Microwave Radar Absorbing Properties of Multiwalled Carbon Nanotubes Polymer Composites: A Review

ABSTRACT Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar absorbing materials (RAMs) were discussed including MWCNTs polymer composites, magnetic nanostructures decorated MWCNTs polymer composites, no...

Full description

Saved in:
Bibliographic Details
Published inAdvances in polymer technology Vol. 36; no. 3; pp. 362 - 370
Main Author Munir, Arshad
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar absorbing materials (RAMs) were discussed including MWCNTs polymer composites, magnetic nanostructures decorated MWCNTs polymer composites, nonmagnetic nanostructures decorated MWCNTs polymer composites, and honeycomb‐coated MWCNTs as RAMs. Challenges hindering the practical applications of such composites have been discussed. It has also been highlighted that MWCNTs decorated with magnetic and dielectric nanostructures are effective for broadband lightweight absorbing materials.
AbstractList ABSTRACT Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar absorbing materials (RAMs) were discussed including MWCNTs polymer composites, magnetic nanostructures decorated MWCNTs polymer composites, nonmagnetic nanostructures decorated MWCNTs polymer composites, and honeycomb‐coated MWCNTs as RAMs. Challenges hindering the practical applications of such composites have been discussed. It has also been highlighted that MWCNTs decorated with magnetic and dielectric nanostructures are effective for broadband lightweight absorbing materials.
Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar absorbing materials (RAMs) were discussed including MWCNTs polymer composites, magnetic nanostructures decorated MWCNTs polymer composites, nonmagnetic nanostructures decorated MWCNTs polymer composites, and honeycomb-coated MWCNTs as RAMs. Challenges hindering the practical applications of such composites have been discussed. It has also been highlighted that MWCNTs decorated with magnetic and dielectric nanostructures are effective for broadband lightweight absorbing materials.
Author Munir, Arshad
Author_xml – sequence: 1
  givenname: Arshad
  surname: Munir
  fullname: Munir, Arshad
  email: arshad.dr@gmail.com
  organization: Centre of Excellence in Science and Advance Technologies
BookMark eNp9kM1OwzAQhC0EEm3hwBtY4sQhrZ2mdsKtKr9SC1UFXKN1skGu0rjYTqO-PYZyQoLTjrTf7GqmT44b0yAhF5wNOWPxCMrdMOaCyyPS4yxLo3gcZ8ekx-SYRULI7JT0nVszxnkixj0CC11Y08EO6QpKsHSqnLFKN-90ac0WrdfoqKnooq297qCusaQzsMo09Aka41sV9ktT7zdo6cxstsZpj-6aTukKdxq7M3JSQe3w_GcOyOvd7cvsIZo_3z_OpvOoiDMpI4UyiDKBqoCQJOG8YEoJxVOJCCBShpVQohAVZ5ikMktEBTLDIBIRMzYekMvD3a01Hy06n69Na5vwMudZMuGThGUiUFcHKqR2zmKVb63egN3nnOVfDeahwfy7wcCOfrGF9uC1abwFXf_n6HSN-79P59Obt4PjE20RhHI
CitedBy_id crossref_primary_10_1007_s11595_022_2512_4
crossref_primary_10_1016_j_carbon_2024_118834
crossref_primary_10_1016_j_pmatsci_2019_02_003
crossref_primary_10_1007_s42114_021_00383_1
crossref_primary_10_1007_s41779_018_00303_5
crossref_primary_10_1007_s10854_021_07181_x
crossref_primary_10_1557_s43578_023_01100_y
crossref_primary_10_1016_j_cej_2024_152282
crossref_primary_10_1016_j_bcab_2019_101352
crossref_primary_10_1016_j_physe_2018_05_020
crossref_primary_10_1016_j_porgcoat_2020_105598
crossref_primary_10_1039_C8RA04205E
crossref_primary_10_1016_j_apsusc_2020_147840
crossref_primary_10_3389_fmats_2023_1133287
crossref_primary_10_1002_app_52510
crossref_primary_10_1080_09506608_2022_2077028
crossref_primary_10_1155_2017_3658247
crossref_primary_10_1016_j_inoche_2024_112139
crossref_primary_10_1021_acsami_1c09430
crossref_primary_10_1177_14644207231169362
crossref_primary_10_1002_cnma_202400406
crossref_primary_10_1002_adsu_202300272
crossref_primary_10_1002_pen_25406
crossref_primary_10_1007_s10853_020_05557_8
crossref_primary_10_1007_s40820_020_00582_3
crossref_primary_10_1155_2021_5840645
crossref_primary_10_3390_polym14122508
crossref_primary_10_1007_s12274_023_5654_6
crossref_primary_10_1007_s10904_020_01648_w
crossref_primary_10_1016_j_apmt_2021_101021
crossref_primary_10_3390_jcs5070173
crossref_primary_10_1002_pat_6339
crossref_primary_10_1002_pc_27240
crossref_primary_10_3390_coatings14010075
crossref_primary_10_1002_adma_202411153
crossref_primary_10_1080_14658011_2020_1860669
crossref_primary_10_1016_j_cej_2023_145055
crossref_primary_10_1016_j_synthmet_2023_117441
crossref_primary_10_1017_S1759078720000707
crossref_primary_10_1016_j_conbuildmat_2020_120670
crossref_primary_10_1111_jace_15278
crossref_primary_10_3390_ma16155356
crossref_primary_10_1016_j_jallcom_2020_153847
crossref_primary_10_1590_s1517_707620210002_1263
crossref_primary_10_1021_acs_langmuir_4c02829
crossref_primary_10_1038_s41598_022_13210_4
crossref_primary_10_1039_D4NR04097J
crossref_primary_10_1002_pen_26572
crossref_primary_10_1080_09276440_2022_2068245
crossref_primary_10_3390_polym13223907
crossref_primary_10_1002_pc_27796
crossref_primary_10_1088_2053_1591_ab7b96
crossref_primary_10_1007_s12649_022_01977_6
crossref_primary_10_1177_0954008321992090
crossref_primary_10_3390_polym12112719
crossref_primary_10_1007_s11141_021_10116_5
crossref_primary_10_1016_j_jallcom_2019_153269
crossref_primary_10_1016_j_jallcom_2021_160572
crossref_primary_10_1002_app_55531
crossref_primary_10_1016_j_ceramint_2017_09_096
crossref_primary_10_1016_j_heliyon_2020_e04577
crossref_primary_10_1016_j_mtcomm_2023_105955
crossref_primary_10_1002_smll_202407113
crossref_primary_10_29235_1561_8358_2022_67_4_360_369
crossref_primary_10_3389_fmats_2021_633079
crossref_primary_10_1016_j_jmmm_2020_167259
crossref_primary_10_32604_jrm_2024_056004
crossref_primary_10_1016_j_jallcom_2023_172625
crossref_primary_10_1002_app_54843
crossref_primary_10_1002_pc_26177
crossref_primary_10_1016_j_carbon_2020_07_028
crossref_primary_10_1002_app_47241
crossref_primary_10_3390_nano11092427
crossref_primary_10_1002_pc_27426
crossref_primary_10_1016_j_jallcom_2020_156052
crossref_primary_10_3390_ma13214749
crossref_primary_10_1002_vnl_22156
Cites_doi 10.1016/j.apsusc.2011.11.061
10.1016/j.matlet.2014.01.089
10.1186/1556-276X-9-168
10.3390/polym4010275
10.1016/j.compositesa.2010.07.003
10.1021/jp500831c
10.1016/j.compstruct.2014.11.020
10.1021/jp202078p
10.1063/1.3533254
10.1016/j.carbon.2014.02.054
10.1063/1.3260234
10.1063/1.3638462
10.4028/www.scientific.net/AMM.479-480.20
10.1016/j.compscitech.2005.05.034
10.1016/j.compscitech.2014.08.006
10.1021/jp1113015
10.1016/j.compscitech.2013.09.007
10.1016/j.matlet.2009.11.043
10.1016/j.compstruct.2014.11.040
10.1016/j.matchemphys.2008.08.065
10.1021/nn304630h
10.1016/j.matdes.2010.12.043
10.1063/1.2755875
10.1016/j.jmmm.2011.06.070
10.1063/1.3477195
10.1038/srep05619
10.1109/TEMC.2011.2179928
10.1016/j.jmmm.2013.05.010
10.1016/j.matlet.2012.12.069
10.1016/j.jeurceramsoc.2013.03.017
10.1007/s11431-009-0020-9
10.1002/pen.21028
10.1007/s00339-011-6641-4
10.1016/j.jssc.2009.07.036
10.1088/0957-4484/18/35/355705
10.1016/j.jmmm.2004.08.035
10.1016/j.jallcom.2013.04.059
10.4236/ojcm.2013.32003
10.1063/1.3630126
10.1016/j.cap.2014.04.009
10.1016/j.compscitech.2009.09.011
10.1002/app.40233
10.1016/j.jpcs.2007.10.006
10.1109/TMTT.2006.874889
10.1063/1.3646405
10.1016/j.apsusc.2010.08.088
10.1016/j.jallcom.2010.02.103
10.1016/j.jallcom.2014.03.192
10.1016/j.jmmm.2012.10.033
10.1016/j.solidstatesciences.2007.09.016
10.1016/j.matdes.2011.04.042
10.1039/C4NR03040K
10.1016/j.jallcom.2008.03.127
10.1007/s12221-014-0583-3
10.1016/j.matlet.2007.01.077
10.1002/pc.22186
10.1002/app.40963
10.1002/pat.2000
10.1063/1.3683012
10.1016/j.synthmet.2008.01.012
10.1016/j.compscitech.2007.10.006
10.1016/j.mseb.2006.02.045
10.1016/j.compscitech.2015.04.001
10.1016/j.jallcom.2011.11.060
10.1038/nbt720
10.1007/s10853-014-8229-9
10.1016/j.jmmm.2013.06.032
10.1016/j.synthmet.2005.05.019
10.1016/j.mseb.2010.07.007
10.1109/TAP.2004.841320
10.1016/j.matlet.2009.07.023
10.1063/1.1842374
10.1016/j.mseb.2004.10.022
10.1016/j.mseb.2006.12.018
10.1021/cr800433k
10.1039/c4ta01715c
10.1063/1.2165276
10.1177/0731684412454198
10.1109/TEMC.2007.915284
10.1016/j.carbon.2008.08.001
10.1039/C4CP03208J
10.1002/adma.200306460
10.3144/expresspolymlett.2013.20
10.2528/PIERL13102803
10.1021/am3021069
10.1016/j.mseb.2008.04.004
10.1002/app.40891
10.1109/TEMC.2014.2311294
10.1016/j.matlet.2009.01.037
10.1016/j.jlumin.2013.11.036
10.1007/s11051-012-1415-2
10.1016/j.matlet.2011.09.036
10.1063/1.4737119
10.4236/ojpchem.2014.43008
10.1080/09243046.2013.824868
10.1016/j.matlet.2008.10.015
10.1016/j.mseb.2008.10.029
10.1016/j.jmmm.2011.10.027
10.1039/C4TA02815E
10.1007/s10909-012-0748-7
10.1016/j.compstruct.2006.08.029
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright © 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: Copyright © 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/adv.21617
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1098-2329
EndPage 370
ExternalDocumentID 10_1002_adv_21617
ADV21617
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACGFO
ACGFS
ACIWK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADNMO
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFPWT
AFZJQ
AIAGR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
GYXMG
H.T
H.X
HBH
HCIFZ
HF~
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
KB.
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M6T
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PDBOC
PIMPY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWB
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SR
8FD
JG9
ID FETCH-LOGICAL-c2977-be7c29d4afca100411c0bb6b187eeaa680ef6b6c6f10e487946fa79e794462003
IEDL.DBID DR2
ISSN 0730-6679
IngestDate Mon Jun 30 09:32:52 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 04:01:35 EDT 2025
Wed Jan 22 16:28:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2977-be7c29d4afca100411c0bb6b187eeaa680ef6b6c6f10e487946fa79e794462003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1945154096
PQPubID 2045201
PageCount 9
ParticipantIDs proquest_journals_1945154096
crossref_primary_10_1002_adv_21617
crossref_citationtrail_10_1002_adv_21617
wiley_primary_10_1002_adv_21617_ADV21617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Advances in polymer technology
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 115
2013; 3
2013; 2
2010; 108
2009; 113
2008; 32
2009; 471
2013; 7
2014; 131
2011; 110
2014; 16
2010; 110
2014; 15
2014; 14
2007; 61
2012; 258
2012; 23
2014; 120
2007; 18
2011; 257
2009; 63
2011; 1
2006; 54
2009; 182
2013; 89
2015; 122
2013; 346
2005; 117
2013; 343
2014; 49
2007; 91
2008; 50
2014; 152
2012; 106
2012; 33
2010; 41
2014; 44
2012; 31
2012; 111
2012; 112
2015; 116
2014; 479–480
2008; 48
2013; 576
2008; 46
2010; 175
2007; 81
2013; 330
2013; 170
2012; 514
2009; 106
2013; 25
2013; 22
2006; 132
2011; 99
2012; 324
2012; 54
2011; 323
2010; 64
2013; 15
2014; 606
2009; 52
2014; 4
2007; 138
2014; 2
2006; 66
2013; 95
2008; 69
2008; 68
2008; 158
2014; 9
2010; 70
2012; 67
2008; 153
2014; 6
2014; 56
2008; 150
2014; 118
2004; 85
2012
2008
2011; 32
2008; 10
2006; 156
2011; 109
2013; 33
2002; 20
2004; 16
2005; 288
2006; 88
2010; 496
2005; 53
2014
2013
2012; 6
2014; 73
2012; 4
2014; 102
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
Liu X. L. (e_1_2_9_20_1) 2014; 131
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_91_1
Das C. K. (e_1_2_9_76_1) 2013; 2
e_1_2_9_102_1
e_1_2_9_106_1
Du B. (e_1_2_9_31_1) 2008; 32
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Zhang X. (e_1_2_9_103_1) 2014
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Tsao C. W. (e_1_2_9_98_1) 2013; 25
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
Xu H. L. (e_1_2_9_122_1) 2012; 111
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 88
  start-page: 033105
  year: 2006
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 12298
  year: 2014
  end-page: 12302
  publication-title: Nanoscale
– volume: 50
  start-page: 3
  year: 2008
  publication-title: IEEE Trans Electromagn Compat
– volume: 182
  start-page: 2691
  year: 2009
  publication-title: J Solid State Chem
– volume: 25
  start-page: S5
  year: 2013
  end-page: S8
  publication-title: Asian J Chem
– volume: 85
  start-page: 6263
  year: 2004
  end-page: 6265
  publication-title: Appl Phys Lett
– volume: 153
  start-page: 78
  year: 2008
  publication-title: Mater Sci Eng B
– volume: 95
  start-page: 145
  year: 2013
  end-page: 148
  publication-title: Mater Lett
– volume: 115
  start-page: 1838
  year: 2011
  end-page: 1842
  publication-title: J Phys Chem C
– year: 2014
– volume: 32
  start-page: 439
  year: 2008
  end-page: 442
  publication-title: J. Nanchang Univ, Nat Sci
– volume: 22
  start-page: 361
  issue: 5
  year: 2013
  end-page: 376
  publication-title: Adv Compos Mater
– volume: 61
  start-page: 3547
  year: 2007
  end-page: 3550
  publication-title: Mater Lett
– volume: 120
  start-page: 259
  year: 2014
  end-page: 262
  publication-title: Mater Lett
– volume: 99
  start-page: 113116
  year: 2011
  publication-title: Appl Phys Lett
– volume: 64
  start-page: 227
  year: 2010
  end-page: 230
  publication-title: Mater Lett
– volume: 471
  start-page: 457
  year: 2009
  publication-title: J Alloys Compd
– volume: 258
  start-page: 3184
  issue: 7
  year: 2012
  end-page: 3190
  publication-title: Appl Surf Sci
– year: 2008
– volume: 109
  start-page: 07A301
  year: 2011
  publication-title: J Appl Phys
– volume: 69
  start-page: 1213
  year: 2008
  end-page: 1217
  publication-title: J Phys Chem Solids
– volume: 16
  start-page: 24069
  year: 2014
  end-page: 24075
  publication-title: Phys Chem Chem Phys
– volume: 32
  start-page: 3013
  year: 2011
  end-page: 3016
  publication-title: Mater Des
– volume: 2
  start-page: 14940
  year: 2014
  end-page: 14946
  publication-title: J Mater Chem A
– volume: 175
  start-page: 81
  year: 2010
  end-page: 85
  publication-title: Mater Sci Eng B
– volume: 48
  start-page: 1007
  year: 2008
  publication-title: Polym Eng Sci
– volume: 73
  start-page: 185
  year: 2014
  end-page: 193
  publication-title: Carbon
– volume: 115
  start-page: 14025
  year: 2011
  end-page: 14030
  publication-title: J Phys Chem C
– volume: 112
  start-page: 024302
  year: 2012
  publication-title: J Appl Phys
– volume: 66
  start-page: 576
  year: 2006
  publication-title: Compos Sci Technol
– volume: 170
  start-page: 261
  year: 2013
  end-page: 267
  publication-title: J Low Temp Phys
– volume: 89
  start-page: 10
  year: 2013
  end-page: 14
  publication-title: Compos Sci Technol
– volume: 53
  start-page: 728
  issue: 2
  year: 2005
  end-page: 736
  publication-title: IEEE Trans Antennas Propag
– volume: 6
  start-page: 11009
  issue: 12
  year: 2012
  end-page: 11017
  publication-title: ACS Nano
– volume: 158
  start-page: 251
  year: 2008
  publication-title: J Synth Met
– volume: 150
  start-page: 105
  year: 2008
  end-page: 110
  publication-title: Mater Sci Eng B
– volume: 41
  start-page: 1345
  year: 2010
  end-page: 1367
  publication-title: Composites, Part A
– volume: 110
  start-page: 074107
  issue: 7
  year: 2011
  publication-title: J Appl Phys
– volume: 18
  start-page: 355705
  year: 2007
  publication-title: Nanotechnology
– volume: 70
  start-page: 102
  year: 2010
  end-page: 109
  publication-title: Compos Sci Technol
– volume: 131
  start-page: 40233
  year: 2014
  publication-title: Appl Polym Sci
– volume: 330
  start-page: 163
  year: 2013
  publication-title: J Magn Magn Mater
– volume: 63
  start-page: 861
  year: 2009
  end-page: 863
  publication-title: J Mater Lett
– volume: 91
  start-page: 023119
  issue: 2
  year: 2007
  publication-title: Appl Phys Lett
– volume: 131
  start-page: 40963
  year: 2014
  publication-title: J Appl Polym Sci
– volume: 4
  start-page: 5619
  year: 2014
  publication-title: Sci Rep
– volume: 33
  start-page: 413
  year: 2012
  end-page: 418
  publication-title: Mater Des
– volume: 131
  start-page: 40891
  issue: 20
  year: 2014
  publication-title: J Appl Polym Sci
– volume: 346
  start-page: 186
  year: 2013
  end-page: 191
  publication-title: J Magn Magn Mater
– volume: 606
  start-page: 171
  issue: 5
  year: 2014
  end-page: 176
  publication-title: J Alloys Compd
– volume: 113
  start-page: 919
  issue: 2–3
  year: 2009
  end-page: 926
  publication-title: Mater Chem Phys
– year: 2013
– volume: 91
  start-page: 023119
  year: 2007
  publication-title: Appl Phys Lett
– volume: 106
  start-page: 103922
  year: 2009
  publication-title: J Appl Phys
– volume: 323
  start-page: 3133
  year: 2011
  end-page: 3137
  publication-title: J Magn Magn Mater
– volume: 3
  start-page: 17
  year: 2013
  end-page: 23
  publication-title: Open J Compos Mater
– volume: 138
  start-page: 101
  year: 2007
  end-page: 104
  publication-title: Mater Sci Eng B
– volume: 2
  start-page: 42
  issue: 1
  year: 2013
  end-page: 46
  publication-title: World J Nano Sci Technol
– volume: 15
  start-page: 583
  issue: 3
  year: 2014
  end-page: 588
  publication-title: Fiber Polym
– volume: 2
  start-page: 10540
  year: 2014
  end-page: 10547
  publication-title: J Mater Chem A
– volume: 4
  start-page: 62
  year: 2014
  end-page: 72
  publication-title: Open J Polym Chem
– volume: 68
  start-page: 2902
  year: 2008
  end-page: 2908
  publication-title: Compos Sci Technol
– volume: 4
  start-page: 6949
  issue: 12
  year: 2012
  end-page: 6956
  publication-title: J ACS Appl Mater Interfaces
– volume: 106
  start-page: 59
  year: 2012
  end-page: 65
  publication-title: Appl Phys A
– volume: 15
  start-page: 1415
  year: 2013
  publication-title: Nanopart Res
– volume: 479–480
  start-page: 20
  year: 2014
  end-page: 24
  publication-title: Appl Mech Mater
– volume: 10
  start-page: 316
  year: 2008
  publication-title: Solid State Sci
– volume: 132
  start-page: 85
  year: 2006
  publication-title: Mater Sci Eng B
– volume: 14
  start-page: 909
  issue: 7
  year: 2014
  end-page: 915
  publication-title: Curr Appl Phys
– volume: 33
  start-page: 532
  year: 2012
  end-page: 539
  publication-title: Polym Compos
– volume: 7
  start-page: 212
  issue: 3
  year: 2013
  publication-title: EXPRESS Polym Lett
– volume: 108
  start-page: 054315
  issue: 5
  year: 2010
  publication-title: J Appl Phys
– volume: 9
  start-page: 168
  year: 2014
  publication-title: Nanoscale Res Lett
– volume: 31
  start-page: 1526
  issue: 22
  year: 2012
  end-page: 1531
  publication-title: J Reinf Plast Compos
– volume: 33
  start-page: 2119
  year: 2013
  end-page: 2126
  publication-title: J Eur Ceram Soc
– volume: 514
  start-page: 183
  year: 2012
  end-page: 188
  publication-title: J Alloys Compd
– volume: 63
  start-page: 272
  year: 2009
  end-page: 274
  publication-title: Mater Lett
– volume: 102
  start-page: 161
  year: 2014
  end-page: 168
  publication-title: Compos Sci Technol
– volume: 56
  start-page: 1061
  issue: 5
  year: 2014
  end-page: 1066
  publication-title: A. Trans Electromagn Compat
– volume: 81
  start-page: 401
  year: 2007
  end-page: 406
  publication-title: Compos Struct
– volume: 54
  start-page: 2745
  issue: 6
  year: 2006
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 257
  start-page: 4524
  issue: 9
  year: 2011
  end-page: 4528
  publication-title: Appl Surf Sci
– volume: 52
  start-page: 227
  year: 2009
  publication-title: Sci China Ser E: Technol Sci
– volume: 118
  start-page: 13757
  year: 2014
  end-page: 13763
  publication-title: J Phys Chem C
– volume: 67
  start-page: 84
  year: 2012
  end-page: 87
  publication-title: Mater Lett
– volume: 132
  start-page: 85
  year: 2006
  end-page: 89
  publication-title: Mater Sci Eng B
– volume: 117
  start-page: 27
  year: 2005
  end-page: 36
  publication-title: Mater Sci Eng B
– volume: 1
  start-page: 032140
  year: 2011
  publication-title: AIP Adv
– volume: 122
  start-page: 23
  year: 2015
  end-page: 30
  publication-title: Compos Struct
– volume: 152
  start-page: 117
  issue: 2014
  year: 2014
  end-page: 120
  publication-title: J Lumin
– volume: 288
  start-page: 397
  year: 2005
  end-page: 402
  publication-title: J Magn Magn Mater
– volume: 4
  start-page: 275
  year: 2012
  end-page: 295
  publication-title: Polymers
– volume: 20
  start-page: 816
  year: 2002
  end-page: 820
  publication-title: Nat Biotechnol
– volume: 46
  start-page: 1935
  year: 2008
  end-page: 1941
  publication-title: Carbon
– volume: 49
  start-page: 5199
  year: 2014
  end-page: 5207
  publication-title: Mater Sci
– volume: 496
  start-page: 22
  year: 2010
  end-page: 24
  publication-title: Alloys Compd
– volume: 54
  start-page: 43
  issue: 1
  year: 2012
  publication-title: IEEE Trans Electromagn Compat
– volume: 111
  start-page: 07B543
  year: 2012
  publication-title: J Appl Phys
– volume: 156
  start-page: 497
  year: 2006
  end-page: 505
  publication-title: Synth Met
– volume: 7
  start-page: 212
  issue: 3
  year: 2013
  end-page: 223
  publication-title: EXPRESS Polym Lett
– volume: 63
  start-page: 272
  year: 2009
  publication-title: Mater Lett
– volume: 116
  start-page: 18
  year: 2015
  end-page: 25
  publication-title: Compos Sci Technol
– volume: 44
  start-page: 63
  year: 2014
  end-page: 69
  publication-title: Prog Electromagn Res Lett
– volume: 66
  start-page: 576
  year: 2006
  end-page: 584
  publication-title: Compos Sci Technol
– volume: 23
  start-page: 975
  year: 2012
  end-page: 983
  publication-title: Polym Adv Technol
– volume: 110
  start-page: 1348
  year: 2010
  end-page: 1385
  publication-title: Chem Rev
– volume: 16
  start-page: 401
  year: 2004
  publication-title: Adv Mater
– volume: 182
  start-page: 2691
  year: 2009
  publication-title: Solid State Chem
– volume: 576
  start-page: 126
  year: 2013
  end-page: 133
  publication-title: J Alloys Compd
– volume: 343
  start-page: 281
  year: 2013
  end-page: 285
  publication-title: J Magn Magn Mater
– volume: 48
  start-page: 1007
  issue: 5
  year: 2008
  end-page: 1014
  publication-title: Polym Eng Sci
– volume: 122
  start-page: 166
  year: 2015
  end-page: 171
  publication-title: Compos Struct
– start-page: 2201
  year: 2012
  end-page: 2204
– volume: 324
  start-page: 1080
  year: 2012
  publication-title: J Magn Magn Mater
– volume: 111
  start-page: 07A522:1
  year: 2012
  end-page: 07A522:3
  publication-title: J Appl Phys
– volume: 64
  start-page: 457
  year: 2010
  end-page: 459
  publication-title: Mater Lett
– ident: e_1_2_9_3_1
  doi: 10.1016/j.apsusc.2011.11.061
– ident: e_1_2_9_65_1
  doi: 10.1016/j.matlet.2014.01.089
– ident: e_1_2_9_21_1
  doi: 10.1186/1556-276X-9-168
– ident: e_1_2_9_116_1
  doi: 10.3390/polym4010275
– ident: e_1_2_9_117_1
  doi: 10.1016/j.compositesa.2010.07.003
– ident: e_1_2_9_17_1
– ident: e_1_2_9_24_1
  doi: 10.1021/jp500831c
– ident: e_1_2_9_126_1
  doi: 10.1016/j.compstruct.2014.11.020
– ident: e_1_2_9_42_1
  doi: 10.1021/jp202078p
– volume: 2
  start-page: 42
  issue: 1
  year: 2013
  ident: e_1_2_9_76_1
  publication-title: World J Nano Sci Technol
– ident: e_1_2_9_45_1
  doi: 10.1063/1.3533254
– ident: e_1_2_9_107_1
  doi: 10.1016/j.carbon.2014.02.054
– ident: e_1_2_9_44_1
  doi: 10.1063/1.3260234
– ident: e_1_2_9_16_1
– ident: e_1_2_9_46_1
  doi: 10.1063/1.3638462
– ident: e_1_2_9_37_1
  doi: 10.4028/www.scientific.net/AMM.479-480.20
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compscitech.2005.05.034
– ident: e_1_2_9_93_1
  doi: 10.1016/j.compscitech.2014.08.006
– ident: e_1_2_9_85_1
  doi: 10.1021/jp1113015
– ident: e_1_2_9_101_1
  doi: 10.1016/j.compscitech.2013.09.007
– ident: e_1_2_9_119_1
  doi: 10.1016/j.matlet.2009.11.043
– ident: e_1_2_9_125_1
  doi: 10.1016/j.compstruct.2014.11.040
– ident: e_1_2_9_11_1
  doi: 10.1016/j.matchemphys.2008.08.065
– ident: e_1_2_9_86_1
  doi: 10.1021/nn304630h
– ident: e_1_2_9_102_1
  doi: 10.1016/j.matdes.2010.12.043
– ident: e_1_2_9_33_1
  doi: 10.1063/1.2755875
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jmmm.2011.06.070
– ident: e_1_2_9_10_1
  doi: 10.1063/1.3477195
– ident: e_1_2_9_19_1
  doi: 10.1038/srep05619
– ident: e_1_2_9_113_1
  doi: 10.1109/TEMC.2011.2179928
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jmmm.2013.05.010
– ident: e_1_2_9_60_1
  doi: 10.1016/j.matlet.2012.12.069
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jeurceramsoc.2013.03.017
– ident: e_1_2_9_112_1
– ident: e_1_2_9_91_1
  doi: 10.1007/s11431-009-0020-9
– ident: e_1_2_9_50_1
  doi: 10.1002/pen.21028
– ident: e_1_2_9_54_1
  doi: 10.1007/s00339-011-6641-4
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jssc.2009.07.036
– ident: e_1_2_9_34_1
  doi: 10.1088/0957-4484/18/35/355705
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jmmm.2004.08.035
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jallcom.2013.04.059
– ident: e_1_2_9_23_1
  doi: 10.4236/ojcm.2013.32003
– ident: e_1_2_9_92_1
  doi: 10.1063/1.3630126
– ident: e_1_2_9_67_1
  doi: 10.1016/j.cap.2014.04.009
– ident: e_1_2_9_77_1
  doi: 10.1063/1.2755875
– ident: e_1_2_9_52_1
  doi: 10.1016/j.compscitech.2009.09.011
– volume: 131
  start-page: 40233
  year: 2014
  ident: e_1_2_9_20_1
  publication-title: Appl Polym Sci
  doi: 10.1002/app.40233
– ident: e_1_2_9_57_1
  doi: 10.1016/j.jpcs.2007.10.006
– ident: e_1_2_9_110_1
  doi: 10.1109/TMTT.2006.874889
– ident: e_1_2_9_15_1
– ident: e_1_2_9_9_1
  doi: 10.1063/1.3646405
– ident: e_1_2_9_83_1
  doi: 10.1016/j.apsusc.2010.08.088
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jallcom.2010.02.103
– volume: 25
  start-page: S5
  year: 2013
  ident: e_1_2_9_98_1
  publication-title: Asian J Chem
– ident: e_1_2_9_66_1
  doi: 10.1016/j.jallcom.2014.03.192
– ident: e_1_2_9_72_1
  doi: 10.1016/j.jmmm.2012.10.033
– ident: e_1_2_9_49_1
  doi: 10.1016/j.solidstatesciences.2007.09.016
– ident: e_1_2_9_68_1
  doi: 10.1007/s11431-009-0020-9
– ident: e_1_2_9_79_1
  doi: 10.1016/j.matdes.2011.04.042
– ident: e_1_2_9_75_1
  doi: 10.1039/C4NR03040K
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jallcom.2008.03.127
– volume: 32
  start-page: 439
  year: 2008
  ident: e_1_2_9_31_1
  publication-title: J. Nanchang Univ, Nat Sci
– ident: e_1_2_9_6_1
  doi: 10.1007/s12221-014-0583-3
– ident: e_1_2_9_51_1
  doi: 10.1016/j.matlet.2007.01.077
– ident: e_1_2_9_88_1
  doi: 10.1002/pc.22186
– ident: e_1_2_9_115_1
– ident: e_1_2_9_109_1
  doi: 10.1016/j.compscitech.2005.05.034
– ident: e_1_2_9_13_1
  doi: 10.1002/app.40963
– ident: e_1_2_9_61_1
  doi: 10.1002/pat.2000
– ident: e_1_2_9_59_1
  doi: 10.1063/1.3683012
– ident: e_1_2_9_97_1
  doi: 10.1016/j.synthmet.2008.01.012
– ident: e_1_2_9_53_1
  doi: 10.1016/j.compscitech.2007.10.006
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jssc.2009.07.036
– ident: e_1_2_9_7_1
  doi: 10.1016/j.mseb.2006.02.045
– ident: e_1_2_9_124_1
  doi: 10.1016/j.compscitech.2015.04.001
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jallcom.2011.11.060
– ident: e_1_2_9_118_1
  doi: 10.1038/nbt720
– ident: e_1_2_9_99_1
  doi: 10.1007/s10853-014-8229-9
– ident: e_1_2_9_81_1
  doi: 10.1016/j.jmmm.2013.06.032
– ident: e_1_2_9_5_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.mseb.2006.02.045
– ident: e_1_2_9_25_1
  doi: 10.1016/j.synthmet.2005.05.019
– volume-title: 4th International Conference on the Durability of Concrete Structures
  year: 2014
  ident: e_1_2_9_103_1
– ident: e_1_2_9_94_1
  doi: 10.1016/j.mseb.2010.07.007
– ident: e_1_2_9_114_1
  doi: 10.1109/TAP.2004.841320
– ident: e_1_2_9_56_1
  doi: 10.1016/j.matlet.2009.07.023
– ident: e_1_2_9_48_1
  doi: 10.1002/pen.21028
– ident: e_1_2_9_120_1
  doi: 10.1063/1.1842374
– ident: e_1_2_9_41_1
  doi: 10.1038/srep05619
– ident: e_1_2_9_89_1
  doi: 10.1016/j.mseb.2004.10.022
– ident: e_1_2_9_55_1
  doi: 10.1016/j.mseb.2006.12.018
– ident: e_1_2_9_121_1
  doi: 10.1021/cr800433k
– ident: e_1_2_9_95_1
  doi: 10.1039/c4ta01715c
– ident: e_1_2_9_36_1
  doi: 10.1063/1.2165276
– ident: e_1_2_9_39_1
  doi: 10.1177/0731684412454198
– ident: e_1_2_9_108_1
  doi: 10.1109/TEMC.2007.915284
– ident: e_1_2_9_32_1
  doi: 10.1016/j.carbon.2008.08.001
– ident: e_1_2_9_80_1
  doi: 10.1039/C4CP03208J
– ident: e_1_2_9_30_1
  doi: 10.1016/j.solidstatesciences.2007.09.016
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.200306460
– ident: e_1_2_9_8_1
  doi: 10.1063/1.2755875
– ident: e_1_2_9_71_1
  doi: 10.3144/expresspolymlett.2013.20
– ident: e_1_2_9_14_1
  doi: 10.2528/PIERL13102803
– ident: e_1_2_9_74_1
  doi: 10.1021/am3021069
– ident: e_1_2_9_100_1
  doi: 10.1016/j.mseb.2008.04.004
– volume: 111
  start-page: 07A522:1
  year: 2012
  ident: e_1_2_9_122_1
  publication-title: J Appl Phys
– ident: e_1_2_9_105_1
  doi: 10.1002/app.40891
– ident: e_1_2_9_111_1
  doi: 10.1109/TEMC.2014.2311294
– ident: e_1_2_9_4_1
  doi: 10.4236/ojcm.2013.32003
– ident: e_1_2_9_87_1
  doi: 10.1016/j.matlet.2009.01.037
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jlumin.2013.11.036
– ident: e_1_2_9_18_1
  doi: 10.1007/s11051-012-1415-2
– ident: e_1_2_9_40_1
  doi: 10.1016/j.matlet.2011.09.036
– ident: e_1_2_9_64_1
  doi: 10.1063/1.4737119
– ident: e_1_2_9_96_1
  doi: 10.3144/expresspolymlett.2013.20
– ident: e_1_2_9_22_1
  doi: 10.4236/ojpchem.2014.43008
– ident: e_1_2_9_26_1
– ident: e_1_2_9_106_1
  doi: 10.1080/09243046.2013.824868
– ident: e_1_2_9_84_1
  doi: 10.1016/j.matlet.2008.10.015
– ident: e_1_2_9_69_1
  doi: 10.1016/j.mseb.2008.10.029
– ident: e_1_2_9_73_1
  doi: 10.1016/j.jmmm.2011.10.027
– ident: e_1_2_9_78_1
  doi: 10.1039/C4TA02815E
– ident: e_1_2_9_62_1
  doi: 10.1007/s10909-012-0748-7
– ident: e_1_2_9_70_1
  doi: 10.1016/j.matlet.2008.10.015
– ident: e_1_2_9_123_1
  doi: 10.1016/j.compstruct.2006.08.029
SSID ssj0011463
Score 2.4138489
SecondaryResourceType review_article
Snippet ABSTRACT Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar...
Multiwall carbon nanotubes (MWCNTs) reinforced composites for electromagnetic (EM) absorption are reviewed. Here, four types of nanostructured radar absorbing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 362
SubjectTerms Absorption
Broadband
Composites
Decoration
Microwave absoption
Multi wall carbon nanotubes
MWCNTs
Nano Particles
Nanocomposites
Nanotubes
Polymer matrix composites
Polymers
Radar absorbers
Radar absorbing materials
Rams
Repair & maintenance
Title Microwave Radar Absorbing Properties of Multiwalled Carbon Nanotubes Polymer Composites: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadv.21617
https://www.proquest.com/docview/1945154096
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvTgW3xUWcSDl7R5bDapnopaRKxIVehBCLPZjQdrI2lr0V_vTNLUKgribSGbx-7szHyzmfmWscMEQs9zASzHE9rC-EtYoAPfQl_hgYdOSSdUnNy-lhf34rLrdyvspKyFKfghphtupBm5vSYFBzWof5KGgn6tuYTO0f5SrhYBos6UOoqKbQsKTg_DIxk0SlYh261P7_zqiz4B5ixMzf1Ma5k9lF9YpJc81UZDVYvfv5E3_nMIK2xpgj95s1gwq6xi-mtscYaVcJ1Bm5L0xvBqeAc0ZLypBmmGEfQjv6Gt-4w4WHma8Lx4d0yHsWh-CplK-xyNdTocKbx-k_benk3GyeBQYpgZHPMmL35FbLD71vnd6YU1OYnBil0EiJYyATa0gCQGophznNhWSionDIwBkKFtEqlkLBPHNhgCNYRMIGgYbAhJ6W-bbK6f9s0W46EdA_ggjPS1SECHxAgoXGMwWnY9E26zo1ImUTyhKafTMnpRQbDsRjhrUT5r2-xg2vWl4Ob4qVO1FGw0Uc9B5DQE4jgMbSW-LpfQ7w-IEB_kjZ2_d91lCy65_zwXrcrmhtnI7CF4Gap9Nt88a1_d7uer9QMMbOwh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ROJQeeBRQKY-uEAcuDn5s1g7iEiFQ2hKEEEhckDXrXXMgxJWTgODXM7OOw0Mgod5W8vqxz_m-9cw3ANs5JlEUInpBJI1H_Et6aOKmR7YiwoiMksk5OLl7ojoX8s9l83IK9utYmEofYnLgxivD7de8wPlAevdZNRTNXSNkeP4FZjijtyNUZxPxKA63rUQ4IyJIKm7VukJ-uDu59bU1eoaYL4GqszRH83BVf2PlYHLTGA11I3t8I9_4v41YgLkxBBXtas4swpTtf4dvL4QJlwC77Kd3j3dWnKHBUrT1oCiJRF-LUz69L1mGVRS5cPG795yPxYgDLHXRF7RfF8ORpuunRe_h1paC9xz2DbODPdEW1d-IZbg4Ojw_6HjjZAxeFhJG9LSNqWAk5hmyylwQZL7WSgdJbC2iSnybK60ylQe-JRbUkirHuGWpIBV7wK3AdL_o2x8gEj9DbKK0qmlkjiZhUUAZWkuEOYxssgo79aCk2VipnBNm9NJKYzlMqddS12ursDWp-q-S53iv0no9sul4hQ7SoCUJyhG7VfQ6N0QfPyAliOAKPz9f9Rd87Zx3j9Pj3yd_12A2ZDTgXNPWYXpYjuwGYZmh3nRT9glYCO6o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS-RAEIcLdUH0oKuu-Nq1EQ9eMubR08msp0F38M0gK3gQQnW624M6kcyMon_9ViWTUZcVFm8N6Tz7Ub_qVH0NsO0wiaIQ0QsiaTzyv6SHJm56ZCsijMgoGcfJyWfn6vBSHl81ryZgr86FqfgQ4wU3HhnlfM0D_MG43VdoKJrHRsjqfBK-SOUn3KUPLsbsKM62rRicEflHKm7VWCE_3B2f-t4YvSrMtzq1NDSdebiuH7GKL7ltDAe6kb38RW_85Dt8hbmRABXtqscswITtLcLsGyzhEuAZR-k94aMVF2iwEG3dzwtyoW9El9fuC4awityJMnv3iXdjMWIfC533BM3W-WCo6Xg3v3u-t4XgGYcjw2z_p2iL6l_EN7js_Pq9f-iNtmLwspAUoqdtTAUj0WXIjLkgyHytlQ6S2FpElfjWKa0y5QLfkg_Uksph3LJUkIrj35Zhqpf37AqIxM8Qmyitahrp0CSMBJShteQuh5FNVmGnbpM0G3HKebuMu7QiLIcpfbW0_GqrsDWu-lDBOf5VaaNu2HQ0Pvtp0JIk5Mi3VXS7soU-vkBKAqEsrP1_1U2Y7h500tOj85N1mAlZCpRxaRswNSiG9jsJmYH-UXbYP7hd7WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+Radar+Absorbing+Properties+of+Multiwalled+Carbon+Nanotubes+Polymer+Composites%3A+A+Review&rft.jtitle=Advances+in+polymer+technology&rft.au=Munir%2C+Arshad&rft.date=2017-09-01&rft.issn=0730-6679&rft.eissn=1098-2329&rft.volume=36&rft.issue=3&rft.spage=362&rft.epage=370&rft_id=info:doi/10.1002%2Fadv.21617&rft.externalDBID=10.1002%252Fadv.21617&rft.externalDocID=ADV21617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-6679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-6679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-6679&client=summon