  publication-title: Adv Chem Eng
– volume: 62
  start-page: 100
  year: 1962
  end-page: 111
  article-title: Mechanics of fluidization
  publication-title: Chem Eng Prog Symp Ser
– volume: 206
  start-page: 375
  year: 2019
  end-page: 386
  article-title: Effects of particle velocity fluctuations on inter‐phase heat transfer in gas‐solid flows
  publication-title: Chem Eng Sci
– volume: 220
  start-page: 122
  year: 2012
  end-page: 137
  article-title: Open‐source MFIX‐DEM software for gas–solids flows: part I—verification studies
  publication-title: Powder Technol
– volume: 53
  start-page: 489
  issue: 2
  year: 2007
  end-page: 501
  article-title: Drag force of intermediate Reynolds number flow past mono‐and bidisperse arrays of spheres
  publication-title: AIChE J
– volume: 101
  start-page: 403
  issue: 2
  year: 1980
  end-page: 421
  article-title: Heat transfer to a slowly moving fluid from a dilute fixed bed of heated spheres
  publication-title: J Fluid Mech
– volume: 231
  year: 2021
  article-title: Analysis and development of novel data‐driven drag models based on direct numerical simulations of fluidized beds
  publication-title: Chem Eng Sci
– volume: 765
  start-page: 396
  year: 2015
  end-page: 423
  article-title: Direct numerical simulation of low‐Reynolds‐number flow past arrays of rotating spheres
  publication-title: J Fluid Mech
– volume: 25
  start-page: 220
  issue: 3
  year: 1977
  end-page: 252
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J Comput Phys
– year: 2003
– volume: 138
  start-page: 135
  issue: 2–3
  year: 2003
  end-page: 159
  article-title: Digital image analysis measurements of bed expansion and segregation dynamics in dense gas‐fluidised beds
  publication-title: Powder Technol
– volume: 29
  start-page: 47
  issue: 1
  year: 1979
  end-page: 65
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
– volume: 448
  start-page: 243
  year: 2001
  end-page: 278
  article-title: Moderate‐Reynolds‐number flows in ordered and random arrays of spheres
  publication-title: J Fluid Mech
– year: 2016
– volume: 57
  start-page: 3002
  issue: 8
  year: 2018
  end-page: 3013
  article-title: Investigation of void fraction schemes for use with CFD‐DEM simulations of fluidized beds
  publication-title: Ind Eng Chem Res
– volume: 314
  start-page: 291
  year: 2017
  end-page: 298
  article-title: Direct numerical simulation of non‐isothermal flow through dense bidisperse random arrays of spheres
  publication-title: Powder Technol
– volume: 34
  start-page: 283
  issue: 3
  year: 2008
  end-page: 302
  article-title: Combined multi‐direct forcing and immersed boundary method for simulating flows with moving particles
  publication-title: Int J Multiphase Flow
– volume: 48
  start-page: 141
  year: 1952
  end-page: 146
  article-title: Evaporation from drops, parts I & II
  publication-title: Chem Eng Prog
– volume: 55
  start-page: 1352
  issue: 6
  year: 2009
  end-page: 1368
  article-title: Fluid‐particle drag in low‐Reynolds‐number polydisperse gas–solid suspensions
  publication-title: AIChE J
– volume: 321
  start-page: 435
  year: 2017
  end-page: 443
  article-title: Effects of granular temperature on inter‐phase drag in gas‐solid flows
  publication-title: Powder Technol
– volume: 518
  start-page: 95
  year: 2004
  end-page: 123
  article-title: Response of the wake of an isolated particle to an isotropic turbulent flow
  publication-title: J Fluid Mech
– volume: 376
  start-page: 210
  year: 2019
  end-page: 227
  article-title: An improved direct‐forcing immersed boundary method with inward retraction of Lagrangian points for simulation of particle‐laden flows
  publication-title: J Comput Phys
– volume: 49
  start-page: 1060
  issue: 4
  year: 2003
  end-page: 1065
  article-title: Interphase drag coefficients in gas–solid flows
  publication-title: AIChE J
– volume: 181
  start-page: 259
  issue: 2
  year: 2010
  end-page: 270
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput Phys Commun
– volume: 37
  start-page: 1072
  issue: 9
  year: 2011
  end-page: 1092
  article-title: Drag law for monodisperse gas–solid systems using particle‐resolved direct numerical simulation of flow past fixed assemblies of spheres
  publication-title: Int J Multiphase Flow
– volume: 15
  start-page: 3496
  issue: 11
  year: 2003
  end-page: 3513
  article-title: Effect of turbulence on the drag and lift of a particle
  publication-title: Phys Fluids
– volume: 64
  start-page: 2683
  issue: 11
  year: 2009
  end-page: 2691
  article-title: Fluid–particle interaction from lattice Boltzmann simulations for flow through polydisperse random arrays of spheres
  publication-title: Chem Eng Sci
– volume: 36
  start-page: 1283
  issue: 8
  year: 1981
  end-page: 1286
  article-title: Measurements of particle‐to‐gas heat transfer coefficients from one‐shot thermal responses in packed beds
  publication-title: Chem Eng Sci
– volume: 209
  start-page: 448
  issue: 2
  year: 2005
  end-page: 476
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J Comput Phys
– volume: 231
  start-page: 4469
  issue: 13
  year: 2012
  end-page: 4498
  article-title: A second‐order accurate immersed boundary method for fully resolved simulations of particle‐laden flows
  publication-title: J Comput Phys
– ident: e_1_2_9_3_1
  doi: 10.1002/aic.14645
– ident: e_1_2_9_23_1
  doi: 10.1016/0009-2509(81)80162-5
– ident: e_1_2_9_34_1
  doi: 10.1680/geot.1979.29.1.47
– ident: e_1_2_9_59_1
  doi: 10.1002/aic.16786
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ces.2009.02.045
– ident: e_1_2_9_10_1
  doi: 10.1002/aic.11800
– ident: e_1_2_9_39_1
  doi: 10.1002/aic.15186
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jcp.2012.02.026
– volume: 48
  start-page: 141
  year: 1952
  ident: e_1_2_9_60_1
  article-title: Evaporation from drops, parts I & II
  publication-title: Chem Eng Prog
  contributor:
    fullname: Ranz W
– ident: e_1_2_9_16_1
  doi: 10.1016/0017-9310(78)90080-7
– ident: e_1_2_9_52_1
  doi: 10.1063/1.1616031
– ident: e_1_2_9_8_1
  doi: 10.1017/S0022112004003295
– ident: e_1_2_9_5_1
  doi: 10.1016/S0263-8762(97)80003-2
– ident: e_1_2_9_42_1
  doi: 10.1017/S0022112001005936
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ces.2021.116645
– ident: e_1_2_9_56_1
  doi: 10.1016/j.ces.2018.12.031
– volume: 46
  start-page: 251
  year: 1968
  ident: e_1_2_9_21_1
  article-title: Momentum and heat transfer mechanisms in regular shaped packings
  publication-title: Trans Inst Chem Eng
  contributor:
    fullname: Handly D
– ident: e_1_2_9_57_1
  doi: 10.1016/j.ces.2020.115550
– ident: e_1_2_9_41_1
  doi: 10.1063/1.4944629
– ident: e_1_2_9_49_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ijmultiphaseflow.2013.06.009
– ident: e_1_2_9_47_1
  doi: 10.1063/1.4927552
– ident: e_1_2_9_46_1
  doi: 10.1017/jfm.2014.732
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jcp.2018.09.037
– ident: e_1_2_9_11_1
  doi: 10.1002/aic.12127
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ijmultiphaseflow.2022.104139
– ident: e_1_2_9_53_1
  doi: 10.1017/S0022112004000989
– ident: e_1_2_9_31_1
  doi: 10.1016/j.powtec.2017.08.035
– ident: e_1_2_9_55_1
  doi: 10.1016/j.powtec.2011.09.020
– ident: e_1_2_9_48_1
  doi: 10.1162/neco.1989.1.4.541
– ident: e_1_2_9_4_1
  doi: 10.1016/j.powtec.2007.08.015
– volume-title: Combined Immersed Boundary/B‐Spline Method for Simulations of Flows in Complex Geometries in Complex Geometries CTR Annual Research Briefs
  year: 1997
  ident: e_1_2_9_36_1
  contributor:
    fullname: Mohd‐Yusof J
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijmultiphaseflow.2011.05.010
– ident: e_1_2_9_20_1
  doi: 10.1017/S0022112080001723
– ident: e_1_2_9_43_1
  doi: 10.1002/aic.690490423
– ident: e_1_2_9_54_1
  doi: 10.1016/j.powtec.2011.09.019
– ident: e_1_2_9_32_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ces.2020.116245
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ijheatmasstransfer.2012.11.006
– ident: e_1_2_9_62_1
  doi: 10.1002/9781119005315
– ident: e_1_2_9_58_1
  doi: 10.1016/j.powtec.2003.09.003
– volume: 62
  start-page: 100
  year: 1962
  ident: e_1_2_9_7_1
  article-title: Mechanics of fluidization
  publication-title: Chem Eng Prog Symp Ser
  contributor:
    fullname: Wen CY
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ces.2019.05.047
– ident: e_1_2_9_50_1
  doi: 10.1016/j.cpc.2009.09.018
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ijmultiphaseflow.2007.10.004
– ident: e_1_2_9_45_1
  doi: 10.1017/S0022112002003531
– ident: e_1_2_9_12_1
  doi: 10.1016/0021-9991(77)90100-0
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.iecr.7b04638
– volume-title: Heat and Mass Transfer in Packed Beds
  year: 1982
  ident: e_1_2_9_24_1
  contributor:
    fullname: Wakao N
– ident: e_1_2_9_19_1
  doi: 10.1016/0009-2509(74)80201-0
– volume-title: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
  year: 1994
  ident: e_1_2_9_44_1
  contributor:
    fullname: Gidaspow D
– ident: e_1_2_9_18_1
– ident: e_1_2_9_35_1
  doi: 10.1016/S0065-2377(06)31002-2
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ces.2012.06.055
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jcp.2005.03.017
– ident: e_1_2_9_14_1
  doi: 10.1002/aic.15197
– ident: e_1_2_9_2_1
  doi: 10.1002/aic.11065
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ijheatmasstransfer.2015.03.046
– ident: e_1_2_9_29_1
  doi: 10.1016/j.powtec.2016.09.088
– volume: 48
  start-page: 89
  year: 1952
  ident: e_1_2_9_6_1
  article-title: Fluid flow through packed columns
  publication-title: Chem Eng Prog
  contributor:
    fullname: Ergun S
– ident: e_1_2_9_22_1
  doi: 10.1016/0009-2509(74)80160-0
SSID ssj0012782
Score 2.4868164
Snippet Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation (PR‐DNS)....
Abstract Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres  are simulated by particle‐resolved direct numerical simulation...
Flow and heat transfer in a bidisperse gas–solid system with freely moving spheres are simulated by particle‐resolved direct numerical simulation (PR‐DNS)....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Arrays
Computational fluid dynamics
Direct numerical simulation
Discrete element method
Drag
drag force model
Fluid dynamics
Fluid flow
Gas-solid systems
Heat transfer
Hydrodynamics
immersed boundary method
Mathematical models
Nusselt number
Nusselt number model
particle‐resolved direct numerical simulation
polydisperse gas‐solid flow
Sensitivity analysis
Title Novel drag and Nusselt number models based on direct numerical simulations of a bidisperse gas–solid system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.18308
https://www.proquest.com/docview/3038639500
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeX0pMefIvVKot48JKabHY3KZ5KsVTBHsRCD0LYV0qwpuK2Hjz5HfyGfhL30dQHCOItkAebndnMP8nMbwA4aSOO8lDRgCqJAiwkDdKcyECRmDGcR5IIW418PaD9Ib4akVENnFe1MJ4PsfzgZleGe17bBc64PvuEhrJCtIw_ukJfC9KzguhmiY6KUJJ6Urh5XTYyIaqoQiE6W575PRZ9CsyvMtXFmd46uKtG6NNL7lvzGW-Jlx_wxn_ewgZYW-hP2PEOswlqqtwCq1-ohNvgYTB9VhMon9gYslLCwVxrNZlB3zwEut45GtrwJ-G0hD4o2r3u388E6uJh0RNMw2kOGeSFLCyQXCs4Zvr99c34eyGhh0jvgGHv4rbbDxZdGQKBXC5FnJAkjhSWIQ8FN0aV7UiKNBQsVsLyA3GKmQl6GPFQEZ4nOOcRpSJnCeY5jXdBvZyWag_AKInbnDDJiVEKilAeS8pSo0kJIimPUAMcV_bJHj18I_OYZZSZucvc3DVAs7Jctlh_OjOBOTXai4RhA5w6E_x-gaxz2XUb-38_9ACsIDNmn_nYBPXZ01wdGnUy40fODT8AMtPh8w
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hOBQOpVAQAQor1EMvTuz17tqRekG0KGnBh4pIuSBrX0ZWg41wwoET_4F_yC_pPuIAlSqh3iz5ofXOjL_PuzPfAHzuY4GLULOAaYUDIhUL0oKqQNOYc1JEikpbjXyescGI_BjT8RJ8bWthvD7EYsHNRob7XtsAtwvSvWfVUF7KrnFIW-m7YsKd2rD89mshHhXhJPVa4eaH2RCFqNUVCnFvcetrNHqmmC-JqkOa03W4bMfoE0x-d2dT0ZX3f8k3_u9LfID3cwqKjr3PbMCSrjZh7YUw4Ue4zuo7PUHqll8hXimUzZpGT6bI9w9Brn1OgywCKlRXyOOiPeu2fyaoKa_nbcEaVBeII1Gq0mqSNxpd8ebp4dG4fKmQ15HegtHp94uTQTBvzBBI7NIp4oQmcaSJCkUohbGr6kdKpqHksZZWQpCkhBvcI1iEmooiIYWIGJMFT4goWLwNy1Vd6R1AURL3BeVKUEMWNGUiVoynhpZSTFMR4Q4ctQbKb7z-Ru6VlnFu5i53c9eB_dZ0-TwEm9xgc2roFw3DDnxxNvj3A_Lj4Yk72H37pYfwbnBxfpafDbOfe7CKzfh9IuQ-LE9vZ_qTIStTceB88g9emeYT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-RAFH6IA6IHHTfscSuGOXhJm1SqKmnmJDqNy9gMouBBCLVKsE2L6Z7DnPwP_sP5JdbSaRcQxFsgC5V67-X7qvLe9wB-dLDAJtYsYlrhiEjFotxQFWmack5Moqh01cinPXZ4QY4v6eUU_GxqYYI-xGTDzUWG_167AL9TZvdZNJSXsm390RX6fiEsxW7ldXA20Y5KcJYHqXC7XrY8IWlkhWK8O7n1NRg9M8yXPNUDTXcBrpohhvySm_ZoKNry3xv1xk--w1eYHxNQtBc8ZhGmdLUEcy9kCZfhtjf4q_tI3fNrxCuFeqO61v0hCt1DkG-eUyOHfwoNKhRQ0Z31P3_6qC5vx03BajQwiCNRqtIpktcaXfP6_8OjdfhSoaAivQIX3V_n-4fRuC1DJLFPpkgzmqWJJioWsRTWqqqTKJnHkqdaOgFBkhNuUY9gEWsqTEaMSBiThmdEGJauwnQ1qPQaoCRLO4JyJailCpoykSrGc0tKKaa5SHALvjf2Ke6C-kYRdJZxYeeu8HPXgo3GcsU4AOvCInNuyReN4xbseBO8_4Bi72jfH3z7-KXbMPPnoFv8PuqdrMMstsMPWZAbMD28H-lNy1SGYst75BPK0eTC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+drag+and+Nusselt+number+models+based+on+direct+numerical+simulations+of+a+bidisperse+gas%E2%80%93solid+system&rft.jtitle=AIChE+journal&rft.au=Wang%2C+Dong&rft.au=Wang%2C+Shuai&rft.au=Jin%2C+Tai&rft.au=Luo%2C+Kun&rft.date=2024-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=70&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.18308&rft.externalDBID=10.1002%252Faic.18308&rft.externalDocID=AIC18308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon