Online dependence clustering of multivariate streaming data using one‐class SVMs

Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, sp...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 37; no. 6; pp. 3682 - 3708
Main Authors Lee, Geonseok, Lee, Kichun
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely,  KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data.
AbstractList Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely, KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data.
Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely,  KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data.
Author Lee, Geonseok
Lee, Kichun
Author_xml – sequence: 1
  givenname: Geonseok
  orcidid: 0000-0002-3962-3067
  surname: Lee
  fullname: Lee, Geonseok
  organization: Hanyang University
– sequence: 2
  givenname: Kichun
  orcidid: 0000-0002-5184-7151
  surname: Lee
  fullname: Lee, Kichun
  email: skylee@hanyang.ac.kr
  organization: Hanyang University
BookMark eNp1kM1OAjEURhuDiYAufINJXLkYaKfTTlka4g8JSqJo3DWlvWNKhg62HQ07H8Fn9EkcwJXR1V3cc76b-_VQx9UOEDoleEAwzobWxUGWFYQfoC7BI5ESQp47qIuFyFNBCnqEeiEsMSakyFkX3c9cZR0kBtbgDDgNia6aEMFb95LUZbJqqmjflLcqQhKiB7XaboyKKmnCDnLw9fGpKxVC8vB0G47RYamqACc_s48ery7n45t0OruejC-mqc5GBU8LVtJcL4QZMWoYxaYkQA0dceAEBNOipLjI9IIbWjJFDDY58EXGMM8F1pTSPjrb5659_dpAiHJZN961J2XGGWOEtU-31HBPaV-H4KGU2kYVbe2iV7aSBMttcbItTu6Ka43zX8ba25Xymz_Zn_R3W8Hmf1BO7uZ74xtMP4Bj
CitedBy_id crossref_primary_10_1155_2024_5961993
crossref_primary_10_1016_j_eswa_2023_120387
Cites_doi 10.1007/978-3-642-31537-4_21
10.1002/int.22064
10.1109/TFUZZ.2008.925904
10.1162/089976601750264965
10.1073/pnas.0601602103
10.1016/j.knosys.2014.01.004
10.1109/72.991427
10.1145/1281192.1281210
10.1109/RADAR42522.2020.9114687
10.1016/B978-012722442-8/50016-1
10.1016/j.patcog.2019.107119
10.1137/1.9781611972764.29
10.1137/1.9781611974348.41
10.1016/j.patcog.2016.03.028
10.1016/j.adhoc.2019.102055
10.1162/15324430260185574
10.1186/s41044-016-0011-3
10.1007/s10618-018-0569-7
10.1016/j.neunet.2018.11.008
10.1002/int.22296
10.1371/journal.pone.0045671
10.1109/TKDE.2013.146
10.1145/235968.233324
10.1016/j.inffus.2017.09.013
10.1007/978-3-540-73871-8_58
10.1109/IJCNN.2011.6033449
10.1016/j.patcog.2014.07.016
10.1016/j.bdr.2018.05.005
10.1007/978-3-642-25856-5_3
10.1016/j.patrec.2016.08.013
10.1007/s10618-012-0267-9
10.1007/978-3-540-74825-0_8
10.1109/TKDE.2005.170
10.1145/1552303.1552307
10.1109/TNNLS.2013.2238556
10.1002/int.22582
10.1145/2500853.2500857
10.1109/TNN.2011.2162000
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.22716
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 3708
ExternalDocumentID 10_1002_int_22716
INT22716
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1F1A1076278
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2976-75f34cb8d953d530df1e3d396e61e85c8f3072cb6d3f5a1d0d4e6b2506480c333
IEDL.DBID DR2
ISSN 0884-8173
IngestDate Sun Jul 20 09:10:46 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 02:44:35 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-75f34cb8d953d530df1e3d396e61e85c8f3072cb6d3f5a1d0d4e6b2506480c333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3962-3067
0000-0002-5184-7151
PQID 2655515088
PQPubID 1026350
PageCount 27
ParticipantIDs proquest_journals_2655515088
crossref_citationtrail_10_1002_int_22716
crossref_primary_10_1002_int_22716
wiley_primary_10_1002_int_22716_INT22716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 26
2012
2011
2013; 24
2019; 34
2002; 13
2008; 16
2007
2006
2020; 100
2012; 17
2003
2020; 98
2014; 60
2018; 42
2016; 58
2021; 36
2015; 48
2016; 1
2021
2020
2011; 22
2016; 84
2016
2001; 2
2013
2009; 3
1996; 25
2012; 7
2001; 13
2018; 32
2005; 17
2006; 103
2018; 14
2019; 110
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Amer M (e_1_2_9_37_1) 2012
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
Ackermann MR (e_1_2_9_10_1) 2012; 17
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 81
  year: 2007
  end-page: 92
– start-page: 81
  year: 2003
  end-page: 92
– volume: 14
  start-page: 101
  year: 2018
  end-page: 111
  article-title: evoStream‐evolutionary stream clustering utilizing idle times
  publication-title: Big Data Res
– volume: 26
  start-page: 512
  issue: 3
  year: 2013
  end-page: 532
  article-title: Dependence maps, a dimensionality reduction with dependence distance for high‐dimensional data
  publication-title: Data Min Knowl Discovery
– volume: 60
  start-page: 58
  year: 2014
  end-page: 72
  article-title: Dependence clustering, a method revealing community structure with group dependence
  publication-title: Knowl‐Based Syst
– start-page: 328
  year: 2006
  end-page: 339
– volume: 34
  start-page: 541
  issue: 4
  year: 2019
  end-page: 563
  article-title: Online cluster validity indices for performance monitoring of streaming data clustering
  publication-title: Int J Intell Syst
– start-page: 1
  year: 2012
  end-page: 12
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  end-page: 1471
  article-title: Estimating the support of a high‐dimensional distribution
  publication-title: Neural Comput
– start-page: 605
  year: 2007
  end-page: 615
– volume: 48
  start-page: 103
  issue: 1
  year: 2015
  end-page: 113
  article-title: The effective use of the one‐class SVM classifier for handwritten signature verification based on writer‐independent parameters
  publication-title: Pattern Recognition
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans Neural Networks
– start-page: 360
  year: 2016
  end-page: 368
– volume: 17
  start-page: 2.1
  year: 2012
  end-page: 2.30
  article-title: StreamKM++ a clustering algorithm for data streams
  publication-title: J Exp Algorithmics (JEA)
– volume: 26
  start-page: 1644
  issue: 7
  year: 2013
  end-page: 1656
  article-title: Data stream clustering with affinity propagation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 22
  start-page: 1796
  issue: 11
  year: 2011
  end-page: 1808
  article-title: Spectral embedded clustering: a framework for in‐sample and out‐of‐sample spectral clustering
  publication-title: IEEE Trans Neural Networks
– volume: 32
  start-page: 1806
  issue: 6
  year: 2018
  end-page: 1844
  article-title: Exact variable‐length anomaly detection algorithm for univariate and multivariate time series
  publication-title: Data Min Knowl Discovery
– start-page: 8
  year: 2013
  end-page: 15
– volume: 110
  start-page: 141
  year: 2019
  end-page: 158
  article-title: A density‐based competitive data stream clustering network with self‐adaptive distance metric
  publication-title: Neural Networks
– volume: 17
  start-page: 1333
  issue: 10
  year: 2005
  end-page: 1346
  article-title: Using one‐class and two‐class SVMs for multiclass image annotation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 1
  start-page: 13
  issue: 1
  year: 2016
  article-title: State‐of‐the‐art on clustering data streams
  publication-title: Big Data Anal
– volume: 84
  start-page: 107
  year: 2016
  end-page: 113
  article-title: An approximation of the Gaussian RBF kernel for efficient classification with SVMs
  publication-title: Pattern Recognition Lett
– volume: 103
  start-page: 8577
  issue: 23
  year: 2006
  end-page: 8582
  article-title: Modularity and community structure in networks
  publication-title: Proc Natl Acad Sci
– volume: 100
  year: 2020
  article-title: Generalized support vector data description for anomaly detection
  publication-title: Pattern Recognition
– volume: 42
  start-page: 24
  year: 2018
  end-page: 36
  article-title: Revealing community structures by ensemble clustering using group diffusion
  publication-title: Inf Fusion
– start-page: 133
  year: 2007
  end-page: 142
– volume: 2
  start-page: 139
  year: 2001
  end-page: 154
  article-title: One‐class SVMs for document classification
  publication-title: J Mach Learn Res
– volume: 36
  start-page: 177
  issue: 1
  year: 2021
  end-page: 199
  article-title: DSVD‐autoencoder: a scalable distributed privacy‐preserving method for one‐class classification
  publication-title: Int J Intell Syst
– volume: 7
  issue: 9
  year: 2012
  article-title: Abnormal brain connectivity patterns in adults with ADHD: a coherence study
  publication-title: PLOS One
– volume: 3
  start-page: 1
  issue: 3
  year: 2009
  end-page: 28
  article-title: Density‐based clustering of data streams at multiple resolutions
  publication-title: ACM Trans Knowl Discovery Data (TKDD)
– volume: 98
  year: 2020
  article-title: Few shot learning for multi‐class classification based on nested ensemble DSVM
  publication-title: Ad Hoc Networks
– volume: 25
  start-page: 103
  issue: 2
  year: 1996
  end-page: 114
  article-title: BIRCH: an efficient data clustering method for very large databases
  publication-title: ACM Sigmod Record
– start-page: 1052
  year: 2020
  end-page: 1057
– volume: 16
  start-page: 1462
  issue: 6
  year: 2008
  end-page: 1475
  article-title: Evolving fuzzy‐rule‐based classifiers from data streams
  publication-title: IEEE Trans Fuzzy Syst
– start-page: 27
  year: 2011
  end-page: 40
– start-page: 1849
  year: 2011
  end-page: 1856
– year: 2021
  article-title: Improved autoencoder for unsupervised anomaly detection
  publication-title: Int J Intell Syst
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  article-title: High‐dimensional and large‐scale anomaly detection using a linear one‐class SVM with deep learning
  publication-title: Pattern Recognition
– start-page: 264
  year: 2012
  end-page: 278
– volume: 24
  start-page: 593
  issue: 4
  year: 2013
  end-page: 609
  article-title: Online support vector machine based on convex hull vertices selection
  publication-title: IEEE Trans Neural Networks Learn Syst
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-642-31537-4_21
– ident: e_1_2_9_3_1
  doi: 10.1002/int.22064
– ident: e_1_2_9_6_1
  doi: 10.1109/TFUZZ.2008.925904
– ident: e_1_2_9_21_1
  doi: 10.1162/089976601750264965
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.0601602103
– ident: e_1_2_9_20_1
  doi: 10.1016/j.knosys.2014.01.004
– ident: e_1_2_9_32_1
  doi: 10.1109/72.991427
– start-page: 1
  volume-title: Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012)
  year: 2012
  ident: e_1_2_9_37_1
– ident: e_1_2_9_15_1
  doi: 10.1145/1281192.1281210
– ident: e_1_2_9_4_1
  doi: 10.1109/RADAR42522.2020.9114687
– ident: e_1_2_9_9_1
  doi: 10.1016/B978-012722442-8/50016-1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.patcog.2019.107119
– volume: 17
  start-page: 2.1
  year: 2012
  ident: e_1_2_9_10_1
  article-title: StreamKM++ a clustering algorithm for data streams
  publication-title: J Exp Algorithmics (JEA)
– ident: e_1_2_9_12_1
  doi: 10.1137/1.9781611972764.29
– ident: e_1_2_9_7_1
  doi: 10.1137/1.9781611974348.41
– ident: e_1_2_9_40_1
  doi: 10.1016/j.patcog.2016.03.028
– ident: e_1_2_9_34_1
  doi: 10.1016/j.adhoc.2019.102055
– ident: e_1_2_9_22_1
  doi: 10.1162/15324430260185574
– ident: e_1_2_9_8_1
  doi: 10.1186/s41044-016-0011-3
– ident: e_1_2_9_31_1
  doi: 10.1007/s10618-018-0569-7
– ident: e_1_2_9_5_1
  doi: 10.1016/j.neunet.2018.11.008
– ident: e_1_2_9_25_1
  doi: 10.1002/int.22296
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0045671
– ident: e_1_2_9_11_1
  doi: 10.1109/TKDE.2013.146
– ident: e_1_2_9_19_1
  doi: 10.1145/235968.233324
– ident: e_1_2_9_27_1
  doi: 10.1016/j.inffus.2017.09.013
– ident: e_1_2_9_17_1
  doi: 10.1007/978-3-540-73871-8_58
– ident: e_1_2_9_30_1
  doi: 10.1109/IJCNN.2011.6033449
– ident: e_1_2_9_38_1
  doi: 10.1016/j.patcog.2014.07.016
– ident: e_1_2_9_41_1
  doi: 10.1016/j.bdr.2018.05.005
– ident: e_1_2_9_18_1
  doi: 10.1007/978-3-642-25856-5_3
– ident: e_1_2_9_23_1
  doi: 10.1016/j.patrec.2016.08.013
– ident: e_1_2_9_26_1
  doi: 10.1007/s10618-012-0267-9
– ident: e_1_2_9_13_1
  doi: 10.1007/978-3-540-74825-0_8
– ident: e_1_2_9_33_1
  doi: 10.1109/TKDE.2005.170
– ident: e_1_2_9_16_1
  doi: 10.1145/1552303.1552307
– ident: e_1_2_9_39_1
  doi: 10.1109/TNNLS.2013.2238556
– ident: e_1_2_9_2_1
  doi: 10.1002/int.22582
– ident: e_1_2_9_24_1
  doi: 10.1145/2500853.2500857
– ident: e_1_2_9_28_1
  doi: 10.1109/TNN.2011.2162000
SSID ssj0011745
Score 2.3332887
Snippet Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3682
SubjectTerms Clustering
Data points
dependence clustering
Intelligent systems
Multivariate analysis
one‐class support vector machine
online data analysis
outlier detection
Outliers (statistics)
Support vector machines
unsupervised learning
Title Online dependence clustering of multivariate streaming data using one‐class SVMs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22716
https://www.proquest.com/docview/2655515088
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrBQnqJQKgsxsKRN7NhJxFQBVUG0Qx-oA1JUvyREKYi2DEz8BH4jv4RzHi0gkBCblVzixOezP5_uvkPoSETMKDAyRxhDHD_gLrSCwJEqgPMQMx5R1g_Z7vDWwL8csmEBneS5MCk_xMLhZi0jWa-tgY_EtL4kDb2dzGqEANyH9dfGallA1F1QR3mAtFmKIH0n9AKaswq5pL548utetASYn2Fqss80S-gm_8I0vOSuNp-Jmnz5Rt74z19YR2sZ_sSNdMJsoIKebKJSXtsBZ6a-hbopBynOi-RKjeV4blkVYK_DDwYnkYjPcNIGsIptxsno3t6xEafYBtOD0ES_v75JC89x77o93UaD5nn_tOVk9RccSQClOAEz1JciVBGjilFXGU9TRSOuuadDJkMDCwSRgitq2MhTrvI1F8RS4IWupJTuoOIE-tpFOAiVEHZeCB75xKOjkOnQJ8TlcMVlbhkd55qIZUZObmtkjOOUVpnEMFZxMlZldLgQfUwZOX4SquTqjDOjnMaEM8CHFpFCd4lefn9BfNHpJ429v4vuo1VikyMSH00FFWdPc30AkGUmqmilcda-6lWTOfoBeBvp8w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFsoodC3HgkpLYsZNKXBAClaU9QEFcUFRvEqIUBC0HTnwC38iXMHaSsggkxM1KJnHimbGfR-M3AJuyzq1GJwuktTSIExFiK0kCpRPcD3EbUe3ikM2WaJzHR5f8cgR2yrMwOT_EMODmPMPP187BXUB6-4M19LrXr1GKeH8UxlxFb7-hOh2SR0WItXmOIeMgjRJW8gqFdHv46NfV6ANifgaqfqU5qMJV-Y15gslNbdCXNfX8jb7xvz8xBZMFBCW7uc1Mw4jpzUC1LO9ACm-fhdOchpSUdXKVIao7cMQKuNyRO0t8MuITbrYRrxJ36KRz6-64pFPi8ulRqGfeXl6VQ-jk7KL5OAfnB_vtvUZQlGAIFEWgEiTcsljJVNc505yF2kaGaVYXRkQm5Sq1OEdQJYVmlnciHerYCEkdC14aKsbYPFR62NcCkCTVUjrTkKIe04h1Um7SmNJQ4JWQh4uwVaoiUwU_uSuT0c1yZmWa4VhlfqwWYWMoep-TcvwktFLqMyv88jGjgiNEdKAUu_OK-f0F2WGr7RtLfxddh_FGu3mSnRy2jpdhgrqzEj5kswKV_sPArCKC6cs1b6jvsJDseg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB6lQaq4QKFFhKbUQhy4bOK1115HnFDTCFoSIQpVDkir-E-qCiEqmx566iP0GXkSxvuT0KpIVW_W7ux61zPj-WyNvwHY1z3hLTpZpL1nUZJKiq00jYxNcT0kfMxs2IccjuTxZfJhLMYNOKzPwpT8EIsNt-AZxXwdHHxmfXdJGvplmncYQ7j_DFYSSVUw6f75gjsqRqgtSgiZRCpOeU0rRFl38ejvwWiJMB_j1CLQDNbhqv7EMr_ka2ee64758Qd743_-wwtYqwAoOSotZgMabroJ63VxB1L5-ks4L0lISV0l1zhirueBVgGDHbn1pEhF_I5LbUSrJBw5mdyEOyHllIRsehSauvufv0zA5-TT5-HdK7gcvL94dxxVBRgiwxCmRKnwPDFa2Z7gVnBqfey45T3pZOyUMMrjDMGMlpZ7MYkttYmTmgUOPEUN53wLmlPsaxtIqqzWwTC07CUs5hMlnEoYoxKvUEFbcFBrIjMVO3koknGdlbzKLMOxyoqxasHeQnRWUnL8TahdqzOrvPIuY1IgQAyQFLsr9PL0C7KT0UXR2Pl30bfw_Kw_yE5PRh9fwyoLByWK_Zo2NPNvc_cG4UuudwszfQAbjesy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+dependence+clustering+of+multivariate+streaming+data+using+one%E2%80%90class+SVMs&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Lee%2C+Geonseok&rft.au=Lee%2C+Kichun&rft.date=2022-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=6&rft.spage=3682&rft.epage=3708&rft_id=info:doi/10.1002%2Fint.22716&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon