A Survey on Data‐Driven 3D Shape Descriptors

Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks s...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 38; no. 1; pp. 356 - 393
Main Authors Rostami, R., Bashiri, F. S., Rostami, B., Yu, Z.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested. Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors.
AbstractList Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested. Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors.
Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested.
Author Yu, Z.
Bashiri, F. S.
Rostami, R.
Rostami, B.
Author_xml – sequence: 1
  givenname: R.
  surname: Rostami
  fullname: Rostami, R.
  email: rostami@uwm.edu
  organization: University of Wisconsin‐Milwaukee
– sequence: 2
  givenname: F. S.
  surname: Bashiri
  fullname: Bashiri, F. S.
  email: fbashiri@uwm.edu
  organization: University of Wisconsin‐Milwaukee
– sequence: 3
  givenname: B.
  surname: Rostami
  fullname: Rostami, B.
  email: brostami@uwm.edu
  organization: University of Wisconsin‐Milwaukee
– sequence: 4
  givenname: Z.
  surname: Yu
  fullname: Yu, Z.
  email: yuz@uwm.edu
  organization: University of Wisconsin‐Milwaukee
BookMark eNp1kL1OwzAURi1UJNrCwBtEYmJI62vHPxmrhhakSgyF2XITG1yVONhpUTcegWfkSQi0E4K73Duc77vSGaBe7WuD0CXgEXQzLp_sCCij_AT1IeMilZzlPdTH0N0CM3aGBjGuMcaZ4KyPRpNkuQ07s098nRS61Z_vH0VwO1MntEiWz7oxSWFiGVzT-hDP0anVm2gujnuIHmc3D9PbdHE_v5tOFmlJcsFTyKXJ-IplFVBdWSorWlFuucFEUAJEWGK45IJVPOPYWrvSwIkGVmEigVg6RFeH3ib4162JrVr7bai7l4pADlRiyURHjQ9UGXyMwVhVula3ztdt0G6jAKtvKaqTon6kdInrX4kmuBcd9n-yx_Y3tzH7_0E1nc8OiS-T7HCI
CitedBy_id crossref_primary_10_1115_1_4048629
crossref_primary_10_1007_s11042_023_15346_5
crossref_primary_10_1109_TVCG_2024_3368083
crossref_primary_10_12688_f1000research_127095_1
crossref_primary_10_12688_f1000research_127095_2
crossref_primary_10_1007_s11263_022_01610_y
crossref_primary_10_1007_s11227_021_03899_x
crossref_primary_10_1016_j_cirp_2023_03_020
crossref_primary_10_1016_j_aei_2024_102595
crossref_primary_10_1016_j_cad_2022_103405
crossref_primary_10_3390_a12080171
crossref_primary_10_1109_ACCESS_2020_2982196
crossref_primary_10_32604_csse_2022_018479
crossref_primary_10_1111_cgf_14120
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_3390_math12182946
crossref_primary_10_1007_s00371_023_03254_6
crossref_primary_10_1038_s41598_024_56626_w
crossref_primary_10_1109_TPAMI_2022_3146796
crossref_primary_10_1109_TPAMI_2021_3102676
crossref_primary_10_1111_cgf_14502
crossref_primary_10_1007_s12650_021_00770_2
crossref_primary_10_1007_s10462_023_10486_4
crossref_primary_10_1016_j_csbj_2023_05_022
crossref_primary_10_1007_s42967_023_00318_1
crossref_primary_10_1155_2020_5851465
Cites_doi 10.4249/scholarpedia.5947
10.1142/9789812797926_0003
10.1109/CVPR.2015.7298845
10.1109/TPAMI.1987.4767955
10.1145/2185520.2185526
10.1007/978-3-540-89639-5_37
10.1007/BF00994018
10.1145/1273496.1273556
10.1145/2366145.2366184
10.1016/j.cad.2005.10.011
10.1109/TCYB.2013.2265378
10.1111/j.1467-8659.2009.01515.x
10.1109/TMM.2014.2351788
10.1109/CVPR.2017.29
10.1561/2200000006
10.1109/CVPR.2016.360
10.1038/nmeth.3547
10.1109/CVPR.2001.990988
10.1007/978-3-319-46466-4_14
10.1109/34.24792
10.1109/CVPR.2016.609
10.1007/978-3-642-23123-0_13
10.1007/BF01589116
10.1109/CVPR.2014.491
10.1145/3137609
10.1007/11744023_32
10.1109/SMI.2006.21
10.1111/cgf.12740
10.1109/CVPR.2018.00028
10.1109/ICME.2014.6890145
10.1561/2000000039
10.1109/CVPRW.2010.5543285
10.1007/s00138-007-0097-8
10.1007/978-3-319-46448-0_48
10.5244/C.31.97
10.1111/cgf.12694
10.1109/ICICISYS.2010.5658814
10.1109/MSP.2017.2693418
10.1137/1.9781611970128
10.1109/TPAMI.2013.148
10.1109/JDT.2010.2096799
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TPAMI.2012.260
10.1111/j.1467-8659.2010.01763.x
10.1016/j.neucom.2015.09.116
10.1016/j.cad.2004.07.002
10.1162/neco.2006.18.7.1527
10.1109/CVPR.2017.693
10.1109/CVPR.2008.4587841
10.1109/CVPR.2004.1315150
10.1109/CVPR.2017.160
10.1007/s00371-012-0724-x
10.1111/cgf.12844
10.1038/nature14539
10.1109/SMI.2008.4547977
10.1016/j.neucom.2015.08.127
10.1162/neco.1989.1.4.541
10.1145/2024156.2024160
10.1145/2980179.2980233
10.1177/0278364914549607
10.1023/B:VISI.0000029664.99615.94
10.1109/34.121791
10.1145/1899404.1899405
10.1145/566654.566589
10.1109/ICRA.2012.6225188
10.1109/TPAMI.2012.231
10.1145/781606.781659
10.1109/CVPR.2017.702
10.1109/ICCVW.2011.6130444
10.1007/s00138-013-0501-5
10.1109/TIP.2016.2605920
10.1109/tcbb.2007.1035
10.1007/BF00116251
10.1007/s11263-012-0528-5
10.1109/IROS.2015.7353481
10.1145/1877808.1877817
10.1109/CGIV.2013.11
10.1111/cgf.12438
10.1109/ICRA.2011.5980382
10.1109/TASL.2011.2134090
10.1016/j.neunet.2014.09.003
10.1109/CVPR.2017.261
10.1109/5.726791
10.1016/j.cag.2009.03.005
10.1145/3072959.3073608
10.1007/978-3-642-33715-4_54
10.1109/BIBE.2013.6701547
10.1145/2980179.2980238
10.1109/SMI.2004.1314504
10.1109/TPAMI.2015.2424863
10.1145/2988458.2988473
10.1038/nbt.3300
10.1145/3072959.3073637
10.1016/j.eswa.2015.10.015
10.1137/050639296
10.1016/j.triboint.2016.07.001
10.1109/3DV.2017.00017
10.1117/12.912153
10.1145/1390156.1390294
10.1007/978-3-319-10602-1_34
10.1207/s15516709cog0901_7
10.1109/CVPR.2010.5539838
10.1214/aoms/1177729694
10.1145/1118890.1118893
10.1016/j.patrec.2016.05.028
10.1109/CVPR.2007.383157
10.1109/ICCV.2015.114
10.1109/TVCG.2007.1041
10.1080/14786440109462720
10.1109/SMI.2004.1314502
10.1109/ICCVW.2011.6130298
10.1145/2185520.2185551
10.1111/cgf.12702
10.1111/j.1467-8659.2010.01655.x
10.1016/j.patrec.2016.04.005
10.1126/science.1127647
10.1145/311535.311556
10.1145/1186822.1073207
10.1145/2835487
10.7551/mitpress/5236.001.0001
10.1007/s00371-010-0519-x
10.1111/j.1467-8659.2011.01893.x
10.1111/cgf.12693
10.1016/0042-6989(95)00230-8
ContentType Journal Article
Copyright 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13536
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 393
ExternalDocumentID 10_1111_cgf_13536
CGF13536
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2976-198e46b54d13adf38d3d36f6e02732127f2e68675d6460fffba162a15d02812f3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 25 05:53:19 EDT 2025
Tue Jul 01 02:23:09 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Wed Jan 22 16:46:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-198e46b54d13adf38d3d36f6e02732127f2e68675d6460fffba162a15d02812f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2191380857
PQPubID 30877
PageCount 38
ParticipantIDs proquest_journals_2191380857
crossref_citationtrail_10_1111_cgf_13536
crossref_primary_10_1111_cgf_13536
wiley_primary_10_1111_cgf_13536_CGF13536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
2015; 34
2015; 37
1989; 45
2017; 2
2004; 60
2013; 24
2006; 38
1987; 5
2015; 33
1951; 22
2016; 187
1992; 14
2004; 2
2016; 103
1996; 36
1936; 7
1998; 86
2016; 35
2005; 24
1995; 20
1986; 1
2010; 26
2010; 1
2014; 2
2017; 37
1990
2017; 36
2010; 29
2006; 28
2017; 34
2014; 16
2014; 15
1986
1
2016; 83
2007; 4
2012; 28
2012; 27
2005; 37
2012; 20
1989
2015; 12
2007; 19
2015; 16
2015; 4–5
2012; 100
1989; 1
2012
2011
2013; 43
2010
2015; 521
1985; 9
2008; 19
2009
2011; 30
2008
2006; 18
2007
2006
2005
1994
1901; 2
2004
2016; 204
2003
1995; 1
2006; 313
2007; 13
2012; 31
2011; 7
1999
2009; 28
2016; 4
2009; 33
36
1989; 11
2013; 35
2015; 61
2002; 21
2018
2014; 36
2017
2016
2015
2001; 2
2014
2013
2009; 4
2014; 3–4
2009; 2
2009; 1
2016; 25
2014; 33
Veltkamp R. C. (e_1_2_8_152_1) 2009
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
Masci J. (e_1_2_8_99_1) 2015
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Goodfellow I. (e_1_2_8_52_1) 2016
Mohamed A.‐r. (e_1_2_8_100_1) 2009
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
Aflalo Y. (e_1_2_8_4_1) 2011
e_1_2_8_95_1
e_1_2_8_162_1
Chang A. X. (e_1_2_8_35_1) 2015
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
Nair V. (e_1_2_8_104_1) 2009
Wan L. (e_1_2_8_156_1)
e_1_2_8_29_1
e_1_2_8_48_1
Veltkamp R. C. (e_1_2_8_151_1) 2007
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
Xie J. (e_1_2_8_161_1) 2015
e_1_2_8_21_1
e_1_2_8_171_1
Bürger F. (e_1_2_8_19_1) 2014
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
Wu J. (e_1_2_8_160_1) 2016
Qi C. R. (e_1_2_8_111_1)
e_1_2_8_14_1
Wu Z. (e_1_2_8_158_1) 2015
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_125_1
e_1_2_8_28_1
Alain G. (e_1_2_8_3_1) 2014; 15
Heider P. (e_1_2_8_67_1) 2011
Baldi P. (e_1_2_8_13_1) 2012; 27
e_1_2_8_24_1
e_1_2_8_47_1
Veltkamp R. C. (e_1_2_8_150_1) 2006
Gao Z. (e_1_2_8_56_1) 2016; 4
Ho T. K. (e_1_2_8_65_1) 1995
Yi L. (e_1_2_8_167_1)
Corman É. (e_1_2_8_36_1) 2014
Savva M. (e_1_2_8_127_1) 2015
Bengio Y. (e_1_2_8_25_1) 2007; 19
e_1_2_8_81_1
e_1_2_8_153_1
Hecht‐Nielsen R. (e_1_2_8_64_1) 1989
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
Riegler G. (e_1_2_8_123_1) 2017
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_59_1
e_1_2_8_70_1
Lv Y. (e_1_2_8_89_1) 2015; 16
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
Hu Y. (e_1_2_8_71_1) 2009
Yang L. (e_1_2_8_165_1) 2006
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
MacQueen J. (e_1_2_8_98_1)
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Hinton G. E. (e_1_2_8_68_1) 1986
Lee H. (e_1_2_8_87_1) 2007
e_1_2_8_80_1
e_1_2_8_154_1
Socher R. (e_1_2_8_130_1) 2012
e_1_2_8_131_1
e_1_2_8_8_1
Maron H. (e_1_2_8_101_1); 36
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
Rumelhart D. E. (e_1_2_8_119_1) 1986
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_173_1
Rustamov R. M. (e_1_2_8_124_1) 2007
Anguelov D. (e_1_2_8_7_1) 2005
Bronstein A. M. (e_1_2_8_17_1) 2008
e_1_2_8_84_1
e_1_2_8_112_1
Toldo R. (e_1_2_8_142_1) 2009
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_58_1
Steinke F. (e_1_2_8_137_1) 2007; 19
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_146_1
Vanamali T. (e_1_2_8_147_1) 2010
References_xml – year: 2011
– volume: 3–4
  start-page: 197
  year: 2014
  end-page: 387
  article-title: Deep learning: Methods and applications
  publication-title: Foundations and Trends® in Signal Processing 7
– volume: 21
  start-page: 355
  issue: 3
  year: 2002
  end-page: 361
  article-title: Geometry images
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 45
  year: 2010
  end-page: 52
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 1
  start-page: 39
  year: 2009
– year: 2005
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  end-page: 572
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– volume: 30
  start-page: 553
  year: 2011
  end-page: 562
– start-page: 187
  year: 1999
  end-page: 194
– start-page: 3794
  year: 2014
  end-page: 3801
– volume: 5
  start-page: 608
  year: 1987
  end-page: 620
  article-title: Segmentation and classification of range images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI‐9
– year: 1989
– volume: 16
  start-page: 2154
  issue: 8
  year: 2014
  end-page: 2167
  article-title: Learning high‐level feature by deep belief networks for 3‐D model retrieval and recognition
  publication-title: IEEE Transactions on Multimedia
– start-page: 1
  year: 2014
  end-page: 6
– year: 1990
– year: 2014
– volume: 33
  start-page: 381
  issue: 3
  year: 2009
  end-page: 390
  article-title: Discrete Laplace‐Beltrami operators for shape analysis and segmentation
  publication-title: Computers & Graphics
– start-page: 322
  year: 2003
  end-page: 327
– volume: 1
  start-page: 888
  year: 2010
  end-page: 892
– start-page: 77
  end-page: 85
– volume: 37
  start-page: 345
  issue: 4
  year: 2005
  end-page: 387
  article-title: Feature‐based similarity search in 3D object databases
  publication-title: ACM Computing Surveys (CSUR)
– start-page: 609350:1
  year: 2009
  end-page: 609350:9
  article-title: A dense point‐to‐point alignment method for realistic 3D face morphing and animation
  publication-title: International Journal of Computer Games Technology
– year: 2008
– start-page: 832
  year: 2015
  end-page: 840
  article-title: Geodesic convolutional neural networks on Riemannian manifolds
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– start-page: 145
  year: 2004
  end-page: 156
– volume: 34
  start-page: 129
  year: 2015
  end-page: 139
– start-page: 57
  year: 2009
  end-page: 59
– start-page: 2432
  year: 2017
  end-page: 2443
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  end-page: 42
  article-title: Geometric deep learning: Going beyond Euclidean data
  publication-title: IEEE Signal Processing Magazine
– start-page: 1298
  year: 2012
  end-page: 1303
– volume: 35
  start-page: 3
  issue: 1
  year: 2015
  article-title: 3D mesh labeling via deep convolutional neural networks
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 7
  start-page: 151
  issue: 3
  year: 2011
  end-page: 155
  article-title: Microdisplay‐based intraoral 3D scanner for dentistry
  publication-title: Journal of Display Technology
– volume: 11
  start-page: 567
  issue: 6
  year: 1989
  end-page: 585
  article-title: Principal warps: Thin‐plate splines and the decomposition of deformations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2015
  article-title: Semantically‐enriched 3D models for common‐sense knowledge
  publication-title: CVPR 2015 Workshop on Functionality, Physics, Intentionality and Causality
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 4–5
  start-page: 705
  year: 2015
  end-page: 724
  article-title: Deep learning for detecting robotic grasps
  publication-title: The International Journal of Robotics Research 34
– start-page: 225
  year: 2007
  end-page: 233
– start-page: 122
  year: 2011
  end-page: 131
– volume: 2
  start-page: II
  year: 2001
  end-page: II
– start-page: 82900N
  year: 2012
  end-page: 82900N
– volume: 2
  year: 2017
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  end-page: 1929
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 100
  start-page: 78
  issue: 1
  year: 2012
  end-page: 98
  article-title: Keypoints and local descriptors of scalar functions on 2D manifolds
  publication-title: International Journal of Computer Vision
– start-page: 1
  year: 2007
  end-page: 8
– volume: 31
  start-page: 165:1
  issue: 6
  year: 2012
  end-page: 165:10
  article-title: Active co‐analysis of a set of shapes
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 103
  start-page: 309
  year: 2016
  end-page: 315
  article-title: Tribological study in microscale using 3D SEM surface reconstruction
  publication-title: Tribology International
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 2007
– start-page: 801
  year: 2016
  end-page: 816
– start-page: 404
  year: 2006
  end-page: 417
– volume: 4
  start-page: 5947
  issue: 5
  year: 2009
  article-title: Deep belief networks
  publication-title: Scholarpedia
– year: 2016
– start-page: 4
  year: 2016
– start-page: 223
  year: 2016
  end-page: 240
– volume: 19
  start-page: 261
  issue: 4
  year: 2008
  end-page: 275
  article-title: Retrieving articulated 3‐D models using medial surfaces
  publication-title: Machine Vision and Applications
– start-page: 381
  year: 2008
  end-page: 392
– volume: 31
  start-page: 55
  issue: 4
  year: 2012
  article-title: A probabilistic model for component‐based shape synthesis
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 1
  year: 2008
  end-page: 8
– volume: 30
  start-page: 1
  issue: 1
  year: 2011
  article-title: Shape Google: Geometric words and expressions for invariant shape retrieval
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 25
  start-page: 5331
  issue: 11
  year: 2016
  end-page: 5344
  article-title: Unsupervised 3D local feature learning by circle convolutional restricted Boltzmann machine
  publication-title: IEEE Transactions on Image Processing
– year: 2017
  article-title: Octnet: Learning deep 3D representations at high resolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– start-page: 746
  year: 2012
  end-page: 760
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  end-page: 528
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Mathematical Programming
– volume: 4
  start-page: 382
  issue: 3
  year: 2007
  end-page: 393
  article-title: Neuroinformatics for genome‐wide 3‐D gene expression mapping in the mouse brain
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
– volume: 83
  start-page: 349
  year: 2016
  end-page: 356
  article-title: Linear discrimination dictionary learning for shape descriptors
  publication-title: Pattern Recognition Letters
– volume: 24
  start-page: 1685
  issue: 8
  year: 2013
  end-page: 1704
  article-title: CM‐BOF: Visual similarity‐based 3D shape retrieval using clock matching and bag‐of‐features
  publication-title: Machine Vision and Applications
– start-page: 139
  year: 2016
  end-page: 144
  article-title: Breast cancer classification using deep belief networks
  publication-title: Expert Systems with Applications 46
– start-page: 93
  year: 2010
  end-page: 100
– start-page: 3309
  year: 2016
  end-page: 3317
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– volume: 28
  start-page: 931
  issue: 9
  year: 2012
  end-page: 942
  article-title: Combination of bag‐of‐words descriptors for robust partial shape retrieval
  publication-title: The Visual Computer
– start-page: 13
  year: 2006
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Machine Learning
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– start-page: 1817
  year: 2011
  end-page: 1824
– start-page: 656
  year: 2012
  end-page: 664
– volume: 34
  start-page: 1
  issue: 7
  year: 2015
  end-page: 11
  article-title: Projective feature learning for 3D shapes with multi‐view depth images
  publication-title: Computer Graphics Forum
– start-page: 945
  year: 2015
  end-page: 953
– year: 2016
  article-title: A scalable active framework for region annotation in 3D shape collections
  publication-title: SIGGRAPH Asia
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  article-title: Learning deep architectures for AI
  publication-title: Foundations and trends® in Machine Learning
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  end-page: 873
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 12
  start-page: 931
  issue: 10
  year: 2015
  end-page: 934
  article-title: Predicting effects of noncoding variants with deep learning‐based sequence model
  publication-title: Nature Methods
– volume: 29
  start-page: 1865
  year: 2010
  end-page: 1894
– start-page: 1
  year: 2013
  end-page: 10
– start-page: 6584
  end-page: 6592
– volume: 36
  start-page: 72:1
  issue: 4
  year: 2017
  end-page: 72:11
  article-title: O‐cnn: Octree‐based convolutional neural networks for 3D shape analysis
  publication-title: ACM Transactions on Graphics
– start-page: 1
  year: 2013
  end-page: 6
– start-page: 282
  year: 1986
  end-page: 317
– start-page: 1626
  year: 2011
  end-page: 1633
– start-page: 21
  year: 2009
  end-page: 28
– volume: 9
  start-page: 147
  issue: 1
  year: 1985
  end-page: 169
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cognitive Science
– year: 2018
– start-page: 689
  year: 2011
  end-page: 700
– volume: 1
  start-page: 281
  end-page: 297
– volume: 36
  start-page: 71:1
  end-page: 71:10
  article-title: Convolutional neural networks on surfaces via seamless toric covers
  publication-title: ACM Transactions on Graphics
– volume: 35
  start-page: 220
  issue: 6
  year: 2016
  article-title: Model‐based teeth reconstruction
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 38
  start-page: 342
  issue: 4
  year: 2006
  end-page: 366
  article-title: Laplace–Beltrami spectra as ‘shape‐DNA’ of surfaces and solids
  publication-title: Computer‐Aided Design
– volume: 28
  start-page: 1383
  year: 2009
  end-page: 1392
– volume: 43
  start-page: 1318
  issue: 5
  year: 2013
  end-page: 1334
  article-title: Enhanced computer vision with Microsoft Kinect sensor: A review
  publication-title: IEEE Transactions on Cybernetics
– volume: 31
  start-page: 30
  issue: 4
  year: 2012
  article-title: Functional maps: A flexible representation of maps between shapes
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 49
  year: 2011
  end-page: 56
– start-page: 1704
  year: 2010
  end-page: 1711
– start-page: 39
  year: 2010
  end-page: 44
– start-page: 801
  year: 2007
  end-page: 808
– volume: 26
  start-page: 1257
  issue: 10
  year: 2010
  end-page: 1268
  article-title: The bag of words approach for retrieval and categorization of 3D objects
  publication-title: The Visual Computer
– volume: 1
  start-page: 278
  year: 1995
  end-page: 282
– start-page: 1912
  year: 2015
  end-page: 1920
– volume: 204
  start-page: 41
  year: 2016
  end-page: 50
  article-title: Deep learning representation using autoencoder for 3D shape retrieval
  publication-title: Neurocomputing
– volume: 28
  start-page: 1812
  issue: 5
  year: 2006
  end-page: 1836
  article-title: Efficient computation of isometry‐invariant distances between surfaces
  publication-title: SIAM Journal on Scientific Computing
– year: 2015
– start-page: 221
  year: 2008
  end-page: 222
– volume: 27
  start-page: 37
  year: 2012
  end-page: 50
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised and Transfer Learning
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  end-page: 188
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of Eugenics
– volume: 15
  start-page: 3563
  issue: 1
  year: 2014
  end-page: 3593
  article-title: What regularized auto‐encoders learn from the data‐generating distribution
  publication-title: The Journal of Machine Learning Research
– start-page: 1275
  year: 2015
  end-page: 1283
– volume: 34
  start-page: 13
  year: 2015
  end-page: 23
– volume: 83
  start-page: 330
  year: 2016
  end-page: 338
  article-title: Learning a discriminative deformation‐invariant 3D shape descriptor via many‐to‐one encoder
  publication-title: Pattern Recognition Letters
– start-page: 922
  year: 2015
  end-page: 928
– start-page: 199
  year: 2017
  end-page: 208
– start-page: 1339
  year: 2009
  end-page: 1347
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  end-page: 106
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 24
  start-page: 408
  year: 2005
  end-page: 416
– volume: 29
  start-page: 1545
  year: 2010
  end-page: 1554
– volume: 37
  start-page: 6:1
  issue: 1
  year: 2017
  end-page: 6:14
  article-title: Learning local shape descriptors from part correspondences with multiview convolutional networks
  publication-title: ACM Transactions on Graphics
– start-page: 82
  year: 2016
  end-page: 90
– start-page: 318
  year: 1986
  end-page: 362
– volume: 34
  start-page: 25
  year: 2015
  end-page: 38
– volume: 2
  start-page: 97
  year: 2004
  end-page: 104
– volume: 19
  start-page: 1313
  year: 2007
  article-title: Learning dense 3D correspondence
  publication-title: Advances in Neural Information Processing Systems
– start-page: 516
  year: 2014
  end-page: 532
– start-page: 167
  year: 2004
  end-page: 178
– volume: 33
  start-page: 127
  year: 2014
  end-page: 136
– volume: 36
  start-page: 1761
  issue: 12
  year: 1996
  end-page: 1771
  article-title: Face recognition under varying poses: The role of texture and shape
  publication-title: Vision Research
– volume: 36
  start-page: 52
  issue: 4
  year: 2017
  article-title: Grass: Generative recursive autoencoders for shape structures
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: International Journal of Computer Vision
– start-page: 601
  year: 2011
  end-page: 608
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  end-page: 838
  article-title: Predicting the sequence specificities of DNA‐and RNA‐binding proteins by deep learning
  publication-title: Nature Biotechnology
– start-page: 473
  year: 2007
  end-page: 480
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  end-page: 256
  article-title: A method for registration of 3‐D shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 36
  start-page: 171
  issue: 1
  year: 2014
  end-page: 180
  article-title: Learning spectral descriptors for deformable shape correspondence
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 37
  start-page: 2361
  issue: 12
  year: 2015
  end-page: 2373
  article-title: 3D shape matching via two layer coding
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2006
– volume: 13
  start-page: 902
  issue: 5
  year: 2007
  end-page: 913
  article-title: Calculus of nonrigid surfaces for geometry and texture manipulation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 283
  year: 2014
  end-page: 298
– volume: 30
  year: 2011
– volume: 35
  start-page: 431
  year: 2016
  end-page: 441
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  end-page: 42
  article-title: Context‐dependent pre‐trained deep neural networks for large‐vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– start-page: 2319
  year: 2015
  end-page: 2328
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  end-page: 13
  article-title: Mesh generation and flexible shape comparisons for bio‐molecules
  publication-title: Molecular Based Mathematical Biology
– start-page: 5648
  year: 2016
  end-page: 5656
  article-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 737
  year: 1994
  end-page: 744
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  article-title: Greedy layer‐wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  start-page: 143
  year: 2014
  end-page: 152
– year: 2017
– volume: 37
  start-page: 509
  issue: 5
  year: 2005
  end-page: 530
  article-title: Three‐dimensional shape searching: State‐of‐the‐art review and future trends
  publication-title: Computer‐Aided Design
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 35
  start-page: 1985
  issue: 8
  year: 2013
  end-page: 1993
  article-title: Graph isomorphisms and automorphisms via spectral signatures
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: e_1_2_8_58_1
  doi: 10.4249/scholarpedia.5947
– ident: e_1_2_8_21_1
  doi: 10.1142/9789812797926_0003
– ident: e_1_2_8_51_1
  doi: 10.1109/CVPR.2015.7298845
– ident: e_1_2_8_59_1
  doi: 10.1109/TPAMI.1987.4767955
– ident: e_1_2_8_106_1
  doi: 10.1145/2185520.2185526
– start-page: 801
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: e_1_2_8_87_1
– ident: e_1_2_8_49_1
  doi: 10.1007/978-3-540-89639-5_37
– ident: e_1_2_8_38_1
  doi: 10.1007/BF00994018
– ident: e_1_2_8_90_1
  doi: 10.1145/1273496.1273556
– ident: e_1_2_8_154_1
  doi: 10.1145/2366145.2366184
– start-page: 282
  volume-title: Parallel Distributed Processing, Vol. 1: Foundations
  year: 1986
  ident: e_1_2_8_68_1
– ident: e_1_2_8_125_1
  doi: 10.1016/j.cad.2005.10.011
– start-page: 656
  volume-title: NIPS
  year: 2012
  ident: e_1_2_8_130_1
– ident: e_1_2_8_70_1
  doi: 10.1109/TCYB.2013.2265378
– ident: e_1_2_8_136_1
  doi: 10.1111/j.1467-8659.2009.01515.x
– start-page: 832
  year: 2015
  ident: e_1_2_8_99_1
  article-title: Geodesic convolutional neural networks on Riemannian manifolds
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– ident: e_1_2_8_24_1
  doi: 10.1109/TMM.2014.2351788
– ident: e_1_2_8_171_1
  doi: 10.1109/CVPR.2017.29
– ident: e_1_2_8_12_1
  doi: 10.1561/2200000006
– ident: e_1_2_8_163_1
  doi: 10.1109/CVPR.2016.360
– ident: e_1_2_8_172_1
  doi: 10.1038/nmeth.3547
– ident: e_1_2_8_63_1
  doi: 10.1109/CVPR.2001.990988
– start-page: 609350:1
  year: 2009
  ident: e_1_2_8_71_1
  article-title: A dense point‐to‐point alignment method for realistic 3D face morphing and animation
  publication-title: International Journal of Computer Games Technology
– ident: e_1_2_8_126_1
  doi: 10.1007/978-3-319-46466-4_14
– ident: e_1_2_8_29_1
  doi: 10.1109/34.24792
– ident: e_1_2_8_112_1
  doi: 10.1109/CVPR.2016.609
– ident: e_1_2_8_8_1
  doi: 10.1007/978-3-642-23123-0_13
– ident: e_1_2_8_95_1
  doi: 10.1007/BF01589116
– volume-title: Pacific Graphics Short Papers
  ident: e_1_2_8_156_1
– start-page: 143
  volume-title: 2014 International Conference on Computer Vision Theory and Applications (VISAPP)
  year: 2014
  ident: e_1_2_8_19_1
– ident: e_1_2_8_30_1
  doi: 10.1109/CVPR.2014.491
– ident: e_1_2_8_60_1
  doi: 10.1145/3137609
– ident: e_1_2_8_33_1
  doi: 10.1007/11744023_32
– ident: e_1_2_8_91_1
  doi: 10.1109/SMI.2006.21
– ident: e_1_2_8_164_1
  doi: 10.1111/cgf.12740
– ident: e_1_2_8_39_1
  doi: 10.1109/CVPR.2018.00028
– ident: e_1_2_8_88_1
  doi: 10.1109/ICME.2014.6890145
– ident: e_1_2_8_44_1
  doi: 10.1561/2000000039
– ident: e_1_2_8_135_1
  doi: 10.1109/CVPRW.2010.5543285
– ident: e_1_2_8_140_1
  doi: 10.1007/s00138-007-0097-8
– ident: e_1_2_8_109_1
  doi: 10.1007/978-3-319-46448-0_48
– start-page: 689
  volume-title: International Conference on Scale Space and Variational Methods in Computer Vision
  year: 2011
  ident: e_1_2_8_4_1
– start-page: 1339
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: e_1_2_8_104_1
– ident: e_1_2_8_139_1
  doi: 10.5244/C.31.97
– ident: e_1_2_8_61_1
  doi: 10.1111/cgf.12694
– ident: e_1_2_8_47_1
  doi: 10.1109/ICICISYS.2010.5658814
– start-page: 281
  volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
  ident: e_1_2_8_98_1
– ident: e_1_2_8_18_1
  doi: 10.1109/MSP.2017.2693418
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  ident: e_1_2_8_56_1
  article-title: Mesh generation and flexible shape comparisons for bio‐molecules
  publication-title: Molecular Based Mathematical Biology
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: e_1_2_8_89_1
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 19
  start-page: 1313
  year: 2007
  ident: e_1_2_8_137_1
  article-title: Learning dense 3D correspondence
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_114_1
– ident: e_1_2_8_153_1
  doi: 10.1137/1.9781611970128
– ident: e_1_2_8_81_1
  doi: 10.1109/TPAMI.2013.148
– ident: e_1_2_8_121_1
  doi: 10.1109/JDT.2010.2096799
– year: 2015
  ident: e_1_2_8_127_1
  article-title: Semantically‐enriched 3D models for common‐sense knowledge
  publication-title: CVPR 2015 Workshop on Functionality, Physics, Intentionality and Causality
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: e_1_2_8_120_1
  doi: 10.1109/TPAMI.2012.260
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1467-8659.2010.01763.x
– ident: e_1_2_8_54_1
  doi: 10.1016/j.neucom.2015.09.116
– ident: e_1_2_8_72_1
  doi: 10.1016/j.cad.2004.07.002
– ident: e_1_2_8_66_1
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_2_8_42_1
  doi: 10.1109/CVPR.2017.693
– ident: e_1_2_8_74_1
  doi: 10.1109/CVPR.2008.4587841
– ident: e_1_2_8_107_1
– ident: e_1_2_8_93_1
  doi: 10.1109/CVPR.2004.1315150
– ident: e_1_2_8_145_1
  doi: 10.1109/CVPR.2017.160
– ident: e_1_2_8_80_1
  doi: 10.1007/s00371-012-0724-x
– start-page: 1275
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: e_1_2_8_161_1
– ident: e_1_2_8_28_1
  doi: 10.1111/cgf.12844
– ident: e_1_2_8_85_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_102_1
  doi: 10.1109/SMI.2008.4547977
– ident: e_1_2_8_174_1
  doi: 10.1016/j.neucom.2015.08.127
– ident: e_1_2_8_84_1
  doi: 10.1162/neco.1989.1.4.541
– ident: e_1_2_8_138_1
  doi: 10.1145/2024156.2024160
– ident: e_1_2_8_155_1
  doi: 10.1145/2980179.2980233
– start-page: 1912
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: e_1_2_8_158_1
– volume-title: Michigan State University
  year: 2006
  ident: e_1_2_8_165_1
– ident: e_1_2_8_94_1
  doi: 10.1177/0278364914549607
– ident: e_1_2_8_96_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_8_26_1
  doi: 10.1109/34.121791
– ident: e_1_2_8_79_1
– ident: e_1_2_8_14_1
  doi: 10.1145/1899404.1899405
– ident: e_1_2_8_53_1
  doi: 10.1145/566654.566589
– volume-title: Numerical Geometry of Non‐Rigid Shapes
  year: 2008
  ident: e_1_2_8_17_1
– ident: e_1_2_8_31_1
– ident: e_1_2_8_134_1
– ident: e_1_2_8_32_1
  doi: 10.1109/ICRA.2012.6225188
– ident: e_1_2_8_48_1
  doi: 10.1109/TPAMI.2012.231
– start-page: 283
  volume-title: European Conference on Computer Vision
  year: 2014
  ident: e_1_2_8_36_1
– ident: e_1_2_8_73_1
  doi: 10.1145/781606.781659
– year: 2017
  ident: e_1_2_8_123_1
  article-title: Octnet: Learning deep 3D representations at high resolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: e_1_2_8_75_1
  doi: 10.1109/CVPR.2017.702
– volume-title: ShapeNet: An Information‐Rich 3D Model Repository
  year: 2015
  ident: e_1_2_8_35_1
– start-page: 39
  volume-title: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications
  year: 2009
  ident: e_1_2_8_100_1
– ident: e_1_2_8_9_1
  doi: 10.1109/ICCVW.2011.6130444
– ident: e_1_2_8_92_1
  doi: 10.1007/s00138-013-0501-5
– volume-title: SHREC2007: 3D Shape Retrieval contest
  year: 2007
  ident: e_1_2_8_151_1
– ident: e_1_2_8_62_1
  doi: 10.1109/TIP.2016.2605920
– ident: e_1_2_8_105_1
  doi: 10.1109/tcbb.2007.1035
– ident: e_1_2_8_113_1
  doi: 10.1007/BF00116251
– ident: e_1_2_8_168_1
  doi: 10.1007/s11263-012-0528-5
– start-page: 49
  volume-title: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval
  year: 2011
  ident: e_1_2_8_67_1
– ident: e_1_2_8_103_1
  doi: 10.1109/IROS.2015.7353481
– ident: e_1_2_8_115_1
  doi: 10.1145/1877808.1877817
– ident: e_1_2_8_78_1
  doi: 10.1109/CGIV.2013.11
– ident: e_1_2_8_82_1
  doi: 10.1111/cgf.12438
– ident: e_1_2_8_86_1
  doi: 10.1109/ICRA.2011.5980382
– start-page: 225
  volume-title: Proceedings of the 5th Eurographics Symposium on Geometry Processing
  year: 2007
  ident: e_1_2_8_124_1
– ident: e_1_2_8_45_1
  doi: 10.1109/TASL.2011.2134090
– start-page: 93
  volume-title: Proceedings of the 3rd Eurographics Conference on 3D Object Retrieval
  year: 2010
  ident: e_1_2_8_147_1
– ident: e_1_2_8_128_1
  doi: 10.1016/j.neunet.2014.09.003
– volume-title: Learning Models of Shape from 3D Range Data
  year: 2005
  ident: e_1_2_8_7_1
– ident: e_1_2_8_40_1
  doi: 10.1109/CVPR.2017.261
– volume: 19
  start-page: 153
  year: 2007
  ident: e_1_2_8_25_1
  article-title: Greedy layer‐wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_83_1
  doi: 10.1109/5.726791
– ident: e_1_2_8_116_1
  doi: 10.1016/j.cag.2009.03.005
– volume-title: SHREC2006: 3D Shape Retrieval Contest
  year: 2006
  ident: e_1_2_8_150_1
– ident: e_1_2_8_157_1
  doi: 10.1145/3072959.3073608
– ident: e_1_2_8_131_1
  doi: 10.1007/978-3-642-33715-4_54
– ident: e_1_2_8_46_1
  doi: 10.1109/BIBE.2013.6701547
– ident: e_1_2_8_166_1
  doi: 10.1145/2980179.2980238
– ident: e_1_2_8_132_1
  doi: 10.1109/SMI.2004.1314504
– ident: e_1_2_8_20_1
  doi: 10.1109/TPAMI.2015.2424863
– ident: e_1_2_8_162_1
  doi: 10.1145/2988458.2988473
– start-page: 21
  volume-title: Proceedings of the 2nd Eurographics Conference on 3D Object Retrieval
  year: 2009
  ident: e_1_2_8_142_1
– ident: e_1_2_8_5_1
  doi: 10.1038/nbt.3300
– ident: e_1_2_8_97_1
  doi: 10.1145/3072959.3073637
– start-page: 6584
  volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  ident: e_1_2_8_167_1
– ident: e_1_2_8_170_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.eswa.2015.10.015
– ident: e_1_2_8_15_1
  doi: 10.1137/050639296
– ident: e_1_2_8_108_1
  doi: 10.1016/j.triboint.2016.07.001
– ident: e_1_2_8_122_1
  doi: 10.1109/3DV.2017.00017
– volume-title: Neurocomputing
  year: 1989
  ident: e_1_2_8_64_1
– ident: e_1_2_8_144_1
  doi: 10.1117/12.912153
– ident: e_1_2_8_149_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_8_117_1
  doi: 10.1007/978-3-319-10602-1_34
– ident: e_1_2_8_6_1
  doi: 10.1207/s15516709cog0901_7
– ident: e_1_2_8_22_1
  doi: 10.1109/CVPR.2010.5539838
– ident: e_1_2_8_77_1
  doi: 10.1214/aoms/1177729694
– start-page: 57
  volume-title: Proceedings of the 2nd Eurographics Conference on 3D Object Retrieval
  year: 2009
  ident: e_1_2_8_152_1
– ident: e_1_2_8_23_1
  doi: 10.1145/1118890.1118893
– start-page: 278
  volume-title: 1995 Proceedings of the 3rd International Conference on Document Analysis and Recognition
  year: 1995
  ident: e_1_2_8_65_1
– ident: e_1_2_8_159_1
  doi: 10.1016/j.patrec.2016.05.028
– volume: 15
  start-page: 3563
  issue: 1
  year: 2014
  ident: e_1_2_8_3_1
  article-title: What regularized auto‐encoders learn from the data‐generating distribution
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_8_118_1
  doi: 10.1109/CVPR.2007.383157
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_8_52_1
– ident: e_1_2_8_133_1
  doi: 10.1109/ICCV.2015.114
– ident: e_1_2_8_55_1
– ident: e_1_2_8_16_1
  doi: 10.1109/TVCG.2007.1041
– ident: e_1_2_8_2_1
– ident: e_1_2_8_110_1
  doi: 10.1080/14786440109462720
– ident: e_1_2_8_169_1
– ident: e_1_2_8_146_1
  doi: 10.1109/SMI.2004.1314502
– ident: e_1_2_8_129_1
  doi: 10.1109/ICCVW.2011.6130298
– start-page: 77
  volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  ident: e_1_2_8_111_1
– ident: e_1_2_8_76_1
  doi: 10.1145/2185520.2185551
– ident: e_1_2_8_37_1
  doi: 10.1111/cgf.12702
– ident: e_1_2_8_173_1
  doi: 10.1111/j.1467-8659.2010.01655.x
– volume: 27
  start-page: 37
  year: 2012
  ident: e_1_2_8_13_1
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised and Transfer Learning
– ident: e_1_2_8_43_1
  doi: 10.1016/j.patrec.2016.04.005
– ident: e_1_2_8_69_1
  doi: 10.1126/science.1127647
– ident: e_1_2_8_34_1
  doi: 10.1145/311535.311556
– ident: e_1_2_8_10_1
  doi: 10.1145/1186822.1073207
– ident: e_1_2_8_57_1
  doi: 10.1145/2835487
– start-page: 318
  volume-title: Parallel Distributed Processing
  year: 1986
  ident: e_1_2_8_119_1
  doi: 10.7551/mitpress/5236.001.0001
– start-page: 82
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: e_1_2_8_160_1
– volume: 36
  start-page: 71:1
  ident: e_1_2_8_101_1
  article-title: Convolutional neural networks on surfaces via seamless toric covers
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_8_143_1
  doi: 10.1007/s00371-010-0519-x
– ident: e_1_2_8_148_1
  doi: 10.1111/j.1467-8659.2011.01893.x
– ident: e_1_2_8_27_1
  doi: 10.1111/cgf.12693
– ident: e_1_2_8_141_1
  doi: 10.1016/0042-6989(95)00230-8
SSID ssj0004765
Score 2.428841
Snippet Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 356
SubjectTerms 3-D graphics
Algorithms
Artificial intelligence
Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation–Line and curve generation
Computer graphics
Machine learning
Medical imaging
Medical research
methods and applications
modelling
Segmentation
Shape recognition
Taxonomy
Three dimensional models
Title A Survey on Data‐Driven 3D Shape Descriptors
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13536
https://www.proquest.com/docview/2191380857
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NKxNj9M8TQ25xD04BzsIJSkSRQc3eg6QU_-Cf6N_iUmabtNURBvLaS_XvNevq-8fh4AJ4QJLXkoPJ9o5mHNLfIWIU9xHhCzF2uHFLq-ob0BvhqSYQWcl__C5HyI-Qc36xkuXlsH52K65OTxg3ZNGyxu29ZqWUF0u0BH4TNKSq63JcYUVCFbxTM_8utatBCYyzLVrTPddXBf3mFeXvLUmGWiEb9-gzf-8xE2wFqhP2ErnzCboKKSLbC6RCXcBo0W7M_SZ_UCxwns8Ix_vL13UhsVIerA_iOfKGjSVRduxul0Bwy6F3ftnle0VfDiwIgPzw-ZwlQQLH3EpUZMIomopsqibSzwXQeKMpNISIppU2stuE8D7hNptIgfaLQLqsk4UXsAciZijZHlC1As41AQgQU2ORLHLJTNZg2clgaO4oI5bltfjKIy9zAmiJwJauB4PnSSgzZ-GlQv31JU-No0MjHXR8yS-s3lnLl_P0HUvuy6jf2_Dz0AK0YlhXmpdh1Us3SmDo0SycSRm3Kf-BjXsQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMdfEA_qwd9GFHUxHryMsLWrW-KFgIgKHAQSLmZp11YTDRB-mOjJP8G_0b_EttsAjSbG25Z0P_rW9_p9Tfd5ACeezySnAbMdT_o2llQjbxGyBaWup84iaZBCjSapdfB11-tm4Dz9FybmQ0wX3LRnmHitHVwvSM95eXQvTdUGsgCLuqK3SahuZ_AofEa8lOytmTEJV0jv45le-nU2mknMeaFqZprqGtyl7xhvMHksTMasEL1-wzf-txPrsJpIUKsUj5kNyIjeJqzMgQm3oFCyWpPhs3ix-j2rQsf04-29MtSB0UIVq_VAB8JSGauJOP3haBs61Yt2uWYnlRXsyFX6w3YCX2DCPMwdRLlEPkccEUmEptto5rt0BfFVLsEJJkUpJaMOcanjcSVHHFeiHcj2-j2xCxb1WSQx0ogBgnkUMI9hhlWaRLEf8GIxB6ephcMowY7r6hdPYZp-KBOExgQ5OJ42HcSsjZ8a5dPPFCbuNgpV2HWQr2H96nHG3r_fICxfVs3B3t-bHsFSrd2oh_Wr5s0-LCvRFMQ7t_OQHQ8n4kAJkzE7NOPvE4OG28w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHyB68C2uzyIevHTZNmlM8bRsre9FfIAHoSRNoqB0l3VX0JMfwc_oJzFJ291VFMRbC9PXNDP5T0l_A7AdUK4EC7nrBYq6WDGDvEXIlYz5gd5LlUUKnTXJ4TU-vgluRmCv_Bcm50P0P7iZyLD52gR4W6ihIE_vlG3aQEZhHJMaNUM6uhiwo_AuCUqwt0HGFFghs4ynf-jXyWigMId1qp1o4hm4LW8xX1_yUO11eTV9_UZv_OczzMJ0IUCdej5i5mBEZvMwNYQlXIBq3bnsdZ7li9PKnIh12cfbe9QxadFBkXN5z9rS0fWqzTetztMiXMf7V41Dt-ir4Ka-Vh-uF1KJCQ-w8BATClGBBCKKSMO2McR35UtCdSUhiHasUoozj_jMC4QWI56v0BKMZa1MLoPDKE8VRgYwQLBIQx5wzLEukhimoajVKrBTOjhJC-i46X3xmJTFh3ZBYl1Qga2-aTsnbfxktFa-paQItqdEJ10PUYPq15ez7v79BEnjILYbK3833YSJ8yhOTo-aJ6swqRVTmC_bXoOxbqcn17Uq6fINO_o-ASQj2oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Data%E2%80%90Driven+3D+Shape+Descriptors&rft.jtitle=Computer+graphics+forum&rft.au=Rostami%2C+R&rft.au=Bashiri%2C+F+S&rft.au=Rostami%2C+B&rft.au=Z+Yu&rft.date=2019-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=1&rft.spage=356&rft.epage=393&rft_id=info:doi/10.1111%2Fcgf.13536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon