A Survey on Data‐Driven 3D Shape Descriptors
Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks s...
Saved in:
Published in | Computer graphics forum Vol. 38; no. 1; pp. 356 - 393 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested.
Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. |
---|---|
AbstractList | Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested.
Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various fields including medical research, biology, engineering, etc. 3D shape descriptors play a fundamental role in many 3D shape analysis tasks such as point matching, establishing point‐to‐point correspondence, shape segmentation and labelling, and shape retrieval to name a few. Various methods have been proposed to calculate succinct and informative descriptors for 3D models. Emerging data‐driven techniques use machine learning algorithms to construct accurate and reliable shape descriptors. This survey provides a thorough review of the data‐driven 3D shape descriptors from the machine learning point of view and compares them in different criteria. Also, a comprehensive taxonomy of the existing descriptors is proposed based on the exploited machine learning algorithms. Advantages and disadvantages of each category have been discussed in detail. Besides, two alternative categorizations from the data type and the application perspectives are presented. Finally, some directions for possible future research are also suggested. |
Author | Yu, Z. Bashiri, F. S. Rostami, R. Rostami, B. |
Author_xml | – sequence: 1 givenname: R. surname: Rostami fullname: Rostami, R. email: rostami@uwm.edu organization: University of Wisconsin‐Milwaukee – sequence: 2 givenname: F. S. surname: Bashiri fullname: Bashiri, F. S. email: fbashiri@uwm.edu organization: University of Wisconsin‐Milwaukee – sequence: 3 givenname: B. surname: Rostami fullname: Rostami, B. email: brostami@uwm.edu organization: University of Wisconsin‐Milwaukee – sequence: 4 givenname: Z. surname: Yu fullname: Yu, Z. email: yuz@uwm.edu organization: University of Wisconsin‐Milwaukee |
BookMark | eNp1kL1OwzAURi1UJNrCwBtEYmJI62vHPxmrhhakSgyF2XITG1yVONhpUTcegWfkSQi0E4K73Duc77vSGaBe7WuD0CXgEXQzLp_sCCij_AT1IeMilZzlPdTH0N0CM3aGBjGuMcaZ4KyPRpNkuQ07s098nRS61Z_vH0VwO1MntEiWz7oxSWFiGVzT-hDP0anVm2gujnuIHmc3D9PbdHE_v5tOFmlJcsFTyKXJ-IplFVBdWSorWlFuucFEUAJEWGK45IJVPOPYWrvSwIkGVmEigVg6RFeH3ib4162JrVr7bai7l4pADlRiyURHjQ9UGXyMwVhVula3ztdt0G6jAKtvKaqTon6kdInrX4kmuBcd9n-yx_Y3tzH7_0E1nc8OiS-T7HCI |
CitedBy_id | crossref_primary_10_1115_1_4048629 crossref_primary_10_1007_s11042_023_15346_5 crossref_primary_10_1109_TVCG_2024_3368083 crossref_primary_10_12688_f1000research_127095_1 crossref_primary_10_12688_f1000research_127095_2 crossref_primary_10_1007_s11263_022_01610_y crossref_primary_10_1007_s11227_021_03899_x crossref_primary_10_1016_j_cirp_2023_03_020 crossref_primary_10_1016_j_aei_2024_102595 crossref_primary_10_1016_j_cad_2022_103405 crossref_primary_10_3390_a12080171 crossref_primary_10_1109_ACCESS_2020_2982196 crossref_primary_10_32604_csse_2022_018479 crossref_primary_10_1111_cgf_14120 crossref_primary_10_1109_ACCESS_2019_2907071 crossref_primary_10_3390_math12182946 crossref_primary_10_1007_s00371_023_03254_6 crossref_primary_10_1038_s41598_024_56626_w crossref_primary_10_1109_TPAMI_2022_3146796 crossref_primary_10_1109_TPAMI_2021_3102676 crossref_primary_10_1111_cgf_14502 crossref_primary_10_1007_s12650_021_00770_2 crossref_primary_10_1007_s10462_023_10486_4 crossref_primary_10_1016_j_csbj_2023_05_022 crossref_primary_10_1007_s42967_023_00318_1 crossref_primary_10_1155_2020_5851465 |
Cites_doi | 10.4249/scholarpedia.5947 10.1142/9789812797926_0003 10.1109/CVPR.2015.7298845 10.1109/TPAMI.1987.4767955 10.1145/2185520.2185526 10.1007/978-3-540-89639-5_37 10.1007/BF00994018 10.1145/1273496.1273556 10.1145/2366145.2366184 10.1016/j.cad.2005.10.011 10.1109/TCYB.2013.2265378 10.1111/j.1467-8659.2009.01515.x 10.1109/TMM.2014.2351788 10.1109/CVPR.2017.29 10.1561/2200000006 10.1109/CVPR.2016.360 10.1038/nmeth.3547 10.1109/CVPR.2001.990988 10.1007/978-3-319-46466-4_14 10.1109/34.24792 10.1109/CVPR.2016.609 10.1007/978-3-642-23123-0_13 10.1007/BF01589116 10.1109/CVPR.2014.491 10.1145/3137609 10.1007/11744023_32 10.1109/SMI.2006.21 10.1111/cgf.12740 10.1109/CVPR.2018.00028 10.1109/ICME.2014.6890145 10.1561/2000000039 10.1109/CVPRW.2010.5543285 10.1007/s00138-007-0097-8 10.1007/978-3-319-46448-0_48 10.5244/C.31.97 10.1111/cgf.12694 10.1109/ICICISYS.2010.5658814 10.1109/MSP.2017.2693418 10.1137/1.9781611970128 10.1109/TPAMI.2013.148 10.1109/JDT.2010.2096799 10.1111/j.1469-1809.1936.tb02137.x 10.1109/TPAMI.2012.260 10.1111/j.1467-8659.2010.01763.x 10.1016/j.neucom.2015.09.116 10.1016/j.cad.2004.07.002 10.1162/neco.2006.18.7.1527 10.1109/CVPR.2017.693 10.1109/CVPR.2008.4587841 10.1109/CVPR.2004.1315150 10.1109/CVPR.2017.160 10.1007/s00371-012-0724-x 10.1111/cgf.12844 10.1038/nature14539 10.1109/SMI.2008.4547977 10.1016/j.neucom.2015.08.127 10.1162/neco.1989.1.4.541 10.1145/2024156.2024160 10.1145/2980179.2980233 10.1177/0278364914549607 10.1023/B:VISI.0000029664.99615.94 10.1109/34.121791 10.1145/1899404.1899405 10.1145/566654.566589 10.1109/ICRA.2012.6225188 10.1109/TPAMI.2012.231 10.1145/781606.781659 10.1109/CVPR.2017.702 10.1109/ICCVW.2011.6130444 10.1007/s00138-013-0501-5 10.1109/TIP.2016.2605920 10.1109/tcbb.2007.1035 10.1007/BF00116251 10.1007/s11263-012-0528-5 10.1109/IROS.2015.7353481 10.1145/1877808.1877817 10.1109/CGIV.2013.11 10.1111/cgf.12438 10.1109/ICRA.2011.5980382 10.1109/TASL.2011.2134090 10.1016/j.neunet.2014.09.003 10.1109/CVPR.2017.261 10.1109/5.726791 10.1016/j.cag.2009.03.005 10.1145/3072959.3073608 10.1007/978-3-642-33715-4_54 10.1109/BIBE.2013.6701547 10.1145/2980179.2980238 10.1109/SMI.2004.1314504 10.1109/TPAMI.2015.2424863 10.1145/2988458.2988473 10.1038/nbt.3300 10.1145/3072959.3073637 10.1016/j.eswa.2015.10.015 10.1137/050639296 10.1016/j.triboint.2016.07.001 10.1109/3DV.2017.00017 10.1117/12.912153 10.1145/1390156.1390294 10.1007/978-3-319-10602-1_34 10.1207/s15516709cog0901_7 10.1109/CVPR.2010.5539838 10.1214/aoms/1177729694 10.1145/1118890.1118893 10.1016/j.patrec.2016.05.028 10.1109/CVPR.2007.383157 10.1109/ICCV.2015.114 10.1109/TVCG.2007.1041 10.1080/14786440109462720 10.1109/SMI.2004.1314502 10.1109/ICCVW.2011.6130298 10.1145/2185520.2185551 10.1111/cgf.12702 10.1111/j.1467-8659.2010.01655.x 10.1016/j.patrec.2016.04.005 10.1126/science.1127647 10.1145/311535.311556 10.1145/1186822.1073207 10.1145/2835487 10.7551/mitpress/5236.001.0001 10.1007/s00371-010-0519-x 10.1111/j.1467-8659.2011.01893.x 10.1111/cgf.12693 10.1016/0042-6989(95)00230-8 |
ContentType | Journal Article |
Copyright | 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. 2019 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. – notice: 2019 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/cgf.13536 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 393 |
ExternalDocumentID | 10_1111_cgf_13536 CGF13536 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2976-198e46b54d13adf38d3d36f6e02732127f2e68675d6460fffba162a15d02812f3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 25 05:53:19 EDT 2025 Tue Jul 01 02:23:09 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Wed Jan 22 16:46:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2976-198e46b54d13adf38d3d36f6e02732127f2e68675d6460fffba162a15d02812f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2191380857 |
PQPubID | 30877 |
PageCount | 38 |
ParticipantIDs | proquest_journals_2191380857 crossref_citationtrail_10_1111_cgf_13536 crossref_primary_10_1111_cgf_13536 wiley_primary_10_1111_cgf_13536_CGF13536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 35 2015; 34 2015; 37 1989; 45 2017; 2 2004; 60 2013; 24 2006; 38 1987; 5 2015; 33 1951; 22 2016; 187 1992; 14 2004; 2 2016; 103 1996; 36 1936; 7 1998; 86 2016; 35 2005; 24 1995; 20 1986; 1 2010; 26 2010; 1 2014; 2 2017; 37 1990 2017; 36 2010; 29 2006; 28 2017; 34 2014; 16 2014; 15 1986 1 2016; 83 2007; 4 2012; 28 2012; 27 2005; 37 2012; 20 1989 2015; 12 2007; 19 2015; 16 2015; 4–5 2012; 100 1989; 1 2012 2011 2013; 43 2010 2015; 521 1985; 9 2008; 19 2009 2011; 30 2008 2006; 18 2007 2006 2005 1994 1901; 2 2004 2016; 204 2003 1995; 1 2006; 313 2007; 13 2012; 31 2011; 7 1999 2009; 28 2016; 4 2009; 33 36 1989; 11 2013; 35 2015; 61 2002; 21 2018 2014; 36 2017 2016 2015 2001; 2 2014 2013 2009; 4 2014; 3–4 2009; 2 2009; 1 2016; 25 2014; 33 Veltkamp R. C. (e_1_2_8_152_1) 2009 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 Masci J. (e_1_2_8_99_1) 2015 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Goodfellow I. (e_1_2_8_52_1) 2016 Mohamed A.‐r. (e_1_2_8_100_1) 2009 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 Aflalo Y. (e_1_2_8_4_1) 2011 e_1_2_8_95_1 e_1_2_8_162_1 Chang A. X. (e_1_2_8_35_1) 2015 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_72_1 Nair V. (e_1_2_8_104_1) 2009 Wan L. (e_1_2_8_156_1) e_1_2_8_29_1 e_1_2_8_48_1 Veltkamp R. C. (e_1_2_8_151_1) 2007 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 Xie J. (e_1_2_8_161_1) 2015 e_1_2_8_21_1 e_1_2_8_171_1 Bürger F. (e_1_2_8_19_1) 2014 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 Wu J. (e_1_2_8_160_1) 2016 Qi C. R. (e_1_2_8_111_1) e_1_2_8_14_1 Wu Z. (e_1_2_8_158_1) 2015 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_125_1 e_1_2_8_28_1 Alain G. (e_1_2_8_3_1) 2014; 15 Heider P. (e_1_2_8_67_1) 2011 Baldi P. (e_1_2_8_13_1) 2012; 27 e_1_2_8_24_1 e_1_2_8_47_1 Veltkamp R. C. (e_1_2_8_150_1) 2006 Gao Z. (e_1_2_8_56_1) 2016; 4 Ho T. K. (e_1_2_8_65_1) 1995 Yi L. (e_1_2_8_167_1) Corman É. (e_1_2_8_36_1) 2014 Savva M. (e_1_2_8_127_1) 2015 Bengio Y. (e_1_2_8_25_1) 2007; 19 e_1_2_8_81_1 e_1_2_8_153_1 Hecht‐Nielsen R. (e_1_2_8_64_1) 1989 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 Riegler G. (e_1_2_8_123_1) 2017 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_59_1 e_1_2_8_70_1 Lv Y. (e_1_2_8_89_1) 2015; 16 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 Hu Y. (e_1_2_8_71_1) 2009 Yang L. (e_1_2_8_165_1) 2006 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 MacQueen J. (e_1_2_8_98_1) e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Hinton G. E. (e_1_2_8_68_1) 1986 Lee H. (e_1_2_8_87_1) 2007 e_1_2_8_80_1 e_1_2_8_154_1 Socher R. (e_1_2_8_130_1) 2012 e_1_2_8_131_1 e_1_2_8_8_1 Maron H. (e_1_2_8_101_1); 36 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 Rumelhart D. E. (e_1_2_8_119_1) 1986 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_173_1 Rustamov R. M. (e_1_2_8_124_1) 2007 Anguelov D. (e_1_2_8_7_1) 2005 Bronstein A. M. (e_1_2_8_17_1) 2008 e_1_2_8_84_1 e_1_2_8_112_1 Toldo R. (e_1_2_8_142_1) 2009 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_58_1 Steinke F. (e_1_2_8_137_1) 2007; 19 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_146_1 Vanamali T. (e_1_2_8_147_1) 2010 |
References_xml | – year: 2011 – volume: 3–4 start-page: 197 year: 2014 end-page: 387 article-title: Deep learning: Methods and applications publication-title: Foundations and Trends® in Signal Processing 7 – volume: 21 start-page: 355 issue: 3 year: 2002 end-page: 361 article-title: Geometry images publication-title: ACM Transactions on Graphics (TOG) – start-page: 45 year: 2010 end-page: 52 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 1 start-page: 39 year: 2009 – year: 2005 – volume: 2 start-page: 559 issue: 11 year: 1901 end-page: 572 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – volume: 30 start-page: 553 year: 2011 end-page: 562 – start-page: 187 year: 1999 end-page: 194 – start-page: 3794 year: 2014 end-page: 3801 – volume: 5 start-page: 608 year: 1987 end-page: 620 article-title: Segmentation and classification of range images publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI‐9 – year: 1989 – volume: 16 start-page: 2154 issue: 8 year: 2014 end-page: 2167 article-title: Learning high‐level feature by deep belief networks for 3‐D model retrieval and recognition publication-title: IEEE Transactions on Multimedia – start-page: 1 year: 2014 end-page: 6 – year: 1990 – year: 2014 – volume: 33 start-page: 381 issue: 3 year: 2009 end-page: 390 article-title: Discrete Laplace‐Beltrami operators for shape analysis and segmentation publication-title: Computers & Graphics – start-page: 322 year: 2003 end-page: 327 – volume: 1 start-page: 888 year: 2010 end-page: 892 – start-page: 77 end-page: 85 – volume: 37 start-page: 345 issue: 4 year: 2005 end-page: 387 article-title: Feature‐based similarity search in 3D object databases publication-title: ACM Computing Surveys (CSUR) – start-page: 609350:1 year: 2009 end-page: 609350:9 article-title: A dense point‐to‐point alignment method for realistic 3D face morphing and animation publication-title: International Journal of Computer Games Technology – year: 2008 – start-page: 832 year: 2015 end-page: 840 article-title: Geodesic convolutional neural networks on Riemannian manifolds publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – start-page: 145 year: 2004 end-page: 156 – volume: 34 start-page: 129 year: 2015 end-page: 139 – start-page: 57 year: 2009 end-page: 59 – start-page: 2432 year: 2017 end-page: 2443 – volume: 34 start-page: 18 issue: 4 year: 2017 end-page: 42 article-title: Geometric deep learning: Going beyond Euclidean data publication-title: IEEE Signal Processing Magazine – start-page: 1298 year: 2012 end-page: 1303 – volume: 35 start-page: 3 issue: 1 year: 2015 article-title: 3D mesh labeling via deep convolutional neural networks publication-title: ACM Transactions on Graphics (TOG) – volume: 7 start-page: 151 issue: 3 year: 2011 end-page: 155 article-title: Microdisplay‐based intraoral 3D scanner for dentistry publication-title: Journal of Display Technology – volume: 11 start-page: 567 issue: 6 year: 1989 end-page: 585 article-title: Principal warps: Thin‐plate splines and the decomposition of deformations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2015 article-title: Semantically‐enriched 3D models for common‐sense knowledge publication-title: CVPR 2015 Workshop on Functionality, Physics, Intentionality and Causality – start-page: 1096 year: 2008 end-page: 1103 – volume: 4–5 start-page: 705 year: 2015 end-page: 724 article-title: Deep learning for detecting robotic grasps publication-title: The International Journal of Robotics Research 34 – start-page: 225 year: 2007 end-page: 233 – start-page: 122 year: 2011 end-page: 131 – volume: 2 start-page: II year: 2001 end-page: II – start-page: 82900N year: 2012 end-page: 82900N – volume: 2 year: 2017 – volume: 35 start-page: 1915 issue: 8 year: 2013 end-page: 1929 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 100 start-page: 78 issue: 1 year: 2012 end-page: 98 article-title: Keypoints and local descriptors of scalar functions on 2D manifolds publication-title: International Journal of Computer Vision – start-page: 1 year: 2007 end-page: 8 – volume: 31 start-page: 165:1 issue: 6 year: 2012 end-page: 165:10 article-title: Active co‐analysis of a set of shapes publication-title: ACM Transactions on Graphics (TOG) – volume: 103 start-page: 309 year: 2016 end-page: 315 article-title: Tribological study in microscale using 3D SEM surface reconstruction publication-title: Tribology International – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 2007 – start-page: 801 year: 2016 end-page: 816 – start-page: 404 year: 2006 end-page: 417 – volume: 4 start-page: 5947 issue: 5 year: 2009 article-title: Deep belief networks publication-title: Scholarpedia – year: 2016 – start-page: 4 year: 2016 – start-page: 223 year: 2016 end-page: 240 – volume: 19 start-page: 261 issue: 4 year: 2008 end-page: 275 article-title: Retrieving articulated 3‐D models using medial surfaces publication-title: Machine Vision and Applications – start-page: 381 year: 2008 end-page: 392 – volume: 31 start-page: 55 issue: 4 year: 2012 article-title: A probabilistic model for component‐based shape synthesis publication-title: ACM Transactions on Graphics (TOG) – start-page: 1 year: 2008 end-page: 8 – volume: 30 start-page: 1 issue: 1 year: 2011 article-title: Shape Google: Geometric words and expressions for invariant shape retrieval publication-title: ACM Transactions on Graphics (TOG) – volume: 25 start-page: 5331 issue: 11 year: 2016 end-page: 5344 article-title: Unsupervised 3D local feature learning by circle convolutional restricted Boltzmann machine publication-title: IEEE Transactions on Image Processing – year: 2017 article-title: Octnet: Learning deep 3D representations at high resolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 187 start-page: 27 year: 2016 end-page: 48 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing – start-page: 746 year: 2012 end-page: 760 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Computation – volume: 45 start-page: 503 issue: 1 year: 1989 end-page: 528 article-title: On the limited memory BFGS method for large scale optimization publication-title: Mathematical Programming – volume: 4 start-page: 382 issue: 3 year: 2007 end-page: 393 article-title: Neuroinformatics for genome‐wide 3‐D gene expression mapping in the mouse brain publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) – volume: 83 start-page: 349 year: 2016 end-page: 356 article-title: Linear discrimination dictionary learning for shape descriptors publication-title: Pattern Recognition Letters – volume: 24 start-page: 1685 issue: 8 year: 2013 end-page: 1704 article-title: CM‐BOF: Visual similarity‐based 3D shape retrieval using clock matching and bag‐of‐features publication-title: Machine Vision and Applications – start-page: 139 year: 2016 end-page: 144 article-title: Breast cancer classification using deep belief networks publication-title: Expert Systems with Applications 46 – start-page: 93 year: 2010 end-page: 100 – start-page: 3309 year: 2016 end-page: 3317 – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks – volume: 28 start-page: 931 issue: 9 year: 2012 end-page: 942 article-title: Combination of bag‐of‐words descriptors for robust partial shape retrieval publication-title: The Visual Computer – start-page: 13 year: 2006 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Machine Learning – volume: 22 start-page: 79 issue: 1 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics – start-page: 1817 year: 2011 end-page: 1824 – start-page: 656 year: 2012 end-page: 664 – volume: 34 start-page: 1 issue: 7 year: 2015 end-page: 11 article-title: Projective feature learning for 3D shapes with multi‐view depth images publication-title: Computer Graphics Forum – start-page: 945 year: 2015 end-page: 953 – year: 2016 article-title: A scalable active framework for region annotation in 3D shape collections publication-title: SIGGRAPH Asia – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 127 article-title: Learning deep architectures for AI publication-title: Foundations and trends® in Machine Learning – volume: 16 start-page: 865 issue: 2 year: 2015 end-page: 873 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 12 start-page: 931 issue: 10 year: 2015 end-page: 934 article-title: Predicting effects of noncoding variants with deep learning‐based sequence model publication-title: Nature Methods – volume: 29 start-page: 1865 year: 2010 end-page: 1894 – start-page: 1 year: 2013 end-page: 10 – start-page: 6584 end-page: 6592 – volume: 36 start-page: 72:1 issue: 4 year: 2017 end-page: 72:11 article-title: O‐cnn: Octree‐based convolutional neural networks for 3D shape analysis publication-title: ACM Transactions on Graphics – start-page: 1 year: 2013 end-page: 6 – start-page: 282 year: 1986 end-page: 317 – start-page: 1626 year: 2011 end-page: 1633 – start-page: 21 year: 2009 end-page: 28 – volume: 9 start-page: 147 issue: 1 year: 1985 end-page: 169 article-title: A learning algorithm for Boltzmann machines publication-title: Cognitive Science – year: 2018 – start-page: 689 year: 2011 end-page: 700 – volume: 1 start-page: 281 end-page: 297 – volume: 36 start-page: 71:1 end-page: 71:10 article-title: Convolutional neural networks on surfaces via seamless toric covers publication-title: ACM Transactions on Graphics – volume: 35 start-page: 220 issue: 6 year: 2016 article-title: Model‐based teeth reconstruction publication-title: ACM Transactions on Graphics (TOG) – volume: 38 start-page: 342 issue: 4 year: 2006 end-page: 366 article-title: Laplace–Beltrami spectra as ‘shape‐DNA’ of surfaces and solids publication-title: Computer‐Aided Design – volume: 28 start-page: 1383 year: 2009 end-page: 1392 – volume: 43 start-page: 1318 issue: 5 year: 2013 end-page: 1334 article-title: Enhanced computer vision with Microsoft Kinect sensor: A review publication-title: IEEE Transactions on Cybernetics – volume: 31 start-page: 30 issue: 4 year: 2012 article-title: Functional maps: A flexible representation of maps between shapes publication-title: ACM Transactions on Graphics (TOG) – start-page: 49 year: 2011 end-page: 56 – start-page: 1704 year: 2010 end-page: 1711 – start-page: 39 year: 2010 end-page: 44 – start-page: 801 year: 2007 end-page: 808 – volume: 26 start-page: 1257 issue: 10 year: 2010 end-page: 1268 article-title: The bag of words approach for retrieval and categorization of 3D objects publication-title: The Visual Computer – volume: 1 start-page: 278 year: 1995 end-page: 282 – start-page: 1912 year: 2015 end-page: 1920 – volume: 204 start-page: 41 year: 2016 end-page: 50 article-title: Deep learning representation using autoencoder for 3D shape retrieval publication-title: Neurocomputing – volume: 28 start-page: 1812 issue: 5 year: 2006 end-page: 1836 article-title: Efficient computation of isometry‐invariant distances between surfaces publication-title: SIAM Journal on Scientific Computing – year: 2015 – start-page: 221 year: 2008 end-page: 222 – volume: 27 start-page: 37 year: 2012 end-page: 50 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised and Transfer Learning – volume: 7 start-page: 179 issue: 2 year: 1936 end-page: 188 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics – volume: 15 start-page: 3563 issue: 1 year: 2014 end-page: 3593 article-title: What regularized auto‐encoders learn from the data‐generating distribution publication-title: The Journal of Machine Learning Research – start-page: 1275 year: 2015 end-page: 1283 – volume: 34 start-page: 13 year: 2015 end-page: 23 – volume: 83 start-page: 330 year: 2016 end-page: 338 article-title: Learning a discriminative deformation‐invariant 3D shape descriptor via many‐to‐one encoder publication-title: Pattern Recognition Letters – start-page: 922 year: 2015 end-page: 928 – start-page: 199 year: 2017 end-page: 208 – start-page: 1339 year: 2009 end-page: 1347 – volume: 1 start-page: 81 issue: 1 year: 1986 end-page: 106 article-title: Induction of decision trees publication-title: Machine Learning – volume: 24 start-page: 408 year: 2005 end-page: 416 – volume: 29 start-page: 1545 year: 2010 end-page: 1554 – volume: 37 start-page: 6:1 issue: 1 year: 2017 end-page: 6:14 article-title: Learning local shape descriptors from part correspondences with multiview convolutional networks publication-title: ACM Transactions on Graphics – start-page: 82 year: 2016 end-page: 90 – start-page: 318 year: 1986 end-page: 362 – volume: 34 start-page: 25 year: 2015 end-page: 38 – volume: 2 start-page: 97 year: 2004 end-page: 104 – volume: 19 start-page: 1313 year: 2007 article-title: Learning dense 3D correspondence publication-title: Advances in Neural Information Processing Systems – start-page: 516 year: 2014 end-page: 532 – start-page: 167 year: 2004 end-page: 178 – volume: 33 start-page: 127 year: 2014 end-page: 136 – volume: 36 start-page: 1761 issue: 12 year: 1996 end-page: 1771 article-title: Face recognition under varying poses: The role of texture and shape publication-title: Vision Research – volume: 36 start-page: 52 issue: 4 year: 2017 article-title: Grass: Generative recursive autoencoders for shape structures publication-title: ACM Transactions on Graphics (TOG) – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 article-title: Distinctive image features from scale‐invariant keypoints publication-title: International Journal of Computer Vision – start-page: 601 year: 2011 end-page: 608 – volume: 33 start-page: 831 issue: 8 year: 2015 end-page: 838 article-title: Predicting the sequence specificities of DNA‐and RNA‐binding proteins by deep learning publication-title: Nature Biotechnology – start-page: 473 year: 2007 end-page: 480 – volume: 14 start-page: 239 issue: 2 year: 1992 end-page: 256 article-title: A method for registration of 3‐D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 36 start-page: 171 issue: 1 year: 2014 end-page: 180 article-title: Learning spectral descriptors for deformable shape correspondence publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 37 start-page: 2361 issue: 12 year: 2015 end-page: 2373 article-title: 3D shape matching via two layer coding publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2006 – volume: 13 start-page: 902 issue: 5 year: 2007 end-page: 913 article-title: Calculus of nonrigid surfaces for geometry and texture manipulation publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 283 year: 2014 end-page: 298 – volume: 30 year: 2011 – volume: 35 start-page: 431 year: 2016 end-page: 441 – volume: 20 start-page: 30 issue: 1 year: 2012 end-page: 42 article-title: Context‐dependent pre‐trained deep neural networks for large‐vocabulary speech recognition publication-title: IEEE Transactions on Audio, Speech, and Language Processing – start-page: 2319 year: 2015 end-page: 2328 – volume: 4 start-page: 1 issue: 1 year: 2016 end-page: 13 article-title: Mesh generation and flexible shape comparisons for bio‐molecules publication-title: Molecular Based Mathematical Biology – start-page: 5648 year: 2016 end-page: 5656 article-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 737 year: 1994 end-page: 744 – volume: 19 start-page: 153 year: 2007 end-page: 160 article-title: Greedy layer‐wise training of deep networks publication-title: Advances in Neural Information Processing Systems – volume: 2 start-page: 143 year: 2014 end-page: 152 – year: 2017 – volume: 37 start-page: 509 issue: 5 year: 2005 end-page: 530 article-title: Three‐dimensional shape searching: State‐of‐the‐art review and future trends publication-title: Computer‐Aided Design – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 35 start-page: 1985 issue: 8 year: 2013 end-page: 1993 article-title: Graph isomorphisms and automorphisms via spectral signatures publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: e_1_2_8_58_1 doi: 10.4249/scholarpedia.5947 – ident: e_1_2_8_21_1 doi: 10.1142/9789812797926_0003 – ident: e_1_2_8_51_1 doi: 10.1109/CVPR.2015.7298845 – ident: e_1_2_8_59_1 doi: 10.1109/TPAMI.1987.4767955 – ident: e_1_2_8_106_1 doi: 10.1145/2185520.2185526 – start-page: 801 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: e_1_2_8_87_1 – ident: e_1_2_8_49_1 doi: 10.1007/978-3-540-89639-5_37 – ident: e_1_2_8_38_1 doi: 10.1007/BF00994018 – ident: e_1_2_8_90_1 doi: 10.1145/1273496.1273556 – ident: e_1_2_8_154_1 doi: 10.1145/2366145.2366184 – start-page: 282 volume-title: Parallel Distributed Processing, Vol. 1: Foundations year: 1986 ident: e_1_2_8_68_1 – ident: e_1_2_8_125_1 doi: 10.1016/j.cad.2005.10.011 – start-page: 656 volume-title: NIPS year: 2012 ident: e_1_2_8_130_1 – ident: e_1_2_8_70_1 doi: 10.1109/TCYB.2013.2265378 – ident: e_1_2_8_136_1 doi: 10.1111/j.1467-8659.2009.01515.x – start-page: 832 year: 2015 ident: e_1_2_8_99_1 article-title: Geodesic convolutional neural networks on Riemannian manifolds publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – ident: e_1_2_8_24_1 doi: 10.1109/TMM.2014.2351788 – ident: e_1_2_8_171_1 doi: 10.1109/CVPR.2017.29 – ident: e_1_2_8_12_1 doi: 10.1561/2200000006 – ident: e_1_2_8_163_1 doi: 10.1109/CVPR.2016.360 – ident: e_1_2_8_172_1 doi: 10.1038/nmeth.3547 – ident: e_1_2_8_63_1 doi: 10.1109/CVPR.2001.990988 – start-page: 609350:1 year: 2009 ident: e_1_2_8_71_1 article-title: A dense point‐to‐point alignment method for realistic 3D face morphing and animation publication-title: International Journal of Computer Games Technology – ident: e_1_2_8_126_1 doi: 10.1007/978-3-319-46466-4_14 – ident: e_1_2_8_29_1 doi: 10.1109/34.24792 – ident: e_1_2_8_112_1 doi: 10.1109/CVPR.2016.609 – ident: e_1_2_8_8_1 doi: 10.1007/978-3-642-23123-0_13 – ident: e_1_2_8_95_1 doi: 10.1007/BF01589116 – volume-title: Pacific Graphics Short Papers ident: e_1_2_8_156_1 – start-page: 143 volume-title: 2014 International Conference on Computer Vision Theory and Applications (VISAPP) year: 2014 ident: e_1_2_8_19_1 – ident: e_1_2_8_30_1 doi: 10.1109/CVPR.2014.491 – ident: e_1_2_8_60_1 doi: 10.1145/3137609 – ident: e_1_2_8_33_1 doi: 10.1007/11744023_32 – ident: e_1_2_8_91_1 doi: 10.1109/SMI.2006.21 – ident: e_1_2_8_164_1 doi: 10.1111/cgf.12740 – ident: e_1_2_8_39_1 doi: 10.1109/CVPR.2018.00028 – ident: e_1_2_8_88_1 doi: 10.1109/ICME.2014.6890145 – ident: e_1_2_8_44_1 doi: 10.1561/2000000039 – ident: e_1_2_8_135_1 doi: 10.1109/CVPRW.2010.5543285 – ident: e_1_2_8_140_1 doi: 10.1007/s00138-007-0097-8 – ident: e_1_2_8_109_1 doi: 10.1007/978-3-319-46448-0_48 – start-page: 689 volume-title: International Conference on Scale Space and Variational Methods in Computer Vision year: 2011 ident: e_1_2_8_4_1 – start-page: 1339 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: e_1_2_8_104_1 – ident: e_1_2_8_139_1 doi: 10.5244/C.31.97 – ident: e_1_2_8_61_1 doi: 10.1111/cgf.12694 – ident: e_1_2_8_47_1 doi: 10.1109/ICICISYS.2010.5658814 – start-page: 281 volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability ident: e_1_2_8_98_1 – ident: e_1_2_8_18_1 doi: 10.1109/MSP.2017.2693418 – volume: 4 start-page: 1 issue: 1 year: 2016 ident: e_1_2_8_56_1 article-title: Mesh generation and flexible shape comparisons for bio‐molecules publication-title: Molecular Based Mathematical Biology – volume: 16 start-page: 865 issue: 2 year: 2015 ident: e_1_2_8_89_1 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 19 start-page: 1313 year: 2007 ident: e_1_2_8_137_1 article-title: Learning dense 3D correspondence publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_114_1 – ident: e_1_2_8_153_1 doi: 10.1137/1.9781611970128 – ident: e_1_2_8_81_1 doi: 10.1109/TPAMI.2013.148 – ident: e_1_2_8_121_1 doi: 10.1109/JDT.2010.2096799 – year: 2015 ident: e_1_2_8_127_1 article-title: Semantically‐enriched 3D models for common‐sense knowledge publication-title: CVPR 2015 Workshop on Functionality, Physics, Intentionality and Causality – ident: e_1_2_8_50_1 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: e_1_2_8_120_1 doi: 10.1109/TPAMI.2012.260 – ident: e_1_2_8_41_1 doi: 10.1111/j.1467-8659.2010.01763.x – ident: e_1_2_8_54_1 doi: 10.1016/j.neucom.2015.09.116 – ident: e_1_2_8_72_1 doi: 10.1016/j.cad.2004.07.002 – ident: e_1_2_8_66_1 doi: 10.1162/neco.2006.18.7.1527 – ident: e_1_2_8_42_1 doi: 10.1109/CVPR.2017.693 – ident: e_1_2_8_74_1 doi: 10.1109/CVPR.2008.4587841 – ident: e_1_2_8_107_1 – ident: e_1_2_8_93_1 doi: 10.1109/CVPR.2004.1315150 – ident: e_1_2_8_145_1 doi: 10.1109/CVPR.2017.160 – ident: e_1_2_8_80_1 doi: 10.1007/s00371-012-0724-x – start-page: 1275 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: e_1_2_8_161_1 – ident: e_1_2_8_28_1 doi: 10.1111/cgf.12844 – ident: e_1_2_8_85_1 doi: 10.1038/nature14539 – ident: e_1_2_8_102_1 doi: 10.1109/SMI.2008.4547977 – ident: e_1_2_8_174_1 doi: 10.1016/j.neucom.2015.08.127 – ident: e_1_2_8_84_1 doi: 10.1162/neco.1989.1.4.541 – ident: e_1_2_8_138_1 doi: 10.1145/2024156.2024160 – ident: e_1_2_8_155_1 doi: 10.1145/2980179.2980233 – start-page: 1912 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: e_1_2_8_158_1 – volume-title: Michigan State University year: 2006 ident: e_1_2_8_165_1 – ident: e_1_2_8_94_1 doi: 10.1177/0278364914549607 – ident: e_1_2_8_96_1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_2_8_26_1 doi: 10.1109/34.121791 – ident: e_1_2_8_79_1 – ident: e_1_2_8_14_1 doi: 10.1145/1899404.1899405 – ident: e_1_2_8_53_1 doi: 10.1145/566654.566589 – volume-title: Numerical Geometry of Non‐Rigid Shapes year: 2008 ident: e_1_2_8_17_1 – ident: e_1_2_8_31_1 – ident: e_1_2_8_134_1 – ident: e_1_2_8_32_1 doi: 10.1109/ICRA.2012.6225188 – ident: e_1_2_8_48_1 doi: 10.1109/TPAMI.2012.231 – start-page: 283 volume-title: European Conference on Computer Vision year: 2014 ident: e_1_2_8_36_1 – ident: e_1_2_8_73_1 doi: 10.1145/781606.781659 – year: 2017 ident: e_1_2_8_123_1 article-title: Octnet: Learning deep 3D representations at high resolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – ident: e_1_2_8_75_1 doi: 10.1109/CVPR.2017.702 – volume-title: ShapeNet: An Information‐Rich 3D Model Repository year: 2015 ident: e_1_2_8_35_1 – start-page: 39 volume-title: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications year: 2009 ident: e_1_2_8_100_1 – ident: e_1_2_8_9_1 doi: 10.1109/ICCVW.2011.6130444 – ident: e_1_2_8_92_1 doi: 10.1007/s00138-013-0501-5 – volume-title: SHREC2007: 3D Shape Retrieval contest year: 2007 ident: e_1_2_8_151_1 – ident: e_1_2_8_62_1 doi: 10.1109/TIP.2016.2605920 – ident: e_1_2_8_105_1 doi: 10.1109/tcbb.2007.1035 – ident: e_1_2_8_113_1 doi: 10.1007/BF00116251 – ident: e_1_2_8_168_1 doi: 10.1007/s11263-012-0528-5 – start-page: 49 volume-title: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval year: 2011 ident: e_1_2_8_67_1 – ident: e_1_2_8_103_1 doi: 10.1109/IROS.2015.7353481 – ident: e_1_2_8_115_1 doi: 10.1145/1877808.1877817 – ident: e_1_2_8_78_1 doi: 10.1109/CGIV.2013.11 – ident: e_1_2_8_82_1 doi: 10.1111/cgf.12438 – ident: e_1_2_8_86_1 doi: 10.1109/ICRA.2011.5980382 – start-page: 225 volume-title: Proceedings of the 5th Eurographics Symposium on Geometry Processing year: 2007 ident: e_1_2_8_124_1 – ident: e_1_2_8_45_1 doi: 10.1109/TASL.2011.2134090 – start-page: 93 volume-title: Proceedings of the 3rd Eurographics Conference on 3D Object Retrieval year: 2010 ident: e_1_2_8_147_1 – ident: e_1_2_8_128_1 doi: 10.1016/j.neunet.2014.09.003 – volume-title: Learning Models of Shape from 3D Range Data year: 2005 ident: e_1_2_8_7_1 – ident: e_1_2_8_40_1 doi: 10.1109/CVPR.2017.261 – volume: 19 start-page: 153 year: 2007 ident: e_1_2_8_25_1 article-title: Greedy layer‐wise training of deep networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_83_1 doi: 10.1109/5.726791 – ident: e_1_2_8_116_1 doi: 10.1016/j.cag.2009.03.005 – volume-title: SHREC2006: 3D Shape Retrieval Contest year: 2006 ident: e_1_2_8_150_1 – ident: e_1_2_8_157_1 doi: 10.1145/3072959.3073608 – ident: e_1_2_8_131_1 doi: 10.1007/978-3-642-33715-4_54 – ident: e_1_2_8_46_1 doi: 10.1109/BIBE.2013.6701547 – ident: e_1_2_8_166_1 doi: 10.1145/2980179.2980238 – ident: e_1_2_8_132_1 doi: 10.1109/SMI.2004.1314504 – ident: e_1_2_8_20_1 doi: 10.1109/TPAMI.2015.2424863 – ident: e_1_2_8_162_1 doi: 10.1145/2988458.2988473 – start-page: 21 volume-title: Proceedings of the 2nd Eurographics Conference on 3D Object Retrieval year: 2009 ident: e_1_2_8_142_1 – ident: e_1_2_8_5_1 doi: 10.1038/nbt.3300 – ident: e_1_2_8_97_1 doi: 10.1145/3072959.3073637 – start-page: 6584 volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ident: e_1_2_8_167_1 – ident: e_1_2_8_170_1 – ident: e_1_2_8_11_1 doi: 10.1016/j.eswa.2015.10.015 – ident: e_1_2_8_15_1 doi: 10.1137/050639296 – ident: e_1_2_8_108_1 doi: 10.1016/j.triboint.2016.07.001 – ident: e_1_2_8_122_1 doi: 10.1109/3DV.2017.00017 – volume-title: Neurocomputing year: 1989 ident: e_1_2_8_64_1 – ident: e_1_2_8_144_1 doi: 10.1117/12.912153 – ident: e_1_2_8_149_1 doi: 10.1145/1390156.1390294 – ident: e_1_2_8_117_1 doi: 10.1007/978-3-319-10602-1_34 – ident: e_1_2_8_6_1 doi: 10.1207/s15516709cog0901_7 – ident: e_1_2_8_22_1 doi: 10.1109/CVPR.2010.5539838 – ident: e_1_2_8_77_1 doi: 10.1214/aoms/1177729694 – start-page: 57 volume-title: Proceedings of the 2nd Eurographics Conference on 3D Object Retrieval year: 2009 ident: e_1_2_8_152_1 – ident: e_1_2_8_23_1 doi: 10.1145/1118890.1118893 – start-page: 278 volume-title: 1995 Proceedings of the 3rd International Conference on Document Analysis and Recognition year: 1995 ident: e_1_2_8_65_1 – ident: e_1_2_8_159_1 doi: 10.1016/j.patrec.2016.05.028 – volume: 15 start-page: 3563 issue: 1 year: 2014 ident: e_1_2_8_3_1 article-title: What regularized auto‐encoders learn from the data‐generating distribution publication-title: The Journal of Machine Learning Research – ident: e_1_2_8_118_1 doi: 10.1109/CVPR.2007.383157 – volume-title: Deep Learning year: 2016 ident: e_1_2_8_52_1 – ident: e_1_2_8_133_1 doi: 10.1109/ICCV.2015.114 – ident: e_1_2_8_55_1 – ident: e_1_2_8_16_1 doi: 10.1109/TVCG.2007.1041 – ident: e_1_2_8_2_1 – ident: e_1_2_8_110_1 doi: 10.1080/14786440109462720 – ident: e_1_2_8_169_1 – ident: e_1_2_8_146_1 doi: 10.1109/SMI.2004.1314502 – ident: e_1_2_8_129_1 doi: 10.1109/ICCVW.2011.6130298 – start-page: 77 volume-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ident: e_1_2_8_111_1 – ident: e_1_2_8_76_1 doi: 10.1145/2185520.2185551 – ident: e_1_2_8_37_1 doi: 10.1111/cgf.12702 – ident: e_1_2_8_173_1 doi: 10.1111/j.1467-8659.2010.01655.x – volume: 27 start-page: 37 year: 2012 ident: e_1_2_8_13_1 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised and Transfer Learning – ident: e_1_2_8_43_1 doi: 10.1016/j.patrec.2016.04.005 – ident: e_1_2_8_69_1 doi: 10.1126/science.1127647 – ident: e_1_2_8_34_1 doi: 10.1145/311535.311556 – ident: e_1_2_8_10_1 doi: 10.1145/1186822.1073207 – ident: e_1_2_8_57_1 doi: 10.1145/2835487 – start-page: 318 volume-title: Parallel Distributed Processing year: 1986 ident: e_1_2_8_119_1 doi: 10.7551/mitpress/5236.001.0001 – start-page: 82 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: e_1_2_8_160_1 – volume: 36 start-page: 71:1 ident: e_1_2_8_101_1 article-title: Convolutional neural networks on surfaces via seamless toric covers publication-title: ACM Transactions on Graphics – ident: e_1_2_8_143_1 doi: 10.1007/s00371-010-0519-x – ident: e_1_2_8_148_1 doi: 10.1111/j.1467-8659.2011.01893.x – ident: e_1_2_8_27_1 doi: 10.1111/cgf.12693 – ident: e_1_2_8_141_1 doi: 10.1016/0042-6989(95)00230-8 |
SSID | ssj0004765 |
Score | 2.428841 |
Snippet | Recent advances in scanning device technologies and improvements in techniques that generate and synthesize 3D shapes have made 3D models widespread in various... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 356 |
SubjectTerms | 3-D graphics Algorithms Artificial intelligence Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation–Line and curve generation Computer graphics Machine learning Medical imaging Medical research methods and applications modelling Segmentation Shape recognition Taxonomy Three dimensional models |
Title | A Survey on Data‐Driven 3D Shape Descriptors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13536 https://www.proquest.com/docview/2191380857 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NKxNj9M8TQ25xD04BzsIJSkSRQc3eg6QU_-Cf6N_iUmabtNURBvLaS_XvNevq-8fh4AJ4QJLXkoPJ9o5mHNLfIWIU9xHhCzF2uHFLq-ob0BvhqSYQWcl__C5HyI-Qc36xkuXlsH52K65OTxg3ZNGyxu29ZqWUF0u0BH4TNKSq63JcYUVCFbxTM_8utatBCYyzLVrTPddXBf3mFeXvLUmGWiEb9-gzf-8xE2wFqhP2ErnzCboKKSLbC6RCXcBo0W7M_SZ_UCxwns8Ix_vL13UhsVIerA_iOfKGjSVRduxul0Bwy6F3ftnle0VfDiwIgPzw-ZwlQQLH3EpUZMIomopsqibSzwXQeKMpNISIppU2stuE8D7hNptIgfaLQLqsk4UXsAciZijZHlC1As41AQgQU2ORLHLJTNZg2clgaO4oI5bltfjKIy9zAmiJwJauB4PnSSgzZ-GlQv31JU-No0MjHXR8yS-s3lnLl_P0HUvuy6jf2_Dz0AK0YlhXmpdh1Us3SmDo0SycSRm3Kf-BjXsQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMdfEA_qwd9GFHUxHryMsLWrW-KFgIgKHAQSLmZp11YTDRB-mOjJP8G_0b_EttsAjSbG25Z0P_rW9_p9Tfd5ACeezySnAbMdT_o2llQjbxGyBaWup84iaZBCjSapdfB11-tm4Dz9FybmQ0wX3LRnmHitHVwvSM95eXQvTdUGsgCLuqK3SahuZ_AofEa8lOytmTEJV0jv45le-nU2mknMeaFqZprqGtyl7xhvMHksTMasEL1-wzf-txPrsJpIUKsUj5kNyIjeJqzMgQm3oFCyWpPhs3ix-j2rQsf04-29MtSB0UIVq_VAB8JSGauJOP3haBs61Yt2uWYnlRXsyFX6w3YCX2DCPMwdRLlEPkccEUmEptto5rt0BfFVLsEJJkUpJaMOcanjcSVHHFeiHcj2-j2xCxb1WSQx0ogBgnkUMI9hhlWaRLEf8GIxB6ephcMowY7r6hdPYZp-KBOExgQ5OJ42HcSsjZ8a5dPPFCbuNgpV2HWQr2H96nHG3r_fICxfVs3B3t-bHsFSrd2oh_Wr5s0-LCvRFMQ7t_OQHQ8n4kAJkzE7NOPvE4OG28w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHyB68C2uzyIevHTZNmlM8bRsre9FfIAHoSRNoqB0l3VX0JMfwc_oJzFJ291VFMRbC9PXNDP5T0l_A7AdUK4EC7nrBYq6WDGDvEXIlYz5gd5LlUUKnTXJ4TU-vgluRmCv_Bcm50P0P7iZyLD52gR4W6ihIE_vlG3aQEZhHJMaNUM6uhiwo_AuCUqwt0HGFFghs4ynf-jXyWigMId1qp1o4hm4LW8xX1_yUO11eTV9_UZv_OczzMJ0IUCdej5i5mBEZvMwNYQlXIBq3bnsdZ7li9PKnIh12cfbe9QxadFBkXN5z9rS0fWqzTetztMiXMf7V41Dt-ir4Ka-Vh-uF1KJCQ-w8BATClGBBCKKSMO2McR35UtCdSUhiHasUoozj_jMC4QWI56v0BKMZa1MLoPDKE8VRgYwQLBIQx5wzLEukhimoajVKrBTOjhJC-i46X3xmJTFh3ZBYl1Qga2-aTsnbfxktFa-paQItqdEJ10PUYPq15ez7v79BEnjILYbK3833YSJ8yhOTo-aJ6swqRVTmC_bXoOxbqcn17Uq6fINO_o-ASQj2oQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Data%E2%80%90Driven+3D+Shape+Descriptors&rft.jtitle=Computer+graphics+forum&rft.au=Rostami%2C+R&rft.au=Bashiri%2C+F+S&rft.au=Rostami%2C+B&rft.au=Z+Yu&rft.date=2019-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=1&rft.spage=356&rft.epage=393&rft_id=info:doi/10.1111%2Fcgf.13536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |