Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three‐point bending

The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar microstructure in the range of 105 to 109 cycles. The S‐N curves with different shapes were obtained, and it was found that the crack initiation in very...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 44; no. 8; pp. 2054 - 2069
Main Authors Wang, Bohan, Cheng, Li, Cui, Wenbin, Chen, Xuan, Wang, Changkai, Li, Dongchun
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar microstructure in the range of 105 to 109 cycles. The S‐N curves with different shapes were obtained, and it was found that the crack initiation in very high cycle regime changed from surface to subsurface. The crack initiation mechanism with different microstructures was revealed by fracture analysis. The axial tension influence mechanism is that it changes the axial stress distribution on the specimen cross section and makes the crack origin migrate to the interior.
AbstractList The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar microstructure in the range of 105 to 109 cycles. The S‐N curves with different shapes were obtained, and it was found that the crack initiation in very high cycle regime changed from surface to subsurface. The crack initiation mechanism with different microstructures was revealed by fracture analysis. The axial tension influence mechanism is that it changes the axial stress distribution on the specimen cross section and makes the crack origin migrate to the interior.
Abstract The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar microstructure in the range of 10 5 to 10 9  cycles. The S ‐ N curves with different shapes were obtained, and it was found that the crack initiation in very high cycle regime changed from surface to subsurface. The crack initiation mechanism with different microstructures was revealed by fracture analysis. The axial tension influence mechanism is that it changes the axial stress distribution on the specimen cross section and makes the crack origin migrate to the interior.
Author Wang, Bohan
Li, Dongchun
Cui, Wenbin
Wang, Changkai
Cheng, Li
Chen, Xuan
Author_xml – sequence: 1
  givenname: Bohan
  orcidid: 0000-0003-2424-1880
  surname: Wang
  fullname: Wang, Bohan
  email: dream0729ing@foxmail.com
  organization: Air Force Engineering University
– sequence: 2
  givenname: Li
  surname: Cheng
  fullname: Cheng, Li
  organization: Air Force Engineering University
– sequence: 3
  givenname: Wenbin
  surname: Cui
  fullname: Cui, Wenbin
  organization: Air Force Engineering University
– sequence: 4
  givenname: Xuan
  surname: Chen
  fullname: Chen, Xuan
  organization: Air Force Engineering University
– sequence: 5
  givenname: Changkai
  surname: Wang
  fullname: Wang, Changkai
  organization: Air Force Engineering University
– sequence: 6
  givenname: Dongchun
  surname: Li
  fullname: Li, Dongchun
  organization: Air Force Engineering University
BookMark eNp1kL1OwzAUhS0EEi0w8AaWmBhS4p_YzoiqFpCQWIrEFiXOTWqU2sVOQNn6CDwjT4JLGVi4y5WuvnPO1ZmiY-ssIHRJ0hmJc9M0MCOMS3GEJoSLNKEiz47RRMlMJDJTL6doGsJrmhLBGZug3SIqdI9dgxvnW2NbvPVOQwjYWbw27RrrUXeAS1vjd_Dj31tT9qYdYK_Ygu8NhL3Pas5xb_rSmmGDy65zIx5sDR73aw_wtfvcOmN7XIGtY9w5OmnKLsDF7z5Dz8vFan6fPD7dPcxvHxNNcykSnmmuKE_LUjEigEpOuSaqrkSlKsmViICgMquAU9LIKmWa1YxCJhSvgOXsDF0dfOOzbwOEvnh1g7cxsqAZV3mes1RG6vpAae9C8NAUW282pR8Lkhb7gotYV_FTcGRvDuyH6WD8HyyWy8VB8Q31RX-Y
CitedBy_id crossref_primary_10_1088_1742_6596_2174_1_012037
crossref_primary_10_1016_j_triboint_2024_109566
crossref_primary_10_1016_j_jmrt_2023_08_200
crossref_primary_10_1016_j_compscitech_2023_110191
crossref_primary_10_1016_j_jallcom_2022_168201
crossref_primary_10_1111_ffe_13868
crossref_primary_10_1007_s11431_023_2556_1
crossref_primary_10_1016_j_jallcom_2023_169990
crossref_primary_10_3390_met12050702
crossref_primary_10_1088_1742_6596_1945_1_012042
crossref_primary_10_1109_TIM_2022_3173279
crossref_primary_10_1016_j_ijfatigue_2023_107562
crossref_primary_10_1016_j_jmst_2023_07_023
crossref_primary_10_3390_ma15144864
Cites_doi 10.1111/ffe.12562
10.1046/j.1460-2695.1999.00183.x
10.1051/matecconf/201816509001
10.1111/ffe.13085
10.1016/j.msea.2014.09.115
10.1016/j.ijfatigue.2014.09.007
10.1111/ffe.13050
10.1016/j.ijfatigue.2010.05.009
10.4028/www.scientific.net/KEM.664.118
10.1007/s11661-011-0816-7
10.1016/j.msea.2014.01.019
10.3389/fmats.2015.00072
10.1016/j.ijfatigue.2018.05.032
10.1016/j.ijfatigue.2016.05.029
10.1046/j.1460-2695.1999.00186.x
10.1016/j.ijfatigue.2016.10.002
10.1179/1743280411Y.0000000005
10.1016/j.scriptamat.2010.02.043
10.3139/146.030539
10.1016/j.ijfatigue.2015.08.021
10.1016/j.ijfatigue.2016.05.024
10.1016/j.ijfatigue.2018.03.021
10.1046/j.1460-2695.1999.00204.x
10.1016/j.ijfatigue.2016.05.030
10.1111/ffe.12365
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2021 Wiley Publishing Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2021 Wiley Publishing Ltd.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.13476
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 2069
ExternalDocumentID 10_1111_ffe_13476
FFE13476
Genre article
GrantInformation_xml – fundername: National Key Basic Research and Development Program of China (973)
  funderid: 2015CB057400
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c2976-45c48240aa8316e27424c18db6b8b748645c6275be421f7b03c3d32e5684be393
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Thu Oct 10 16:21:15 EDT 2024
Fri Aug 23 01:45:27 EDT 2024
Sat Aug 24 01:03:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-45c48240aa8316e27424c18db6b8b748645c6275be421f7b03c3d32e5684be393
ORCID 0000-0003-2424-1880
PQID 2548999307
PQPubID 45644
PageCount 16
ParticipantIDs proquest_journals_2548999307
crossref_primary_10_1111_ffe_13476
wiley_primary_10_1111_ffe_13476_FFE13476
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2015; 2
2010; 33
2018; 165
2015; 622
2015; 70
2015; 664
2017; 46
1999; 22
2011; 35
2020; 13
2016; 93
2016; 91
2012; 57
2016; 39
2003; 94
2018; 43
2016; 37
2010; 63
2014; 598
2018; 48
2017; 95
2019; 42
2018; 116
2019; 44
2019; 43
2018; 115
2019; 48
2013; 30
2016; 82
2012; 27
2012; 43
Pan Q (e_1_2_9_25_1) 2019; 43
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Bao X (e_1_2_9_32_1) 2020; 13
e_1_2_9_35_1
Bao X (e_1_2_9_31_1) 2019; 44
e_1_2_9_33_1
Lu K (e_1_2_9_13_1) 2019; 48
Li Q (e_1_2_9_12_1) 2012; 27
Tian W (e_1_2_9_30_1) 2016; 37
Tian X (e_1_2_9_27_1) 2013; 30
Ran J (e_1_2_9_29_1) 2018; 43
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Deng R (e_1_2_9_24_1) 2011; 35
e_1_2_9_2_1
Zhang Z (e_1_2_9_26_1) 2017; 46
e_1_2_9_9_1
Hong Y (e_1_2_9_7_1) 2018; 48
e_1_2_9_28_1
References_xml – volume: 13
  start-page: 1
  year: 2020
  end-page: 16
  article-title: The effect of microstructure and axial tension on three‐point bending fatigue behavior of TC4 in high cycle and very high cycle regimes
  publication-title: Materials
– volume: 39
  start-page: 3
  issue: 1
  year: 2016
  end-page: 29
  article-title: Recent developments in ultrasonic fatigue
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 70
  start-page: 154
  year: 2015
  end-page: 162
  article-title: Investigating environmental effects on small fatigue crack growth in Ti‐6242S using combined very sonic fatigue and scanning electron microscopy
  publication-title: Int J Fatigue
– volume: 598
  start-page: 135
  year: 2014
  end-page: 140
  article-title: Gigacycle fatigue properties of Ti‐6Al‐4V alloy under tensile mean stress
  publication-title: Mater Sci Eng A
– volume: 22
  start-page: 559
  issue: 7
  year: 1999
  end-page: 565
  article-title: There is no infinite fatigue life in metallic materials
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 94
  start-page: 539
  issue: 5
  year: 2003
  end-page: 546
  article-title: Slow fatigue crack growth in 2024‐T3 and Ti‐6Al‐4V at low and very sonic frequency
  publication-title: Z Metallkde
– volume: 93
  start-page: 339
  year: 2016
  end-page: 351
  article-title: A review on fatigue fracture modes of structural metallic materials in very high cycle regime
  publication-title: Int J Fatigue
– volume: 44
  start-page: 137
  issue: 6
  year: 2019
  end-page: 140
  article-title: Effect of heat treatment process on microstructure and mechanical properties of TC4 titanium alloy
  publication-title: Heat Treat Met
– volume: 115
  start-page: 67
  issue: 12
  year: 2018
  end-page: 78
  article-title: The behavior of crack initiation and early growth in high‐cycle and very‐ high‐cycle fatigue regimes for a titanium alloy
  publication-title: Int J Fatigue
– volume: 622
  start-page: 228
  year: 2015
  end-page: 235
  article-title: Effects of stress ratio on high‐cycle and very‐high‐cycle fatigue behavior of a Ti‐6Al‐4V alloy
  publication-title: Mater Sci Eng A
– volume: 35
  start-page: 58
  issue: 11
  year: 2011
  end-page: 62
  article-title: Effects of forging process and following heat treatment on microstructure and mechanical properties of TC11 titanium alloy
  publication-title: Mater Mech Eng
– volume: 91
  start-page: 29
  year: 2016
  end-page: 38
  article-title: Effects of vacuum environment on small fatigue crack propagation in Ti‐6Al‐4V
  publication-title: Int J Fatigue
– volume: 63
  start-page: 32
  issue: 1
  year: 2010
  end-page: 34
  article-title: The effect of microstructure on very high cycle fatigue properties in Ti‐6Al‐4V
  publication-title: Scr Mater
– volume: 27
  start-page: 617
  issue: 3
  year: 2012
  end-page: 622
  article-title: Experiment on ultra‐high cycle bending vibration fatigue of titanium alloy TC17
  publication-title: J Aerosp Power
– volume: 2
  start-page: 72
  year: 2015
  end-page: 79
  article-title: Fatigue performance of laser additive manufactured Ti‐6Al‐4V in very high cycle fatigue regime up to 109 cycles
  publication-title: Front Mater
– volume: 22
  start-page: 633
  issue: 7
  year: 1999
  end-page: 641
  article-title: On the life‐controlling microstructural fatigue mechanisms inductile metals and alloys in the gigacycle regime
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 30
  start-page: 17
  issue: 6
  year: 2013
  end-page: 21
  article-title: Effect of forging deformation on microstructure and mechanical properties of TC4‐DT titanium alloy
  publication-title: Titan Ind Prog
– volume: 42
  start-page: 2093
  issue: 9
  year: 2019
  end-page: 2105
  article-title: Initiation and growth behaviour of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation microcomputed tomography
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 165
  year: 2018
  article-title: Effect of surface mechanical attrition treatment on the very high cycle fatigue behavior of TC11
  publication-title: MATEC Web Conf
– volume: 42
  start-page: 1950
  issue: 9
  year: 2019
  end-page: 1964
  article-title: High‐cycle and very‐high‐cycle fatigue behavior of a titanium alloy with equiaxed microstructure under different mean stresses
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 22
  start-page: 545
  issue: 7
  year: 1999
  end-page: 557
  article-title: The fatigue limit and its elimination
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 33
  start-page: 49
  issue: 1
  year: 2010
  end-page: 58
  article-title: Very high cycle fatigue—is there a fatigue limit
  publication-title: Int J Fatigue
– volume: 48
  start-page: 1
  year: 2018
  end-page: 65
  article-title: A review on mechanisms and models for very‐high‐cycle fatigue of metallic materials
  publication-title: Adv Mech
– volume: 664
  start-page: 118
  year: 2015
  end-page: 127
  article-title: Evaluation of very high cycle fatigue properties of low temperature nitrided Ti‐6Al‐4V alloy using very sonic testing technology
  publication-title: Key Eng Mater
– volume: 57
  start-page: 73
  issue: 2
  year: 2012
  end-page: 91
  article-title: Diversity of damage evolution during cyclic loading at very high numbers of cycles
  publication-title: Int Mater Rev
– volume: 82
  start-page: 402
  year: 2016
  end-page: 410
  article-title: On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime
  publication-title: Int J Fatigue
– volume: 43
  start-page: 21
  issue: 11
  year: 2019
  end-page: 26
  article-title: Effect of thermal tensile deformation and solution aging treatment on microstructure of TC4‐DT titanium alloy
  publication-title: Mater Mech Eng
– volume: 43
  start-page: 2753
  issue: 8
  year: 2012
  end-page: 2762
  article-title: Fatigue strength and crack initiation mechanism of very‐high‐cycle fatigue for low alloy steels
  publication-title: Metall Mater Trans A
– volume: 116
  start-page: 80
  year: 2018
  end-page: 89
  article-title: Stress ratio effect on notched fatigue behavior of a Ti‐8Al‐1Mo‐1V alloy in the very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 43
  start-page: 152
  issue: 8
  year: 2018
  end-page: 155
  article-title: Effects of solution and aging on microstructure and mechanical properties of TC4 alloy
  publication-title: Heat Treat Met
– volume: 93
  start-page: 318
  year: 2016
  end-page: 325
  article-title: Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes
  publication-title: Int J Fatigue
– volume: 37
  start-page: 57
  issue: 9
  year: 2016
  end-page: 61
  article-title: Effects of forging process on microstructure and properties of TC17 titanium alloy
  publication-title: Trans Mater Heat Treat
– volume: 95
  start-page: 64
  year: 2017
  end-page: 75
  article-title: Influence of microstructure [alpha + beta and beta] on very high cycle fatigue behaviour of Ti‐6Al‐4V alloy
  publication-title: Int J Fatigue
– volume: 46
  start-page: 163
  issue: 15
  year: 2017
  end-page: 164
  article-title: Study on forging process of TC11 titanium alloy bar
  publication-title: Hot Work Technol
– volume: 40
  start-page: 979
  issue: 6
  year: 2017
  end-page: 993
  article-title: Nanograin layer formation at crack initiation region for very‐high‐cycle fatigue of a Ti‐6Al‐4V alloy
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 48
  start-page: 3175
  issue: 10
  year: 2019
  end-page: 3182
  article-title: Very‐high‐cycle‐fatigue properties of TC4 titanium alloy under three‐point bending
  publication-title: Rare Met Mater Eng
– ident: e_1_2_9_9_1
  doi: 10.1111/ffe.12562
– ident: e_1_2_9_33_1
  doi: 10.1046/j.1460-2695.1999.00183.x
– volume: 43
  start-page: 21
  issue: 11
  year: 2019
  ident: e_1_2_9_25_1
  article-title: Effect of thermal tensile deformation and solution aging treatment on microstructure of TC4‐DT titanium alloy
  publication-title: Mater Mech Eng
  contributor:
    fullname: Pan Q
– ident: e_1_2_9_16_1
  doi: 10.1051/matecconf/201816509001
– ident: e_1_2_9_20_1
  doi: 10.1111/ffe.13085
– ident: e_1_2_9_8_1
  doi: 10.1016/j.msea.2014.09.115
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ijfatigue.2014.09.007
– volume: 48
  start-page: 1
  year: 2018
  ident: e_1_2_9_7_1
  article-title: A review on mechanisms and models for very‐high‐cycle fatigue of metallic materials
  publication-title: Adv Mech
  contributor:
    fullname: Hong Y
– ident: e_1_2_9_10_1
  doi: 10.1111/ffe.13050
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ijfatigue.2010.05.009
– volume: 37
  start-page: 57
  issue: 9
  year: 2016
  ident: e_1_2_9_30_1
  article-title: Effects of forging process on microstructure and properties of TC17 titanium alloy
  publication-title: Trans Mater Heat Treat
  contributor:
    fullname: Tian W
– ident: e_1_2_9_17_1
  doi: 10.4028/www.scientific.net/KEM.664.118
– ident: e_1_2_9_36_1
  doi: 10.1007/s11661-011-0816-7
– ident: e_1_2_9_21_1
  doi: 10.1016/j.msea.2014.01.019
– ident: e_1_2_9_23_1
  doi: 10.3389/fmats.2015.00072
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ijfatigue.2018.05.032
– volume: 48
  start-page: 3175
  issue: 10
  year: 2019
  ident: e_1_2_9_13_1
  article-title: Very‐high‐cycle‐fatigue properties of TC4 titanium alloy under three‐point bending
  publication-title: Rare Met Mater Eng
  contributor:
    fullname: Lu K
– volume: 35
  start-page: 58
  issue: 11
  year: 2011
  ident: e_1_2_9_24_1
  article-title: Effects of forging process and following heat treatment on microstructure and mechanical properties of TC11 titanium alloy
  publication-title: Mater Mech Eng
  contributor:
    fullname: Deng R
– volume: 44
  start-page: 137
  issue: 6
  year: 2019
  ident: e_1_2_9_31_1
  article-title: Effect of heat treatment process on microstructure and mechanical properties of TC4 titanium alloy
  publication-title: Heat Treat Met
  contributor:
    fullname: Bao X
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ijfatigue.2016.05.029
– ident: e_1_2_9_34_1
  doi: 10.1046/j.1460-2695.1999.00186.x
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ijfatigue.2016.10.002
– volume: 46
  start-page: 163
  issue: 15
  year: 2017
  ident: e_1_2_9_26_1
  article-title: Study on forging process of TC11 titanium alloy bar
  publication-title: Hot Work Technol
  contributor:
    fullname: Zhang Z
– volume: 30
  start-page: 17
  issue: 6
  year: 2013
  ident: e_1_2_9_27_1
  article-title: Effect of forging deformation on microstructure and mechanical properties of TC4‐DT titanium alloy
  publication-title: Titan Ind Prog
  contributor:
    fullname: Tian X
– volume: 13
  start-page: 1
  year: 2020
  ident: e_1_2_9_32_1
  article-title: The effect of microstructure and axial tension on three‐point bending fatigue behavior of TC4 in high cycle and very high cycle regimes
  publication-title: Materials
  contributor:
    fullname: Bao X
– ident: e_1_2_9_3_1
  doi: 10.1179/1743280411Y.0000000005
– ident: e_1_2_9_14_1
  doi: 10.1016/j.scriptamat.2010.02.043
– ident: e_1_2_9_22_1
  doi: 10.3139/146.030539
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ijfatigue.2015.08.021
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijfatigue.2016.05.024
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ijfatigue.2018.03.021
– volume: 27
  start-page: 617
  issue: 3
  year: 2012
  ident: e_1_2_9_12_1
  article-title: Experiment on ultra‐high cycle bending vibration fatigue of titanium alloy TC17
  publication-title: J Aerosp Power
  contributor:
    fullname: Li Q
– ident: e_1_2_9_35_1
  doi: 10.1046/j.1460-2695.1999.00204.x
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ijfatigue.2016.05.030
– volume: 43
  start-page: 152
  issue: 8
  year: 2018
  ident: e_1_2_9_29_1
  article-title: Effects of solution and aging on microstructure and mechanical properties of TC4 alloy
  publication-title: Heat Treat Met
  contributor:
    fullname: Ran J
– ident: e_1_2_9_4_1
  doi: 10.1111/ffe.12365
SSID ssj0016433
Score 2.4164176
Snippet The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar...
Abstract The ultrasonic fatigue tests under two three‐point bending loading modes were carried out on TC4 specimens with the equiaxed, bimodal, and lamellar...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2054
SubjectTerms Axial stress
Bending fatigue
combined loading
Crack initiation
fatigue crack initiation
Fatigue tests
Forging
Fracture mechanics
fracture morphology
High cycle fatigue
Stress concentration
Stress distribution
titanium alloy
Titanium alloys
Titanium base alloys
very high cycle fatigue
Title Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three‐point bending
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.13476
https://www.proquest.com/docview/2548999307
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jJz34W5xOCeLBS8fapF2LJxkrQ9CDbLCDUJImkSF2Y2sP87Q_wb_Rv8T30nVOQRBvpTShzXsv_V7yvi-EXPFABmHAXUcIz3e48Y0jmBJOpAEfKOECaEdy8v1D0B_yu5E_qpGbigtT6kOsF9wwMux8jQEu5HwjyI3RLeRBotw2CukhIHpcS0dBFmCPkQc4HjiAiUcrVSGs4lm3_P4v-gKYmzDV_mfiXfJUvWFZXvLSKnLZSt9-iDf-8xP2yM4Kf9Lb0mH2SU1nB2R7Q5XwkCxLRWM6MRQQLR5iRKclnYBOMor6xjRdQGMqMkUhEhab9wxY-rnQ2GKKJdt6jv0Mupwimy0bF68Ut_oXFMlrM5qDK-mP5ft0Ms5yKrXl2ByRYdwbdPvO6qAGJ_UAzjjcT3kI0ECIkLmBxt1fnrqhkoEMZYeDL_gpqiFLzT3XdGSbpUwxT_tByKVmETsm9WyS6RNCGYt8ozyYGRQgNSWlCF2eRp0IF6tU22uQy8pkybTU40iqPAYGJ7HD2SDNypjJKiTnCWTCkFtGMKc1yLW1yu8dJHHcsxenf3_0jGx5WO9iiwObpJ7PCn0OgCWXF9YzPwEMd-cy
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOQCHXT5FFxYsxIFLKhI7biJxQSxV-TygIvWCIjt2UIVIK0gP5dSfsL9xfwkzTtMtSEiIWxTFVuKZcd7Y854BDoTUMpLC95QKQk9kYeYpbpQXW8QHRvkI2omcfH0j23fioht25-C44sKU-hDTBTeKDDdfU4DTgvRMlGeZbRARUs7DAoZ7SGH553YqHoV5gDtIHgG59BAVdye6QlTHM236_m_0H2LOAlX3p2n9hPvqHcsCk8fGsNCN9PWDfON3P2IFfkwgKDspfWYV5my-BsszwoTrMC5FjVk_Ywhq6RwjNigZBayfM5I4ZukIGzOVG4bBMJq9l6GxH4aWWgyoatu-UD-dU8GI0Jb3hk-MdvtHjPhrz6xAb7L_xn8H_V5eMG0dzWYD7lpnndO2NzmrwUsDRDSeCFMRITpQKuK-tLQBLFI_MlrqSDcFukOYkiCytiLws6Y-4ik3PLChjIS2POabUMv7ud0CxnkcZibAycEgWDNaq8gXadyMab3KHAV12K9slgxKSY6kSmVwcBI3nHXYqayZTKLyJcFkGNPLGKe1Ohw6s3zeQdJqnbmLX19_dA8W253rq-Tq_OZyG5YCKn9xtYI7UCueh_Y34pdC7zo3fQOMKOtS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RkBA9tEBbdQsFC3HgkhWJHW8iTgiI-BZCIO0BKbJjG6Gq2Qiyh-2Jn8Bv5Jcw42y2WyQk1FsUxVbimXHe2POeATaF1DKRIgyUiuJAuNgFihsVpBbxgVEhgnYiJ5-dy8NrcdyP-zOw03JhGn2IyYIbRYafrynAK-Omgtw52yUepPwAc0LyiDKv_cuJdhSmAf4cecTjMkBQ3B_LClEZz6Tpvz-jvwhzGqf6H032GW7aV2zqS351h7XuFn9eqTf-5zcswqcxAGW7jccswYwtl-HjlCzhF3hsJI3ZwDGEtHSKEasaPgEblIwEjlkxwsZMlYZhKIym7zk09e3QUouKarbtA_VztScY0dnKu-FvRnv9I0bstXtWoy_Z58enanBX1kxbT7L5CtfZwdXeYTA-qSEoIsQzgYgLkSA2UCrhobS0_SuKMDFa6kT3BDpDXJAcsrYiCl1Pb_OCGx7ZWCZCW57ybzBbDkr7HRjnaexMhFODQahmtFZJKIq0l9JqldmOOrDRmiyvGkGOvE1kcHByP5wdWG2NmY9j8iHHVBiTyxQntQ5seau83UGeZQf-4sf7H12H-Yv9LD89Oj9ZgYWIal98oeAqzNb3Q_sTwUut17yTvgDiN-oB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+forging+process+on+high+cycle+and+very+high+cycle+fatigue+properties+of+TC4+titanium+alloy+under+three%E2%80%90point+bending&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Wang%2C+Bohan&rft.au=Cheng%2C+Li&rft.au=Cui%2C+Wenbin&rft.au=Chen%2C+Xuan&rft.date=2021-08-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=44&rft.issue=8&rft.spage=2054&rft.epage=2069&rft_id=info:doi/10.1111%2Fffe.13476&rft.externalDBID=10.1111%252Fffe.13476&rft.externalDocID=FFE13476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon