A review on statistical postprocessing methods for hydrometeorological ensemble forecasting
Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to ap...
Saved in:
Published in | Wiley interdisciplinary reviews. Water Vol. 4; no. 6; pp. e1246 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246
This article is categorized under:
Science of Water > Methods
Science of Water > Water Extremes
Statistical postprocessors are statistical models constructed from historical observations and reforecasts. They can be applied to generate calibrated hydrometeorological ensemble forecasts for any given real‐time raw forecasts. |
---|---|
AbstractList | Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246
This article is categorized under:
Science of Water > Methods
Science of Water > Water Extremes
Statistical postprocessors are statistical models constructed from historical observations and reforecasts. They can be applied to generate calibrated hydrometeorological ensemble forecasts for any given real‐time raw forecasts. Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246 This article is categorized under: Science of Water > Methods Science of Water > Water Extremes Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246This article is categorized under:Science of Water > MethodsScience of Water > Water Extremes |
Author | Li, Wentao Ye, Aizhong Duan, Qingyun Miao, Chiyuan Di, Zhenhua Gong, Wei |
Author_xml | – sequence: 1 givenname: Wentao surname: Li fullname: Li, Wentao organization: Beijing Normal University – sequence: 2 givenname: Qingyun surname: Duan fullname: Duan, Qingyun email: qyduan@bnu.edu.cn organization: Beijing Normal University – sequence: 3 givenname: Chiyuan surname: Miao fullname: Miao, Chiyuan organization: Beijing Normal University – sequence: 4 givenname: Aizhong surname: Ye fullname: Ye, Aizhong organization: Beijing Normal University – sequence: 5 givenname: Wei surname: Gong fullname: Gong, Wei organization: Beijing Normal University – sequence: 6 givenname: Zhenhua surname: Di fullname: Di, Zhenhua organization: Beijing Normal University |
BookMark | eNp1kE1PAjEQhhuDiYgc_AebePKwMO1-sD0S4ldC4gXjwUPTdmehZGmxXST8e3eBgzF6msnked-Zea9JzzqLhNxSGFEANt7Lho0oS_ML0meQ8pjytOj96K_IMIQ1AFAKWcKzPvmYRh6_DO4jZ6PQyMaExmhZR1sXmq13GkMwdhltsFm5MkSV89HqUHrXDtB5V7vlEUcbcKNq7ADUsjWxyxtyWck64PBcB-Tt8WExe47nr08vs-k81oxP8pjTJEMKyMpKYynTXKUw4TRL1URpDqiyMlHIJU1ZotrnFM1TiQmUkFPQDJIBuTv5tvd-7jA0Yu123rYrBeUZJKwoeNFS4xOlvQvBYyW06f51tvHS1IKC6EIUXYiiC7FV3P9SbL3ZSH_4kz27702Nh_9B8T5dsKPiG-HthIM |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_142500 crossref_primary_10_1016_j_jhydrol_2025_132904 crossref_primary_10_1175_MWR_D_19_0258_1 crossref_primary_10_5194_hess_29_1587_2025 crossref_primary_10_5194_hess_24_2017_2020 crossref_primary_10_1016_j_atmosres_2022_106502 crossref_primary_10_5194_hess_26_5163_2022 crossref_primary_10_1029_2017WR022432 crossref_primary_10_3390_w12092631 crossref_primary_10_1016_j_agrformet_2019_02_003 crossref_primary_10_1088_1755_1315_1087_1_012052 crossref_primary_10_1016_j_bspc_2023_104700 crossref_primary_10_3390_w14193072 crossref_primary_10_5194_hess_22_3601_2018 crossref_primary_10_1002_qj_3952 crossref_primary_10_1016_j_rse_2020_112099 crossref_primary_10_1080_02626667_2021_2023157 crossref_primary_10_3390_w16020301 crossref_primary_10_1002_wat2_1432 crossref_primary_10_1016_j_jhydrol_2021_127301 crossref_primary_10_5194_hess_28_2809_2024 crossref_primary_10_1002_2017WR021245 crossref_primary_10_1029_2022WR032117 crossref_primary_10_3390_atmos15040466 crossref_primary_10_1029_2023WR034557 crossref_primary_10_1016_j_earscirev_2024_104956 crossref_primary_10_1016_j_envsoft_2023_105732 crossref_primary_10_1111_1752_1688_12914 crossref_primary_10_1002_wea_4584 crossref_primary_10_1029_2020WR028392 crossref_primary_10_3390_w16040579 crossref_primary_10_3390_w10111604 crossref_primary_10_1016_j_atmosres_2023_107133 crossref_primary_10_1029_2020WR029471 crossref_primary_10_3389_frwa_2022_961954 crossref_primary_10_1016_j_jhydrol_2021_126520 crossref_primary_10_1016_j_jhydrol_2019_124002 crossref_primary_10_1175_JHM_D_20_0019_1 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_5194_hess_26_2939_2022 crossref_primary_10_5194_hess_27_4529_2023 crossref_primary_10_1016_j_wace_2023_100611 crossref_primary_10_1175_JHM_D_21_0020_1 crossref_primary_10_1007_s13351_019_8096_z crossref_primary_10_1061__ASCE_HE_1943_5584_0001828 crossref_primary_10_3390_w14081261 crossref_primary_10_3233_IDA_184446 crossref_primary_10_1016_j_jhydrol_2022_128432 crossref_primary_10_1016_j_jhydrol_2021_127285 crossref_primary_10_1016_j_jhydrol_2021_126233 crossref_primary_10_1016_j_jhydrol_2021_127323 crossref_primary_10_3389_fpubh_2023_1335499 crossref_primary_10_1029_2022JD036606 crossref_primary_10_1175_JHM_D_19_0266_1 crossref_primary_10_1175_JHM_D_21_0029_1 crossref_primary_10_1016_j_jhydrol_2021_126073 crossref_primary_10_1016_j_atmosres_2024_107269 crossref_primary_10_1175_JHM_D_19_0164_1 crossref_primary_10_2166_hydro_2021_176 crossref_primary_10_1111_jfr3_12658 crossref_primary_10_3390_w13141894 crossref_primary_10_5194_hess_26_1001_2022 crossref_primary_10_1061__ASCE_WR_1943_5452_0001260 crossref_primary_10_1175_JHM_D_21_0167_1 crossref_primary_10_1007_s00477_019_01694_y crossref_primary_10_3390_w16030436 crossref_primary_10_1007_s13253_019_00358_2 crossref_primary_10_1029_2022RG000788 crossref_primary_10_1111_jfr3_12880 crossref_primary_10_1029_2019GL083831 crossref_primary_10_1016_j_jhydrol_2024_131176 crossref_primary_10_1016_j_jhydrol_2022_127912 crossref_primary_10_3390_rs11111345 crossref_primary_10_5194_hess_28_4099_2024 crossref_primary_10_1029_2021JD035737 crossref_primary_10_1002_qj_3637 crossref_primary_10_5194_hess_23_723_2019 crossref_primary_10_1175_WAF_D_19_0121_1 crossref_primary_10_1051_lhb_2019016 crossref_primary_10_1175_JCLI_D_18_0224_1 crossref_primary_10_3390_w11102126 crossref_primary_10_1029_2019WR025280 crossref_primary_10_1175_JHM_D_19_0246_1 crossref_primary_10_1175_JHM_D_21_0096_1 crossref_primary_10_1016_j_jhydrol_2024_131986 crossref_primary_10_1016_j_jhydrol_2023_129082 crossref_primary_10_1016_j_jhydrol_2019_04_073 crossref_primary_10_3390_su15043865 crossref_primary_10_1029_2023WR035693 crossref_primary_10_1007_s11269_023_03442_y crossref_primary_10_1029_2022WR032201 crossref_primary_10_1007_s00271_022_00807_w crossref_primary_10_5194_hess_26_1673_2022 crossref_primary_10_1080_02626667_2021_1873343 crossref_primary_10_1111_sum_12699 crossref_primary_10_1007_s11069_024_06803_x crossref_primary_10_1029_2019EF001198 crossref_primary_10_1016_j_jhydrol_2021_126537 crossref_primary_10_1007_s12594_021_1785_0 crossref_primary_10_1029_2020WR029433 crossref_primary_10_1016_j_jhydrol_2022_127896 crossref_primary_10_1029_2018WR023205 crossref_primary_10_1016_j_advwatres_2021_103907 crossref_primary_10_1175_JHM_D_18_0102_1 crossref_primary_10_1029_2022WR032568 crossref_primary_10_5194_hess_26_4233_2022 crossref_primary_10_1007_s11707_019_0802_8 crossref_primary_10_1016_j_jhydrol_2024_131152 crossref_primary_10_1016_j_jhydrol_2024_132363 crossref_primary_10_1175_JHM_D_19_0155_1 crossref_primary_10_1029_2023EF004053 crossref_primary_10_3389_frai_2020_565859 crossref_primary_10_1007_s00477_023_02386_4 crossref_primary_10_3390_w13233420 crossref_primary_10_1016_j_eng_2022_06_007 crossref_primary_10_1175_WAF_D_20_0096_1 crossref_primary_10_1016_j_jhydrol_2025_133005 crossref_primary_10_1016_j_ins_2023_119716 crossref_primary_10_5194_hess_26_197_2022 crossref_primary_10_1175_MWR_D_19_0108_1 crossref_primary_10_3390_en13236419 crossref_primary_10_1016_j_ecocom_2022_100997 |
Cites_doi | 10.1175/MWR3403.1 10.1175/2008MWR2565.1 10.1002/qj.2414 10.1016/j.jhydrol.2009.07.059 10.1175/MWR-D-15-0227.1 10.1002/hyp.9496 10.1017/S1350482704001252 10.1002/asl.182 10.1002/met.134 10.1016/S1385-7258(53)50040-X 10.1002/hyp.9595 10.1002/qj.2839 10.1029/2000WR900108 10.1016/j.jhydrol.2004.03.037 10.1029/2011WR010724 10.1175/2009JHM1188.1 10.1002/qj.383 10.1016/j.jhydrol.2009.06.005 10.1175/2007WAF2007029.1 10.1002/2015RG000513 10.1007/s00704-009-0134-9 10.1034/j.1600-0870.2000.d01-4.x 10.5194/npg-18-147-2011 10.1002/env.2316 10.1175/MWR-D-13-00248.1 10.1016/S0022-1694(00)00361-9 10.1002/2014WR016473 10.1214/08-AOAS203 10.1002/hyp.9562 10.1002/hyp.10259 10.1002/hyp.9313 10.1029/2011WR011607 10.3390/w8040125 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2 10.1016/j.jhydrol.2008.03.027 10.1029/2007WR006758 10.1111/rssc.12040 10.1016/j.jhydrol.2015.06.043 10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2 10.1175/2010MWR3542.1 10.3402/tellusa.v57i3.14657 10.1002/asl.276 10.5194/hess-16-1085-2012 10.1146/annurev-statistics-062713-085831 10.1016/S0022-1694(01)00412-7 10.1175/MWR-D-15-0384.1 10.5194/hess-11-939-2007 10.1029/2004WR003059 10.1002/env.2391 10.1256/00359000260498923 10.1016/j.jhydrol.2013.07.039 10.5194/hess-17-3587-2013 10.1175/2007JHM862.1 10.1175/BAMS-88-10-1541 10.1002/wat2.1038 10.1002/asl.248 10.1002/asl.180 10.1175/MWR-D-14-00210.1 10.1175/MWR3402.1 10.1175/MWR-D-15-0061.1 10.1256/qj.04.120 10.1175/MWR-D-14-00329.1 10.1175/MWR-D-15-0204.1 10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2 10.1256/qj.05.167 10.1002/hyp.9263 10.1175/2009MWR3046.1 10.1175/2007MWR1963.1 10.1029/2005WR004838 10.1017/S1350482706002192 10.1007/s00382-010-0815-1 10.2307/1913643 10.1198/jasa.2011.ap10433 10.1175/MWR-D-16-0260.1 10.1126/science.285.5433.1548 10.1175/MWR2906.1 10.1016/S0022-1694(96)03259-3 10.1175/MWR-D-13-00271.1 10.1080/15715124.2008.9635342 10.1175/BAMS-87-1-33 10.1111/j.2517-6161.1977.tb01600.x 10.1175/MWR2904.1 10.1002/qj.2397 10.1029/1999WR900099 10.1111/j.1600-0870.2005.00110.x 10.1029/2006JD007655 10.1175/2008MWR2569.1 10.1002/wat2.1088 10.1029/2010WR009333 10.5194/hess-19-3181-2015 10.1016/j.jhydrol.2012.10.037 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 10.5194/hessd-3-1987-2006 10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2 10.1198/016214504000000872 10.5194/hessd-3-3321-2006 10.1002/hyp.10234 10.1175/2007MWR2410.1 10.1029/2009WR007733 10.1002/2016WR020133 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 10.1016/j.jhydrol.2014.11.072 10.5194/adgeo-29-51-2011 10.1002/hyp.10374 10.1175/MWR-D-12-00253.1 10.1029/2005WR004745 10.1016/j.cageo.2010.07.005 10.1175/JHM-D-11-038.1 10.5194/hess-15-3253-2011 10.1016/S1385-7258(53)50039-3 10.1175/2009MWR2715.1 10.1016/j.jhydrol.2013.10.055 10.5194/hess-5-577-2001 10.5194/npg-15-761-2008 10.1175/MWR3341.1 10.1175/BAMS-D-12-00081.1 10.1029/2010WR009996 10.1002/asl.267 10.1214/13-STS443 10.1029/2011WR011116 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2 10.1175/JCLI-D-16-0652.1 10.5194/hess-15-255-2011 10.1016/j.jhydrol.2017.01.053 10.1002/wrcr.20542 10.1034/j.1600-0870.1994.t01-2-00006.x 10.1016/j.jhydrol.2011.01.013 10.1016/j.advwatres.2006.11.014 10.1002/wrcr.20294 10.1002/2014WR016163 10.1002/2012WR012757 10.1111/j.1467-9868.2007.00587.x 10.5194/hessd-4-655-2007 10.1029/2010WR009137 10.5194/hess-18-3411-2014 10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2 10.1175/JCLI-D-11-00386.1 10.1175/JHM519.1 10.1111/rssc.12062 10.1029/2012WR012256 10.1175/MWR-D-13-00355.1 10.1002/qj.2198 10.1126/science.1151915 10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2 10.1007/s00477-010-0378-z 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2 10.1175/WAF-D-13-00049.1 10.1002/we.284 10.1002/qj.2183 10.1175/MWR3237.1 10.1175/2010MWR3511.1 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2 10.1175/2008JHM980.1 10.5194/asr-8-135-2012 10.1016/j.jhydrol.2005.07.031 10.1175/2007MWR2411.1 10.1016/S1385-7258(52)50063-5 10.1175/2009JHM1006.1 10.1002/qj.2323 10.1002/qj.2009 10.1034/j.1600-0870.2003.201378.x 10.1175/MWR-D-16-0331.1 10.1175/JHM504.1 10.1175/2007JHM858.1 10.1175/MWR3441.1 10.1093/biomet/87.4.954 10.3390/w8040115 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1002/wat2.1246 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 2049-1948 |
EndPage | n/a |
ExternalDocumentID | 10_1002_wat2_1246 WAT21246 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Intergovernmental Key International Science and Technology Innovation Cooperation Program funderid: 2016YFE0102400 – fundername: Natural Science Foundation of China funderid: 210100025 |
GroupedDBID | 0R~ 1OC 1VH 31~ 33P 8-1 AAESR AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AUFTA AZVAB BFHJK BMNLL BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- P2W R.K ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR WYJ AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION HGLYW 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c2976-9135e10e2dfceda46b4079154b7bc90eb5d3be9a1423b246b164ae30d0610c203 |
ISSN | 2049-1948 |
IngestDate | Fri Jul 25 22:48:17 EDT 2025 Thu Jul 03 08:26:43 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 Wed Jan 22 16:54:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2976-9135e10e2dfceda46b4079154b7bc90eb5d3be9a1423b246b164ae30d0610c203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1950328898 |
PQPubID | 2034617 |
PageCount | 24 |
ParticipantIDs | proquest_journals_1950328898 crossref_citationtrail_10_1002_wat2_1246 crossref_primary_10_1002_wat2_1246 wiley_primary_10_1002_wat2_1246_WAT21246 |
PublicationCentury | 2000 |
PublicationDate | November/December 2017 2017-11-00 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November/December 2017 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Wiley interdisciplinary reviews. Water |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 11 2010; 99 2015; 141 2000; 87 2015; 144 2015; 143 2013; 63 1999; 285 2016; 144 2004; 5 2012; 16 2014; 28 2012; 13 2016; 142 2003; 55 2004; 298 2010; 24 2000; 13 2008; 23 2013; 477 2007; 4 2012; 27 2008; 356 2014; 18 2007; 3 2014; 95 2009; 16 2007; 69 2006; 320 2011; 139 2015; 51 2013; 501 2000; 239 1996 2015; 528 1992 2015; 524 1953; 15 2017; 53 2006; 42 2002; 128 1999; 35 1969; 26 2014; 140 2008; 136 2012; 48 1978; 46 2014; 30 2017; 145 2007; 88 2016; 27 2014; 142 2016; 8 2009; 45 2011; 399 2013; 28 2005; 131 2013; 27 2005; 133 1997; 197 2008; 9 2006; 132 2008; 6 2011; 12 2011; 15 2007; 30 2014; 63 2008; 2 1999; 127 2011; 18 2006; 134 2014; 64 2014; 1 2004; 132 2007; 135 2017; 30 2013; 17 2000; 52 2008; 319 1998; 126 2011; 25 2014; 50 1972; 11 2011; 29 2014; 6 2015; 2 1952; 14 2015; 19 2013; 49 2012 2006; 13 2006; 7 2016; 54 2009; 375 2008 2005; 41 2009; 133 2008; 15 2009; 376 1994; 46 2006 2006; 3 2013; 141 2004 2011; 37 2011; 36 2001; 129 2015; 8 2009; 137 2001; 249 1997; 125 2004; 11 2004; 99 2007; 112 2015; 26 2014; 508 2015; 29 2011; 106 2000; 36 2006; 87 2001; 5 2010; 138 2004; 17 2010; 135 2013; 139 2017 1977; 39B 2016 2015 2014 2011; 47 2013 2007; 43 1959; 16 2016; 373 2005; 57 2012; 8 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 Dempster AP (e_1_2_9_141_1) 1977; 39 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 Hamill TM (e_1_2_9_118_1) 2004 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Klein WH (e_1_2_9_16_1) 1959; 16 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 Krzysztofowicz R (e_1_2_9_27_1) 2006 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_189_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_185_1 e_1_2_9_181_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 Skøien JO (e_1_2_9_183_1) 2016; 373 e_1_2_9_4_1 Baran S (e_1_2_9_171_1) 2015 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 Madadgar S (e_1_2_9_149_1) 2014; 6 e_1_2_9_100_1 e_1_2_9_123_1 Vannitsem S (e_1_2_9_128_1) 2009; 133 e_1_2_9_169_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_180_1 Hagedorn R (e_1_2_9_71_1) 2005; 57 e_1_2_9_63_1 Messner JW (e_1_2_9_36_1) 2015; 8 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 Kavetski D (e_1_2_9_184_1) 2006; 42 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_192_1 |
References_xml | – volume: 35 start-page: 2739 year: 1999 end-page: 2750 article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model publication-title: Water Resour Res – volume: 48 start-page: 1 year: 2012 end-page: 7 article-title: A log‐sinh transformation for data normalization and variance stabilization publication-title: Water Resour Res – volume: 135 start-page: 3209 year: 2007 end-page: 3220 article-title: Probabilistic quantitative precipitation forecasting using Bayesian model averaging publication-title: Mon Weather Rev – volume: 129 start-page: 550 year: 2001 article-title: Interpretation of rank histograms for verifying ensemble forecasts publication-title: Mon Weather Rev – volume: 143 start-page: 955 year: 2015 end-page: 971 article-title: Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression publication-title: Mon Weather Rev – volume: 142 start-page: 2463 year: 2016 end-page: 2477 article-title: Combining parametric low‐dimensional ensemble postprocessing with reordering methods publication-title: Q J Roy Meteor Soc – volume: 16 start-page: 361 year: 2009 end-page: 368 article-title: Extending logistic regression to provide full‐probability‐distribution MOS forecasts publication-title: Meteorol Appl – volume: 8 start-page: 1 year: 2015 end-page: 12 article-title: Heteroscedastic censored and truncated regression with crch publication-title: R J – volume: 524 start-page: 789 year: 2015 end-page: 802 article-title: Ensemble Bayesian forecasting system. Part I: theory and algorithms publication-title: J Hydrol – volume: 298 start-page: 222 year: 2004 end-page: 241 article-title: Characterizing streamflow simulation uncertainty through multimodel ensembles publication-title: J Hydrol – volume: 42 year: 2006 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application publication-title: Water Resour Res – volume: 7 start-page: 548 year: 2006 end-page: 565 article-title: Real‐time data assimilation for operational ensemble streamflow forecasting publication-title: J Hydrometeorol – volume: 13 start-page: 4196 year: 2000 end-page: 4216 article-title: Multimodel ensemble forecasts for weather and seasonal climate publication-title: J Climate – volume: 11 start-page: 153 year: 2010 end-page: 159 article-title: Comparison of pre‐ and post‐processors for ensemble streamflow prediction publication-title: Atmos Sci Lett – volume: 3 start-page: 939 year: 2007 end-page: 950 article-title: Evaluation of bias‐correction methods for ensemble streamflow volume forecasts publication-title: Hydrol Earth Syst Sci – volume: 29 start-page: 1141 year: 2015 end-page: 1155 article-title: Exploratory analysis of statistical post‐processing methods for hydrological ensemble forecasts publication-title: Hydrol Process – volume: 12 start-page: 51 year: 2011 end-page: 62 article-title: Evaluating scenarios of short‐term wind power generation publication-title: Wind Energy – volume: 54 start-page: 336 year: 2016 end-page: 377 article-title: A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes publication-title: Rev Geophys – volume: 141 start-page: 4554 year: 2013 end-page: 4563 article-title: Toward accurate and reliable forecasts of Australian seasonal rainfall by calibrating and merging multiple coupled GCMs publication-title: Mon Weather Rev – volume: 15 start-page: 3253 year: 2011 end-page: 3274 article-title: Recent developments in predictive uncertainty assessment based on the model conditional processor approach publication-title: Hydrol Earth Syst Sci – volume: 133 start-page: 937 year: 2009 end-page: 948 article-title: A unified linear model output statistics scheme for both deterministic and ensemble forecasts publication-title: Q J Roy Meteor Soc – volume: 112 start-page: 185 year: 2007 end-page: 194 article-title: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions publication-title: J Geophys Res Atmos – volume: 8 start-page: 115 year: 2016 end-page: 115 article-title: Post‐processing of stream flows in Switzerland with an emphasis on low flows and floods publication-title: Water – volume: 6 start-page: 2108 year: 2014 end-page: 2123 article-title: Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging publication-title: J Hydrol – volume: 134 start-page: 3209 year: 2006 end-page: 3229 article-title: Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application publication-title: Mon Weather Rev – volume: 137 start-page: 246 year: 2009 end-page: 268 article-title: MOS uncertainty estimates in an ensemble framework publication-title: Mon Weather Rev – volume: 48 start-page: 5634 year: 2012 end-page: 5634 article-title: Bayesian model averaging using particle filtering and Gaussian mixture modeling: theory, concepts, and simulation experiments publication-title: Water Resour Res – volume: 1 start-page: 427 year: 2014 end-page: 438 article-title: Toward a theoretical framework for integrated modeling of hydrological change publication-title: WIREs Water – year: 2008 – volume: 57 start-page: 219 year: 2005 end-page: 233 article-title: The rationale behind the success of multi‐model ensembles in seasonal forecasting—I. Basic concept publication-title: Tellus Ser A—Dyn Meteorol Oceanogr – volume: 14 start-page: 453 year: 1952 end-page: 458 article-title: Order tests for the two‐sample problem and their power I publication-title: Indagat Math – volume: 143 start-page: 3642 year: 2015 end-page: 3663 article-title: Improving precipitation forecasts by generating ensembles through postprocessing publication-title: Mon Weather Rev – volume: 239 start-page: 306 year: 2000 end-page: 337 article-title: An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts publication-title: J Hydrol – volume: 4 start-page: 655 year: 2007 end-page: 717 article-title: Precipitation and temperature ensemble forecasts from single‐value forecasts publication-title: Hydrol Earth Syst Sci Discuss – volume: 46 start-page: 314 year: 1994 end-page: 324 article-title: Searching for analogues, how long must we wait? publication-title: Tellus Ser A–Dyn Meteorol Oceanogr – volume: 49 start-page: 4035 year: 2013 end-page: 4053 article-title: Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models publication-title: Water Resour Res – volume: 320 start-page: 3 year: 2006 end-page: 17 article-title: Model parameter estimation experiment (MOPEX): an overview of science strategy and major results from the second and third workshops publication-title: J Hydrol – volume: 30 start-page: 1109 year: 2014 end-page: 1124 article-title: Precipitation calibration based on frequency matching method publication-title: Weather Forecast – volume: 131 start-page: 965 year: 2005 end-page: 986 article-title: Improvement of ensemble reliability with a new dressing kernel publication-title: Q J Roy Meteor Soc – volume: 43 start-page: 1 year: 2007 end-page: 15 article-title: Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging publication-title: Water Resour Res – volume: 128 start-page: 361 year: 2002 end-page: 384 article-title: Multi‐model multi‐analysis ensembles in quasi‐operational medium‐range forecasting publication-title: Q J Roy Meteor Soc – volume: 15 start-page: 255 year: 2011 end-page: 265 article-title: Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales) publication-title: Hydrol Earth Syst Sci – volume: 142 start-page: 1758 year: 2014 end-page: 1770 article-title: Seasonal forecasts of Australian rainfall through calibration and bridging of coupled GCM outputs publication-title: Mon Weather Rev – volume: 319 start-page: 573 year: 2008 end-page: 574 article-title: Stationarity is dead: whither water management? publication-title: Science – volume: 57 start-page: 253 year: 2005 end-page: 264 article-title: Forecast assimilation: a unified framework for the combination of multi‐model weather and climate predictions publication-title: Tellus Ser A—Dyn Meteorol Oceanogr – volume: 125 start-page: 1312 year: 1997 end-page: 1327 article-title: Verification of eta RSM short‐range ensemble forecasts publication-title: Mon Weather Rev – start-page: 3003 year: 2014 end-page: 3013 article-title: Extending extended logistic regression: extended vs. separate vs. ordered vs. censored publication-title: Mon Weather Rev – volume: 3 start-page: 1987 year: 2006 end-page: 2035 article-title: A statistical post‐processor for accounting of hydrologic uncertainty in short‐range ensemble streamflow prediction publication-title: Hydrol Earth Syst Sci Discuss – volume: 126 start-page: 711 year: 1998 end-page: 724 article-title: Evaluation of eta RSM ensemble probabilistic precipitation forecasts publication-title: Mon Weather Rev – volume: 6 start-page: 123 year: 2008 end-page: 137 article-title: A model conditional processor to assess predictive uncertainty in flood forecasting publication-title: Int J River Basin Manage – volume: 135 start-page: 777 year: 2010 end-page: 794 article-title: Medium‐range multimodel ensemble combination and calibration publication-title: Q J Roy Meteor Soc – volume: 63 start-page: 405 year: 2014 end-page: 422 article-title: Spatially adaptive post‐processing of ensemble forecasts for temperature publication-title: J R Stat Soc – volume: 249 start-page: 46 year: 2001 end-page: 68 article-title: Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation‐dependent model publication-title: J Hydrol – volume: 29 start-page: 1434 year: 2015 end-page: 1449 article-title: Post‐processing of medium‐range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors publication-title: Hydrol Process – volume: 2 start-page: 523 year: 2015 end-page: 536 article-title: A review on climate‐model‐based seasonal hydrologic forecasting: physical understanding and system development publication-title: WIREs Water – volume: 63 start-page: 405 year: 2013 end-page: 422 article-title: Spatially adaptive post‐processing of ensemble forecasts for temperature publication-title: J R Stat Soc – volume: 51 start-page: 7436 year: 2015 end-page: 7451 article-title: Multivariate postprocessing techniques for probabilistic hydrological forecasting publication-title: Water Resour Res – volume: 64 start-page: 75 year: 2014 end-page: 92 article-title: Combining the Bayesian processor of output with Bayesian model averaging for reliable ensemble forecasting publication-title: J R Stat Soc – volume: 30 start-page: 3185 year: 2017 end-page: 3196 article-title: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? publication-title: J Climate – volume: 29 start-page: 51 year: 2011 end-page: 59 article-title: A hydrologic post‐processor for ensemble streamflow predictions publication-title: Adv Geosci – volume: 15 start-page: 303 year: 1953 end-page: 310 article-title: Order tests for the two‐sample problem and their power II publication-title: Indagat Math – year: 2016 – year: 1992 – volume: 27 start-page: 106 year: 2013 end-page: 116 article-title: Ensemble dressing for hydrological applications publication-title: Hydrol Process – volume: 18 start-page: 147 year: 2011 end-page: 160 article-title: Post‐processing through linear regression publication-title: Nonlinear Process Geophys – volume: 53 start-page: 3029 year: 2017 end-page: 3046 article-title: A method for preferential selection of dates in the Schaake shuffle approach to constructing spatiotemporal forecast fields of temperature and precipitation publication-title: Water Resour Res – volume: 127 start-page: 1941 year: 1999 end-page: 1953 article-title: The skill of ensemble prediction systems publication-title: Mon Weather Rev – volume: 13 start-page: 243 year: 2006 end-page: 256 article-title: Comparison of ensemble‐MOS methods in the Lorenz '96 setting publication-title: Meteorol Appl – volume: 51 start-page: 1797 year: 2015 end-page: 1812 article-title: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia publication-title: Water Resour Res – volume: 11 start-page: 173 year: 2004 end-page: 187 article-title: Adaptive Kalman filtering of 2‐metre temperature and 10‐metre wind‐speed forecasts in Iceland publication-title: Meteorol Appl – volume: 399 start-page: 281 year: 2011 end-page: 298 article-title: Generation of ensemble precipitation forecast from single‐valued quantitative precipitation forecast for hydrologic ensemble prediction publication-title: J Hydrol – volume: 47 start-page: 1 year: 2011 end-page: 19 article-title: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences publication-title: Water Resour Res – volume: 139 start-page: 982 year: 2013 end-page: 991 article-title: Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas publication-title: Q J Roy Meteor Soc – volume: 50 start-page: 182 year: 2014 end-page: 197 article-title: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times publication-title: Water Resour Res – volume: 132 start-page: 1434 year: 2004 end-page: 1447 article-title: Ensemble reforecasting: improving medium‐range forecast skill using retrospective forecasts publication-title: Mon Weather Rev – volume: 11 start-page: 59 year: 2010 end-page: 63 article-title: Summary of recommendations of the first workshop on postprocessing and downscaling atmospheric forecasts for hydrologic applications held at Meteo‐France, Toulouse, France, 15–18 June 2009 publication-title: Atmos Sci Lett – volume: 17 start-page: 1504 year: 2004 end-page: 1516 article-title: Forecast calibration and combination: a simple Bayesian approach for ENSO publication-title: J Climate – volume: 144 start-page: 2421 year: 2016 end-page: 2441 article-title: Calibration, bridging and merging to improve GCM seasonal temperature forecasts in Australia publication-title: Mon Weather Rev – volume: 11 start-page: 618 year: 2010 end-page: 641 article-title: A 1‐10‐day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07 publication-title: J Hydrometeorol – volume: 375 start-page: 613 year: 2009 end-page: 626 article-title: Ensemble flood forecasting: a review publication-title: J Hydrol – volume: 95 start-page: 79 year: 2014 end-page: 98 article-title: The science of NOAA's operational hydrologic ensemble forecast service publication-title: Bull Am Meteorol Soc – volume: 133 start-page: 1098 year: 2005 end-page: 1118 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mon Weather Rev – volume: 137 start-page: 1717 year: 2009 end-page: 1720 article-title: On the reliability and calibration of ensemble forecasts publication-title: Mon Weather Rev – volume: 43 start-page: 1 year: 2007 end-page: 19 article-title: An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction publication-title: Water Resour Res – volume: 11 start-page: 1203 year: 1972 end-page: 1211 article-title: The use of model output statistics (MOS) in objective weather forecasting publication-title: J Appl Meteorol – volume: 356 start-page: 56 year: 2008 end-page: 69 article-title: A Bayesian approach to decision‐making under uncertainty: an application to real‐time forecasting in the river Rhine publication-title: J Hydrol – year: 2013 – volume: 37 start-page: 1277 year: 2011 end-page: 1284 article-title: Quantile regression neural networks: implementation in R and application to precipitation downscaling publication-title: Comput Geosci – volume: 13 start-page: 463 year: 2012 end-page: 482 article-title: Dynamic‐Model‐based seasonal prediction of meteorological drought over the contiguous United States publication-title: J Hydrometeorol – volume: 23 start-page: 270 year: 2008 end-page: 289 article-title: Probabilistic forecasts from the National Digital Forecast Database publication-title: Weather Forecast – volume: 141 start-page: 807 year: 2015 end-page: 818 article-title: Ensemble post‐processing using member‐by‐member approaches: theoretical aspects publication-title: Q J Roy Meteor Soc – volume: 27 start-page: 280 year: 2016 end-page: 292 article-title: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting publication-title: Environmetrics – volume: 135 start-page: 2379 year: 2007 end-page: 2390 article-title: Comparison of ensemble‐MOS methods using GFS reforecasts publication-title: Mon Weather Rev – volume: 5 start-page: 577 year: 2001 end-page: 597 article-title: A non‐linear neural network technique for updating of river flow forecasts publication-title: Hydrol Earth Syst Sci – volume: 140 start-page: 1112 year: 2014 end-page: 1120 article-title: A comparison of ensemble post‐processing methods for extreme events TL‐140 publication-title: Q J Roy Meteor Soc – volume: 28 start-page: 616 year: 2013 end-page: 640 article-title: Uncertainty quantification in complex simulation models using ensemble copula coupling publication-title: Stat Sci – volume: 26 start-page: 120 year: 2015 end-page: 132 article-title: Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging publication-title: Environmetrics – volume: 9 start-page: 76 year: 2008 end-page: 95 article-title: Probabilistic quantitative precipitation forecast for flood prediction: an application publication-title: J Hydrometeorol – volume: 27 start-page: 83 year: 2013 end-page: 105 article-title: Evaluation of a nonparametric post‐processor for bias correction and uncertainty estimation of hydrologic predictions publication-title: Hydrol Process – volume: 26 start-page: 636 year: 1969 end-page: 646 article-title: Atmospheric predictability as revealed by naturally occurring analogues publication-title: J Atmos Sci – volume: 41 start-page: 407 year: 2005 end-page: 412 article-title: Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation publication-title: Water Resour Res – volume: 99 start-page: 187 year: 2010 end-page: 192 article-title: Statistical bias correction for daily precipitation in regional climate models over Europe publication-title: Theor Appl Climatol – volume: 129 start-page: 2461 year: 2001 end-page: 2480 article-title: Ability of a poor man's ensemble to predict the probability and distribution of precipitation publication-title: Mon Weather Rev – volume: 9 start-page: 866 year: 2008 end-page: 884 article-title: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the Eastern United States publication-title: J Hydrometeorol – volume: 99 start-page: 575 year: 2004 end-page: 583 article-title: Calibrated probabilistic mesoscale weather field forecasting publication-title: J Am Stat Assoc – volume: 501 start-page: 73 year: 2013 end-page: 91 article-title: Post‐processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales publication-title: J Hydrol – volume: 8 start-page: 135 year: 2012 end-page: 141 article-title: Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies publication-title: Adv Sci Res – volume: 87 start-page: 33 year: 2006 end-page: 46 article-title: Reforecasts: an important dataset for improving weather predictions publication-title: Bull Am Meteorol Soc – volume: 132 start-page: 1349 year: 2006 end-page: 1369 article-title: Probabilistic forecasting from ensemble prediction systems: improving upon the best‐member method by using a different weight and dressing kernel for each member publication-title: Q J Roy Meteor Soc – volume: 45 start-page: 1 year: 2009 end-page: 18 article-title: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites publication-title: Water Resour Res – volume: 197 start-page: 203 year: 1997 end-page: 229 article-title: Methods for combining the outputs of different rainfall–runoff models publication-title: J Hydrol – year: 2017 article-title: The US national blend of models statistical post‐processing of probability of precipitation and deterministic precipitation amount publication-title: Mon Weather Rev – volume: 145 start-page: 955 year: 2017 end-page: 969 article-title: Ensemble postprocessing of daily precipitation sums over complex terrain using censored high‐resolution standardized anomalies publication-title: Mon Weather Rev – volume: 376 start-page: 463 year: 2009 end-page: 475 article-title: Verification of ensemble flow forecasts for the river Rhine publication-title: J Hydrol – volume: 28 start-page: 104 year: 2014 end-page: 122 article-title: Towards improved post‐processing of hydrologic forecast ensembles publication-title: Hydrol Process – volume: 87 start-page: 954 year: 2000 end-page: 959 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika – volume: 477 start-page: 33 year: 2013 end-page: 42 article-title: From HUP to MCP: analogies and extended performances publication-title: J Hydrol – volume: 141 start-page: 945 year: 2015 end-page: 952 article-title: Multivariate ensemble model output statistics using empirical copulas publication-title: Q J Roy Meteor Soc – volume: 11 start-page: 642 year: 2010 end-page: 665 article-title: A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts publication-title: J Hydrometeorol – volume: 3 start-page: 3321 year: 2006 end-page: 3332 article-title: The Hydrologic Ensemble Prediction EXperiment (HEPEX) publication-title: Hydrol Earth Syst Sci Discuss – volume: 133 start-page: 1155 year: 2005 end-page: 1174 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon Weather Rev – volume: 140 start-page: 1086 year: 2014 end-page: 1096 article-title: Probabilistic quantitative precipitation forecasting using ensemble model output statistics publication-title: Q J Roy Meteor Soc – volume: 48 year: 2012 article-title: Downscaling precipitation or bias‐correcting streamflow? Some implications for coupled general circulation model (CGCM)‐based ensemble seasonal hydrologic forecast publication-title: Water Resour Res – volume: 16 start-page: 672 year: 1959 end-page: 682 article-title: Objective prediction of five‐day mean temperatures during winter publication-title: J Atmos Sci – volume: 135 start-page: 2365 year: 2007 end-page: 2378 article-title: Statistical downscaling of extreme precipitation events using censored quantile regression publication-title: Mon Weather Rev – volume: 11 start-page: 83 year: 2010 end-page: 91 article-title: Propagation of uncertainty from observing systems and NWP into hydrological models: COST‐731 Working Group 2 publication-title: Atmos Sci Lett – volume: 47 start-page: 1 year: 2011 end-page: 15 article-title: Hydrological ensemble forecasting in mesoscale catchments: sensitivity to initial conditions and value of reforecasts publication-title: Water Resour Res – volume: 136 start-page: 4641 year: 2008 end-page: 4652 article-title: Bayesian model averaging's problematic treatment of extreme weather and a paradigm shift that fixes it publication-title: Mon Weather Rev – volume: 15 start-page: 761 year: 2008 end-page: 772 article-title: Multivariate non‐normally distributed random variables in climate research—introduction to the copula approach publication-title: Nonlinear Process Geophys – volume: 139 start-page: 2630 year: 2011 end-page: 2649 article-title: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging publication-title: Mon Weather Rev – year: 2015 – volume: 52 start-page: 280 year: 2000 end-page: 299 article-title: Comparison of a single‐model EPS with a multi‐model ensemble consisting of a few operational models publication-title: Tellus Ser A—Dyn Meteorol Oceanogr – volume: 69 start-page: 243 year: 2007 end-page: 268 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J R Stat Soc – volume: 528 start-page: 329 year: 2015 end-page: 340 article-title: Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model publication-title: J Hydrol – volume: 49 start-page: 6744 year: 2013 end-page: 6755 article-title: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times publication-title: Water Resour Res – volume: 39B start-page: 1 year: 1977 end-page: 39 article-title: Maximum likelihood for incomplete data via the EM algorithm publication-title: J R Stat Soc – volume: 139 start-page: 1960 year: 2011 end-page: 1971 article-title: Probabilistic forecasts using analogs in the idealized Lorenz96 setting publication-title: Mon Weather Rev – volume: 27 start-page: 57 year: 2013 end-page: 74 article-title: Evaluating the predictive skill of post‐processed NCEP GFS ensemble precipitation forecasts in China's Huai river basin publication-title: Hydrol Process – volume: 1 start-page: 125 year: 2014 end-page: 151 article-title: Probabilistic forecasting publication-title: Annu Rev Stat Appl – volume: 88 start-page: 1541 year: 2007 end-page: 1547 article-title: HEPEX: the hydrological ensemble prediction experiment publication-title: Bull Am Meteorol Soc – volume: 55 start-page: 16 year: 2003 end-page: 30 article-title: Combining dynamical and statistical ensembles publication-title: Tellus Ser A—Dyn Meteorol Oceanogr – volume: 140 start-page: 2582 year: 2014 end-page: 2590 article-title: Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics publication-title: Q J Roy Meteor Soc – volume: 136 start-page: 2608 year: 2008 end-page: 2619 article-title: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: two‐meter temperatures publication-title: Mon Weather Rev – volume: 47 start-page: 1772 year: 2011 end-page: 1780 article-title: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system publication-title: Water Resour Res – volume: 2 start-page: 1170 year: 2008 end-page: 1193 article-title: Probabilistic quantitative precipitation field forecasting using a two‐stage spatial model publication-title: Ann Appl Stat – volume: 24 start-page: 809 year: 2010 end-page: 820 article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications publication-title: Stochastic Environ Res Risk Assess – volume: 132 start-page: 338 year: 2004 end-page: 347 article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output publication-title: Mon Weather Rev – volume: 285 start-page: 1548 year: 1999 end-page: 1550 article-title: Improved weather and seasonal climate forecasts from multimodel superensemble publication-title: Science – volume: 46 start-page: 33 year: 1978 end-page: 50 article-title: Regression quantiles publication-title: Econometrica – volume: 7 start-page: 755 year: 2006 end-page: 768 article-title: Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results publication-title: J Hydrometeorol – year: 1996 – start-page: 3825 year: 2004 end-page: 3830 article-title: Ensemble re‐forecasting: improving medium‐range forecast skill using retrospective forecasts publication-title: Bull Am Meteorol Soc – volume: 136 start-page: 2620 year: 2008 end-page: 2632 article-title: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: precipitation publication-title: Mon Weather Rev – volume: 19 start-page: 3181 year: 2015 end-page: 3201 article-title: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments publication-title: Hydrol Earth Syst Sci – volume: 30 start-page: 1371 year: 2007 end-page: 1386 article-title: Multi‐model ensemble hydrologic prediction using Bayesian model averaging publication-title: Adv Water Res – volume: 135 start-page: 4226 year: 2007 end-page: 4230 article-title: Comments on "Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging'' publication-title: Mon Weather Rev – volume: 142 start-page: 448 year: 2014 end-page: 456 article-title: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance publication-title: Mon Weather Rev – volume: 17 start-page: 3587 year: 2013 end-page: 3603 article-title: Post‐processing rainfall forecasts from numerical weather prediction models for short‐term streamflow forecasting publication-title: Hydrol Earth Syst Sci – volume: 36 start-page: 2003 year: 2011 end-page: 2014 article-title: Probabilistic assessment of regional climate change in Southwest Germany by ensemble dressing publication-title: Clim Dyn – volume: 36 start-page: 3265 year: 2000 end-page: 3277 article-title: Hydrologic uncertainty processor for probabilistic river stage forecasting publication-title: Water Resour Res – year: 2012 – volume: 25 start-page: 5524 year: 2011 end-page: 5537 article-title: Merging seasonal rainfall forecasts from multiple statistical models through Bayesian model averaging publication-title: J Climate – volume: 5 start-page: 243 year: 2004 end-page: 262 article-title: The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields publication-title: J Hydrometeorol – volume: 106 start-page: 1291 year: 2011 end-page: 1303 article-title: Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting publication-title: J Am Stat Assoc – volume: 27 start-page: 158 year: 2012 end-page: 161 article-title: Post‐processing hydrological ensemble predictions intercomparison experiment publication-title: Hydrol Process – volume: 48 start-page: 151 year: 2012 end-page: 153 article-title: Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation publication-title: Water Resour Res – start-page: 196 year: 2017 end-page: 207 article-title: Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: a case study in the Yalong river basin publication-title: J Hydrol – volume: 29 start-page: 2438 year: 2015 end-page: 2453 article-title: Post‐processing of ensemble forecasts in low‐flow period publication-title: Hydrol Process – year: 2006 – volume: 135 start-page: 1386 year: 2007 end-page: 1402 article-title: Combining spatial statistical and ensemble information in probabilistic weather forecasts publication-title: Mon Weather Rev – volume: 15 start-page: 311 year: 1953 end-page: 316 article-title: Order tests for the two‐sample problem and their power III publication-title: Indagat Math – volume: 9 start-page: 61 year: 2008 end-page: 66 article-title: Seasonal hydrologic predictions of low‐flow conditions over eastern USA during the 2007 drought publication-title: Atmos Sci Lett – volume: 373 start-page: 109 year: 2016 end-page: 114 article-title: Regionalization of post‐processed ensemble runoff forecasts publication-title: Proc Int Assoc Hydrol Sci – volume: 138 start-page: 190 year: 2010 end-page: 202 article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging publication-title: Mon Weather Rev – volume: 144 start-page: 1649 year: 2015 end-page: 1668 article-title: Inaccuracies with multi‐model post‐processing methods involving weighted, regression‐corrected forecasts publication-title: Mon Weather Rev – volume: 144 start-page: 1909 year: 2015 end-page: 1921 article-title: A similarity‐based implementation of the Schaake shuffle publication-title: Mon Weather Rev – volume: 16 start-page: 1085 year: 2012 end-page: 1094 article-title: Technical note: the normal quantile transformation and its application in a flood forecasting system publication-title: Hydrol Earth Syst Sci – volume: 143 start-page: 4578 year: 2015 end-page: 4596 article-title: Statistical post‐processing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions publication-title: Mon Weather Rev – volume: 508 start-page: 147 year: 2014 end-page: 156 article-title: Hydrologic post‐processing of MOPEX streamflow simulations publication-title: J Hydrol – volume: 9 start-page: 132 year: 2008 end-page: 148 article-title: Correcting errors in streamflow forecast ensemble mean and spread publication-title: J Hydrometeorol – volume: 45 start-page: 335 year: 2009 end-page: 345 article-title: Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system publication-title: Water Resour Res – volume: 18 start-page: 3411 year: 2014 end-page: 3428 article-title: Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn river: a comparison publication-title: Hydrol Earth Syst Sci – year: 2017 – volume: 9 start-page: 95 year: 2008 end-page: 102 article-title: Error‐correction methods and evaluation of an ensemble based hydrological forecasting system for the Upper Danube catchment publication-title: Atmos Sci Lett – volume: 8 start-page: 1 year: 2016 end-page: 22 article-title: Predictive uncertainty estimation of hydrological multi‐model ensembles using pair‐copula construction publication-title: Water – start-page: 1 year: 2015 end-page: 14 article-title: Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature publication-title: Meteorol Atmos Phys – ident: e_1_2_9_38_1 doi: 10.1175/MWR3403.1 – ident: e_1_2_9_163_1 doi: 10.1175/2008MWR2565.1 – ident: e_1_2_9_176_1 doi: 10.1002/qj.2414 – ident: e_1_2_9_60_1 doi: 10.1016/j.jhydrol.2009.07.059 – ident: e_1_2_9_174_1 doi: 10.1175/MWR-D-15-0227.1 – ident: e_1_2_9_101_1 doi: 10.1002/hyp.9496 – ident: e_1_2_9_114_1 doi: 10.1017/S1350482704001252 – ident: e_1_2_9_155_1 doi: 10.1002/asl.182 – ident: e_1_2_9_34_1 doi: 10.1002/met.134 – ident: e_1_2_9_99_1 doi: 10.1016/S1385-7258(53)50040-X – ident: e_1_2_9_8_1 doi: 10.1002/hyp.9595 – ident: e_1_2_9_177_1 doi: 10.1002/qj.2839 – ident: e_1_2_9_44_1 doi: 10.1029/2000WR900108 – ident: e_1_2_9_72_1 doi: 10.1016/j.jhydrol.2004.03.037 – volume: 42 year: 2006 ident: e_1_2_9_184_1 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application publication-title: Water Resour Res – ident: e_1_2_9_110_1 – ident: e_1_2_9_106_1 doi: 10.1029/2011WR010724 – ident: e_1_2_9_65_1 doi: 10.1175/2009JHM1188.1 – ident: e_1_2_9_162_1 doi: 10.1002/qj.383 – ident: e_1_2_9_3_1 doi: 10.1016/j.jhydrol.2009.06.005 – ident: e_1_2_9_28_1 doi: 10.1175/2007WAF2007029.1 – ident: e_1_2_9_75_1 doi: 10.1002/2015RG000513 – ident: e_1_2_9_24_1 doi: 10.1007/s00704-009-0134-9 – ident: e_1_2_9_70_1 doi: 10.1034/j.1600-0870.2000.d01-4.x – start-page: 1 year: 2015 ident: e_1_2_9_171_1 article-title: Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature publication-title: Meteorol Atmos Phys – ident: e_1_2_9_132_1 doi: 10.5194/npg-18-147-2011 – ident: e_1_2_9_170_1 doi: 10.1002/env.2316 – ident: e_1_2_9_161_1 doi: 10.1175/MWR-D-13-00248.1 – ident: e_1_2_9_109_1 doi: 10.1016/S0022-1694(00)00361-9 – ident: e_1_2_9_117_1 doi: 10.1002/2014WR016473 – ident: e_1_2_9_85_1 doi: 10.1214/08-AOAS203 – ident: e_1_2_9_92_1 doi: 10.1002/hyp.9562 – ident: e_1_2_9_129_1 doi: 10.1002/hyp.10259 – ident: e_1_2_9_130_1 doi: 10.1002/hyp.9313 – ident: e_1_2_9_95_1 – ident: e_1_2_9_147_1 doi: 10.1029/2011WR011607 – ident: e_1_2_9_148_1 doi: 10.3390/w8040125 – ident: e_1_2_9_22_1 doi: 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2 – ident: e_1_2_9_17_1 doi: 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2 – ident: e_1_2_9_45_1 doi: 10.1016/j.jhydrol.2008.03.027 – ident: e_1_2_9_46_1 doi: 10.1029/2007WR006758 – ident: e_1_2_9_31_1 doi: 10.1111/rssc.12040 – ident: e_1_2_9_135_1 – ident: e_1_2_9_188_1 – ident: e_1_2_9_53_1 doi: 10.1016/j.jhydrol.2015.06.043 – ident: e_1_2_9_88_1 doi: 10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2 – ident: e_1_2_9_94_1 doi: 10.1175/2010MWR3542.1 – volume: 57 start-page: 219 year: 2005 ident: e_1_2_9_71_1 article-title: The rationale behind the success of multi‐model ensembles in seasonal forecasting—I. Basic concept publication-title: Tellus Ser A—Dyn Meteorol Oceanogr doi: 10.3402/tellusa.v57i3.14657 – ident: e_1_2_9_137_1 doi: 10.1002/asl.276 – ident: e_1_2_9_178_1 doi: 10.5194/hess-16-1085-2012 – ident: e_1_2_9_189_1 – ident: e_1_2_9_13_1 doi: 10.1146/annurev-statistics-062713-085831 – ident: e_1_2_9_43_1 doi: 10.1016/S0022-1694(01)00412-7 – ident: e_1_2_9_159_1 doi: 10.1175/MWR-D-15-0384.1 – ident: e_1_2_9_23_1 doi: 10.5194/hess-11-939-2007 – ident: e_1_2_9_125_1 doi: 10.1029/2004WR003059 – ident: e_1_2_9_115_1 doi: 10.1002/env.2391 – ident: e_1_2_9_68_1 doi: 10.1256/00359000260498923 – ident: e_1_2_9_91_1 doi: 10.1016/j.jhydrol.2013.07.039 – ident: e_1_2_9_107_1 doi: 10.5194/hess-17-3587-2013 – ident: e_1_2_9_89_1 doi: 10.1175/2007JHM862.1 – ident: e_1_2_9_2_1 doi: 10.1175/BAMS-88-10-1541 – ident: e_1_2_9_180_1 doi: 10.1002/wat2.1038 – ident: e_1_2_9_192_1 – ident: e_1_2_9_4_1 doi: 10.1002/asl.248 – ident: e_1_2_9_62_1 doi: 10.1002/asl.180 – ident: e_1_2_9_83_1 doi: 10.1175/MWR-D-14-00210.1 – ident: e_1_2_9_131_1 doi: 10.1175/MWR3402.1 – ident: e_1_2_9_32_1 doi: 10.1175/MWR-D-15-0061.1 – ident: e_1_2_9_42_1 doi: 10.1256/qj.04.120 – ident: e_1_2_9_108_1 doi: 10.1175/MWR-D-14-00329.1 – volume: 6 start-page: 2108 year: 2014 ident: e_1_2_9_149_1 article-title: Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging publication-title: J Hydrol – ident: e_1_2_9_164_1 doi: 10.1175/MWR-D-15-0204.1 – ident: e_1_2_9_74_1 doi: 10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2 – ident: e_1_2_9_40_1 doi: 10.1256/qj.05.167 – ident: e_1_2_9_66_1 doi: 10.1002/hyp.9263 – ident: e_1_2_9_100_1 – ident: e_1_2_9_145_1 doi: 10.1175/2009MWR3046.1 – ident: e_1_2_9_143_1 doi: 10.1175/2007MWR1963.1 – volume-title: Bayesian Processor of Output for Probabilistic Quantitative Precipitation Forecasting year: 2006 ident: e_1_2_9_27_1 – ident: e_1_2_9_58_1 doi: 10.1029/2005WR004838 – ident: e_1_2_9_87_1 doi: 10.1017/S1350482706002192 – ident: e_1_2_9_142_1 doi: 10.1007/s00382-010-0815-1 – ident: e_1_2_9_122_1 doi: 10.2307/1913643 – ident: e_1_2_9_151_1 doi: 10.1198/jasa.2011.ap10433 – ident: e_1_2_9_182_1 doi: 10.1175/MWR-D-16-0260.1 – ident: e_1_2_9_73_1 doi: 10.1126/science.285.5433.1548 – ident: e_1_2_9_76_1 doi: 10.1175/MWR2906.1 – ident: e_1_2_9_80_1 doi: 10.1016/S0022-1694(96)03259-3 – ident: e_1_2_9_120_1 doi: 10.1175/MWR-D-13-00271.1 – ident: e_1_2_9_48_1 doi: 10.1080/15715124.2008.9635342 – ident: e_1_2_9_82_1 doi: 10.1111/rssc.12040 – ident: e_1_2_9_11_1 doi: 10.1175/BAMS-87-1-33 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_9_141_1 article-title: Maximum likelihood for incomplete data via the EM algorithm publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_9_30_1 doi: 10.1175/MWR2904.1 – ident: e_1_2_9_39_1 doi: 10.1002/qj.2397 – ident: e_1_2_9_103_1 doi: 10.1029/1999WR900099 – ident: e_1_2_9_113_1 doi: 10.1111/j.1600-0870.2005.00110.x – ident: e_1_2_9_154_1 doi: 10.1029/2006JD007655 – ident: e_1_2_9_15_1 doi: 10.1175/2008MWR2569.1 – ident: e_1_2_9_14_1 doi: 10.1002/wat2.1088 – ident: e_1_2_9_52_1 doi: 10.1029/2010WR009333 – ident: e_1_2_9_139_1 doi: 10.5194/hess-19-3181-2015 – ident: e_1_2_9_49_1 doi: 10.1016/j.jhydrol.2012.10.037 – ident: e_1_2_9_37_1 doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 – ident: e_1_2_9_59_1 doi: 10.5194/hessd-3-1987-2006 – ident: e_1_2_9_69_1 doi: 10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2 – ident: e_1_2_9_168_1 doi: 10.1198/016214504000000872 – volume: 373 start-page: 109 year: 2016 ident: e_1_2_9_183_1 article-title: Regionalization of post‐processed ensemble runoff forecasts publication-title: Proc Int Assoc Hydrol Sci – ident: e_1_2_9_6_1 doi: 10.5194/hessd-3-3321-2006 – ident: e_1_2_9_127_1 doi: 10.1002/hyp.10234 – ident: e_1_2_9_10_1 doi: 10.1175/2007MWR2410.1 – volume: 8 start-page: 1 year: 2015 ident: e_1_2_9_36_1 article-title: Heteroscedastic censored and truncated regression with crch publication-title: R J – ident: e_1_2_9_51_1 doi: 10.1029/2009WR007733 – ident: e_1_2_9_175_1 doi: 10.1002/2016WR020133 – ident: e_1_2_9_21_1 doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 – ident: e_1_2_9_47_1 doi: 10.1016/j.jhydrol.2014.11.072 – ident: e_1_2_9_54_1 doi: 10.5194/adgeo-29-51-2011 – ident: e_1_2_9_55_1 doi: 10.1002/hyp.10374 – ident: e_1_2_9_158_1 doi: 10.1175/MWR-D-12-00253.1 – ident: e_1_2_9_185_1 doi: 10.1029/2005WR004745 – ident: e_1_2_9_193_1 doi: 10.1016/j.cageo.2010.07.005 – ident: e_1_2_9_156_1 doi: 10.1175/JHM-D-11-038.1 – ident: e_1_2_9_50_1 doi: 10.5194/hess-15-3253-2011 – ident: e_1_2_9_98_1 doi: 10.1016/S1385-7258(53)50039-3 – ident: e_1_2_9_126_1 doi: 10.1175/2009MWR2715.1 – ident: e_1_2_9_56_1 doi: 10.1016/j.jhydrol.2013.10.055 – ident: e_1_2_9_79_1 doi: 10.5194/hess-5-577-2001 – ident: e_1_2_9_166_1 doi: 10.5194/npg-15-761-2008 – ident: e_1_2_9_84_1 doi: 10.1175/MWR3341.1 – ident: e_1_2_9_134_1 – ident: e_1_2_9_5_1 doi: 10.1175/BAMS-D-12-00081.1 – ident: e_1_2_9_121_1 doi: 10.1029/2010WR009996 – ident: e_1_2_9_7_1 doi: 10.1002/asl.267 – ident: e_1_2_9_86_1 doi: 10.1214/13-STS443 – ident: e_1_2_9_146_1 doi: 10.1029/2011WR011116 – volume: 16 start-page: 672 year: 1959 ident: e_1_2_9_16_1 article-title: Objective prediction of five‐day mean temperatures during winter publication-title: J Atmos Sci – ident: e_1_2_9_81_1 doi: 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2 – ident: e_1_2_9_93_1 doi: 10.1175/JCLI-D-16-0652.1 – ident: e_1_2_9_124_1 doi: 10.5194/hess-15-255-2011 – ident: e_1_2_9_102_1 doi: 10.1016/j.jhydrol.2017.01.053 – start-page: 3825 year: 2004 ident: e_1_2_9_118_1 article-title: Ensemble re‐forecasting: improving medium‐range forecast skill using retrospective forecasts publication-title: Bull Am Meteorol Soc – ident: e_1_2_9_173_1 doi: 10.1002/wrcr.20542 – ident: e_1_2_9_18_1 doi: 10.1034/j.1600-0870.1994.t01-2-00006.x – ident: e_1_2_9_26_1 doi: 10.1016/j.jhydrol.2011.01.013 – ident: e_1_2_9_77_1 doi: 10.1016/j.advwatres.2006.11.014 – ident: e_1_2_9_186_1 doi: 10.1002/wrcr.20294 – ident: e_1_2_9_160_1 doi: 10.1002/2014WR016163 – ident: e_1_2_9_172_1 doi: 10.1002/2012WR012757 – ident: e_1_2_9_191_1 – ident: e_1_2_9_12_1 doi: 10.1111/j.1467-9868.2007.00587.x – ident: e_1_2_9_25_1 doi: 10.5194/hessd-4-655-2007 – ident: e_1_2_9_63_1 doi: 10.1029/2010WR009137 – ident: e_1_2_9_104_1 – ident: e_1_2_9_123_1 doi: 10.5194/hess-18-3411-2014 – ident: e_1_2_9_140_1 doi: 10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2 – ident: e_1_2_9_157_1 doi: 10.1175/JCLI-D-11-00386.1 – ident: e_1_2_9_67_1 doi: 10.1175/JHM519.1 – ident: e_1_2_9_152_1 doi: 10.1111/rssc.12062 – ident: e_1_2_9_138_1 doi: 10.1029/2012WR012256 – ident: e_1_2_9_35_1 doi: 10.1175/MWR-D-13-00355.1 – ident: e_1_2_9_119_1 doi: 10.1002/qj.2198 – ident: e_1_2_9_179_1 doi: 10.1126/science.1151915 – ident: e_1_2_9_112_1 doi: 10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2 – ident: e_1_2_9_165_1 doi: 10.1007/s00477-010-0378-z – ident: e_1_2_9_19_1 doi: 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2 – ident: e_1_2_9_90_1 doi: 10.1175/WAF-D-13-00049.1 – ident: e_1_2_9_167_1 doi: 10.1002/we.284 – ident: e_1_2_9_116_1 doi: 10.1002/qj.2183 – ident: e_1_2_9_20_1 doi: 10.1175/MWR3237.1 – ident: e_1_2_9_150_1 doi: 10.1175/2010MWR3511.1 – ident: e_1_2_9_190_1 – ident: e_1_2_9_33_1 doi: 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2 – ident: e_1_2_9_111_1 – ident: e_1_2_9_153_1 doi: 10.1175/2008JHM980.1 – ident: e_1_2_9_136_1 doi: 10.5194/asr-8-135-2012 – ident: e_1_2_9_133_1 doi: 10.1016/j.jhydrol.2005.07.031 – ident: e_1_2_9_9_1 doi: 10.1175/2007MWR2411.1 – ident: e_1_2_9_97_1 doi: 10.1016/S1385-7258(52)50063-5 – volume: 133 start-page: 937 year: 2009 ident: e_1_2_9_128_1 article-title: A unified linear model output statistics scheme for both deterministic and ensemble forecasts publication-title: Q J Roy Meteor Soc – ident: e_1_2_9_61_1 doi: 10.1175/2009JHM1006.1 – ident: e_1_2_9_181_1 doi: 10.1002/qj.2323 – ident: e_1_2_9_169_1 doi: 10.1002/qj.2009 – ident: e_1_2_9_41_1 doi: 10.1034/j.1600-0870.2003.201378.x – ident: e_1_2_9_144_1 doi: 10.1175/MWR-D-16-0331.1 – ident: e_1_2_9_57_1 doi: 10.1175/JHM504.1 – ident: e_1_2_9_187_1 – ident: e_1_2_9_96_1 doi: 10.1175/2007JHM858.1 – ident: e_1_2_9_29_1 – ident: e_1_2_9_78_1 doi: 10.1175/MWR3441.1 – ident: e_1_2_9_105_1 doi: 10.1093/biomet/87.4.954 – ident: e_1_2_9_64_1 doi: 10.3390/w8040115 |
SSID | ssj0001105395 |
Score | 2.458521 |
SecondaryResourceType | review_article |
Snippet | Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e1246 |
SubjectTerms | Boundary conditions Computer simulation Hydrologic models Hydrology Hydrometeorology Precipitation Simulation Statistical analysis Statistical methods Statistics Stream discharge Stream flow Weather forecasting |
Title | A review on statistical postprocessing methods for hydrometeorological ensemble forecasting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1246 https://www.proquest.com/docview/1950328898 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZb-tI9lLXbWNeuiLGHQXEmy3ZiP5qtpZSkY9QhGXsQkqyQQGeXxGGkf_1OlvwLsnXbizBGXILu8-m7Q_cJofdAEUI6d0PHT2kAw0A6XLjU4cNIi_wInwidKI5vBlcT_3oWzJpiTtldUoi-fNjZV_I_XoV34FfdJfsPnq2Nwgt4Bv_CCB6G8a98HNedJ5muCRSl6LJurcrXxb3pANCVAHNLdCm8cL7YlgIFhcpXddiDTFb90B1UMEFJvi6q7cySVhM5tLDEqtPEa5VM--dT3jrkOyrPB0z1mfS8ocmmzvoVLG83NR7HS24qtYvldtPA9Jspsi4fFrn9I7YsAVud2ylLPB78zAZURjoKaYrjRkZyswrLfgt97RCrgJEMdgZ_Iyb7kxe0X83pCmzffGGXk9GIJRez5Cnao5BZ0B7aiz-PR7dNYQ4YpxcFlQoVoR9ri13u0iQk7bSm5CXJc3RgEwocG3QcoicqO0LPWjKTR2j_tsLG-gX6HmPjN5xnuAUa3AUNtqDBgAm8AzS4Ag1ugeYlmlxeJJ-uHHvDhiMp8FB97CJQLlE0nUuVcn8A3-YwAlYthkJGRIkg9YSKuAukW8ACCEiuufJICiyQSEq8V6iX5Zl6jTDQUGD_XAYe193Wc87pkKR87npCEs75MfpQrR2TVn5e34Jyx4xwNmV6mZle5mP0rp56bzRXdk06rRzA7Ce5ZvpOY4-GYRTCz5VO-b0BNo0Tqh_e_NnSCdpv8H2KesVqo94CES3EmYXOLx-1kyI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+statistical+postprocessing+methods+for+hydrometeorological+ensemble+forecasting&rft.jtitle=Wiley+interdisciplinary+reviews.+Water&rft.au=Li%2C+Wentao&rft.au=Duan%2C+Qingyun&rft.au=Miao%2C+Chiyuan&rft.au=Ye%2C+Aizhong&rft.date=2017-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2049-1948&rft.volume=4&rft.issue=6&rft.spage=e1246&rft_id=info:doi/10.1002%2Fwat2.1246&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1948&client=summon |