A review on statistical postprocessing methods for hydrometeorological ensemble forecasting

Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to ap...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Water Vol. 4; no. 6; pp. e1246 - n/a
Main Authors Li, Wentao, Duan, Qingyun, Miao, Chiyuan, Ye, Aizhong, Gong, Wei, Di, Zhenhua
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246 This article is categorized under: Science of Water > Methods Science of Water > Water Extremes Statistical postprocessors are statistical models constructed from historical observations and reforecasts. They can be applied to generate calibrated hydrometeorological ensemble forecasts for any given real‐time raw forecasts.
AbstractList Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246 This article is categorized under: Science of Water > Methods Science of Water > Water Extremes Statistical postprocessors are statistical models constructed from historical observations and reforecasts. They can be applied to generate calibrated hydrometeorological ensemble forecasts for any given real‐time raw forecasts.
Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246 This article is categorized under: Science of Water > Methods Science of Water > Water Extremes
Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided. WIREs Water 2017, 4:e1246. doi: 10.1002/wat2.1246This article is categorized under:Science of Water > MethodsScience of Water > Water Extremes
Author Li, Wentao
Ye, Aizhong
Duan, Qingyun
Miao, Chiyuan
Di, Zhenhua
Gong, Wei
Author_xml – sequence: 1
  givenname: Wentao
  surname: Li
  fullname: Li, Wentao
  organization: Beijing Normal University
– sequence: 2
  givenname: Qingyun
  surname: Duan
  fullname: Duan, Qingyun
  email: qyduan@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 3
  givenname: Chiyuan
  surname: Miao
  fullname: Miao, Chiyuan
  organization: Beijing Normal University
– sequence: 4
  givenname: Aizhong
  surname: Ye
  fullname: Ye, Aizhong
  organization: Beijing Normal University
– sequence: 5
  givenname: Wei
  surname: Gong
  fullname: Gong, Wei
  organization: Beijing Normal University
– sequence: 6
  givenname: Zhenhua
  surname: Di
  fullname: Di, Zhenhua
  organization: Beijing Normal University
BookMark eNp1kE1PAjEQhhuDiYgc_AebePKwMO1-sD0S4ldC4gXjwUPTdmehZGmxXST8e3eBgzF6msnked-Zea9JzzqLhNxSGFEANt7Lho0oS_ML0meQ8pjytOj96K_IMIQ1AFAKWcKzPvmYRh6_DO4jZ6PQyMaExmhZR1sXmq13GkMwdhltsFm5MkSV89HqUHrXDtB5V7vlEUcbcKNq7ADUsjWxyxtyWck64PBcB-Tt8WExe47nr08vs-k81oxP8pjTJEMKyMpKYynTXKUw4TRL1URpDqiyMlHIJU1ZotrnFM1TiQmUkFPQDJIBuTv5tvd-7jA0Yu123rYrBeUZJKwoeNFS4xOlvQvBYyW06f51tvHS1IKC6EIUXYiiC7FV3P9SbL3ZSH_4kz27702Nh_9B8T5dsKPiG-HthIM
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_142500
crossref_primary_10_1016_j_jhydrol_2025_132904
crossref_primary_10_1175_MWR_D_19_0258_1
crossref_primary_10_5194_hess_29_1587_2025
crossref_primary_10_5194_hess_24_2017_2020
crossref_primary_10_1016_j_atmosres_2022_106502
crossref_primary_10_5194_hess_26_5163_2022
crossref_primary_10_1029_2017WR022432
crossref_primary_10_3390_w12092631
crossref_primary_10_1016_j_agrformet_2019_02_003
crossref_primary_10_1088_1755_1315_1087_1_012052
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_3390_w14193072
crossref_primary_10_5194_hess_22_3601_2018
crossref_primary_10_1002_qj_3952
crossref_primary_10_1016_j_rse_2020_112099
crossref_primary_10_1080_02626667_2021_2023157
crossref_primary_10_3390_w16020301
crossref_primary_10_1002_wat2_1432
crossref_primary_10_1016_j_jhydrol_2021_127301
crossref_primary_10_5194_hess_28_2809_2024
crossref_primary_10_1002_2017WR021245
crossref_primary_10_1029_2022WR032117
crossref_primary_10_3390_atmos15040466
crossref_primary_10_1029_2023WR034557
crossref_primary_10_1016_j_earscirev_2024_104956
crossref_primary_10_1016_j_envsoft_2023_105732
crossref_primary_10_1111_1752_1688_12914
crossref_primary_10_1002_wea_4584
crossref_primary_10_1029_2020WR028392
crossref_primary_10_3390_w16040579
crossref_primary_10_3390_w10111604
crossref_primary_10_1016_j_atmosres_2023_107133
crossref_primary_10_1029_2020WR029471
crossref_primary_10_3389_frwa_2022_961954
crossref_primary_10_1016_j_jhydrol_2021_126520
crossref_primary_10_1016_j_jhydrol_2019_124002
crossref_primary_10_1175_JHM_D_20_0019_1
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_5194_hess_26_2939_2022
crossref_primary_10_5194_hess_27_4529_2023
crossref_primary_10_1016_j_wace_2023_100611
crossref_primary_10_1175_JHM_D_21_0020_1
crossref_primary_10_1007_s13351_019_8096_z
crossref_primary_10_1061__ASCE_HE_1943_5584_0001828
crossref_primary_10_3390_w14081261
crossref_primary_10_3233_IDA_184446
crossref_primary_10_1016_j_jhydrol_2022_128432
crossref_primary_10_1016_j_jhydrol_2021_127285
crossref_primary_10_1016_j_jhydrol_2021_126233
crossref_primary_10_1016_j_jhydrol_2021_127323
crossref_primary_10_3389_fpubh_2023_1335499
crossref_primary_10_1029_2022JD036606
crossref_primary_10_1175_JHM_D_19_0266_1
crossref_primary_10_1175_JHM_D_21_0029_1
crossref_primary_10_1016_j_jhydrol_2021_126073
crossref_primary_10_1016_j_atmosres_2024_107269
crossref_primary_10_1175_JHM_D_19_0164_1
crossref_primary_10_2166_hydro_2021_176
crossref_primary_10_1111_jfr3_12658
crossref_primary_10_3390_w13141894
crossref_primary_10_5194_hess_26_1001_2022
crossref_primary_10_1061__ASCE_WR_1943_5452_0001260
crossref_primary_10_1175_JHM_D_21_0167_1
crossref_primary_10_1007_s00477_019_01694_y
crossref_primary_10_3390_w16030436
crossref_primary_10_1007_s13253_019_00358_2
crossref_primary_10_1029_2022RG000788
crossref_primary_10_1111_jfr3_12880
crossref_primary_10_1029_2019GL083831
crossref_primary_10_1016_j_jhydrol_2024_131176
crossref_primary_10_1016_j_jhydrol_2022_127912
crossref_primary_10_3390_rs11111345
crossref_primary_10_5194_hess_28_4099_2024
crossref_primary_10_1029_2021JD035737
crossref_primary_10_1002_qj_3637
crossref_primary_10_5194_hess_23_723_2019
crossref_primary_10_1175_WAF_D_19_0121_1
crossref_primary_10_1051_lhb_2019016
crossref_primary_10_1175_JCLI_D_18_0224_1
crossref_primary_10_3390_w11102126
crossref_primary_10_1029_2019WR025280
crossref_primary_10_1175_JHM_D_19_0246_1
crossref_primary_10_1175_JHM_D_21_0096_1
crossref_primary_10_1016_j_jhydrol_2024_131986
crossref_primary_10_1016_j_jhydrol_2023_129082
crossref_primary_10_1016_j_jhydrol_2019_04_073
crossref_primary_10_3390_su15043865
crossref_primary_10_1029_2023WR035693
crossref_primary_10_1007_s11269_023_03442_y
crossref_primary_10_1029_2022WR032201
crossref_primary_10_1007_s00271_022_00807_w
crossref_primary_10_5194_hess_26_1673_2022
crossref_primary_10_1080_02626667_2021_1873343
crossref_primary_10_1111_sum_12699
crossref_primary_10_1007_s11069_024_06803_x
crossref_primary_10_1029_2019EF001198
crossref_primary_10_1016_j_jhydrol_2021_126537
crossref_primary_10_1007_s12594_021_1785_0
crossref_primary_10_1029_2020WR029433
crossref_primary_10_1016_j_jhydrol_2022_127896
crossref_primary_10_1029_2018WR023205
crossref_primary_10_1016_j_advwatres_2021_103907
crossref_primary_10_1175_JHM_D_18_0102_1
crossref_primary_10_1029_2022WR032568
crossref_primary_10_5194_hess_26_4233_2022
crossref_primary_10_1007_s11707_019_0802_8
crossref_primary_10_1016_j_jhydrol_2024_131152
crossref_primary_10_1016_j_jhydrol_2024_132363
crossref_primary_10_1175_JHM_D_19_0155_1
crossref_primary_10_1029_2023EF004053
crossref_primary_10_3389_frai_2020_565859
crossref_primary_10_1007_s00477_023_02386_4
crossref_primary_10_3390_w13233420
crossref_primary_10_1016_j_eng_2022_06_007
crossref_primary_10_1175_WAF_D_20_0096_1
crossref_primary_10_1016_j_jhydrol_2025_133005
crossref_primary_10_1016_j_ins_2023_119716
crossref_primary_10_5194_hess_26_197_2022
crossref_primary_10_1175_MWR_D_19_0108_1
crossref_primary_10_3390_en13236419
crossref_primary_10_1016_j_ecocom_2022_100997
Cites_doi 10.1175/MWR3403.1
10.1175/2008MWR2565.1
10.1002/qj.2414
10.1016/j.jhydrol.2009.07.059
10.1175/MWR-D-15-0227.1
10.1002/hyp.9496
10.1017/S1350482704001252
10.1002/asl.182
10.1002/met.134
10.1016/S1385-7258(53)50040-X
10.1002/hyp.9595
10.1002/qj.2839
10.1029/2000WR900108
10.1016/j.jhydrol.2004.03.037
10.1029/2011WR010724
10.1175/2009JHM1188.1
10.1002/qj.383
10.1016/j.jhydrol.2009.06.005
10.1175/2007WAF2007029.1
10.1002/2015RG000513
10.1007/s00704-009-0134-9
10.1034/j.1600-0870.2000.d01-4.x
10.5194/npg-18-147-2011
10.1002/env.2316
10.1175/MWR-D-13-00248.1
10.1016/S0022-1694(00)00361-9
10.1002/2014WR016473
10.1214/08-AOAS203
10.1002/hyp.9562
10.1002/hyp.10259
10.1002/hyp.9313
10.1029/2011WR011607
10.3390/w8040125
10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
10.1016/j.jhydrol.2008.03.027
10.1029/2007WR006758
10.1111/rssc.12040
10.1016/j.jhydrol.2015.06.043
10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2
10.1175/2010MWR3542.1
10.3402/tellusa.v57i3.14657
10.1002/asl.276
10.5194/hess-16-1085-2012
10.1146/annurev-statistics-062713-085831
10.1016/S0022-1694(01)00412-7
10.1175/MWR-D-15-0384.1
10.5194/hess-11-939-2007
10.1029/2004WR003059
10.1002/env.2391
10.1256/00359000260498923
10.1016/j.jhydrol.2013.07.039
10.5194/hess-17-3587-2013
10.1175/2007JHM862.1
10.1175/BAMS-88-10-1541
10.1002/wat2.1038
10.1002/asl.248
10.1002/asl.180
10.1175/MWR-D-14-00210.1
10.1175/MWR3402.1
10.1175/MWR-D-15-0061.1
10.1256/qj.04.120
10.1175/MWR-D-14-00329.1
10.1175/MWR-D-15-0204.1
10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2
10.1256/qj.05.167
10.1002/hyp.9263
10.1175/2009MWR3046.1
10.1175/2007MWR1963.1
10.1029/2005WR004838
10.1017/S1350482706002192
10.1007/s00382-010-0815-1
10.2307/1913643
10.1198/jasa.2011.ap10433
10.1175/MWR-D-16-0260.1
10.1126/science.285.5433.1548
10.1175/MWR2906.1
10.1016/S0022-1694(96)03259-3
10.1175/MWR-D-13-00271.1
10.1080/15715124.2008.9635342
10.1175/BAMS-87-1-33
10.1111/j.2517-6161.1977.tb01600.x
10.1175/MWR2904.1
10.1002/qj.2397
10.1029/1999WR900099
10.1111/j.1600-0870.2005.00110.x
10.1029/2006JD007655
10.1175/2008MWR2569.1
10.1002/wat2.1088
10.1029/2010WR009333
10.5194/hess-19-3181-2015
10.1016/j.jhydrol.2012.10.037
10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
10.5194/hessd-3-1987-2006
10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2
10.1198/016214504000000872
10.5194/hessd-3-3321-2006
10.1002/hyp.10234
10.1175/2007MWR2410.1
10.1029/2009WR007733
10.1002/2016WR020133
10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
10.1016/j.jhydrol.2014.11.072
10.5194/adgeo-29-51-2011
10.1002/hyp.10374
10.1175/MWR-D-12-00253.1
10.1029/2005WR004745
10.1016/j.cageo.2010.07.005
10.1175/JHM-D-11-038.1
10.5194/hess-15-3253-2011
10.1016/S1385-7258(53)50039-3
10.1175/2009MWR2715.1
10.1016/j.jhydrol.2013.10.055
10.5194/hess-5-577-2001
10.5194/npg-15-761-2008
10.1175/MWR3341.1
10.1175/BAMS-D-12-00081.1
10.1029/2010WR009996
10.1002/asl.267
10.1214/13-STS443
10.1029/2011WR011116
10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
10.1175/JCLI-D-16-0652.1
10.5194/hess-15-255-2011
10.1016/j.jhydrol.2017.01.053
10.1002/wrcr.20542
10.1034/j.1600-0870.1994.t01-2-00006.x
10.1016/j.jhydrol.2011.01.013
10.1016/j.advwatres.2006.11.014
10.1002/wrcr.20294
10.1002/2014WR016163
10.1002/2012WR012757
10.1111/j.1467-9868.2007.00587.x
10.5194/hessd-4-655-2007
10.1029/2010WR009137
10.5194/hess-18-3411-2014
10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
10.1175/JCLI-D-11-00386.1
10.1175/JHM519.1
10.1111/rssc.12062
10.1029/2012WR012256
10.1175/MWR-D-13-00355.1
10.1002/qj.2198
10.1126/science.1151915
10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2
10.1007/s00477-010-0378-z
10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
10.1175/WAF-D-13-00049.1
10.1002/we.284
10.1002/qj.2183
10.1175/MWR3237.1
10.1175/2010MWR3511.1
10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
10.1175/2008JHM980.1
10.5194/asr-8-135-2012
10.1016/j.jhydrol.2005.07.031
10.1175/2007MWR2411.1
10.1016/S1385-7258(52)50063-5
10.1175/2009JHM1006.1
10.1002/qj.2323
10.1002/qj.2009
10.1034/j.1600-0870.2003.201378.x
10.1175/MWR-D-16-0331.1
10.1175/JHM504.1
10.1175/2007JHM858.1
10.1175/MWR3441.1
10.1093/biomet/87.4.954
10.3390/w8040115
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1002/wat2.1246
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2049-1948
EndPage n/a
ExternalDocumentID 10_1002_wat2_1246
WAT21246
Genre reviewArticle
GrantInformation_xml – fundername: Intergovernmental Key International Science and Technology Innovation Cooperation Program
  funderid: 2016YFE0102400
– fundername: Natural Science Foundation of China
  funderid: 210100025
GroupedDBID 0R~
1OC
1VH
31~
33P
8-1
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXBN
ACXQS
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AUFTA
AZVAB
BFHJK
BMNLL
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WIH
WIK
WMRSR
WOHZO
WSUWO
WXSBR
WYJ
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
HGLYW
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c2976-9135e10e2dfceda46b4079154b7bc90eb5d3be9a1423b246b164ae30d0610c203
ISSN 2049-1948
IngestDate Fri Jul 25 22:48:17 EDT 2025
Thu Jul 03 08:26:43 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
Wed Jan 22 16:54:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2976-9135e10e2dfceda46b4079154b7bc90eb5d3be9a1423b246b164ae30d0610c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1950328898
PQPubID 2034617
PageCount 24
ParticipantIDs proquest_journals_1950328898
crossref_citationtrail_10_1002_wat2_1246
crossref_primary_10_1002_wat2_1246
wiley_primary_10_1002_wat2_1246_WAT21246
PublicationCentury 2000
PublicationDate November/December 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November/December 2017
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Water
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 11
2010; 99
2015; 141
2000; 87
2015; 144
2015; 143
2013; 63
1999; 285
2016; 144
2004; 5
2012; 16
2014; 28
2012; 13
2016; 142
2003; 55
2004; 298
2010; 24
2000; 13
2008; 23
2013; 477
2007; 4
2012; 27
2008; 356
2014; 18
2007; 3
2014; 95
2009; 16
2007; 69
2006; 320
2011; 139
2015; 51
2013; 501
2000; 239
1996
2015; 528
1992
2015; 524
1953; 15
2017; 53
2006; 42
2002; 128
1999; 35
1969; 26
2014; 140
2008; 136
2012; 48
1978; 46
2014; 30
2017; 145
2007; 88
2016; 27
2014; 142
2016; 8
2009; 45
2011; 399
2013; 28
2005; 131
2013; 27
2005; 133
1997; 197
2008; 9
2006; 132
2008; 6
2011; 12
2011; 15
2007; 30
2014; 63
2008; 2
1999; 127
2011; 18
2006; 134
2014; 64
2014; 1
2004; 132
2007; 135
2017; 30
2013; 17
2000; 52
2008; 319
1998; 126
2011; 25
2014; 50
1972; 11
2011; 29
2014; 6
2015; 2
1952; 14
2015; 19
2013; 49
2012
2006; 13
2006; 7
2016; 54
2009; 375
2008
2005; 41
2009; 133
2008; 15
2009; 376
1994; 46
2006
2006; 3
2013; 141
2004
2011; 37
2011; 36
2001; 129
2015; 8
2009; 137
2001; 249
1997; 125
2004; 11
2004; 99
2007; 112
2015; 26
2014; 508
2015; 29
2011; 106
2000; 36
2006; 87
2001; 5
2010; 138
2004; 17
2010; 135
2013; 139
2017
1977; 39B
2016
2015
2014
2011; 47
2013
2007; 43
1959; 16
2016; 373
2005; 57
2012; 8
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
Dempster AP (e_1_2_9_141_1) 1977; 39
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
Hamill TM (e_1_2_9_118_1) 2004
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Klein WH (e_1_2_9_16_1) 1959; 16
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
Krzysztofowicz R (e_1_2_9_27_1) 2006
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_189_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_185_1
e_1_2_9_181_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
Skøien JO (e_1_2_9_183_1) 2016; 373
e_1_2_9_4_1
Baran S (e_1_2_9_171_1) 2015
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
Madadgar S (e_1_2_9_149_1) 2014; 6
e_1_2_9_100_1
e_1_2_9_123_1
Vannitsem S (e_1_2_9_128_1) 2009; 133
e_1_2_9_169_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_161_1
e_1_2_9_180_1
Hagedorn R (e_1_2_9_71_1) 2005; 57
e_1_2_9_63_1
Messner JW (e_1_2_9_36_1) 2015; 8
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
Kavetski D (e_1_2_9_184_1) 2006; 42
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_192_1
References_xml – volume: 35
  start-page: 2739
  year: 1999
  end-page: 2750
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Water Resour Res
– volume: 48
  start-page: 1
  year: 2012
  end-page: 7
  article-title: A log‐sinh transformation for data normalization and variance stabilization
  publication-title: Water Resour Res
– volume: 135
  start-page: 3209
  year: 2007
  end-page: 3220
  article-title: Probabilistic quantitative precipitation forecasting using Bayesian model averaging
  publication-title: Mon Weather Rev
– volume: 129
  start-page: 550
  year: 2001
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mon Weather Rev
– volume: 143
  start-page: 955
  year: 2015
  end-page: 971
  article-title: Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression
  publication-title: Mon Weather Rev
– volume: 142
  start-page: 2463
  year: 2016
  end-page: 2477
  article-title: Combining parametric low‐dimensional ensemble postprocessing with reordering methods
  publication-title: Q J Roy Meteor Soc
– volume: 16
  start-page: 361
  year: 2009
  end-page: 368
  article-title: Extending logistic regression to provide full‐probability‐distribution MOS forecasts
  publication-title: Meteorol Appl
– volume: 8
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Heteroscedastic censored and truncated regression with crch
  publication-title: R J
– volume: 524
  start-page: 789
  year: 2015
  end-page: 802
  article-title: Ensemble Bayesian forecasting system. Part I: theory and algorithms
  publication-title: J Hydrol
– volume: 298
  start-page: 222
  year: 2004
  end-page: 241
  article-title: Characterizing streamflow simulation uncertainty through multimodel ensembles
  publication-title: J Hydrol
– volume: 42
  year: 2006
  article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
  publication-title: Water Resour Res
– volume: 7
  start-page: 548
  year: 2006
  end-page: 565
  article-title: Real‐time data assimilation for operational ensemble streamflow forecasting
  publication-title: J Hydrometeorol
– volume: 13
  start-page: 4196
  year: 2000
  end-page: 4216
  article-title: Multimodel ensemble forecasts for weather and seasonal climate
  publication-title: J Climate
– volume: 11
  start-page: 153
  year: 2010
  end-page: 159
  article-title: Comparison of pre‐ and post‐processors for ensemble streamflow prediction
  publication-title: Atmos Sci Lett
– volume: 3
  start-page: 939
  year: 2007
  end-page: 950
  article-title: Evaluation of bias‐correction methods for ensemble streamflow volume forecasts
  publication-title: Hydrol Earth Syst Sci
– volume: 29
  start-page: 1141
  year: 2015
  end-page: 1155
  article-title: Exploratory analysis of statistical post‐processing methods for hydrological ensemble forecasts
  publication-title: Hydrol Process
– volume: 12
  start-page: 51
  year: 2011
  end-page: 62
  article-title: Evaluating scenarios of short‐term wind power generation
  publication-title: Wind Energy
– volume: 54
  start-page: 336
  year: 2016
  end-page: 377
  article-title: A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes
  publication-title: Rev Geophys
– volume: 141
  start-page: 4554
  year: 2013
  end-page: 4563
  article-title: Toward accurate and reliable forecasts of Australian seasonal rainfall by calibrating and merging multiple coupled GCMs
  publication-title: Mon Weather Rev
– volume: 15
  start-page: 3253
  year: 2011
  end-page: 3274
  article-title: Recent developments in predictive uncertainty assessment based on the model conditional processor approach
  publication-title: Hydrol Earth Syst Sci
– volume: 133
  start-page: 937
  year: 2009
  end-page: 948
  article-title: A unified linear model output statistics scheme for both deterministic and ensemble forecasts
  publication-title: Q J Roy Meteor Soc
– volume: 112
  start-page: 185
  year: 2007
  end-page: 194
  article-title: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions
  publication-title: J Geophys Res Atmos
– volume: 8
  start-page: 115
  year: 2016
  end-page: 115
  article-title: Post‐processing of stream flows in Switzerland with an emphasis on low flows and floods
  publication-title: Water
– volume: 6
  start-page: 2108
  year: 2014
  end-page: 2123
  article-title: Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging
  publication-title: J Hydrol
– volume: 134
  start-page: 3209
  year: 2006
  end-page: 3229
  article-title: Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application
  publication-title: Mon Weather Rev
– volume: 137
  start-page: 246
  year: 2009
  end-page: 268
  article-title: MOS uncertainty estimates in an ensemble framework
  publication-title: Mon Weather Rev
– volume: 48
  start-page: 5634
  year: 2012
  end-page: 5634
  article-title: Bayesian model averaging using particle filtering and Gaussian mixture modeling: theory, concepts, and simulation experiments
  publication-title: Water Resour Res
– volume: 1
  start-page: 427
  year: 2014
  end-page: 438
  article-title: Toward a theoretical framework for integrated modeling of hydrological change
  publication-title: WIREs Water
– year: 2008
– volume: 57
  start-page: 219
  year: 2005
  end-page: 233
  article-title: The rationale behind the success of multi‐model ensembles in seasonal forecasting—I. Basic concept
  publication-title: Tellus Ser A—Dyn Meteorol Oceanogr
– volume: 14
  start-page: 453
  year: 1952
  end-page: 458
  article-title: Order tests for the two‐sample problem and their power I
  publication-title: Indagat Math
– volume: 143
  start-page: 3642
  year: 2015
  end-page: 3663
  article-title: Improving precipitation forecasts by generating ensembles through postprocessing
  publication-title: Mon Weather Rev
– volume: 239
  start-page: 306
  year: 2000
  end-page: 337
  article-title: An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts
  publication-title: J Hydrol
– volume: 4
  start-page: 655
  year: 2007
  end-page: 717
  article-title: Precipitation and temperature ensemble forecasts from single‐value forecasts
  publication-title: Hydrol Earth Syst Sci Discuss
– volume: 46
  start-page: 314
  year: 1994
  end-page: 324
  article-title: Searching for analogues, how long must we wait?
  publication-title: Tellus Ser A–Dyn Meteorol Oceanogr
– volume: 49
  start-page: 4035
  year: 2013
  end-page: 4053
  article-title: Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models
  publication-title: Water Resour Res
– volume: 320
  start-page: 3
  year: 2006
  end-page: 17
  article-title: Model parameter estimation experiment (MOPEX): an overview of science strategy and major results from the second and third workshops
  publication-title: J Hydrol
– volume: 30
  start-page: 1109
  year: 2014
  end-page: 1124
  article-title: Precipitation calibration based on frequency matching method
  publication-title: Weather Forecast
– volume: 131
  start-page: 965
  year: 2005
  end-page: 986
  article-title: Improvement of ensemble reliability with a new dressing kernel
  publication-title: Q J Roy Meteor Soc
– volume: 43
  start-page: 1
  year: 2007
  end-page: 15
  article-title: Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging
  publication-title: Water Resour Res
– volume: 128
  start-page: 361
  year: 2002
  end-page: 384
  article-title: Multi‐model multi‐analysis ensembles in quasi‐operational medium‐range forecasting
  publication-title: Q J Roy Meteor Soc
– volume: 15
  start-page: 255
  year: 2011
  end-page: 265
  article-title: Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales)
  publication-title: Hydrol Earth Syst Sci
– volume: 142
  start-page: 1758
  year: 2014
  end-page: 1770
  article-title: Seasonal forecasts of Australian rainfall through calibration and bridging of coupled GCM outputs
  publication-title: Mon Weather Rev
– volume: 319
  start-page: 573
  year: 2008
  end-page: 574
  article-title: Stationarity is dead: whither water management?
  publication-title: Science
– volume: 57
  start-page: 253
  year: 2005
  end-page: 264
  article-title: Forecast assimilation: a unified framework for the combination of multi‐model weather and climate predictions
  publication-title: Tellus Ser A—Dyn Meteorol Oceanogr
– volume: 125
  start-page: 1312
  year: 1997
  end-page: 1327
  article-title: Verification of eta RSM short‐range ensemble forecasts
  publication-title: Mon Weather Rev
– start-page: 3003
  year: 2014
  end-page: 3013
  article-title: Extending extended logistic regression: extended vs. separate vs. ordered vs. censored
  publication-title: Mon Weather Rev
– volume: 3
  start-page: 1987
  year: 2006
  end-page: 2035
  article-title: A statistical post‐processor for accounting of hydrologic uncertainty in short‐range ensemble streamflow prediction
  publication-title: Hydrol Earth Syst Sci Discuss
– volume: 126
  start-page: 711
  year: 1998
  end-page: 724
  article-title: Evaluation of eta RSM ensemble probabilistic precipitation forecasts
  publication-title: Mon Weather Rev
– volume: 6
  start-page: 123
  year: 2008
  end-page: 137
  article-title: A model conditional processor to assess predictive uncertainty in flood forecasting
  publication-title: Int J River Basin Manage
– volume: 135
  start-page: 777
  year: 2010
  end-page: 794
  article-title: Medium‐range multimodel ensemble combination and calibration
  publication-title: Q J Roy Meteor Soc
– volume: 63
  start-page: 405
  year: 2014
  end-page: 422
  article-title: Spatially adaptive post‐processing of ensemble forecasts for temperature
  publication-title: J R Stat Soc
– volume: 249
  start-page: 46
  year: 2001
  end-page: 68
  article-title: Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation‐dependent model
  publication-title: J Hydrol
– volume: 29
  start-page: 1434
  year: 2015
  end-page: 1449
  article-title: Post‐processing of medium‐range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors
  publication-title: Hydrol Process
– volume: 2
  start-page: 523
  year: 2015
  end-page: 536
  article-title: A review on climate‐model‐based seasonal hydrologic forecasting: physical understanding and system development
  publication-title: WIREs Water
– volume: 63
  start-page: 405
  year: 2013
  end-page: 422
  article-title: Spatially adaptive post‐processing of ensemble forecasts for temperature
  publication-title: J R Stat Soc
– volume: 51
  start-page: 7436
  year: 2015
  end-page: 7451
  article-title: Multivariate postprocessing techniques for probabilistic hydrological forecasting
  publication-title: Water Resour Res
– volume: 64
  start-page: 75
  year: 2014
  end-page: 92
  article-title: Combining the Bayesian processor of output with Bayesian model averaging for reliable ensemble forecasting
  publication-title: J R Stat Soc
– volume: 30
  start-page: 3185
  year: 2017
  end-page: 3196
  article-title: How suitable is quantile mapping for postprocessing GCM precipitation forecasts?
  publication-title: J Climate
– volume: 29
  start-page: 51
  year: 2011
  end-page: 59
  article-title: A hydrologic post‐processor for ensemble streamflow predictions
  publication-title: Adv Geosci
– volume: 15
  start-page: 303
  year: 1953
  end-page: 310
  article-title: Order tests for the two‐sample problem and their power II
  publication-title: Indagat Math
– year: 2016
– year: 1992
– volume: 27
  start-page: 106
  year: 2013
  end-page: 116
  article-title: Ensemble dressing for hydrological applications
  publication-title: Hydrol Process
– volume: 18
  start-page: 147
  year: 2011
  end-page: 160
  article-title: Post‐processing through linear regression
  publication-title: Nonlinear Process Geophys
– volume: 53
  start-page: 3029
  year: 2017
  end-page: 3046
  article-title: A method for preferential selection of dates in the Schaake shuffle approach to constructing spatiotemporal forecast fields of temperature and precipitation
  publication-title: Water Resour Res
– volume: 127
  start-page: 1941
  year: 1999
  end-page: 1953
  article-title: The skill of ensemble prediction systems
  publication-title: Mon Weather Rev
– volume: 13
  start-page: 243
  year: 2006
  end-page: 256
  article-title: Comparison of ensemble‐MOS methods in the Lorenz '96 setting
  publication-title: Meteorol Appl
– volume: 51
  start-page: 1797
  year: 2015
  end-page: 1812
  article-title: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia
  publication-title: Water Resour Res
– volume: 11
  start-page: 173
  year: 2004
  end-page: 187
  article-title: Adaptive Kalman filtering of 2‐metre temperature and 10‐metre wind‐speed forecasts in Iceland
  publication-title: Meteorol Appl
– volume: 399
  start-page: 281
  year: 2011
  end-page: 298
  article-title: Generation of ensemble precipitation forecast from single‐valued quantitative precipitation forecast for hydrologic ensemble prediction
  publication-title: J Hydrol
– volume: 47
  start-page: 1
  year: 2011
  end-page: 19
  article-title: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences
  publication-title: Water Resour Res
– volume: 139
  start-page: 982
  year: 2013
  end-page: 991
  article-title: Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas
  publication-title: Q J Roy Meteor Soc
– volume: 50
  start-page: 182
  year: 2014
  end-page: 197
  article-title: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times
  publication-title: Water Resour Res
– volume: 132
  start-page: 1434
  year: 2004
  end-page: 1447
  article-title: Ensemble reforecasting: improving medium‐range forecast skill using retrospective forecasts
  publication-title: Mon Weather Rev
– volume: 11
  start-page: 59
  year: 2010
  end-page: 63
  article-title: Summary of recommendations of the first workshop on postprocessing and downscaling atmospheric forecasts for hydrologic applications held at Meteo‐France, Toulouse, France, 15–18 June 2009
  publication-title: Atmos Sci Lett
– volume: 17
  start-page: 1504
  year: 2004
  end-page: 1516
  article-title: Forecast calibration and combination: a simple Bayesian approach for ENSO
  publication-title: J Climate
– volume: 144
  start-page: 2421
  year: 2016
  end-page: 2441
  article-title: Calibration, bridging and merging to improve GCM seasonal temperature forecasts in Australia
  publication-title: Mon Weather Rev
– volume: 11
  start-page: 618
  year: 2010
  end-page: 641
  article-title: A 1‐10‐day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07
  publication-title: J Hydrometeorol
– volume: 375
  start-page: 613
  year: 2009
  end-page: 626
  article-title: Ensemble flood forecasting: a review
  publication-title: J Hydrol
– volume: 95
  start-page: 79
  year: 2014
  end-page: 98
  article-title: The science of NOAA's operational hydrologic ensemble forecast service
  publication-title: Bull Am Meteorol Soc
– volume: 133
  start-page: 1098
  year: 2005
  end-page: 1118
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mon Weather Rev
– volume: 137
  start-page: 1717
  year: 2009
  end-page: 1720
  article-title: On the reliability and calibration of ensemble forecasts
  publication-title: Mon Weather Rev
– volume: 43
  start-page: 1
  year: 2007
  end-page: 19
  article-title: An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction
  publication-title: Water Resour Res
– volume: 11
  start-page: 1203
  year: 1972
  end-page: 1211
  article-title: The use of model output statistics (MOS) in objective weather forecasting
  publication-title: J Appl Meteorol
– volume: 356
  start-page: 56
  year: 2008
  end-page: 69
  article-title: A Bayesian approach to decision‐making under uncertainty: an application to real‐time forecasting in the river Rhine
  publication-title: J Hydrol
– year: 2013
– volume: 37
  start-page: 1277
  year: 2011
  end-page: 1284
  article-title: Quantile regression neural networks: implementation in R and application to precipitation downscaling
  publication-title: Comput Geosci
– volume: 13
  start-page: 463
  year: 2012
  end-page: 482
  article-title: Dynamic‐Model‐based seasonal prediction of meteorological drought over the contiguous United States
  publication-title: J Hydrometeorol
– volume: 23
  start-page: 270
  year: 2008
  end-page: 289
  article-title: Probabilistic forecasts from the National Digital Forecast Database
  publication-title: Weather Forecast
– volume: 141
  start-page: 807
  year: 2015
  end-page: 818
  article-title: Ensemble post‐processing using member‐by‐member approaches: theoretical aspects
  publication-title: Q J Roy Meteor Soc
– volume: 27
  start-page: 280
  year: 2016
  end-page: 292
  article-title: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting
  publication-title: Environmetrics
– volume: 135
  start-page: 2379
  year: 2007
  end-page: 2390
  article-title: Comparison of ensemble‐MOS methods using GFS reforecasts
  publication-title: Mon Weather Rev
– volume: 5
  start-page: 577
  year: 2001
  end-page: 597
  article-title: A non‐linear neural network technique for updating of river flow forecasts
  publication-title: Hydrol Earth Syst Sci
– volume: 140
  start-page: 1112
  year: 2014
  end-page: 1120
  article-title: A comparison of ensemble post‐processing methods for extreme events TL‐140
  publication-title: Q J Roy Meteor Soc
– volume: 28
  start-page: 616
  year: 2013
  end-page: 640
  article-title: Uncertainty quantification in complex simulation models using ensemble copula coupling
  publication-title: Stat Sci
– volume: 26
  start-page: 120
  year: 2015
  end-page: 132
  article-title: Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging
  publication-title: Environmetrics
– volume: 9
  start-page: 76
  year: 2008
  end-page: 95
  article-title: Probabilistic quantitative precipitation forecast for flood prediction: an application
  publication-title: J Hydrometeorol
– volume: 27
  start-page: 83
  year: 2013
  end-page: 105
  article-title: Evaluation of a nonparametric post‐processor for bias correction and uncertainty estimation of hydrologic predictions
  publication-title: Hydrol Process
– volume: 26
  start-page: 636
  year: 1969
  end-page: 646
  article-title: Atmospheric predictability as revealed by naturally occurring analogues
  publication-title: J Atmos Sci
– volume: 41
  start-page: 407
  year: 2005
  end-page: 412
  article-title: Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation
  publication-title: Water Resour Res
– volume: 99
  start-page: 187
  year: 2010
  end-page: 192
  article-title: Statistical bias correction for daily precipitation in regional climate models over Europe
  publication-title: Theor Appl Climatol
– volume: 129
  start-page: 2461
  year: 2001
  end-page: 2480
  article-title: Ability of a poor man's ensemble to predict the probability and distribution of precipitation
  publication-title: Mon Weather Rev
– volume: 9
  start-page: 866
  year: 2008
  end-page: 884
  article-title: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the Eastern United States
  publication-title: J Hydrometeorol
– volume: 99
  start-page: 575
  year: 2004
  end-page: 583
  article-title: Calibrated probabilistic mesoscale weather field forecasting
  publication-title: J Am Stat Assoc
– volume: 501
  start-page: 73
  year: 2013
  end-page: 91
  article-title: Post‐processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales
  publication-title: J Hydrol
– volume: 8
  start-page: 135
  year: 2012
  end-page: 141
  article-title: Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies
  publication-title: Adv Sci Res
– volume: 87
  start-page: 33
  year: 2006
  end-page: 46
  article-title: Reforecasts: an important dataset for improving weather predictions
  publication-title: Bull Am Meteorol Soc
– volume: 132
  start-page: 1349
  year: 2006
  end-page: 1369
  article-title: Probabilistic forecasting from ensemble prediction systems: improving upon the best‐member method by using a different weight and dressing kernel for each member
  publication-title: Q J Roy Meteor Soc
– volume: 45
  start-page: 1
  year: 2009
  end-page: 18
  article-title: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites
  publication-title: Water Resour Res
– volume: 197
  start-page: 203
  year: 1997
  end-page: 229
  article-title: Methods for combining the outputs of different rainfall–runoff models
  publication-title: J Hydrol
– year: 2017
  article-title: The US national blend of models statistical post‐processing of probability of precipitation and deterministic precipitation amount
  publication-title: Mon Weather Rev
– volume: 145
  start-page: 955
  year: 2017
  end-page: 969
  article-title: Ensemble postprocessing of daily precipitation sums over complex terrain using censored high‐resolution standardized anomalies
  publication-title: Mon Weather Rev
– volume: 376
  start-page: 463
  year: 2009
  end-page: 475
  article-title: Verification of ensemble flow forecasts for the river Rhine
  publication-title: J Hydrol
– volume: 28
  start-page: 104
  year: 2014
  end-page: 122
  article-title: Towards improved post‐processing of hydrologic forecast ensembles
  publication-title: Hydrol Process
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
– volume: 477
  start-page: 33
  year: 2013
  end-page: 42
  article-title: From HUP to MCP: analogies and extended performances
  publication-title: J Hydrol
– volume: 141
  start-page: 945
  year: 2015
  end-page: 952
  article-title: Multivariate ensemble model output statistics using empirical copulas
  publication-title: Q J Roy Meteor Soc
– volume: 11
  start-page: 642
  year: 2010
  end-page: 665
  article-title: A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts
  publication-title: J Hydrometeorol
– volume: 3
  start-page: 3321
  year: 2006
  end-page: 3332
  article-title: The Hydrologic Ensemble Prediction EXperiment (HEPEX)
  publication-title: Hydrol Earth Syst Sci Discuss
– volume: 133
  start-page: 1155
  year: 2005
  end-page: 1174
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon Weather Rev
– volume: 140
  start-page: 1086
  year: 2014
  end-page: 1096
  article-title: Probabilistic quantitative precipitation forecasting using ensemble model output statistics
  publication-title: Q J Roy Meteor Soc
– volume: 48
  year: 2012
  article-title: Downscaling precipitation or bias‐correcting streamflow? Some implications for coupled general circulation model (CGCM)‐based ensemble seasonal hydrologic forecast
  publication-title: Water Resour Res
– volume: 16
  start-page: 672
  year: 1959
  end-page: 682
  article-title: Objective prediction of five‐day mean temperatures during winter
  publication-title: J Atmos Sci
– volume: 135
  start-page: 2365
  year: 2007
  end-page: 2378
  article-title: Statistical downscaling of extreme precipitation events using censored quantile regression
  publication-title: Mon Weather Rev
– volume: 11
  start-page: 83
  year: 2010
  end-page: 91
  article-title: Propagation of uncertainty from observing systems and NWP into hydrological models: COST‐731 Working Group 2
  publication-title: Atmos Sci Lett
– volume: 47
  start-page: 1
  year: 2011
  end-page: 15
  article-title: Hydrological ensemble forecasting in mesoscale catchments: sensitivity to initial conditions and value of reforecasts
  publication-title: Water Resour Res
– volume: 136
  start-page: 4641
  year: 2008
  end-page: 4652
  article-title: Bayesian model averaging's problematic treatment of extreme weather and a paradigm shift that fixes it
  publication-title: Mon Weather Rev
– volume: 15
  start-page: 761
  year: 2008
  end-page: 772
  article-title: Multivariate non‐normally distributed random variables in climate research—introduction to the copula approach
  publication-title: Nonlinear Process Geophys
– volume: 139
  start-page: 2630
  year: 2011
  end-page: 2649
  article-title: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging
  publication-title: Mon Weather Rev
– year: 2015
– volume: 52
  start-page: 280
  year: 2000
  end-page: 299
  article-title: Comparison of a single‐model EPS with a multi‐model ensemble consisting of a few operational models
  publication-title: Tellus Ser A—Dyn Meteorol Oceanogr
– volume: 69
  start-page: 243
  year: 2007
  end-page: 268
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J R Stat Soc
– volume: 528
  start-page: 329
  year: 2015
  end-page: 340
  article-title: Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model
  publication-title: J Hydrol
– volume: 49
  start-page: 6744
  year: 2013
  end-page: 6755
  article-title: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times
  publication-title: Water Resour Res
– volume: 39B
  start-page: 1
  year: 1977
  end-page: 39
  article-title: Maximum likelihood for incomplete data via the EM algorithm
  publication-title: J R Stat Soc
– volume: 139
  start-page: 1960
  year: 2011
  end-page: 1971
  article-title: Probabilistic forecasts using analogs in the idealized Lorenz96 setting
  publication-title: Mon Weather Rev
– volume: 27
  start-page: 57
  year: 2013
  end-page: 74
  article-title: Evaluating the predictive skill of post‐processed NCEP GFS ensemble precipitation forecasts in China's Huai river basin
  publication-title: Hydrol Process
– volume: 1
  start-page: 125
  year: 2014
  end-page: 151
  article-title: Probabilistic forecasting
  publication-title: Annu Rev Stat Appl
– volume: 88
  start-page: 1541
  year: 2007
  end-page: 1547
  article-title: HEPEX: the hydrological ensemble prediction experiment
  publication-title: Bull Am Meteorol Soc
– volume: 55
  start-page: 16
  year: 2003
  end-page: 30
  article-title: Combining dynamical and statistical ensembles
  publication-title: Tellus Ser A—Dyn Meteorol Oceanogr
– volume: 140
  start-page: 2582
  year: 2014
  end-page: 2590
  article-title: Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics
  publication-title: Q J Roy Meteor Soc
– volume: 136
  start-page: 2608
  year: 2008
  end-page: 2619
  article-title: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: two‐meter temperatures
  publication-title: Mon Weather Rev
– volume: 47
  start-page: 1772
  year: 2011
  end-page: 1780
  article-title: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system
  publication-title: Water Resour Res
– volume: 2
  start-page: 1170
  year: 2008
  end-page: 1193
  article-title: Probabilistic quantitative precipitation field forecasting using a two‐stage spatial model
  publication-title: Ann Appl Stat
– volume: 24
  start-page: 809
  year: 2010
  end-page: 820
  article-title: Comparison of point forecast accuracy of model averaging methods in hydrologic applications
  publication-title: Stochastic Environ Res Risk Assess
– volume: 132
  start-page: 338
  year: 2004
  end-page: 347
  article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
  publication-title: Mon Weather Rev
– volume: 285
  start-page: 1548
  year: 1999
  end-page: 1550
  article-title: Improved weather and seasonal climate forecasts from multimodel superensemble
  publication-title: Science
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 7
  start-page: 755
  year: 2006
  end-page: 768
  article-title: Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results
  publication-title: J Hydrometeorol
– year: 1996
– start-page: 3825
  year: 2004
  end-page: 3830
  article-title: Ensemble re‐forecasting: improving medium‐range forecast skill using retrospective forecasts
  publication-title: Bull Am Meteorol Soc
– volume: 136
  start-page: 2620
  year: 2008
  end-page: 2632
  article-title: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: precipitation
  publication-title: Mon Weather Rev
– volume: 19
  start-page: 3181
  year: 2015
  end-page: 3201
  article-title: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments
  publication-title: Hydrol Earth Syst Sci
– volume: 30
  start-page: 1371
  year: 2007
  end-page: 1386
  article-title: Multi‐model ensemble hydrologic prediction using Bayesian model averaging
  publication-title: Adv Water Res
– volume: 135
  start-page: 4226
  year: 2007
  end-page: 4230
  article-title: Comments on "Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging''
  publication-title: Mon Weather Rev
– volume: 142
  start-page: 448
  year: 2014
  end-page: 456
  article-title: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance
  publication-title: Mon Weather Rev
– volume: 17
  start-page: 3587
  year: 2013
  end-page: 3603
  article-title: Post‐processing rainfall forecasts from numerical weather prediction models for short‐term streamflow forecasting
  publication-title: Hydrol Earth Syst Sci
– volume: 36
  start-page: 2003
  year: 2011
  end-page: 2014
  article-title: Probabilistic assessment of regional climate change in Southwest Germany by ensemble dressing
  publication-title: Clim Dyn
– volume: 36
  start-page: 3265
  year: 2000
  end-page: 3277
  article-title: Hydrologic uncertainty processor for probabilistic river stage forecasting
  publication-title: Water Resour Res
– year: 2012
– volume: 25
  start-page: 5524
  year: 2011
  end-page: 5537
  article-title: Merging seasonal rainfall forecasts from multiple statistical models through Bayesian model averaging
  publication-title: J Climate
– volume: 5
  start-page: 243
  year: 2004
  end-page: 262
  article-title: The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields
  publication-title: J Hydrometeorol
– volume: 106
  start-page: 1291
  year: 2011
  end-page: 1303
  article-title: Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting
  publication-title: J Am Stat Assoc
– volume: 27
  start-page: 158
  year: 2012
  end-page: 161
  article-title: Post‐processing hydrological ensemble predictions intercomparison experiment
  publication-title: Hydrol Process
– volume: 48
  start-page: 151
  year: 2012
  end-page: 153
  article-title: Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation
  publication-title: Water Resour Res
– start-page: 196
  year: 2017
  end-page: 207
  article-title: Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: a case study in the Yalong river basin
  publication-title: J Hydrol
– volume: 29
  start-page: 2438
  year: 2015
  end-page: 2453
  article-title: Post‐processing of ensemble forecasts in low‐flow period
  publication-title: Hydrol Process
– year: 2006
– volume: 135
  start-page: 1386
  year: 2007
  end-page: 1402
  article-title: Combining spatial statistical and ensemble information in probabilistic weather forecasts
  publication-title: Mon Weather Rev
– volume: 15
  start-page: 311
  year: 1953
  end-page: 316
  article-title: Order tests for the two‐sample problem and their power III
  publication-title: Indagat Math
– volume: 9
  start-page: 61
  year: 2008
  end-page: 66
  article-title: Seasonal hydrologic predictions of low‐flow conditions over eastern USA during the 2007 drought
  publication-title: Atmos Sci Lett
– volume: 373
  start-page: 109
  year: 2016
  end-page: 114
  article-title: Regionalization of post‐processed ensemble runoff forecasts
  publication-title: Proc Int Assoc Hydrol Sci
– volume: 138
  start-page: 190
  year: 2010
  end-page: 202
  article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging
  publication-title: Mon Weather Rev
– volume: 144
  start-page: 1649
  year: 2015
  end-page: 1668
  article-title: Inaccuracies with multi‐model post‐processing methods involving weighted, regression‐corrected forecasts
  publication-title: Mon Weather Rev
– volume: 144
  start-page: 1909
  year: 2015
  end-page: 1921
  article-title: A similarity‐based implementation of the Schaake shuffle
  publication-title: Mon Weather Rev
– volume: 16
  start-page: 1085
  year: 2012
  end-page: 1094
  article-title: Technical note: the normal quantile transformation and its application in a flood forecasting system
  publication-title: Hydrol Earth Syst Sci
– volume: 143
  start-page: 4578
  year: 2015
  end-page: 4596
  article-title: Statistical post‐processing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions
  publication-title: Mon Weather Rev
– volume: 508
  start-page: 147
  year: 2014
  end-page: 156
  article-title: Hydrologic post‐processing of MOPEX streamflow simulations
  publication-title: J Hydrol
– volume: 9
  start-page: 132
  year: 2008
  end-page: 148
  article-title: Correcting errors in streamflow forecast ensemble mean and spread
  publication-title: J Hydrometeorol
– volume: 45
  start-page: 335
  year: 2009
  end-page: 345
  article-title: Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system
  publication-title: Water Resour Res
– volume: 18
  start-page: 3411
  year: 2014
  end-page: 3428
  article-title: Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn river: a comparison
  publication-title: Hydrol Earth Syst Sci
– year: 2017
– volume: 9
  start-page: 95
  year: 2008
  end-page: 102
  article-title: Error‐correction methods and evaluation of an ensemble based hydrological forecasting system for the Upper Danube catchment
  publication-title: Atmos Sci Lett
– volume: 8
  start-page: 1
  year: 2016
  end-page: 22
  article-title: Predictive uncertainty estimation of hydrological multi‐model ensembles using pair‐copula construction
  publication-title: Water
– start-page: 1
  year: 2015
  end-page: 14
  article-title: Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature
  publication-title: Meteorol Atmos Phys
– ident: e_1_2_9_38_1
  doi: 10.1175/MWR3403.1
– ident: e_1_2_9_163_1
  doi: 10.1175/2008MWR2565.1
– ident: e_1_2_9_176_1
  doi: 10.1002/qj.2414
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jhydrol.2009.07.059
– ident: e_1_2_9_174_1
  doi: 10.1175/MWR-D-15-0227.1
– ident: e_1_2_9_101_1
  doi: 10.1002/hyp.9496
– ident: e_1_2_9_114_1
  doi: 10.1017/S1350482704001252
– ident: e_1_2_9_155_1
  doi: 10.1002/asl.182
– ident: e_1_2_9_34_1
  doi: 10.1002/met.134
– ident: e_1_2_9_99_1
  doi: 10.1016/S1385-7258(53)50040-X
– ident: e_1_2_9_8_1
  doi: 10.1002/hyp.9595
– ident: e_1_2_9_177_1
  doi: 10.1002/qj.2839
– ident: e_1_2_9_44_1
  doi: 10.1029/2000WR900108
– ident: e_1_2_9_72_1
  doi: 10.1016/j.jhydrol.2004.03.037
– volume: 42
  year: 2006
  ident: e_1_2_9_184_1
  article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
  publication-title: Water Resour Res
– ident: e_1_2_9_110_1
– ident: e_1_2_9_106_1
  doi: 10.1029/2011WR010724
– ident: e_1_2_9_65_1
  doi: 10.1175/2009JHM1188.1
– ident: e_1_2_9_162_1
  doi: 10.1002/qj.383
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jhydrol.2009.06.005
– ident: e_1_2_9_28_1
  doi: 10.1175/2007WAF2007029.1
– ident: e_1_2_9_75_1
  doi: 10.1002/2015RG000513
– ident: e_1_2_9_24_1
  doi: 10.1007/s00704-009-0134-9
– ident: e_1_2_9_70_1
  doi: 10.1034/j.1600-0870.2000.d01-4.x
– start-page: 1
  year: 2015
  ident: e_1_2_9_171_1
  article-title: Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature
  publication-title: Meteorol Atmos Phys
– ident: e_1_2_9_132_1
  doi: 10.5194/npg-18-147-2011
– ident: e_1_2_9_170_1
  doi: 10.1002/env.2316
– ident: e_1_2_9_161_1
  doi: 10.1175/MWR-D-13-00248.1
– ident: e_1_2_9_109_1
  doi: 10.1016/S0022-1694(00)00361-9
– ident: e_1_2_9_117_1
  doi: 10.1002/2014WR016473
– ident: e_1_2_9_85_1
  doi: 10.1214/08-AOAS203
– ident: e_1_2_9_92_1
  doi: 10.1002/hyp.9562
– ident: e_1_2_9_129_1
  doi: 10.1002/hyp.10259
– ident: e_1_2_9_130_1
  doi: 10.1002/hyp.9313
– ident: e_1_2_9_95_1
– ident: e_1_2_9_147_1
  doi: 10.1029/2011WR011607
– ident: e_1_2_9_148_1
  doi: 10.3390/w8040125
– ident: e_1_2_9_22_1
  doi: 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
– ident: e_1_2_9_17_1
  doi: 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jhydrol.2008.03.027
– ident: e_1_2_9_46_1
  doi: 10.1029/2007WR006758
– ident: e_1_2_9_31_1
  doi: 10.1111/rssc.12040
– ident: e_1_2_9_135_1
– ident: e_1_2_9_188_1
– ident: e_1_2_9_53_1
  doi: 10.1016/j.jhydrol.2015.06.043
– ident: e_1_2_9_88_1
  doi: 10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2
– ident: e_1_2_9_94_1
  doi: 10.1175/2010MWR3542.1
– volume: 57
  start-page: 219
  year: 2005
  ident: e_1_2_9_71_1
  article-title: The rationale behind the success of multi‐model ensembles in seasonal forecasting—I. Basic concept
  publication-title: Tellus Ser A—Dyn Meteorol Oceanogr
  doi: 10.3402/tellusa.v57i3.14657
– ident: e_1_2_9_137_1
  doi: 10.1002/asl.276
– ident: e_1_2_9_178_1
  doi: 10.5194/hess-16-1085-2012
– ident: e_1_2_9_189_1
– ident: e_1_2_9_13_1
  doi: 10.1146/annurev-statistics-062713-085831
– ident: e_1_2_9_43_1
  doi: 10.1016/S0022-1694(01)00412-7
– ident: e_1_2_9_159_1
  doi: 10.1175/MWR-D-15-0384.1
– ident: e_1_2_9_23_1
  doi: 10.5194/hess-11-939-2007
– ident: e_1_2_9_125_1
  doi: 10.1029/2004WR003059
– ident: e_1_2_9_115_1
  doi: 10.1002/env.2391
– ident: e_1_2_9_68_1
  doi: 10.1256/00359000260498923
– ident: e_1_2_9_91_1
  doi: 10.1016/j.jhydrol.2013.07.039
– ident: e_1_2_9_107_1
  doi: 10.5194/hess-17-3587-2013
– ident: e_1_2_9_89_1
  doi: 10.1175/2007JHM862.1
– ident: e_1_2_9_2_1
  doi: 10.1175/BAMS-88-10-1541
– ident: e_1_2_9_180_1
  doi: 10.1002/wat2.1038
– ident: e_1_2_9_192_1
– ident: e_1_2_9_4_1
  doi: 10.1002/asl.248
– ident: e_1_2_9_62_1
  doi: 10.1002/asl.180
– ident: e_1_2_9_83_1
  doi: 10.1175/MWR-D-14-00210.1
– ident: e_1_2_9_131_1
  doi: 10.1175/MWR3402.1
– ident: e_1_2_9_32_1
  doi: 10.1175/MWR-D-15-0061.1
– ident: e_1_2_9_42_1
  doi: 10.1256/qj.04.120
– ident: e_1_2_9_108_1
  doi: 10.1175/MWR-D-14-00329.1
– volume: 6
  start-page: 2108
  year: 2014
  ident: e_1_2_9_149_1
  article-title: Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging
  publication-title: J Hydrol
– ident: e_1_2_9_164_1
  doi: 10.1175/MWR-D-15-0204.1
– ident: e_1_2_9_74_1
  doi: 10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2
– ident: e_1_2_9_40_1
  doi: 10.1256/qj.05.167
– ident: e_1_2_9_66_1
  doi: 10.1002/hyp.9263
– ident: e_1_2_9_100_1
– ident: e_1_2_9_145_1
  doi: 10.1175/2009MWR3046.1
– ident: e_1_2_9_143_1
  doi: 10.1175/2007MWR1963.1
– volume-title: Bayesian Processor of Output for Probabilistic Quantitative Precipitation Forecasting
  year: 2006
  ident: e_1_2_9_27_1
– ident: e_1_2_9_58_1
  doi: 10.1029/2005WR004838
– ident: e_1_2_9_87_1
  doi: 10.1017/S1350482706002192
– ident: e_1_2_9_142_1
  doi: 10.1007/s00382-010-0815-1
– ident: e_1_2_9_122_1
  doi: 10.2307/1913643
– ident: e_1_2_9_151_1
  doi: 10.1198/jasa.2011.ap10433
– ident: e_1_2_9_182_1
  doi: 10.1175/MWR-D-16-0260.1
– ident: e_1_2_9_73_1
  doi: 10.1126/science.285.5433.1548
– ident: e_1_2_9_76_1
  doi: 10.1175/MWR2906.1
– ident: e_1_2_9_80_1
  doi: 10.1016/S0022-1694(96)03259-3
– ident: e_1_2_9_120_1
  doi: 10.1175/MWR-D-13-00271.1
– ident: e_1_2_9_48_1
  doi: 10.1080/15715124.2008.9635342
– ident: e_1_2_9_82_1
  doi: 10.1111/rssc.12040
– ident: e_1_2_9_11_1
  doi: 10.1175/BAMS-87-1-33
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_9_141_1
  article-title: Maximum likelihood for incomplete data via the EM algorithm
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_30_1
  doi: 10.1175/MWR2904.1
– ident: e_1_2_9_39_1
  doi: 10.1002/qj.2397
– ident: e_1_2_9_103_1
  doi: 10.1029/1999WR900099
– ident: e_1_2_9_113_1
  doi: 10.1111/j.1600-0870.2005.00110.x
– ident: e_1_2_9_154_1
  doi: 10.1029/2006JD007655
– ident: e_1_2_9_15_1
  doi: 10.1175/2008MWR2569.1
– ident: e_1_2_9_14_1
  doi: 10.1002/wat2.1088
– ident: e_1_2_9_52_1
  doi: 10.1029/2010WR009333
– ident: e_1_2_9_139_1
  doi: 10.5194/hess-19-3181-2015
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jhydrol.2012.10.037
– ident: e_1_2_9_37_1
  doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
– ident: e_1_2_9_59_1
  doi: 10.5194/hessd-3-1987-2006
– ident: e_1_2_9_69_1
  doi: 10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2
– ident: e_1_2_9_168_1
  doi: 10.1198/016214504000000872
– volume: 373
  start-page: 109
  year: 2016
  ident: e_1_2_9_183_1
  article-title: Regionalization of post‐processed ensemble runoff forecasts
  publication-title: Proc Int Assoc Hydrol Sci
– ident: e_1_2_9_6_1
  doi: 10.5194/hessd-3-3321-2006
– ident: e_1_2_9_127_1
  doi: 10.1002/hyp.10234
– ident: e_1_2_9_10_1
  doi: 10.1175/2007MWR2410.1
– volume: 8
  start-page: 1
  year: 2015
  ident: e_1_2_9_36_1
  article-title: Heteroscedastic censored and truncated regression with crch
  publication-title: R J
– ident: e_1_2_9_51_1
  doi: 10.1029/2009WR007733
– ident: e_1_2_9_175_1
  doi: 10.1002/2016WR020133
– ident: e_1_2_9_21_1
  doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jhydrol.2014.11.072
– ident: e_1_2_9_54_1
  doi: 10.5194/adgeo-29-51-2011
– ident: e_1_2_9_55_1
  doi: 10.1002/hyp.10374
– ident: e_1_2_9_158_1
  doi: 10.1175/MWR-D-12-00253.1
– ident: e_1_2_9_185_1
  doi: 10.1029/2005WR004745
– ident: e_1_2_9_193_1
  doi: 10.1016/j.cageo.2010.07.005
– ident: e_1_2_9_156_1
  doi: 10.1175/JHM-D-11-038.1
– ident: e_1_2_9_50_1
  doi: 10.5194/hess-15-3253-2011
– ident: e_1_2_9_98_1
  doi: 10.1016/S1385-7258(53)50039-3
– ident: e_1_2_9_126_1
  doi: 10.1175/2009MWR2715.1
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jhydrol.2013.10.055
– ident: e_1_2_9_79_1
  doi: 10.5194/hess-5-577-2001
– ident: e_1_2_9_166_1
  doi: 10.5194/npg-15-761-2008
– ident: e_1_2_9_84_1
  doi: 10.1175/MWR3341.1
– ident: e_1_2_9_134_1
– ident: e_1_2_9_5_1
  doi: 10.1175/BAMS-D-12-00081.1
– ident: e_1_2_9_121_1
  doi: 10.1029/2010WR009996
– ident: e_1_2_9_7_1
  doi: 10.1002/asl.267
– ident: e_1_2_9_86_1
  doi: 10.1214/13-STS443
– ident: e_1_2_9_146_1
  doi: 10.1029/2011WR011116
– volume: 16
  start-page: 672
  year: 1959
  ident: e_1_2_9_16_1
  article-title: Objective prediction of five‐day mean temperatures during winter
  publication-title: J Atmos Sci
– ident: e_1_2_9_81_1
  doi: 10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
– ident: e_1_2_9_93_1
  doi: 10.1175/JCLI-D-16-0652.1
– ident: e_1_2_9_124_1
  doi: 10.5194/hess-15-255-2011
– ident: e_1_2_9_102_1
  doi: 10.1016/j.jhydrol.2017.01.053
– start-page: 3825
  year: 2004
  ident: e_1_2_9_118_1
  article-title: Ensemble re‐forecasting: improving medium‐range forecast skill using retrospective forecasts
  publication-title: Bull Am Meteorol Soc
– ident: e_1_2_9_173_1
  doi: 10.1002/wrcr.20542
– ident: e_1_2_9_18_1
  doi: 10.1034/j.1600-0870.1994.t01-2-00006.x
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jhydrol.2011.01.013
– ident: e_1_2_9_77_1
  doi: 10.1016/j.advwatres.2006.11.014
– ident: e_1_2_9_186_1
  doi: 10.1002/wrcr.20294
– ident: e_1_2_9_160_1
  doi: 10.1002/2014WR016163
– ident: e_1_2_9_172_1
  doi: 10.1002/2012WR012757
– ident: e_1_2_9_191_1
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1467-9868.2007.00587.x
– ident: e_1_2_9_25_1
  doi: 10.5194/hessd-4-655-2007
– ident: e_1_2_9_63_1
  doi: 10.1029/2010WR009137
– ident: e_1_2_9_104_1
– ident: e_1_2_9_123_1
  doi: 10.5194/hess-18-3411-2014
– ident: e_1_2_9_140_1
  doi: 10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
– ident: e_1_2_9_157_1
  doi: 10.1175/JCLI-D-11-00386.1
– ident: e_1_2_9_67_1
  doi: 10.1175/JHM519.1
– ident: e_1_2_9_152_1
  doi: 10.1111/rssc.12062
– ident: e_1_2_9_138_1
  doi: 10.1029/2012WR012256
– ident: e_1_2_9_35_1
  doi: 10.1175/MWR-D-13-00355.1
– ident: e_1_2_9_119_1
  doi: 10.1002/qj.2198
– ident: e_1_2_9_179_1
  doi: 10.1126/science.1151915
– ident: e_1_2_9_112_1
  doi: 10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2
– ident: e_1_2_9_165_1
  doi: 10.1007/s00477-010-0378-z
– ident: e_1_2_9_19_1
  doi: 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
– ident: e_1_2_9_90_1
  doi: 10.1175/WAF-D-13-00049.1
– ident: e_1_2_9_167_1
  doi: 10.1002/we.284
– ident: e_1_2_9_116_1
  doi: 10.1002/qj.2183
– ident: e_1_2_9_20_1
  doi: 10.1175/MWR3237.1
– ident: e_1_2_9_150_1
  doi: 10.1175/2010MWR3511.1
– ident: e_1_2_9_190_1
– ident: e_1_2_9_33_1
  doi: 10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
– ident: e_1_2_9_111_1
– ident: e_1_2_9_153_1
  doi: 10.1175/2008JHM980.1
– ident: e_1_2_9_136_1
  doi: 10.5194/asr-8-135-2012
– ident: e_1_2_9_133_1
  doi: 10.1016/j.jhydrol.2005.07.031
– ident: e_1_2_9_9_1
  doi: 10.1175/2007MWR2411.1
– ident: e_1_2_9_97_1
  doi: 10.1016/S1385-7258(52)50063-5
– volume: 133
  start-page: 937
  year: 2009
  ident: e_1_2_9_128_1
  article-title: A unified linear model output statistics scheme for both deterministic and ensemble forecasts
  publication-title: Q J Roy Meteor Soc
– ident: e_1_2_9_61_1
  doi: 10.1175/2009JHM1006.1
– ident: e_1_2_9_181_1
  doi: 10.1002/qj.2323
– ident: e_1_2_9_169_1
  doi: 10.1002/qj.2009
– ident: e_1_2_9_41_1
  doi: 10.1034/j.1600-0870.2003.201378.x
– ident: e_1_2_9_144_1
  doi: 10.1175/MWR-D-16-0331.1
– ident: e_1_2_9_57_1
  doi: 10.1175/JHM504.1
– ident: e_1_2_9_187_1
– ident: e_1_2_9_96_1
  doi: 10.1175/2007JHM858.1
– ident: e_1_2_9_29_1
– ident: e_1_2_9_78_1
  doi: 10.1175/MWR3441.1
– ident: e_1_2_9_105_1
  doi: 10.1093/biomet/87.4.954
– ident: e_1_2_9_64_1
  doi: 10.3390/w8040115
SSID ssj0001105395
Score 2.458521
SecondaryResourceType review_article
Snippet Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1246
SubjectTerms Boundary conditions
Computer simulation
Hydrologic models
Hydrology
Hydrometeorology
Precipitation
Simulation
Statistical analysis
Statistical methods
Statistics
Stream discharge
Stream flow
Weather forecasting
Title A review on statistical postprocessing methods for hydrometeorological ensemble forecasting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1246
https://www.proquest.com/docview/1950328898
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZb-tI9lLXbWNeuiLGHQXEmy3ZiP5qtpZSkY9QhGXsQkqyQQGeXxGGkf_1OlvwLsnXbizBGXILu8-m7Q_cJofdAEUI6d0PHT2kAw0A6XLjU4cNIi_wInwidKI5vBlcT_3oWzJpiTtldUoi-fNjZV_I_XoV34FfdJfsPnq2Nwgt4Bv_CCB6G8a98HNedJ5muCRSl6LJurcrXxb3pANCVAHNLdCm8cL7YlgIFhcpXddiDTFb90B1UMEFJvi6q7cySVhM5tLDEqtPEa5VM--dT3jrkOyrPB0z1mfS8ocmmzvoVLG83NR7HS24qtYvldtPA9Jspsi4fFrn9I7YsAVud2ylLPB78zAZURjoKaYrjRkZyswrLfgt97RCrgJEMdgZ_Iyb7kxe0X83pCmzffGGXk9GIJRez5Cnao5BZ0B7aiz-PR7dNYQ4YpxcFlQoVoR9ri13u0iQk7bSm5CXJc3RgEwocG3QcoicqO0LPWjKTR2j_tsLG-gX6HmPjN5xnuAUa3AUNtqDBgAm8AzS4Ag1ugeYlmlxeJJ-uHHvDhiMp8FB97CJQLlE0nUuVcn8A3-YwAlYthkJGRIkg9YSKuAukW8ACCEiuufJICiyQSEq8V6iX5Zl6jTDQUGD_XAYe193Wc87pkKR87npCEs75MfpQrR2TVn5e34Jyx4xwNmV6mZle5mP0rp56bzRXdk06rRzA7Ce5ZvpOY4-GYRTCz5VO-b0BNo0Tqh_e_NnSCdpv8H2KesVqo94CES3EmYXOLx-1kyI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+statistical+postprocessing+methods+for+hydrometeorological+ensemble+forecasting&rft.jtitle=Wiley+interdisciplinary+reviews.+Water&rft.au=Li%2C+Wentao&rft.au=Duan%2C+Qingyun&rft.au=Miao%2C+Chiyuan&rft.au=Ye%2C+Aizhong&rft.date=2017-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2049-1948&rft.volume=4&rft.issue=6&rft.spage=e1246&rft_id=info:doi/10.1002%2Fwat2.1246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1948&client=summon