Online dependence clustering of multivariate streaming data using one‐class SVMs
Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, sp...
Saved in:
Published in | International journal of intelligent systems Vol. 37; no. 6; pp. 3682 - 3708 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely,
KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data. |
---|---|
AbstractList | Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely, KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data. Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in this field have been performed, but they usually suffer from the practical problems associated with discovering arbitrary‐shaped clusters, specifying major parameters in advance, and detecting aberrant observations. Addressing these issues is important for online‐clustering tasks, where data arrive in continuous streams and group behaviors change simultaneously. In this paper, we propose a kernel‐based online dependence clustering, namely, KODC, that not only estimates the cluster membership using one‐class support vector machines (OC‐SVMs), but also detects outliers distant from the identified clusters by aggregating OC‐SVM decisions in a realtime basis. At the base level, we use a new measure of connective dependence that forms the graph connected via modified Markovian transitions to enable large‐scale clustering. The proposed framework introduces the coherence threshold to extract data points, which can represent a cluster to which they belong, thus controlling the computational complexity without degrading the clustering performance. To track the pattern evolution over time, KODC also updates the classifier configuration maximizing the total group connective dependence. We evaluate this framework on both several synthetic and real‐world data sets involving multivariate streaming data, and compare it experimentally with other popular online‐clustering methods in terms of four evaluation metrics. The results show that our framework effectively identifies the clusters and outliers, especially in various shaped data subject to change over time, without requiring any prior knowledge of the data. |
Author | Lee, Geonseok Lee, Kichun |
Author_xml | – sequence: 1 givenname: Geonseok orcidid: 0000-0002-3962-3067 surname: Lee fullname: Lee, Geonseok organization: Hanyang University – sequence: 2 givenname: Kichun orcidid: 0000-0002-5184-7151 surname: Lee fullname: Lee, Kichun email: skylee@hanyang.ac.kr organization: Hanyang University |
BookMark | eNp1kM1OAjEURhuDiYAufINJXLkYaKfTTlka4g8JSqJo3DWlvWNKhg62HQ07H8Fn9EkcwJXR1V3cc76b-_VQx9UOEDoleEAwzobWxUGWFYQfoC7BI5ESQp47qIuFyFNBCnqEeiEsMSakyFkX3c9cZR0kBtbgDDgNia6aEMFb95LUZbJqqmjflLcqQhKiB7XaboyKKmnCDnLw9fGpKxVC8vB0G47RYamqACc_s48ery7n45t0OruejC-mqc5GBU8LVtJcL4QZMWoYxaYkQA0dceAEBNOipLjI9IIbWjJFDDY58EXGMM8F1pTSPjrb5659_dpAiHJZN961J2XGGWOEtU-31HBPaV-H4KGU2kYVbe2iV7aSBMttcbItTu6Ka43zX8ba25Xymz_Zn_R3W8Hmf1BO7uZ74xtMP4Bj |
CitedBy_id | crossref_primary_10_1155_2024_5961993 crossref_primary_10_1016_j_eswa_2023_120387 |
Cites_doi | 10.1007/978-3-642-31537-4_21 10.1002/int.22064 10.1109/TFUZZ.2008.925904 10.1162/089976601750264965 10.1073/pnas.0601602103 10.1016/j.knosys.2014.01.004 10.1109/72.991427 10.1145/1281192.1281210 10.1109/RADAR42522.2020.9114687 10.1016/B978-012722442-8/50016-1 10.1016/j.patcog.2019.107119 10.1137/1.9781611972764.29 10.1137/1.9781611974348.41 10.1016/j.patcog.2016.03.028 10.1016/j.adhoc.2019.102055 10.1162/15324430260185574 10.1186/s41044-016-0011-3 10.1007/s10618-018-0569-7 10.1016/j.neunet.2018.11.008 10.1002/int.22296 10.1371/journal.pone.0045671 10.1109/TKDE.2013.146 10.1145/235968.233324 10.1016/j.inffus.2017.09.013 10.1007/978-3-540-73871-8_58 10.1109/IJCNN.2011.6033449 10.1016/j.patcog.2014.07.016 10.1016/j.bdr.2018.05.005 10.1007/978-3-642-25856-5_3 10.1016/j.patrec.2016.08.013 10.1007/s10618-012-0267-9 10.1007/978-3-540-74825-0_8 10.1109/TKDE.2005.170 10.1145/1552303.1552307 10.1109/TNNLS.2013.2238556 10.1002/int.22582 10.1145/2500853.2500857 10.1109/TNN.2011.2162000 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/int.22716 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1098-111X |
EndPage | 3708 |
ExternalDocumentID | 10_1002_int_22716 INT22716 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: NRF‐2020R1F1A1076278 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2976-75f34cb8d953d530df1e3d396e61e85c8f3072cb6d3f5a1d0d4e6b2506480c333 |
IEDL.DBID | DR2 |
ISSN | 0884-8173 |
IngestDate | Sun Jul 20 09:10:46 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Tue Jul 01 02:44:35 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2976-75f34cb8d953d530df1e3d396e61e85c8f3072cb6d3f5a1d0d4e6b2506480c333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3962-3067 0000-0002-5184-7151 |
PQID | 2655515088 |
PQPubID | 1026350 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2655515088 crossref_citationtrail_10_1002_int_22716 crossref_primary_10_1002_int_22716 wiley_primary_10_1002_int_22716_INT22716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of intelligent systems |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2013; 26 2012 2011 2013; 24 2019; 34 2002; 13 2008; 16 2007 2006 2020; 100 2012; 17 2003 2020; 98 2014; 60 2018; 42 2016; 58 2021; 36 2015; 48 2016; 1 2021 2020 2011; 22 2016; 84 2016 2001; 2 2013 2009; 3 1996; 25 2012; 7 2001; 13 2018; 32 2005; 17 2006; 103 2018; 14 2019; 110 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Amer M (e_1_2_9_37_1) 2012 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 Ackermann MR (e_1_2_9_10_1) 2012; 17 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – start-page: 81 year: 2007 end-page: 92 – start-page: 81 year: 2003 end-page: 92 – volume: 14 start-page: 101 year: 2018 end-page: 111 article-title: evoStream‐evolutionary stream clustering utilizing idle times publication-title: Big Data Res – volume: 26 start-page: 512 issue: 3 year: 2013 end-page: 532 article-title: Dependence maps, a dimensionality reduction with dependence distance for high‐dimensional data publication-title: Data Min Knowl Discovery – volume: 60 start-page: 58 year: 2014 end-page: 72 article-title: Dependence clustering, a method revealing community structure with group dependence publication-title: Knowl‐Based Syst – start-page: 328 year: 2006 end-page: 339 – volume: 34 start-page: 541 issue: 4 year: 2019 end-page: 563 article-title: Online cluster validity indices for performance monitoring of streaming data clustering publication-title: Int J Intell Syst – start-page: 1 year: 2012 end-page: 12 – volume: 13 start-page: 1443 issue: 7 year: 2001 end-page: 1471 article-title: Estimating the support of a high‐dimensional distribution publication-title: Neural Comput – start-page: 605 year: 2007 end-page: 615 – volume: 48 start-page: 103 issue: 1 year: 2015 end-page: 113 article-title: The effective use of the one‐class SVM classifier for handwritten signature verification based on writer‐independent parameters publication-title: Pattern Recognition – volume: 13 start-page: 415 issue: 2 year: 2002 end-page: 425 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans Neural Networks – start-page: 360 year: 2016 end-page: 368 – volume: 17 start-page: 2.1 year: 2012 end-page: 2.30 article-title: StreamKM++ a clustering algorithm for data streams publication-title: J Exp Algorithmics (JEA) – volume: 26 start-page: 1644 issue: 7 year: 2013 end-page: 1656 article-title: Data stream clustering with affinity propagation publication-title: IEEE Trans Knowl Data Eng – volume: 22 start-page: 1796 issue: 11 year: 2011 end-page: 1808 article-title: Spectral embedded clustering: a framework for in‐sample and out‐of‐sample spectral clustering publication-title: IEEE Trans Neural Networks – volume: 32 start-page: 1806 issue: 6 year: 2018 end-page: 1844 article-title: Exact variable‐length anomaly detection algorithm for univariate and multivariate time series publication-title: Data Min Knowl Discovery – start-page: 8 year: 2013 end-page: 15 – volume: 110 start-page: 141 year: 2019 end-page: 158 article-title: A density‐based competitive data stream clustering network with self‐adaptive distance metric publication-title: Neural Networks – volume: 17 start-page: 1333 issue: 10 year: 2005 end-page: 1346 article-title: Using one‐class and two‐class SVMs for multiclass image annotation publication-title: IEEE Trans Knowl Data Eng – volume: 1 start-page: 13 issue: 1 year: 2016 article-title: State‐of‐the‐art on clustering data streams publication-title: Big Data Anal – volume: 84 start-page: 107 year: 2016 end-page: 113 article-title: An approximation of the Gaussian RBF kernel for efficient classification with SVMs publication-title: Pattern Recognition Lett – volume: 103 start-page: 8577 issue: 23 year: 2006 end-page: 8582 article-title: Modularity and community structure in networks publication-title: Proc Natl Acad Sci – volume: 100 year: 2020 article-title: Generalized support vector data description for anomaly detection publication-title: Pattern Recognition – volume: 42 start-page: 24 year: 2018 end-page: 36 article-title: Revealing community structures by ensemble clustering using group diffusion publication-title: Inf Fusion – start-page: 133 year: 2007 end-page: 142 – volume: 2 start-page: 139 year: 2001 end-page: 154 article-title: One‐class SVMs for document classification publication-title: J Mach Learn Res – volume: 36 start-page: 177 issue: 1 year: 2021 end-page: 199 article-title: DSVD‐autoencoder: a scalable distributed privacy‐preserving method for one‐class classification publication-title: Int J Intell Syst – volume: 7 issue: 9 year: 2012 article-title: Abnormal brain connectivity patterns in adults with ADHD: a coherence study publication-title: PLOS One – volume: 3 start-page: 1 issue: 3 year: 2009 end-page: 28 article-title: Density‐based clustering of data streams at multiple resolutions publication-title: ACM Trans Knowl Discovery Data (TKDD) – volume: 98 year: 2020 article-title: Few shot learning for multi‐class classification based on nested ensemble DSVM publication-title: Ad Hoc Networks – volume: 25 start-page: 103 issue: 2 year: 1996 end-page: 114 article-title: BIRCH: an efficient data clustering method for very large databases publication-title: ACM Sigmod Record – start-page: 1052 year: 2020 end-page: 1057 – volume: 16 start-page: 1462 issue: 6 year: 2008 end-page: 1475 article-title: Evolving fuzzy‐rule‐based classifiers from data streams publication-title: IEEE Trans Fuzzy Syst – start-page: 27 year: 2011 end-page: 40 – start-page: 1849 year: 2011 end-page: 1856 – year: 2021 article-title: Improved autoencoder for unsupervised anomaly detection publication-title: Int J Intell Syst – volume: 58 start-page: 121 year: 2016 end-page: 134 article-title: High‐dimensional and large‐scale anomaly detection using a linear one‐class SVM with deep learning publication-title: Pattern Recognition – start-page: 264 year: 2012 end-page: 278 – volume: 24 start-page: 593 issue: 4 year: 2013 end-page: 609 article-title: Online support vector machine based on convex hull vertices selection publication-title: IEEE Trans Neural Networks Learn Syst – ident: e_1_2_9_14_1 doi: 10.1007/978-3-642-31537-4_21 – ident: e_1_2_9_3_1 doi: 10.1002/int.22064 – ident: e_1_2_9_6_1 doi: 10.1109/TFUZZ.2008.925904 – ident: e_1_2_9_21_1 doi: 10.1162/089976601750264965 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.0601602103 – ident: e_1_2_9_20_1 doi: 10.1016/j.knosys.2014.01.004 – ident: e_1_2_9_32_1 doi: 10.1109/72.991427 – start-page: 1 volume-title: Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012) year: 2012 ident: e_1_2_9_37_1 – ident: e_1_2_9_15_1 doi: 10.1145/1281192.1281210 – ident: e_1_2_9_4_1 doi: 10.1109/RADAR42522.2020.9114687 – ident: e_1_2_9_9_1 doi: 10.1016/B978-012722442-8/50016-1 – ident: e_1_2_9_36_1 doi: 10.1016/j.patcog.2019.107119 – volume: 17 start-page: 2.1 year: 2012 ident: e_1_2_9_10_1 article-title: StreamKM++ a clustering algorithm for data streams publication-title: J Exp Algorithmics (JEA) – ident: e_1_2_9_12_1 doi: 10.1137/1.9781611972764.29 – ident: e_1_2_9_7_1 doi: 10.1137/1.9781611974348.41 – ident: e_1_2_9_40_1 doi: 10.1016/j.patcog.2016.03.028 – ident: e_1_2_9_34_1 doi: 10.1016/j.adhoc.2019.102055 – ident: e_1_2_9_22_1 doi: 10.1162/15324430260185574 – ident: e_1_2_9_8_1 doi: 10.1186/s41044-016-0011-3 – ident: e_1_2_9_31_1 doi: 10.1007/s10618-018-0569-7 – ident: e_1_2_9_5_1 doi: 10.1016/j.neunet.2018.11.008 – ident: e_1_2_9_25_1 doi: 10.1002/int.22296 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0045671 – ident: e_1_2_9_11_1 doi: 10.1109/TKDE.2013.146 – ident: e_1_2_9_19_1 doi: 10.1145/235968.233324 – ident: e_1_2_9_27_1 doi: 10.1016/j.inffus.2017.09.013 – ident: e_1_2_9_17_1 doi: 10.1007/978-3-540-73871-8_58 – ident: e_1_2_9_30_1 doi: 10.1109/IJCNN.2011.6033449 – ident: e_1_2_9_38_1 doi: 10.1016/j.patcog.2014.07.016 – ident: e_1_2_9_41_1 doi: 10.1016/j.bdr.2018.05.005 – ident: e_1_2_9_18_1 doi: 10.1007/978-3-642-25856-5_3 – ident: e_1_2_9_23_1 doi: 10.1016/j.patrec.2016.08.013 – ident: e_1_2_9_26_1 doi: 10.1007/s10618-012-0267-9 – ident: e_1_2_9_13_1 doi: 10.1007/978-3-540-74825-0_8 – ident: e_1_2_9_33_1 doi: 10.1109/TKDE.2005.170 – ident: e_1_2_9_16_1 doi: 10.1145/1552303.1552307 – ident: e_1_2_9_39_1 doi: 10.1109/TNNLS.2013.2238556 – ident: e_1_2_9_2_1 doi: 10.1002/int.22582 – ident: e_1_2_9_24_1 doi: 10.1145/2500853.2500857 – ident: e_1_2_9_28_1 doi: 10.1109/TNN.2011.2162000 |
SSID | ssj0011745 |
Score | 2.3332887 |
Snippet | Online clustering of multivariate streaming data has attracted considerable interest in recent years due to the abundance of data sources. Numerous studies in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3682 |
SubjectTerms | Clustering Data points dependence clustering Intelligent systems Multivariate analysis one‐class support vector machine online data analysis outlier detection Outliers (statistics) Support vector machines unsupervised learning |
Title | Online dependence clustering of multivariate streaming data using one‐class SVMs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22716 https://www.proquest.com/docview/2655515088 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrBQnqJQKgsxsKRN7NhJxFQBVUG0Qx-oA1JUvyREKYi2DEz8BH4jv4RzHi0gkBCblVzixOezP5_uvkPoSETMKDAyRxhDHD_gLrSCwJEqgPMQMx5R1g_Z7vDWwL8csmEBneS5MCk_xMLhZi0jWa-tgY_EtL4kDb2dzGqEANyH9dfGallA1F1QR3mAtFmKIH0n9AKaswq5pL548utetASYn2Fqss80S-gm_8I0vOSuNp-Jmnz5Rt74z19YR2sZ_sSNdMJsoIKebKJSXtsBZ6a-hbopBynOi-RKjeV4blkVYK_DDwYnkYjPcNIGsIptxsno3t6xEafYBtOD0ES_v75JC89x77o93UaD5nn_tOVk9RccSQClOAEz1JciVBGjilFXGU9TRSOuuadDJkMDCwSRgitq2MhTrvI1F8RS4IWupJTuoOIE-tpFOAiVEHZeCB75xKOjkOnQJ8TlcMVlbhkd55qIZUZObmtkjOOUVpnEMFZxMlZldLgQfUwZOX4SquTqjDOjnMaEM8CHFpFCd4lefn9BfNHpJ429v4vuo1VikyMSH00FFWdPc30AkGUmqmilcda-6lWTOfoBeBvp8w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFsoodC3HgkpLYsZNKXBAClaU9QEFcUFRvEqIUBC0HTnwC38iXMHaSsggkxM1KJnHimbGfR-M3AJuyzq1GJwuktTSIExFiK0kCpRPcD3EbUe3ikM2WaJzHR5f8cgR2yrMwOT_EMODmPMPP187BXUB6-4M19LrXr1GKeH8UxlxFb7-hOh2SR0WItXmOIeMgjRJW8gqFdHv46NfV6ANifgaqfqU5qMJV-Y15gslNbdCXNfX8jb7xvz8xBZMFBCW7uc1Mw4jpzUC1LO9ACm-fhdOchpSUdXKVIao7cMQKuNyRO0t8MuITbrYRrxJ36KRz6-64pFPi8ulRqGfeXl6VQ-jk7KL5OAfnB_vtvUZQlGAIFEWgEiTcsljJVNc505yF2kaGaVYXRkQm5Sq1OEdQJYVmlnciHerYCEkdC14aKsbYPFR62NcCkCTVUjrTkKIe04h1Um7SmNJQ4JWQh4uwVaoiUwU_uSuT0c1yZmWa4VhlfqwWYWMoep-TcvwktFLqMyv88jGjgiNEdKAUu_OK-f0F2WGr7RtLfxddh_FGu3mSnRy2jpdhgrqzEj5kswKV_sPArCKC6cs1b6jvsJDseg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB6lQaq4QKFFhKbUQhy4bOK1115HnFDTCFoSIQpVDkir-E-qCiEqmx566iP0GXkSxvuT0KpIVW_W7ux61zPj-WyNvwHY1z3hLTpZpL1nUZJKiq00jYxNcT0kfMxs2IccjuTxZfJhLMYNOKzPwpT8EIsNt-AZxXwdHHxmfXdJGvplmncYQ7j_DFYSSVUw6f75gjsqRqgtSgiZRCpOeU0rRFl38ejvwWiJMB_j1CLQDNbhqv7EMr_ka2ee64758Qd743_-wwtYqwAoOSotZgMabroJ63VxB1L5-ks4L0lISV0l1zhirueBVgGDHbn1pEhF_I5LbUSrJBw5mdyEOyHllIRsehSauvufv0zA5-TT5-HdK7gcvL94dxxVBRgiwxCmRKnwPDFa2Z7gVnBqfey45T3pZOyUMMrjDMGMlpZ7MYkttYmTmgUOPEUN53wLmlPsaxtIqqzWwTC07CUs5hMlnEoYoxKvUEFbcFBrIjMVO3koknGdlbzKLMOxyoqxasHeQnRWUnL8TahdqzOrvPIuY1IgQAyQFLsr9PL0C7KT0UXR2Pl30bfw_Kw_yE5PRh9fwyoLByWK_Zo2NPNvc_cG4UuudwszfQAbjesy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+dependence+clustering+of+multivariate+streaming+data+using+one%E2%80%90class+SVMs&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Lee%2C+Geonseok&rft.au=Lee%2C+Kichun&rft.date=2022-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=6&rft.spage=3682&rft.epage=3708&rft_id=info:doi/10.1002%2Fint.22716&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |