Fractional analysis of radiative blood transport through a porous channel containing multishaped cobalt nanoparticles: An application to hemodynamics

In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd‐B model is used to feature flow characteristics of blood along with Fourier's principle of hea...

Full description

Saved in:
Bibliographic Details
Published inHeat transfer (Hoboken, N.J. Print) Vol. 52; no. 5; pp. 3453 - 3488
Main Authors Asifa, Anwar, Talha, Kumam, Poom, Suttiarporn, Panawan, Swadchaipong, Notsawan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN2688-4534
2688-4542
DOI10.1002/htj.22836

Cover

Abstract In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd‐B model is used to feature flow characteristics of blood along with Fourier's principle of heat transmission for the mathematical modeling of the problem. A fractional system is constructed by employing the idea of the Caputo–Fabrizio derivative on subsequent differential equations. The Laplace transform method is adopted to solve the fractional flow and energy equations subject to generalized boundary conditions, which involve time‐dependent functions h ( τ ) $h(\tau )$ and g ( τ ) $g(\tau )$, respectively. Instead of promoting the analytic velocity and energy expressions, Zakian's numerical algorithm is operated to achieve the reverse transformation purpose of Laplace domain functions. To certify the obtained solutions, two additional numerical algorithms named Stehfest's algorithm and Durbin's algorithm are inculcated in this study, and comparative illustrations are drawn. For the extensive investigation of shear stress and heat transfer phenomenon, numerical simulations for the coefficient of skin friction and Nusselt number are performed, and outcomes are communicated through various tables. The impacts of shape‐dependent viscosity and other significant parameters on flow patterns are investigated through graphs for multiple motion types of the left channel wall. Meanwhile, the thermal performance of nanofluid is examined for platelet, brick, cylinder, and blade shape nanoparticles, along with other thermal parameters. In addition, some recently reported results and flow profiles for Maxwell, second‐grade, and viscous fluids are deduced graphically as special cases of the current study.
AbstractList In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd‐B model is used to feature flow characteristics of blood along with Fourier's principle of heat transmission for the mathematical modeling of the problem. A fractional system is constructed by employing the idea of the Caputo–Fabrizio derivative on subsequent differential equations. The Laplace transform method is adopted to solve the fractional flow and energy equations subject to generalized boundary conditions, which involve time‐dependent functions h(τ) $h(\tau )$ and g(τ) $g(\tau )$, respectively. Instead of promoting the analytic velocity and energy expressions, Zakian's numerical algorithm is operated to achieve the reverse transformation purpose of Laplace domain functions. To certify the obtained solutions, two additional numerical algorithms named Stehfest's algorithm and Durbin's algorithm are inculcated in this study, and comparative illustrations are drawn. For the extensive investigation of shear stress and heat transfer phenomenon, numerical simulations for the coefficient of skin friction and Nusselt number are performed, and outcomes are communicated through various tables. The impacts of shape‐dependent viscosity and other significant parameters on flow patterns are investigated through graphs for multiple motion types of the left channel wall. Meanwhile, the thermal performance of nanofluid is examined for platelet, brick, cylinder, and blade shape nanoparticles, along with other thermal parameters. In addition, some recently reported results and flow profiles for Maxwell, second‐grade, and viscous fluids are deduced graphically as special cases of the current study.
In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd‐B model is used to feature flow characteristics of blood along with Fourier's principle of heat transmission for the mathematical modeling of the problem. A fractional system is constructed by employing the idea of the Caputo–Fabrizio derivative on subsequent differential equations. The Laplace transform method is adopted to solve the fractional flow and energy equations subject to generalized boundary conditions, which involve time‐dependent functions h ( τ ) $h(\tau )$ and g ( τ ) $g(\tau )$, respectively. Instead of promoting the analytic velocity and energy expressions, Zakian's numerical algorithm is operated to achieve the reverse transformation purpose of Laplace domain functions. To certify the obtained solutions, two additional numerical algorithms named Stehfest's algorithm and Durbin's algorithm are inculcated in this study, and comparative illustrations are drawn. For the extensive investigation of shear stress and heat transfer phenomenon, numerical simulations for the coefficient of skin friction and Nusselt number are performed, and outcomes are communicated through various tables. The impacts of shape‐dependent viscosity and other significant parameters on flow patterns are investigated through graphs for multiple motion types of the left channel wall. Meanwhile, the thermal performance of nanofluid is examined for platelet, brick, cylinder, and blade shape nanoparticles, along with other thermal parameters. In addition, some recently reported results and flow profiles for Maxwell, second‐grade, and viscous fluids are deduced graphically as special cases of the current study.
In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood inside a vertical porous channel. An Oldroyd‐B model is used to feature flow characteristics of blood along with Fourier's principle of heat transmission for the mathematical modeling of the problem. A fractional system is constructed by employing the idea of the Caputo–Fabrizio derivative on subsequent differential equations. The Laplace transform method is adopted to solve the fractional flow and energy equations subject to generalized boundary conditions, which involve time‐dependent functions and , respectively. Instead of promoting the analytic velocity and energy expressions, Zakian's numerical algorithm is operated to achieve the reverse transformation purpose of Laplace domain functions. To certify the obtained solutions, two additional numerical algorithms named Stehfest's algorithm and Durbin's algorithm are inculcated in this study, and comparative illustrations are drawn. For the extensive investigation of shear stress and heat transfer phenomenon, numerical simulations for the coefficient of skin friction and Nusselt number are performed, and outcomes are communicated through various tables. The impacts of shape‐dependent viscosity and other significant parameters on flow patterns are investigated through graphs for multiple motion types of the left channel wall. Meanwhile, the thermal performance of nanofluid is examined for platelet, brick, cylinder, and blade shape nanoparticles, along with other thermal parameters. In addition, some recently reported results and flow profiles for Maxwell, second‐grade, and viscous fluids are deduced graphically as special cases of the current study.
Author Asifa
Anwar, Talha
Kumam, Poom
Suttiarporn, Panawan
Swadchaipong, Notsawan
Author_xml – sequence: 1
  surname: Asifa
  fullname: Asifa
  organization: King Mongkut's University of Technology Thonburi (KMUTT)
– sequence: 2
  givenname: Talha
  orcidid: 0000-0002-4071-752X
  surname: Anwar
  fullname: Anwar, Talha
  organization: King Mongkut's University of Technology Thonburi (KMUTT)
– sequence: 3
  givenname: Poom
  orcidid: 0000-0002-5463-4581
  surname: Kumam
  fullname: Kumam, Poom
  email: poom.kum@kmutt.ac.th
  organization: King Mongkut's University of Technology Thonburi (KMUTT)
– sequence: 4
  givenname: Panawan
  surname: Suttiarporn
  fullname: Suttiarporn, Panawan
  organization: King Mongkut's University of Technology North Bangkok
– sequence: 5
  givenname: Notsawan
  surname: Swadchaipong
  fullname: Swadchaipong, Notsawan
  organization: King Mongkut's University of Technology North Bangkok
BookMark eNp1kMtOxCAUhokZE68L34DElYsZubRM685MHC8xcaPr5hSoZcJABaqZB_F9Rce4MLo5HMj3H-A7QBPnnUbohJIZJYSd92k1Y6ziYgftM1FV06Is2OSn58UeOo5xRTJbUjpnYh-9LwPIZLwDiyGXTTQR-w4HUAaSedW4td4rnAK4OPiQcOqDH597DDhv_Rix7ME5bbH0LoFxxj3j9WiTiT0MWuXjFmzCDpwfICQjrY4X-NJhGAZrJHxejpPHvV57tXGwNjIeod0ObNTH3-shelpePS5upvcP17eLy_upZPVcTNuSck5pWUEBvGJCFUxXRFLZaQXzSnf5y3UtQJVc1KRmQoKipOUdB8VJK_khOt3OHYJ_GXVMzcqPIWuIDWes4IXgYp6p8y0lg48x6K6RJn29O1sxtqGk-dTfZP3Nl_6cOPuVGIJZQ9j8yX5PfzNWb_4Hm5vHu23iA6CLmkg
CitedBy_id crossref_primary_10_1166_jon_2024_2209
Cites_doi 10.3390/app10113886
10.1016/j.amc.2015.10.021
10.1115/1.4040415
10.1016/j.chaos.2019.03.020
10.3390/math7070589
10.1038/s41598-018-33547-z
10.1016/j.cjph.2020.05.026
10.1177/1687814019860384
10.1140/epjp/i2018-12340-3
10.1186/1556-276X-6-231
10.1016/j.aej.2015.01.001
10.1007/s10971-022-05859-0
10.1016/j.icheatmasstransfer.2021.105831
10.1063/1.3155999
10.3390/math7080676
10.1038/s41598-021-98066-w
10.1140/epjp/i2018-11857-7
10.2298/TSCI160111018A
10.1016/j.rinp.2017.06.001
10.1007/s11043-019-09442-z
10.1016/j.chaos.2018.08.003
10.1049/el:19690090
10.1186/s11671-015-1144-4
10.1093/comjnl/17.4.371
10.1016/j.ijheatmasstransfer.2009.02.006
10.1016/S0020-7225(00)00026-4
10.1016/j.molliq.2017.03.009
10.1145/361953.361969
10.1088/1402-4896/abbe50
10.1140/epjc/s10052-016-4209-3
10.1016/j.egyr.2018.09.009
10.3390/math7060509
10.1016/j.jmmm.2016.09.125
10.1063/1.5011789
10.1115/1.2150834
10.1115/1.4046060
10.1134/S1810232812020026
10.1016/j.icheatmasstransfer.2012.11.004
10.1063/1.1341218
10.1016/S0020-7225(02)00153-2
10.24294/jpse.v1i2.599
10.1088/1402-4896/abbe4f
10.1016/j.physrep.2021.07.002
10.1201/CRCCOMPHYPRO
10.1016/j.ijheatmasstransfer.2017.05.018
10.1016/j.cjph.2019.08.014
10.1021/i160003a005
10.1038/s41598-020-74096-8
10.1007/s13204-015-0481-z
10.1063/1.4754271
10.1142/S0218202596000481
10.1140/epjp/i2017-11606-6
10.1016/j.partic.2009.01.005
10.1115/1.4044201
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/htj.22836
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2688-4542
EndPage 3488
ExternalDocumentID 10_1002_htj_22836
HTJ22836
Genre article
GrantInformation_xml – fundername: National Science, Research and Innovation Fund (NSRF), King Mongkut's University of Technology North Bangkok with Contract no. KMUTNB‐FF‐66‐61
– fundername: Petchra Pra Jom Klao Ph.D. Research Scholarship (25/2563)
– fundername: Center of Excellence in Theoretical and Computational Science (TaCS‐CoE), KMUTT
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCFJ
ACCZN
ACXBN
ADOZA
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
DCZOG
DRFUL
DRSTM
EBS
HGLYW
LATKE
LEEKS
MEWTI
SUPJJ
TUS
WXSBR
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ROL
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c2976-b51331158a4a3826d42e80c1cfeda78ef534996ad53690926cad10b3f3ad30bc3
ISSN 2688-4534
IngestDate Thu Jul 10 13:11:41 EDT 2025
Tue Jul 01 03:38:26 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Jan 22 16:19:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2976-b51331158a4a3826d42e80c1cfeda78ef534996ad53690926cad10b3f3ad30bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4071-752X
0000-0002-5463-4581
PQID 3224346367
PQPubID 996354
PageCount 36
ParticipantIDs proquest_journals_3224346367
crossref_citationtrail_10_1002_htj_22836
crossref_primary_10_1002_htj_22836
wiley_primary_10_1002_htj_22836_HTJ22836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Heat transfer (Hoboken, N.J. Print)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 131
2017; 7
2019; 11
2019; 12
2016; 76
2020; 12
2020; 10
2017; 233
2017; 113
2019; 122
1974; 17
2018; 133
2018; 8
2009; 52
2019; 61
2018; 1
2020; 95
1969; 5
2013; 113
1980
2006; 128
2003; 41
2012; 21
2016; 273
1996; 6
2015; 1
2019; 7
2019; 5
1962; 1
2013; 41
2015; 10
2015; 54
1998
1996
1995
2017; 132
2019; 141
2011; 6
1970; 13
2016; 6
2016; 2
2021; 11
2018; 115
2020; 25
2009; 7
2022; 946
2020; 66
2001; 39
2001; 78
2012; 4
2022; 104
2017; 423
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
Caputo M (e_1_2_10_26_1) 2015; 1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
Podlubny I. (e_1_2_10_25_1) 1998
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
Riaz MB (e_1_2_10_41_1) 2019; 12
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Asjad MI (e_1_2_10_39_1) 2018; 1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
Elhanafy A (e_1_2_10_43_1) 2019; 11
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_47_1
References_xml – volume: 5
  start-page: 120
  issue: 6
  year: 1969
  end-page: 121
  article-title: Numerical inversion of Laplace transform
  publication-title: Electron Lett.
– volume: 133
  start-page: 224
  year: 2018
  article-title: Soret effects on simultaneous heat and mass transfer in MHD viscous fluid through a porous medium with uniform heat flux and Atangana‐Baleanu fractional derivative approach
  publication-title: Eur Phys J Plus
– volume: 115
  start-page: 170
  year: 2018
  end-page: 176
  article-title: A peculiar application of Atangana‐Baleanu fractional derivative in neuroscience: chaotic burst dynamics
  publication-title: Chaos, Solitons Fract
– volume: 4
  year: 2012
– volume: 13
  start-page: 47
  issue: 1
  year: 1970
  end-page: 49
  article-title: Algorithm 368: numerical inversion of Laplace transforms [D5]
  publication-title: Commun ACM
– volume: 423
  start-page: 327
  year: 2017
  end-page: 336
  article-title: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model
  publication-title: J Magn Magn Mater.
– volume: 7
  issue: 12
  year: 2017
  article-title: Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation
  publication-title: AIP Adv
– volume: 10
  start-page: 3886
  issue: 11
  year: 2020
  article-title: Multiple fractional solutions for magnetic bio‐nanofluid using Oldroyd‐B model in a porous medium with ramped wall heating and variable velocity
  publication-title: Appl Sci
– year: 1998
– volume: 95
  issue: 11
  year: 2020
  article-title: Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator
  publication-title: Phys Scr.
– volume: 41
  start-page: 609
  issue: 6
  year: 2003
  end-page: 619
  article-title: Hall effects on the unsteady hydromagnetic flows of an Oldroyd‐B fluid
  publication-title: Int J Eng Sci.
– volume: 128
  start-page: 240
  issue: 3
  year: 2006
  end-page: 250
  article-title: Convective transport in nanofluids
  publication-title: J Heat Transfer
– volume: 133
  start-page: 549
  issue: 12
  year: 2018
  article-title: Natural convection channel flow of CMC‐based CNTs nanofluid
  publication-title: Eur Phys J Plus
– volume: 946
  start-page: 1
  year: 2022
  end-page: 94
  article-title: Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids
  publication-title: Phys Rep
– volume: 41
  start-page: 41
  year: 2013
  end-page: 46
  article-title: Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al O and CuO nanofluids
  publication-title: Int Commun Heat Mass Transfer
– volume: 233
  start-page: 442
  year: 2017
  end-page: 451
  article-title: Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium
  publication-title: J Mol Liq.
– volume: 11
  issue: 4
  year: 2019
  article-title: Shape effect in magnetohydrodynamic free convection flow of sodium alginate‐ferrimagnetic nanofluid
  publication-title: J Therm Sci Eng Appl.
– volume: 7
  start-page: 1887
  year: 2017
  end-page: 1898
  article-title: Wall slip and non‐integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo‐Fabrizio derivatives
  publication-title: Results Phys
– volume: 66
  start-page: 497
  year: 2020
  end-page: 516
  article-title: New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)‐CMC based nanofluids flow over inclined plate with generalized boundary conditions
  publication-title: Chin J Phys.
– volume: 95
  issue: 11
  year: 2020
  article-title: Radiative heat transfer enhancement in mhd porous channel flow of an Oldroyd‐b fluid under generalized boundary conditions
  publication-title: Phys Scr.
– volume: 132
  start-page: 340
  issue: 8
  year: 2017
  article-title: Heat transfer analysis of fractional second‐grade fluid subject to Newtonian heating with Caputo and Caputo‐Fabrizio fractional derivatives: a comparison
  publication-title: Eur Phys J Plus
– volume: 61
  start-page: 336
  year: 2019
  end-page: 350
  article-title: Analysis of mathematical model of fractional viscous fluid through a vertical rectangular channel
  publication-title: Chin J Phys.
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 13
  article-title: Effects of different shaped nanoparticles on the performance of engine‐oil and kerosene‐oil: a generalized Brinkman‐type fluid model with non‐singular kernel
  publication-title: Sci Rep.
– volume: 141
  issue: 2
  year: 2019
  article-title: Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current
  publication-title: J Heat Transfer
– volume: 78
  start-page: 718
  issue: 6
  year: 2001
  end-page: 720
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol‐based nanofluids containing copper nanoparticles
  publication-title: Appl Phys Lett.
– volume: 113
  start-page: 96
  year: 2017
  end-page: 105
  article-title: Nanofluid flow due to rotating disk with variable thickness and homogeneous‐heterogeneous reactions
  publication-title: Int J Heat Mass Transfer.
– volume: 1
  start-page: 599
  year: 2018
  article-title: Exact analysis of MHD Walters'‐B fluid flow with non‐singular fractional derivatives of Caputo‐Fabrizio in the presence of radiation and chemical reaction
  publication-title: J Polym Sci Eng.
– volume: 6
  start-page: 1157
  issue: 8
  year: 1996
  end-page: 1167
  article-title: On the Oberbeck‐Boussinesq approximation
  publication-title: Math Models Methods Appl Sci
– volume: 11
  year: 2021
  article-title: Application of water based drilling clay‐nanoparticles in heat transfer of fractional Maxwell fluid over an infinite flat surface
  publication-title: Sci Rep.
– volume: 5
  start-page: 41
  year: 2019
  end-page: 49
  article-title: Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo‐Fabrizio fractional operator: an application to solar energy
  publication-title: Energy Rep
– volume: 7
  start-page: 151
  issue: 2
  year: 2009
  end-page: 157
  article-title: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology
  publication-title: Particuology
– volume: 54
  start-page: 55
  issue: 1
  year: 2015
  end-page: 64
  article-title: Natural convective magneto‐nanofluid flow and radiative heat transfer past a moving vertical plate
  publication-title: Alex Eng J
– volume: 131
  year: 2022
  article-title: Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump
  publication-title: Int Commun Heat Mass Transfer.
– volume: 6
  start-page: 641
  issue: 5
  year: 2016
  end-page: 651
  article-title: The shape effects of nanoparticles suspended in HFE‐7100 over wedge with entropy generation and mixed convection
  publication-title: Appl Nanosci
– volume: 10
  year: 2020
  article-title: The non‐Newtonian Maxwell nanofluid flow between two parallel rotating disks under the effects of magnetic field
  publication-title: Sci Rep.
– volume: 21
  start-page: 111
  issue: 2
  year: 2012
  end-page: 118
  article-title: Characteristics of Rosseland and P‐1 approximations in modeling nonstationary conditions of convection‐radiation heat transfer in an enclosure with a local energy source
  publication-title: J Eng Thermophys.
– volume: 17
  start-page: 371
  issue: 4
  year: 1974
  end-page: 376
  article-title: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method
  publication-title: Comput J.
– volume: 113
  start-page: 1
  issue: 1
  year: 2013
  article-title: Small particles, big impacts: a review of the diverse applications of nanofluids
  publication-title: J Appl Phys.
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  end-page: 85
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr Fract Differ Appl
– year: 1996
– volume: 52
  start-page: 3187
  year: 2009
  end-page: 3196
  article-title: Review of convective heat transfer enhancement with nanofluids
  publication-title: Int J Heat Mass Transfer.
– volume: 7
  start-page: 509
  issue: 6
  year: 2019
  article-title: On history of mathematical economics: application of fractional calculus
  publication-title: Mathematics.
– volume: 2
  start-page: 763
  issue: 20
  year: 2016
  end-page: 769
  article-title: New fractional derivatives with nonlocal and non‐singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci.
– volume: 106
  issue: 1
  year: 2009
  article-title: Particle shape effects on thermophysical properties of alumina nanofluids
  publication-title: J Appl Phys.
– volume: 104
  start-page: 1
  issue: 1
  year: 2022
  end-page: 35
  article-title: Nanofluids: properties and applications
  publication-title: J Sol‐Gel Sci Technol.
– volume: 25
  start-page: 291
  year: 2020
  end-page: 311
  article-title: Heat transfer analysis in convective flows of fractional second grade fluids with Caputo‐Fabrizio and Atangana‐Baleanu derivative subject to Newtonion heating
  publication-title: Mech Time‐Depend Mater.
– volume: 39
  start-page: 135
  issue: 2
  year: 2001
  end-page: 147
  article-title: Some simple flows of an Oldroyd‐B fluid
  publication-title: Int J Eng Sci.
– volume: 122
  start-page: 111
  year: 2019
  end-page: 118
  article-title: Modeling chickenpox disease with fractional derivatives: from Caputo to Atangana‐Baleanu
  publication-title: Chaos Solitons Fract
– volume: 11
  issue: 5
  year: 2019
  article-title: Numerical simulation of Oldroyd‐B fluid with application to hemodynamics. A
  publication-title: Mech Eng.
– year: 1980
– volume: 12
  start-page: 645
  issue: 3
  year: 2019
  article-title: Couette flows of a viscous fluid with slip effects and non‐integer order derivative without singular kernel
  publication-title: Discrete Contin Dyn Syst‐S
– volume: 7
  start-page: 676
  issue: 8
  year: 2019
  article-title: Unsteady magnetohydrodynamic convective fluid flow of Oldroyd‐B model considering ramped wall temperature and ramped wall velocity
  publication-title: Mathematics
– volume: 7
  start-page: 589
  issue: 7
  year: 2019
  article-title: The Mittag‐Leffler fitting of the phillips curve
  publication-title: Mathematics.
– year: 1995
– volume: 6
  start-page: 1
  issue: 1
  year: 2011
  end-page: 6
  article-title: Stability of nanofluids in quiescent and shear flow fields
  publication-title: Nanoscale Res Lett
– volume: 76
  start-page: 362
  issue: 7
  year: 2016
  article-title: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo‐Fabrizio derivatives
  publication-title: Eur Phys J C
– volume: 1
  start-page: 187
  issue: 3
  year: 1962
  end-page: 191
  article-title: Thermal conductivity of heterogeneous two‐component systems
  publication-title: Ind Eng Chem Fundam
– volume: 11
  issue: 7
  year: 2019
  article-title: Influence of magnetic field on double convection problem of fractional viscous fluid over an exponentially moving vertical plate: new trends of Caputo time‐fractional derivative model
  publication-title: Adv Mech Eng.
– volume: 273
  start-page: 948
  year: 2016
  end-page: 956
  article-title: On the new fractional derivative and application to nonlinear Fisher's reaction‐diffusion equation
  publication-title: Appl Math Comput.
– volume: 10
  start-page: 490
  issue: 1
  year: 2015
  article-title: Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium
  publication-title: Nanoscale Res Lett.
– volume: 12
  issue: 5
  year: 2020
  article-title: Impact of partial slip on magneto‐ferrofluids mixed convection flow in enclosure
  publication-title: J Therm Sci Eng Appl.
– ident: e_1_2_10_44_1
  doi: 10.3390/app10113886
– ident: e_1_2_10_28_1
  doi: 10.1016/j.amc.2015.10.021
– ident: e_1_2_10_13_1
  doi: 10.1115/1.4040415
– ident: e_1_2_10_30_1
  doi: 10.1016/j.chaos.2019.03.020
– ident: e_1_2_10_32_1
  doi: 10.3390/math7070589
– ident: e_1_2_10_22_1
  doi: 10.1038/s41598-018-33547-z
– ident: e_1_2_10_33_1
  doi: 10.1016/j.cjph.2020.05.026
– ident: e_1_2_10_40_1
  doi: 10.1177/1687814019860384
– ident: e_1_2_10_12_1
  doi: 10.1140/epjp/i2018-12340-3
– ident: e_1_2_10_8_1
  doi: 10.1186/1556-276X-6-231
– ident: e_1_2_10_49_1
  doi: 10.1016/j.aej.2015.01.001
– ident: e_1_2_10_18_1
  doi: 10.1007/s10971-022-05859-0
– ident: e_1_2_10_19_1
  doi: 10.1016/j.icheatmasstransfer.2021.105831
– ident: e_1_2_10_21_1
  doi: 10.1063/1.3155999
– ident: e_1_2_10_48_1
  doi: 10.3390/math7080676
– ident: e_1_2_10_16_1
  doi: 10.1038/s41598-021-98066-w
– ident: e_1_2_10_38_1
  doi: 10.1140/epjp/i2018-11857-7
– ident: e_1_2_10_27_1
  doi: 10.2298/TSCI160111018A
– ident: e_1_2_10_54_1
  doi: 10.1016/j.rinp.2017.06.001
– ident: e_1_2_10_56_1
  doi: 10.1007/s11043-019-09442-z
– ident: e_1_2_10_29_1
  doi: 10.1016/j.chaos.2018.08.003
– ident: e_1_2_10_57_1
  doi: 10.1049/el:19690090
– ident: e_1_2_10_4_1
– ident: e_1_2_10_20_1
  doi: 10.1186/s11671-015-1144-4
– ident: e_1_2_10_58_1
  doi: 10.1093/comjnl/17.4.371
– ident: e_1_2_10_53_1
– ident: e_1_2_10_6_1
  doi: 10.1016/j.ijheatmasstransfer.2009.02.006
– ident: e_1_2_10_46_1
  doi: 10.1016/S0020-7225(00)00026-4
– ident: e_1_2_10_51_1
  doi: 10.1016/j.molliq.2017.03.009
– ident: e_1_2_10_59_1
  doi: 10.1145/361953.361969
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  ident: e_1_2_10_26_1
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr Fract Differ Appl
– ident: e_1_2_10_62_1
  doi: 10.1088/1402-4896/abbe50
– ident: e_1_2_10_34_1
  doi: 10.1140/epjc/s10052-016-4209-3
– volume: 12
  start-page: 645
  issue: 3
  year: 2019
  ident: e_1_2_10_41_1
  article-title: Couette flows of a viscous fluid with slip effects and non‐integer order derivative without singular kernel
  publication-title: Discrete Contin Dyn Syst‐S
– ident: e_1_2_10_35_1
  doi: 10.1016/j.egyr.2018.09.009
– ident: e_1_2_10_31_1
  doi: 10.3390/math7060509
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jmmm.2016.09.125
– ident: e_1_2_10_36_1
  doi: 10.1063/1.5011789
– ident: e_1_2_10_2_1
  doi: 10.1115/1.2150834
– ident: e_1_2_10_52_1
  doi: 10.1115/1.4046060
– ident: e_1_2_10_50_1
  doi: 10.1134/S1810232812020026
– ident: e_1_2_10_11_1
  doi: 10.1016/j.icheatmasstransfer.2012.11.004
– volume-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications
  year: 1998
  ident: e_1_2_10_25_1
– ident: e_1_2_10_10_1
  doi: 10.1063/1.1341218
– ident: e_1_2_10_47_1
  doi: 10.1016/S0020-7225(02)00153-2
– volume: 1
  start-page: 599
  year: 2018
  ident: e_1_2_10_39_1
  article-title: Exact analysis of MHD Walters'‐B fluid flow with non‐singular fractional derivatives of Caputo‐Fabrizio in the presence of radiation and chemical reaction
  publication-title: J Polym Sci Eng.
  doi: 10.24294/jpse.v1i2.599
– ident: e_1_2_10_42_1
  doi: 10.1088/1402-4896/abbe4f
– ident: e_1_2_10_17_1
  doi: 10.1016/j.physrep.2021.07.002
– ident: e_1_2_10_5_1
  doi: 10.1201/CRCCOMPHYPRO
– ident: e_1_2_10_14_1
  doi: 10.1016/j.ijheatmasstransfer.2017.05.018
– ident: e_1_2_10_61_1
  doi: 10.1016/j.cjph.2019.08.014
– ident: e_1_2_10_9_1
– ident: e_1_2_10_60_1
  doi: 10.1021/i160003a005
– ident: e_1_2_10_15_1
  doi: 10.1038/s41598-020-74096-8
– ident: e_1_2_10_24_1
  doi: 10.1007/s13204-015-0481-z
– ident: e_1_2_10_3_1
  doi: 10.1063/1.4754271
– ident: e_1_2_10_45_1
  doi: 10.1142/S0218202596000481
– volume: 11
  issue: 5
  year: 2019
  ident: e_1_2_10_43_1
  article-title: Numerical simulation of Oldroyd‐B fluid with application to hemodynamics. A
  publication-title: Mech Eng.
– ident: e_1_2_10_55_1
  doi: 10.1140/epjp/i2017-11606-6
– ident: e_1_2_10_7_1
  doi: 10.1016/j.partic.2009.01.005
– ident: e_1_2_10_23_1
  doi: 10.1115/1.4044201
SSID ssj0002511726
Score 2.2313664
Snippet In this work, impacts of dispersing nonspherical shaped cobalt nanoparticles in the blood are analyzed for magnetohydrodynamic radiative transport of blood...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3453
SubjectTerms Algorithms
Blood
blood flow
Boundary conditions
Cobalt
Differential equations
Flow characteristics
Flow distribution
Flow profiles
Fluid flow
fractional analysis
Heat transfer
Heat transmission
Hemodynamics
Laplace transform
Laplace transforms
Mathematical analysis
multishaped nanoparticles
Nanofluids
Nanoparticles
Numerical analysis
Nusselt number
Parameters
porous channel
Shear stress
Skin friction
Thermodynamic properties
Viscous fluids
Title Fractional analysis of radiative blood transport through a porous channel containing multishaped cobalt nanoparticles: An application to hemodynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22836
https://www.proquest.com/docview/3224346367
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiReEFcxGMhCPCBVKantNC1vFTBVFUOT6KS9RY4v6kZJpibTJP4Hv4g_xvGljsuKNHiJUiuJW5-v9jnOd76D0Bul1IRn-STRUqUJIylNuOQiEZlUPEuJ4srkOx9_Gc1O2fwsO-v1fkWspau2HIgfO_NK_seq0AZ2NVmy_2DZ8FBogHOwLxzBwnC8lY2P1i4tweb7d-Iia6M30AZauikD4QTMQ1Ue3oePhvxq8n4rtbKMdVcrwlEMmyW_VCbhreSrtl_xCmLriEI3rfrRm2_jvy7V91q66vZN7PDOzA6E_QLaiFaQ8awu62_KZ3nNB_2T9bmRPuj2I5pzHZaKaXXtCOALvlqGVkMLtzA-qd2gurdaLUxWRpa5cp5xxa898v2mBqGBAOvnPjICU7PM73OquI1tTd4ZiUCaRTMxZU6E2K_qlLnqgTdWDKdAu2wvBkYIaIcq9x-rZeAwOr1nUsCthb31DtoneW64AvvTj8efv4atPhPF5bbwX_hZG42rlLwLXW97Rl24EwdN1utZPED3fbiCp872D1FPVY_QXUsbFs1j9LNDIN4gENcaBwRii0AcEIg9AjHHDoHYIxB3CMQRArFDIN5C4Hs8rXCEP9zWOMbfE3R69GnxYZb4Qh-JIOAOJ6UpMgShyZgzTiHelYyocSqGQivJ87HSMGIQl3OZ0dEknZCR4HKYllRTLmlaCvoU7VV1pZ4hrPWY5ipLJTEchHTIWa4FETqHSJwxqQ_Q280gF8Kr4JtiLKvihj0P0Otw6aWTftl10eHGUoWfGZoCFklGjRJfDt1Z6_39AcVsMbcnz2_T3Qt0r_u7HKK9dn2lXoJX3JavPOp-A_hKwPM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+analysis+of+radiative+blood+transport+through+a+porous+channel+containing+multishaped+cobalt+nanoparticles%3A+An+application+to+hemodynamics&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Asifa&rft.au=Anwar%2C+Talha&rft.au=Kumam%2C+Poom&rft.au=Suttiarporn%2C+Panawan&rft.date=2023-07-01&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=52&rft.issue=5&rft.spage=3453&rft.epage=3488&rft_id=info:doi/10.1002%2Fhtj.22836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_htj_22836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon