The water uptake, thermal and mechanical properties, and aging resistance to thermo‐oxidation of phenylboronic acid‐modified benzoxazine‐glass fiber composites

Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process....

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 139; no. 19
Main Authors Hsu, Chin‐shih, Hwang, Po‐Yu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.05.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer. The PBz composite manufacturing process and its enhanced properties are displayed.
AbstractList Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer.
Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer. The PBz composite manufacturing process and its enhanced properties are displayed.
Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer.
Author Hsu, Chin‐shih
Hwang, Po‐Yu
Author_xml – sequence: 1
  givenname: Chin‐shih
  orcidid: 0000-0002-6937-9640
  surname: Hsu
  fullname: Hsu, Chin‐shih
  email: john18575@ncsist.org.tw
  organization: National Chung‐Shan Institute of Science and Technology
– sequence: 2
  givenname: Po‐Yu
  surname: Hwang
  fullname: Hwang, Po‐Yu
  organization: National Chung‐Shan Institute of Science and Technology
BookMark eNp1kUtOwzAURS0EEuUzYAeWGCERaid1PkOE-EmVYADj6Nl5aQ2JHWxXUEYsgU2wMVaCaRkhGFn2Pfc-P90dsmmsQUIOODvhjKVjGIYTkfJMbJARZ1WRTPK03CSjqPGkrCqxTXa8f2CMc8HyEfm4myN9hoCOLoYAj3hMwxxdDx0F09Ae1RyMVvE6ODugCxr98UqCmTYz6tBrH8AopMGurfbz7d2-6AaCtobalg5zNMtOWmdjEgWlm0j0ttGtxoZKNK_2BV61wfg868B72moZP6RsP1ivA_o9stVC53H_59wl9xfnd2dXyfTm8vrsdJqotCpEUmZFM0lVDkWlEDCdSJajBCYlazJVCB6VXLWyUCil4GUrpJCQA0sZtkWaZ7vkcJ0bl31aoA_1g104E0fWUS14xrO8jNR4TSlnvXfY1kqH1bbBge5qzurvLurYRb3qIjqOfjkGp3twyz_Zn_Rn3eHyf7A-vb1dO74AcCajAg
CitedBy_id crossref_primary_10_1016_j_reactfunctpolym_2023_105673
crossref_primary_10_26907_2542_064X_2024_4_590_607
crossref_primary_10_31857_S2308114723700383
crossref_primary_10_3390_eng6030060
crossref_primary_10_1134_S1811238223700388
crossref_primary_10_1016_j_polymertesting_2023_108291
crossref_primary_10_1016_j_polymer_2024_127784
Cites_doi 10.1002/pc.22615
10.1007/s12221-012-0762-z
10.1139/v77-430
10.1016/j.polymer.2005.03.096
10.1002/app.12678
10.1016/j.eurpolymj.2018.08.053
10.1002/app.38422
10.1106/UCWJ-HV2G-CERG-3L59
10.1021/ma0107915
10.3390/polym12102379
10.1002/pat.3216
10.1021/ie504070t
10.1007/s10965-018-1656-6
10.1002/app.30427
10.1002/(SICI)1097-4628(19980926)69:13<2559::AID-APP5>3.0.CO;2-9
10.1016/S1359-835X(03)00214-8
10.1002/(SICI)1097-4628(19990929)73:14<2937::AID-APP18>3.0.CO;2-E
10.3144/expresspolymlett.2019.38
10.1016/j.matchemphys.2018.06.040
10.1016/j.polymer.2012.07.033
10.2514/1.30891
10.3390/polym10060596
10.1016/j.matdes.2016.11.062
10.1016/j.reactfunctpolym.2017.06.004
10.1016/0032-3861(96)00303-5
10.1016/j.compositesa.2012.07.025
10.1016/j.reactfunctpolym.2015.06.012
10.1016/j.apsusc.2015.01.062
10.1016/S0032-3861(98)00656-9
10.1016/S0142-9418(97)00019-6
10.1016/j.dental.2011.07.011
10.1016/j.polymer.2020.122647
10.1016/S0266-3538(01)00219-6
10.1080/00222348.2011.563216
10.1177/0967391120903664
10.1016/S0032-3861(98)00393-0
10.1016/j.compscitech.2017.03.024
10.1021/acs.jpclett.1c00186
10.1016/j.matchemphys.2018.04.012
10.3390/ma9070607
10.1002/marc.200500779
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.52135
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_52135
APP52135
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2975-837d42c6a79ceae24b06eba0bb0d3c7516a76cfb7cebb518f5b5ba6a020ef7263
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 25 12:08:38 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 01:59:49 EDT 2025
Wed Jan 22 16:25:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2975-837d42c6a79ceae24b06eba0bb0d3c7516a76cfb7cebb518f5b5ba6a020ef7263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6937-9640
PQID 2637131368
PQPubID 1006379
PageCount 10
ParticipantIDs proquest_journals_2637131368
crossref_citationtrail_10_1002_app_52135
crossref_primary_10_1002_app_52135
wiley_primary_10_1002_app_52135_APP52135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 15, 2022
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: May 15, 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 6
2009; 46
2015; 93
2018; 108
2019; 13
2013; 128
2014; 25
2020; 12
1999; 40
2020; 201
2012; 13
2007; 32
1996; 37
2009; 114
2017; 115
2012; 53
1998; 69
2005; 46
2018; 25
2017; 117
2003; 34
1998; 17
2003; 90
2000; 19
2021; 12
2013; 34
2002; 62
2018; 217
2006; 27
2015; 331
2018; 213
2011; 50
2006; 181
1977; 55
1999; 73
2017; 144
2001; 34
2011; 27
2018; 10
2012; 43
2016; 9
2014; 53
2020; 29
e_1_2_7_6_1
e_1_2_7_5_1
Prashanth S. (e_1_2_7_20_1) 2017; 6
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Zhang K. (e_1_2_7_40_1) 2020; 29
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
Hartfield R. J. (e_1_2_7_25_1) 2006; 181
e_1_2_7_38_1
e_1_2_7_39_1
Ghosh N. N. (e_1_2_7_28_1) 2007; 32
References_xml – volume: 73
  start-page: 2937
  year: 1999
  publication-title: J. Appl. Polym. Sci.
– volume: 13
  start-page: 456
  year: 2019
  publication-title: Express Polym. Lett.
– volume: 53
  start-page: 4119
  year: 2012
  publication-title: Polymer
– volume: 27
  start-page: 333
  year: 2006
  publication-title: Macromol. Rapid Commun.
– volume: 37
  start-page: 4487
  year: 1996
  publication-title: Polymer
– volume: 43
  start-page: 2249
  year: 2012
  publication-title: Compos. A Appl. S
– volume: 46
  start-page: 4909
  year: 2005
  publication-title: Polymer
– volume: 181
  start-page: 1720
  year: 2006
  publication-title: Appl Math Comput
– volume: 93
  start-page: 111
  year: 2015
  publication-title: React. Funct. Polym.
– volume: 217
  start-page: 270
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 25
  start-page: 152
  year: 2014
  publication-title: Polym. Adv. Technol.
– volume: 10
  start-page: 596
  year: 2018
  publication-title: Polymer
– volume: 34
  start-page: 2067
  year: 2013
  publication-title: Polym. Compos.
– volume: 6
  year: 2017
  publication-title: J Material Sci Eng
– volume: 108
  start-page: 182
  year: 2018
  publication-title: Eur. Polym. J.
– volume: 29
  start-page: 3
  year: 2020
  publication-title: Polym. Polym. Compos.
– volume: 25
  start-page: 263
  year: 2018
  publication-title: J. Polym. Res.
– volume: 50
  start-page: 2214
  year: 2011
  publication-title: J. Macromol Sci B
– volume: 69
  start-page: 2559
  year: 1998
  publication-title: J. Appl. Polym. Sci.
– volume: 213
  start-page: 146
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 114
  start-page: 1256
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– volume: 40
  start-page: 1815
  year: 1999
  publication-title: Polymer
– volume: 32
  start-page: 1344
  year: 2007
  publication-title: Prog. Sci.
– volume: 34
  start-page: 7257
  year: 2001
  publication-title: Macromolecules
– volume: 34
  start-page: 1117
  year: 2003
  publication-title: Compos. A Appl. S
– volume: 40
  start-page: 4365
  year: 1999
  publication-title: Polymer
– volume: 55
  start-page: 3071
  year: 1977
  publication-title: Can. J. Chem.
– volume: 46
  start-page: 151
  year: 2009
  publication-title: J Spacecraft Rockets
– volume: 27
  start-page: 1086
  year: 2011
  publication-title: Dent. Mater.
– volume: 128
  start-page: 1176
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 117
  start-page: 60
  year: 2017
  publication-title: React. Funct. Polym.
– volume: 144
  start-page: 114
  year: 2017
  publication-title: Compos Sci Technol
– volume: 331
  start-page: 519
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 2142
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 762
  year: 2012
  publication-title: Fibers Polym.
– volume: 19
  start-page: 689
  year: 2000
  publication-title: J. Reinforc. Plast. Compos.
– volume: 62
  start-page: 339
  year: 2002
  publication-title: Compos Sci Technol
– volume: 12
  start-page: 2379
  year: 2020
  publication-title: Polymer
– volume: 17
  start-page: 79
  year: 1998
  publication-title: Polym. Test.
– volume: 90
  start-page: 470
  year: 2003
  publication-title: J. Appl. Polym. Sci.
– volume: 53
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 201
  year: 2020
  publication-title: Polymer
– volume: 115
  start-page: 213
  year: 2017
  publication-title: Mater. Des.
– volume: 9
  start-page: 607
  year: 2016
  publication-title: Materials
– ident: e_1_2_7_19_1
  doi: 10.1002/pc.22615
– volume: 181
  start-page: 1720
  year: 2006
  ident: e_1_2_7_25_1
  publication-title: Appl Math Comput
– ident: e_1_2_7_17_1
  doi: 10.1007/s12221-012-0762-z
– ident: e_1_2_7_33_1
  doi: 10.1139/v77-430
– ident: e_1_2_7_6_1
  doi: 10.1016/j.polymer.2005.03.096
– ident: e_1_2_7_8_1
  doi: 10.1002/app.12678
– ident: e_1_2_7_32_1
  doi: 10.1016/j.eurpolymj.2018.08.053
– ident: e_1_2_7_18_1
  doi: 10.1002/app.38422
– ident: e_1_2_7_38_1
  doi: 10.1106/UCWJ-HV2G-CERG-3L59
– ident: e_1_2_7_13_1
  doi: 10.1021/ma0107915
– ident: e_1_2_7_14_1
  doi: 10.3390/polym12102379
– ident: e_1_2_7_24_1
  doi: 10.1002/pat.3216
– ident: e_1_2_7_15_1
  doi: 10.1021/ie504070t
– volume: 32
  start-page: 1344
  year: 2007
  ident: e_1_2_7_28_1
  publication-title: Prog. Sci.
– ident: e_1_2_7_27_1
  doi: 10.1007/s10965-018-1656-6
– ident: e_1_2_7_31_1
  doi: 10.1002/app.30427
– ident: e_1_2_7_4_1
  doi: 10.1002/(SICI)1097-4628(19980926)69:13<2559::AID-APP5>3.0.CO;2-9
– ident: e_1_2_7_39_1
  doi: 10.1016/S1359-835X(03)00214-8
– ident: e_1_2_7_12_1
  doi: 10.1002/(SICI)1097-4628(19990929)73:14<2937::AID-APP18>3.0.CO;2-E
– ident: e_1_2_7_10_1
  doi: 10.3144/expresspolymlett.2019.38
– ident: e_1_2_7_41_1
  doi: 10.1016/j.matchemphys.2018.06.040
– ident: e_1_2_7_2_1
  doi: 10.1016/j.polymer.2012.07.033
– ident: e_1_2_7_26_1
  doi: 10.2514/1.30891
– ident: e_1_2_7_9_1
  doi: 10.3390/polym10060596
– ident: e_1_2_7_44_1
  doi: 10.1016/j.matdes.2016.11.062
– ident: e_1_2_7_29_1
  doi: 10.1016/j.reactfunctpolym.2017.06.004
– ident: e_1_2_7_7_1
  doi: 10.1016/0032-3861(96)00303-5
– ident: e_1_2_7_22_1
  doi: 10.1016/j.compositesa.2012.07.025
– ident: e_1_2_7_23_1
  doi: 10.1016/j.reactfunctpolym.2015.06.012
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apsusc.2015.01.062
– ident: e_1_2_7_5_1
  doi: 10.1016/S0032-3861(98)00656-9
– volume: 6
  year: 2017
  ident: e_1_2_7_20_1
  publication-title: J Material Sci Eng
– ident: e_1_2_7_35_1
  doi: 10.1016/S0142-9418(97)00019-6
– ident: e_1_2_7_37_1
  doi: 10.1016/j.dental.2011.07.011
– ident: e_1_2_7_43_1
  doi: 10.1016/j.polymer.2020.122647
– ident: e_1_2_7_34_1
  doi: 10.1016/S0266-3538(01)00219-6
– ident: e_1_2_7_45_1
  doi: 10.1080/00222348.2011.563216
– volume: 29
  start-page: 3
  year: 2020
  ident: e_1_2_7_40_1
  publication-title: Polym. Polym. Compos.
  doi: 10.1177/0967391120903664
– ident: e_1_2_7_11_1
  doi: 10.1016/S0032-3861(98)00393-0
– ident: e_1_2_7_16_1
  doi: 10.1016/j.compscitech.2017.03.024
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.jpclett.1c00186
– ident: e_1_2_7_21_1
  doi: 10.1016/j.matchemphys.2018.04.012
– ident: e_1_2_7_36_1
  doi: 10.3390/ma9070607
– ident: e_1_2_7_3_1
  doi: 10.1002/marc.200500779
SSID ssj0011506
Score 2.4127438
Snippet Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Benzoxazines
composites
Curing
Fiber composites
Flexural strength
Glass fibers
glass transition
Glass transition temperature
High temperature
Interfacial shear strength
Materials science
Mechanical properties
Moisture absorption
Oxidation resistance
Polybenzoxazines
Polymers
Prepregs
Shear strength
Textile composites
Thermal protection
Thermodynamic properties
thermogravimetric analysis (TGA)
thermosets
Thermosetting resins
Title The water uptake, thermal and mechanical properties, and aging resistance to thermo‐oxidation of phenylboronic acid‐modified benzoxazine‐glass fiber composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.52135
https://www.proquest.com/docview/2637131368
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLb5ZxIMHo8k2m7R4Kj4QUREf4EEI-4RSm5Q2xerJn-Cf8I_5S5zZNPWBgngL2dlkszub-WaZ-YaQTR-MnvVNzQsM117IQukJGVc8YQOtELLGGh3Fs_Po-CY8ueW3I2SvzIUp-CGGB264M9z_Gje4kN3dD9JQLIMFtqeCCeYYq4WA6HJIHYVAJyrCOwIPfApesgr5bHfY86st-gCYn2GqszNHU-SuHGERXtLc6eVyRz19I2_85ydMk8kB_qT1QmFmyIhJZ8nEJ1bCOfIKqkMfAIN2aK-di6bZpogSW9BNpJq2DCYL49rSNp7kd5CSdds1uYpHFBx4BKWgTTTPiq7Z2_NL1m8U9ZtoZilGlj3ey8wx81KhGhokWpluWIDEVJr0Kes74mu47QA-tRjaQjECHsPMTHee3BwdXu8fe4NqDp7C7F0PPGEdMhWJuKaMMKAVfmSk8KX0dUXFPICWSFkZKyMlD6qWSy5FJADPGhuzqLJARtMsNYuEmpgxpa3gYYh0grGoSWSSF4D1mBZBbYlsleuaqAHVOVbcuE8KkmaWwMwnbuaXyMZQtF3we_wktFoqRzLY4t0ERgQOPmheFV7nVvn3ByT1iwt3sfx30RUyzjDVApli-SoZzTs9swYAKJfrZKx-cHZ6te40_h1KcAqo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOLRQQtLRYqAcOhE2cOGGlXlBVtDyFKpC4VJGf0go2WS1ZlXLqT-BP8Mf6SzrjbJaHqIS4RfE4cexx5htr5huALyEaPRfadhBZYYKEJyqQKosD6SKjCbJmhhzFo-O0c5bsn4vzCfja5MLU_BDjAzfaGf5_TRucDqRb96yhVAcLjU8sJmGaKnp7h-rHmDyKoE5aB3hEAXoVouEVCnlr3PWxNbqHmA-Bqrc0u-_gZzPGOsDkYmtYqS1984S-8bUfMQdvRxCU7dQ6Mw8TtngPsw-ICRfgDrWH_UIYOmDDfiUv7CYjoNjDbrIwrGcpX5iWl_XpMH9ArKybvskXPWLowxMuRYViVVl3Lf_-uS2vu3UJJ1Y6RsFlvy9V6cl5mdRdgxK90nQdomKmbHFTXnvua7ztMT5zFN3CKAieIs3s1SKc7X4__dYJRgUdAk0JvAE6wybhOpVZW1tpUTHC1CoZKhWaWGciwpZUO5Vpq5SItp1QQslUIqS1LuNpvARTRVnYZWA241wbJ0WSEKNgJtuKyOQlwj1uZNRegY1mYXM9YjunohuXec3TzHOc-dzP_Aqsj0X7NcXHc0KrjXbko11-leOI0MeP4nQbX-eX-f8PyHdOTvzFh5eLrsGbzunRYX64d3zwEWY4ZV4QcaxYhalqMLSfEA9V6rNX-39h1A0v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7xI1X0QGlpVVqgVtVDDwQSJ3Z21RMCVvQPraoicagU-VdawSarJSsopz5CX6Iv1idhxtksFFGp6i2Kx4ljjzPfWDPfALyJ0ej52HWjxAkbZTzTkdJ5GimfWEOQNbfkKH4-kofH2YcTcTIH79pcmIYfYnbgRjsj_K9pg4-s37khDaUyWGh7UjEPi5mMO6TS-19m3FGEdGQT35FE6FSIllYo5juzrn8aoxuEeRunBkPTewTf2iE28SWn25Nab5urO-yN__kNK7A8BaBst9GYxzDnyifw8BYt4Sr8Qt1hFwhCx2wyqtWp22IEE4fYTZWWDR1lC9PishEd5Y-Jk3UrNIWSRww9eEKlqE6srpqu1e8fP6vLQVPAiVWeUWjZ9zNdBWpepszAosSwsgOPmJhpV15Vl4H5Gm8HhM88xbYwCoGnODN3_hSOewdf9w6jaTmHyFD6boSusM24kSrvGqccqkUsnVax1rFNTS4SbJHG69w4rUXS8UILraRCQOt8zmX6DBbKqnTPgbmcc2O9EllGfIK56mqiklcI9rhVSXcN3rbrWpgp1zmV3DgrGpZmXuDMF2Hm1-D1THTUEHzcJ7TeKkcx3ePnBY4IPfwklR18XVjlvz-g2O33w8WLfxd9BQ_6-73i0_ujjy9hiVPaBbHGinVYqMcTt4FgqNabQemvAWSKC-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+water+uptake%2C+thermal+and+mechanical+properties%2C+and+aging+resistance+to+thermo%E2%80%90oxidation+of+phenylboronic+acid%E2%80%90modified+benzoxazine%E2%80%90glass+fiber+composites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Chin%E2%80%90shih+Hsu&rft.au=Po%E2%80%90Yu+Hwang&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=19&rft_id=info:doi/10.1002%2Fapp.52135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon