Ruzigrass Grown in Rotation with Soybean Increases Soil Labile Phosphorus

Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [Urochloa ruziziensis (R. Germ. and C.M. Evrard)] has been shown to increase soil available P, but there are few studies on its effect on soil P forms and how growing ruzigrass...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 108; no. 6; pp. 2444 - 2452
Main Authors Almeida, Danilo S., Rosolem, Ciro A.
Format Journal Article
LanguageEnglish
Published The American Society of Agronomy, Inc 01.11.2016
Online AccessGet full text

Cover

Loading…
Abstract Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [Urochloa ruziziensis (R. Germ. and C.M. Evrard)] has been shown to increase soil available P, but there are few studies on its effect on soil P forms and how growing ruzigrass interacts with P fertilization, which is important in defining fertilization strategies. This study aimed to investigate soil P fractions resulting from cropping ruzigrass in rotation with soybean [Glycine max (L.) Merr.] fertilized with broadcast triple superphosphate (TSP) or reactive rock phosphate (RRP) and TSP applied to soybean furrows under no‐till. Soil samples were taken after ruzigrass desiccation and before soybean planting from long‐term experimental plots in Botucatu, in southeastern Brazil. Phosphate management included RRP and TSP broadcast on the soil surface, and TSP applied to soybean furrows, in the presence or absence of ruzigrass. Broadcast TSP increased labile (anion exchange resin‐extractable P) and moderately labile P fractions extracted with 0.1 M NaOH, whereas RRP increased moderately labile P extracted with HCl. There was no interaction between phosphate management configurations. Regardless of phosphate management, the presence of ruzigrass resulted in a lower residual‐P concentration in deeper soil layers and higher concentrations of labile and moderately labile P in the uppermost soil layers. Ruzigrass introduction into the cropping system resulted in higher soil labile P content compared with fallow, probably because it can take up moderately labile soil P fractions that are recycled into the system, regardless of the P fertilization strategy. Core Ideas Ruzigrass grown in soybean off‐season affects soil fertility. Soil P cycling by ruzigrass may result in benefits to next crops. Agronomic efficiency of phosphate fertilizers may be improved by ruzigrass.
AbstractList Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [Urochloa ruziziensis (R. Germ. and C.M. Evrard)] has been shown to increase soil available P, but there are few studies on its effect on soil P forms and how growing ruzigrass interacts with P fertilization, which is important in defining fertilization strategies. This study aimed to investigate soil P fractions resulting from cropping ruzigrass in rotation with soybean [Glycine max (L.) Merr.] fertilized with broadcast triple superphosphate (TSP) or reactive rock phosphate (RRP) and TSP applied to soybean furrows under no‐till. Soil samples were taken after ruzigrass desiccation and before soybean planting from long‐term experimental plots in Botucatu, in southeastern Brazil. Phosphate management included RRP and TSP broadcast on the soil surface, and TSP applied to soybean furrows, in the presence or absence of ruzigrass. Broadcast TSP increased labile (anion exchange resin‐extractable P) and moderately labile P fractions extracted with 0.1 M NaOH, whereas RRP increased moderately labile P extracted with HCl. There was no interaction between phosphate management configurations. Regardless of phosphate management, the presence of ruzigrass resulted in a lower residual‐P concentration in deeper soil layers and higher concentrations of labile and moderately labile P in the uppermost soil layers. Ruzigrass introduction into the cropping system resulted in higher soil labile P content compared with fallow, probably because it can take up moderately labile soil P fractions that are recycled into the system, regardless of the P fertilization strategy. Core Ideas Ruzigrass grown in soybean off‐season affects soil fertility. Soil P cycling by ruzigrass may result in benefits to next crops. Agronomic efficiency of phosphate fertilizers may be improved by ruzigrass.
Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [ Urochloa ruziziensis (R. Germ. and C.M. Evrard)] has been shown to increase soil available P, but there are few studies on its effect on soil P forms and how growing ruzigrass interacts with P fertilization, which is important in defining fertilization strategies. This study aimed to investigate soil P fractions resulting from cropping ruzigrass in rotation with soybean [ Glycine max (L.) Merr.] fertilized with broadcast triple superphosphate (TSP) or reactive rock phosphate (RRP) and TSP applied to soybean furrows under no‐till. Soil samples were taken after ruzigrass desiccation and before soybean planting from long‐term experimental plots in Botucatu, in southeastern Brazil. Phosphate management included RRP and TSP broadcast on the soil surface, and TSP applied to soybean furrows, in the presence or absence of ruzigrass. Broadcast TSP increased labile (anion exchange resin‐extractable P) and moderately labile P fractions extracted with 0.1 M NaOH, whereas RRP increased moderately labile P extracted with HCl. There was no interaction between phosphate management configurations. Regardless of phosphate management, the presence of ruzigrass resulted in a lower residual‐P concentration in deeper soil layers and higher concentrations of labile and moderately labile P in the uppermost soil layers. Ruzigrass introduction into the cropping system resulted in higher soil labile P content compared with fallow, probably because it can take up moderately labile soil P fractions that are recycled into the system, regardless of the P fertilization strategy. Core Ideas Ruzigrass grown in soybean off‐season affects soil fertility. Soil P cycling by ruzigrass may result in benefits to next crops. Agronomic efficiency of phosphate fertilizers may be improved by ruzigrass.
Author Rosolem, Ciro A.
Almeida, Danilo S.
Author_xml – sequence: 1
  givenname: Danilo S.
  surname: Almeida
  fullname: Almeida, Danilo S.
  organization: São Paulo State University
– sequence: 2
  givenname: Ciro A.
  surname: Rosolem
  fullname: Rosolem, Ciro A.
  email: rosolem@fca.unesp.br
  organization: São Paulo State University
BookMark eNqFkEFPAjEQhRuDiYCevfYPLLTdbaEnQ4iuS4gY1PNmWrpQsrakXULw17uIiYkHvcwkL_O9zHs91HHeGYRuKRkwmmZDWAfvtoxQPiDZaHyBujRLeUJExjuoSwhhCZWCXaFejFtCKJUZ7aJiuf-w6wAx4jz4g8PW4aVvoLHe4YNtNvjFH5UBhwung4FoYqvYGs9B2drg542Pu40P-3iNLiuoo7n53n309nD_On1M5ou8mE7miWZyNE5SKlaGV1zosRLAlSHtWClQVAEXUgGTKQBoabSmDGQlRKaMJKplVjRTaR_xs68OPsZgqlLb879NAFuXlJSnPsqfPspTHy03_MXtgn2HcPyDuDsThzbp8b_zcpLP2CRfLp5mJ-3L4RP3LnuR
CitedBy_id crossref_primary_10_2134_agronj2017_08_0451
crossref_primary_10_1016_j_agee_2024_109334
crossref_primary_10_1007_s00284_020_02080_6
crossref_primary_10_1007_s11104_023_06225_x
crossref_primary_10_1002_cbdv_201900694
crossref_primary_10_5433_1679_0359_2022v43n1p331
crossref_primary_10_1007_s11104_017_3362_2
crossref_primary_10_1016_j_geoderma_2017_10_003
crossref_primary_10_1016_j_still_2020_104770
crossref_primary_10_1016_j_still_2024_106228
crossref_primary_10_1080_00103624_2022_2055053
crossref_primary_10_1007_s00374_024_01833_w
crossref_primary_10_1007_s11104_018_3810_7
crossref_primary_10_1038_s41598_020_73398_1
crossref_primary_10_3389_fsufs_2020_544996
crossref_primary_10_1007_s42729_024_01918_3
crossref_primary_10_1002_jpln_202300413
crossref_primary_10_1016_j_geoderma_2017_08_032
crossref_primary_10_1016_j_geodrs_2025_e00938
crossref_primary_10_1016_j_still_2024_106430
crossref_primary_10_1016_j_still_2024_106255
crossref_primary_10_1016_j_still_2022_105446
crossref_primary_10_1016_j_still_2023_105823
crossref_primary_10_3389_fsufs_2020_00119
crossref_primary_10_1017_S0014479722000321
crossref_primary_10_3389_fenvs_2020_00013
crossref_primary_10_1002_jeq2_20659
crossref_primary_10_1007_s00374_018_1316_3
crossref_primary_10_1016_j_geoderma_2018_09_056
crossref_primary_10_1111_sum_12439
Cites_doi 10.1007/BF00790658
10.1097/00010694-199810000-00006
10.1590/S0100-204X2013001200007
10.1016/S1161-0301(00)00052-6
10.1007/s00374-011-0661-2
10.1007/BF00748312
10.2136/sssaj2012.0310
10.1023/A:1004712401721
10.1007/s11104-009-0093-z
10.2136/sssaj1982.03615995004600050017x
10.1590/S0100-06832012000100028
10.1590/S0100-06832003000600003
10.1097/00010694-195708000-00005
10.1111/j.1365-2389.1989.tb01282.x
10.2134/agronj14.0115
10.1590/S0100-06832014000300020
10.2136/sssaj1992.03615995005600060025x
10.1590/S0100-06832008000300001
10.1080/00103628609367733
10.1016/j.still.2009.07.001
10.1016/S0016-7061(00)00002-1
10.1104/pp.125.3.1473
10.1016/j.geoderma.2007.02.018
10.1080/01904167.2015.1109117
10.1590/S0103-90162010000400014
10.1007/s10705-010-9390-4
10.1081/PLN-200067506
10.1016/0016-7061(94)00023-4
10.1590/S0103-90162008000400014
10.1590/S0103-84782013000800007
10.1097/00010694-193401000-00003
10.1590/S0100-204X2008001000017
ContentType Journal Article
Copyright Copyright © 2016 by the American Society of Agronomy, Inc.
Copyright_xml – notice: Copyright © 2016 by the American Society of Agronomy, Inc.
DBID AAYXX
CITATION
DOI 10.2134/agronj2015.0478
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 2452
ExternalDocumentID 10_2134_agronj2015_0478
AGJ2AGRONJ20150478
Genre article
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAYXX
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c2978-316de5f56c8b6a5be0a5bdbab1ba569ba293aaac9ecc12a9f664be90b5f5d14b3
ISSN 0002-1962
IngestDate Tue Jul 01 02:17:05 EDT 2025
Thu Apr 24 22:52:12 EDT 2025
Wed Jan 22 16:38:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2978-316de5f56c8b6a5be0a5bdbab1ba569ba293aaac9ecc12a9f664be90b5f5d14b3
Notes All rights reserved
PageCount 9
ParticipantIDs crossref_citationtrail_10_2134_agronj2015_0478
crossref_primary_10_2134_agronj2015_0478
wiley_primary_10_2134_agronj2015_0478_AGJ2AGRONJ20150478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November–December 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November–December 2016
PublicationDecade 2010
PublicationTitle Agronomy journal
PublicationYear 2016
Publisher The American Society of Agronomy, Inc
Publisher_xml – name: The American Society of Agronomy, Inc
References 1989; 40
2013; 48
2015; 39
2013; 43
2010; 328
2008
1986; 17
2006
2003; 38
2008; 32
2004
2012; 36
2005; 28
1992; 56
1979
2001; 125
1995; 64
2010; 67
1995; 41
1982; 46
2014; 106
1957; 84
2007; 139
2013; 77
2000; 12
1991; 21
1984; 8
1995; 45
2000; 96
1934; 37
2014; 38
2003; 27
2008; 65
2008; 43
2000; 220
2011; 89
2014
2012; 48
2009; 105
1998; 163
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Soil Survey Staff (e_1_2_6_36_1) 2014
e_1_2_6_19_1
Horowitz N. (e_1_2_6_16_1) 2004
Boddey R. (e_1_2_6_3_1) 2006
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
Silva M.A. (e_1_2_6_34_1) 2003; 38
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
Oliveira E.L. (e_1_2_6_27_1) 1984; 8
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
Condron L.M. (e_1_2_6_8_1) 1989; 40
Richter D.D. (e_1_2_6_32_1) 1991; 21
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
Lindsay W.L. (e_1_2_6_21_1) 1979
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Pavinato P.S. (e_1_2_6_28_1) 2008; 43
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Syers J.K. (e_1_2_6_37_1) 2008
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_26_1
References_xml – volume: 105
  start-page: 149
  year: 2009
  end-page: 155
  article-title: Phosphorus fractions in Brazilian Cerrado soils as affected by tillage
  publication-title: Soil Tillage Res.
– volume: 38
  start-page: 1197
  year: 2003
  end-page: 1207
  article-title: Phosphorus fractions in Oxisols
  publication-title: Pesqi. Agropecu. Bras.
– start-page: 72
  year: 2006
  end-page: 86
– volume: 67
  start-page: 465
  year: 2010
  end-page: 471
  article-title: Phosphate fertilization and phosphorus forms in an Oxisol under no‐till
  publication-title: Sci. Agric.
– volume: 77
  start-page: 1724
  year: 2013
  end-page: 1731
  article-title: Soil Organic Matter and Physical Attributes Affected by Crop Rotation Under No‐till
  publication-title: Soil Sci. Soc. Am. J.
– volume: 46
  start-page: 970
  year: 1982
  end-page: 976
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations
  publication-title: Soil Sci. Soc. Am. J.
– volume: 39
  start-page: 1319
  year: 2015
  end-page: 1327
  article-title: Non‐labile phosphorus acquisition by Brachiarias
  publication-title: J. Plant Nutr.
– volume: 84
  start-page: 133
  year: 1957
  end-page: 144
  article-title: Fractionation of soil phosphorus
  publication-title: Soil Sci.
– volume: 96
  start-page: 31
  year: 2000
  end-page: 46
  article-title: Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use
  publication-title: Geoderma
– volume: 89
  start-page: 229
  year: 2011
  end-page: 255
  article-title: Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review
  publication-title: Nutr. Cycling Agroecosyst.
– volume: 12
  start-page: 281
  year: 2000
  end-page: 289
  article-title: Root‐released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments
  publication-title: Eur. J. Agron.
– volume: 56
  start-page: 1799
  year: 1992
  end-page: 1806
  article-title: Light‐fraction organic matter in soils from long‐term crop rotations
  publication-title: Soil Sci. Soc. Am. J.
– volume: 65
  start-page: 415
  year: 2008
  end-page: 421
  article-title: Phosphorus sources and fractions in an oxisol under no‐tilled soybean
  publication-title: Sci. Agric.
– year: 1979
– volume: 106
  start-page: 1455
  year: 2014
  end-page: 1460
  article-title: Are reactive rock phosphate and superphosphate mixtures suitable for no‐till soybean?
  publication-title: Agron. J.
– volume: 64
  start-page: 197
  year: 1995
  end-page: 214
  article-title: A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems
  publication-title: Geoderma
– volume: 28
  start-page: 1427
  year: 2005
  end-page: 1439
  article-title: Role of phenolics and organic acids in phosphorus mobilization in calcareous and acidic soils
  publication-title: J. Plant Nutr.
– year: 2014
– volume: 45
  start-page: 91
  year: 1995
  end-page: 100
  article-title: Dynamics of phosphate in soils: An isotopic outlook
  publication-title: Fert. Res.
– volume: 328
  start-page: 155
  year: 2010
  end-page: 164
  article-title: A comparative study on plant growth and root plasticity responses of two Brachiaria forage grasses grown in nutrient solution at low and high phosphorus supply
  publication-title: Plant Soil
– volume: 125
  start-page: 1473
  year: 2001
  end-page: 1484
  article-title: The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices
  publication-title: Plant Physiol.
– start-page: 665
  year: 2004
  end-page: 668
– volume: 48
  start-page: 1583
  year: 2013
  end-page: 1588
  article-title: Ruzigrass affecting soil phosphorus availability
  publication-title: Pesqi. Agropecu. Bras.
– volume: 32
  start-page: 911
  year: 2008
  end-page: 920
  article-title: Disponibilidade de nutrientes no solo: Decomposição e liberação de compostos orgânicos de resíduos vegetais
  publication-title: Rev. Bras. Cienc. Solo
– volume: 21
  start-page: 316
  year: 1991
  end-page: 389
  article-title: Soil diversity in the tropics
  publication-title: Adv. Ecol. Res.
– volume: 43
  start-page: 1381
  year: 2013
  end-page: 1386
  article-title: Formas de fósforo no solo após o cultivo de braquiária e tremoço branco
  publication-title: Cienc. Rural
– volume: 40
  start-page: 383
  year: 1989
  end-page: 395
  article-title: Effects of long‐term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand
  publication-title: Eur. J. Soil Sci.
– year: 2008
– volume: 41
  start-page: 227
  year: 1995
  end-page: 234
  article-title: Factors affecting the agronomic effectiveness of phosphate rock for direct application
  publication-title: Fert. Res.
– volume: 139
  start-page: 388
  year: 2007
  end-page: 396
  article-title: Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol
  publication-title: Geoderma
– volume: 27
  start-page: 985
  year: 2003
  end-page: 1002
  article-title: Cor de solo, formas do fósforo e adsorção de fosfatos em Latossolos desenvolvidos de basalto do extremo‐sul do Brasil
  publication-title: Rev. Bras. Cienc. Solo
– volume: 38
  start-page: 888
  year: 2014
  end-page: 895
  article-title: Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon
  publication-title: Rev. Bras. Cienc. Solo
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 163
  start-page: 822
  year: 1998
  end-page: 833
  article-title: Partitioning soil phosphorus into three discrete pools of differing availability
  publication-title: Soil Sci.
– volume: 8
  start-page: 63
  year: 1984
  end-page: 67
  article-title: Avaliação da eficiência agronômica de fosfatos naturais
  publication-title: Rev. Bras. Cienc. Solo
– volume: 43
  start-page: 1379
  year: 2008
  end-page: 1388
  article-title: Organic compounds from plant extracts and their effect on soil phosphorus availability
  publication-title: Pesqi. Agropecu. Bras.
– volume: 220
  start-page: 151
  year: 2000
  end-page: 163
  article-title: Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil
  publication-title: Plant Soil
– volume: 48
  start-page: 607
  year: 2012
  end-page: 611
  article-title: Effects of long‐term grassland management on the chemical nature and bioavailability of soil phosphorus
  publication-title: Biol. Fertil. Soils
– volume: 36
  start-page: 271
  year: 2012
  end-page: 281
  article-title: Forms of inorganic phosphorus in soil under different long term soil tillage systems and winter crops
  publication-title: Rev. Bras. Cienc. Solo
– volume: 17
  start-page: 547
  year: 1986
  end-page: 566
  article-title: Extraction of phosphorus, potassium calcium and magnesium from soils by anion exchange resin procedure
  publication-title: Commun. Soil Sci. Plant Anal.
– ident: e_1_2_6_10_1
  doi: 10.1007/BF00790658
– ident: e_1_2_6_14_1
  doi: 10.1097/00010694-199810000-00006
– ident: e_1_2_6_23_1
  doi: 10.1590/S0100-204X2013001200007
– ident: e_1_2_6_11_1
  doi: 10.1016/S1161-0301(00)00052-6
– ident: e_1_2_6_35_1
  doi: 10.1007/s00374-011-0661-2
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00748312
– ident: e_1_2_6_13_1
  doi: 10.2136/sssaj2012.0310
– ident: e_1_2_6_5_1
  doi: 10.1023/A:1004712401721
– ident: e_1_2_6_22_1
  doi: 10.1007/s11104-009-0093-z
– ident: e_1_2_6_15_1
  doi: 10.2136/sssaj1982.03615995004600050017x
– volume: 21
  start-page: 316
  year: 1991
  ident: e_1_2_6_32_1
  article-title: Soil diversity in the tropics
  publication-title: Adv. Ecol. Res.
– volume-title: Keys to soil taxonomy
  year: 2014
  ident: e_1_2_6_36_1
– ident: e_1_2_6_38_1
  doi: 10.1590/S0100-06832012000100028
– ident: e_1_2_6_2_1
  doi: 10.1590/S0100-06832003000600003
– ident: e_1_2_6_4_1
  doi: 10.1097/00010694-195708000-00005
– volume: 40
  start-page: 383
  year: 1989
  ident: e_1_2_6_8_1
  article-title: Effects of long‐term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1989.tb01282.x
– volume-title: Chemical equilibria in soils
  year: 1979
  ident: e_1_2_6_21_1
– ident: e_1_2_6_33_1
  doi: 10.2134/agronj14.0115
– ident: e_1_2_6_24_1
  doi: 10.1590/S0100-06832014000300020
– ident: e_1_2_6_19_1
  doi: 10.2136/sssaj1992.03615995005600060025x
– ident: e_1_2_6_30_1
  doi: 10.1590/S0100-06832008000300001
– ident: e_1_2_6_39_1
  doi: 10.1080/00103628609367733
– ident: e_1_2_6_29_1
  doi: 10.1016/j.still.2009.07.001
– ident: e_1_2_6_20_1
  doi: 10.1016/S0016-7061(00)00002-1
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.125.3.1473
– ident: e_1_2_6_31_1
  doi: 10.1016/j.geoderma.2007.02.018
– ident: e_1_2_6_25_1
  doi: 10.1080/01904167.2015.1109117
– volume: 38
  start-page: 1197
  year: 2003
  ident: e_1_2_6_34_1
  article-title: Phosphorus fractions in Oxisols
  publication-title: Pesqi. Agropecu. Bras.
– ident: e_1_2_6_26_1
  doi: 10.1590/S0103-90162010000400014
– ident: e_1_2_6_7_1
  doi: 10.1007/s10705-010-9390-4
– ident: e_1_2_6_17_1
  doi: 10.1081/PLN-200067506
– volume: 8
  start-page: 63
  year: 1984
  ident: e_1_2_6_27_1
  article-title: Avaliação da eficiência agronômica de fosfatos naturais
  publication-title: Rev. Bras. Cienc. Solo
– start-page: 665
  volume-title: Phosphorus in the Brazilian Agriculture
  year: 2004
  ident: e_1_2_6_16_1
– volume-title: Efficiency of soil and fertilizer phosphorus use
  year: 2008
  ident: e_1_2_6_37_1
– ident: e_1_2_6_9_1
  doi: 10.1016/0016-7061(94)00023-4
– start-page: 72
  volume-title: Brachiaria: Biology, agronomy and improvement
  year: 2006
  ident: e_1_2_6_3_1
– ident: e_1_2_6_12_1
  doi: 10.1590/S0103-90162008000400014
– ident: e_1_2_6_18_1
  doi: 10.1590/S0103-84782013000800007
– ident: e_1_2_6_40_1
  doi: 10.1097/00010694-193401000-00003
– volume: 43
  start-page: 1379
  year: 2008
  ident: e_1_2_6_28_1
  article-title: Organic compounds from plant extracts and their effect on soil phosphorus availability
  publication-title: Pesqi. Agropecu. Bras.
  doi: 10.1590/S0100-204X2008001000017
SSID ssj0011941
Score 2.3319407
Snippet Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [Urochloa ruziziensis (R. Germ. and...
Crop rotations with species able to solubilize soil P can result in improved P availability for subsequent crops. Ruzigrass [ Urochloa ruziziensis (R. Germ....
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 2444
Title Ruzigrass Grown in Rotation with Soybean Increases Soil Labile Phosphorus
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2015.0478
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcKvIyHabBNYxvIDzxMqpLVieMmjx3iqxIdKiDxFtmJC0Fdg0Krafz1u3OcjyIQHy9WZNkXO_fL-c6-OxOyy5mU_SjwHW_CfYennDuRCAOHhX2_r5Jo4pvrfE5G4uiCDy-Dy07nuOW1tJgrN7l_NK7kLVyFOuArRsm-grM1UaiAZ-AvlMBhKF_E4_HiPrsqQP3FLaS_xmdxnFv3QbPBepb_U7jVDlIAnc_1HdRkuHOtQBh0T6_zu9vrvLC2f5WL9qowgQ7d9hAQEtM_OktlFZc-zbtnbnNcAxPVBlp7WZF3B257N4EJG1a3LCHhrywlpC6FIqhUDua1W5KavbAFjyUZyMuMjnY9xaPdx2Q1ppLDhQgndQNDCVxMFNQsS9VR_IPVqvYhBOsFScQNgRgJrJA1DywGEHlrv_ZHp-P6SIlFnFW2EE6wzPOEJH4-GMOSitI2WYzOcf6BvLfGAh2UnN8gHT3bJOvAIJswRX8kxzUGqMEAzWa0wgBFDFCLAVpjgCIGaIkB2mDgE7k42D_fO3Ls9RhO4hmnFiZSHUwCkYRKyEDpHhSpkoopGYhISdDkpJRJBH8p82Q0EYIrHfUU9EkZV_5nsjrLZ_oLoX1o4eMJNdegj6ZhyH28hwbWQYU9-BZxqy8SJzZ3PF5hMo2f4MIW-VF3uC3TpjzdNDSf-Ll28eBw6A0Ox79HQ6zDqq8vf8s38q6B-3eyOi8WehvUybnasUD5D5Mzcxk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ruzigrass+Grown+in+Rotation+with+Soybean+Increases+Soil+Labile+Phosphorus&rft.jtitle=Agronomy+journal&rft.au=Almeida%2C+Danilo+S.&rft.au=Rosolem%2C+Ciro+A.&rft.date=2016-11-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=108&rft.issue=6&rft.spage=2444&rft.epage=2452&rft_id=info:doi/10.2134%2Fagronj2015.0478&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2015_0478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon