The water uptake, thermal and mechanical properties, and aging resistance to thermo‐oxidation of phenylboronic acid‐modified benzoxazine‐glass fiber composites
Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process....
Saved in:
Published in | Journal of applied polymer science Vol. 139; no. 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.05.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer.
The PBz composite manufacturing process and its enhanced properties are displayed. |
---|---|
AbstractList | Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer. Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer. The PBz composite manufacturing process and its enhanced properties are displayed. Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal protection applications, such as thermal and dimensional stabilities, low rate of moisture absorption and near zero volatility in curing process. However, benzoxazine shows its drawbacks in terms of curing temperature, char yield at elevated temperature, and resin toughness. Thus, modification of Bz matrix would be essential in order to improve these unfavorable properties. In this study, a facile synthesis of phenylboronic acid‐modified (PBA) benzoxazine (PBz) and glass fibers (GF) composites with varied PBA ratios were prepared. Briefly, GF fabrics were impregnated with each of Bz or PBz/acetone solution and baked to form B‐staged prepregs. Then, the prepregs were stacked, molded and cured in a hot‐pressing machine to form composites. The present study shows the 10 wt% PBA modified‐Bz/GF composite is the optimal formulation as it exhibits minimal water uptake, enhanced char yield, decent thermomechanical stability in terms of glass transition temperature, exceptional interlaminar shear strength (ILSS) and highest flexural strength. Moreover, the PBz 10/GF composite subject to thermo‐oxidative aging still maintains good levels of shear and flexural properties for potential service as thermal protection layer. |
Author | Hsu, Chin‐shih Hwang, Po‐Yu |
Author_xml | – sequence: 1 givenname: Chin‐shih orcidid: 0000-0002-6937-9640 surname: Hsu fullname: Hsu, Chin‐shih email: john18575@ncsist.org.tw organization: National Chung‐Shan Institute of Science and Technology – sequence: 2 givenname: Po‐Yu surname: Hwang fullname: Hwang, Po‐Yu organization: National Chung‐Shan Institute of Science and Technology |
BookMark | eNp1kUtOwzAURS0EEuUzYAeWGCERaid1PkOE-EmVYADj6Nl5aQ2JHWxXUEYsgU2wMVaCaRkhGFn2Pfc-P90dsmmsQUIOODvhjKVjGIYTkfJMbJARZ1WRTPK03CSjqPGkrCqxTXa8f2CMc8HyEfm4myN9hoCOLoYAj3hMwxxdDx0F09Ae1RyMVvE6ODugCxr98UqCmTYz6tBrH8AopMGurfbz7d2-6AaCtobalg5zNMtOWmdjEgWlm0j0ttGtxoZKNK_2BV61wfg868B72moZP6RsP1ivA_o9stVC53H_59wl9xfnd2dXyfTm8vrsdJqotCpEUmZFM0lVDkWlEDCdSJajBCYlazJVCB6VXLWyUCil4GUrpJCQA0sZtkWaZ7vkcJ0bl31aoA_1g104E0fWUS14xrO8jNR4TSlnvXfY1kqH1bbBge5qzurvLurYRb3qIjqOfjkGp3twyz_Zn_Rn3eHyf7A-vb1dO74AcCajAg |
CitedBy_id | crossref_primary_10_1016_j_reactfunctpolym_2023_105673 crossref_primary_10_26907_2542_064X_2024_4_590_607 crossref_primary_10_31857_S2308114723700383 crossref_primary_10_3390_eng6030060 crossref_primary_10_1134_S1811238223700388 crossref_primary_10_1016_j_polymertesting_2023_108291 crossref_primary_10_1016_j_polymer_2024_127784 |
Cites_doi | 10.1002/pc.22615 10.1007/s12221-012-0762-z 10.1139/v77-430 10.1016/j.polymer.2005.03.096 10.1002/app.12678 10.1016/j.eurpolymj.2018.08.053 10.1002/app.38422 10.1106/UCWJ-HV2G-CERG-3L59 10.1021/ma0107915 10.3390/polym12102379 10.1002/pat.3216 10.1021/ie504070t 10.1007/s10965-018-1656-6 10.1002/app.30427 10.1002/(SICI)1097-4628(19980926)69:13<2559::AID-APP5>3.0.CO;2-9 10.1016/S1359-835X(03)00214-8 10.1002/(SICI)1097-4628(19990929)73:14<2937::AID-APP18>3.0.CO;2-E 10.3144/expresspolymlett.2019.38 10.1016/j.matchemphys.2018.06.040 10.1016/j.polymer.2012.07.033 10.2514/1.30891 10.3390/polym10060596 10.1016/j.matdes.2016.11.062 10.1016/j.reactfunctpolym.2017.06.004 10.1016/0032-3861(96)00303-5 10.1016/j.compositesa.2012.07.025 10.1016/j.reactfunctpolym.2015.06.012 10.1016/j.apsusc.2015.01.062 10.1016/S0032-3861(98)00656-9 10.1016/S0142-9418(97)00019-6 10.1016/j.dental.2011.07.011 10.1016/j.polymer.2020.122647 10.1016/S0266-3538(01)00219-6 10.1080/00222348.2011.563216 10.1177/0967391120903664 10.1016/S0032-3861(98)00393-0 10.1016/j.compscitech.2017.03.024 10.1021/acs.jpclett.1c00186 10.1016/j.matchemphys.2018.04.012 10.3390/ma9070607 10.1002/marc.200500779 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.52135 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_52135 APP52135 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2975-837d42c6a79ceae24b06eba0bb0d3c7516a76cfb7cebb518f5b5ba6a020ef7263 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 12:08:38 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Tue Jul 01 01:59:49 EDT 2025 Wed Jan 22 16:25:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2975-837d42c6a79ceae24b06eba0bb0d3c7516a76cfb7cebb518f5b5ba6a020ef7263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6937-9640 |
PQID | 2637131368 |
PQPubID | 1006379 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2637131368 crossref_citationtrail_10_1002_app_52135 crossref_primary_10_1002_app_52135 wiley_primary_10_1002_app_52135_APP52135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 15, 2022 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: May 15, 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 6 2009; 46 2015; 93 2018; 108 2019; 13 2013; 128 2014; 25 2020; 12 1999; 40 2020; 201 2012; 13 2007; 32 1996; 37 2009; 114 2017; 115 2012; 53 1998; 69 2005; 46 2018; 25 2017; 117 2003; 34 1998; 17 2003; 90 2000; 19 2021; 12 2013; 34 2002; 62 2018; 217 2006; 27 2015; 331 2018; 213 2011; 50 2006; 181 1977; 55 1999; 73 2017; 144 2001; 34 2011; 27 2018; 10 2012; 43 2016; 9 2014; 53 2020; 29 e_1_2_7_6_1 e_1_2_7_5_1 Prashanth S. (e_1_2_7_20_1) 2017; 6 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Zhang K. (e_1_2_7_40_1) 2020; 29 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 Hartfield R. J. (e_1_2_7_25_1) 2006; 181 e_1_2_7_38_1 e_1_2_7_39_1 Ghosh N. N. (e_1_2_7_28_1) 2007; 32 |
References_xml | – volume: 73 start-page: 2937 year: 1999 publication-title: J. Appl. Polym. Sci. – volume: 13 start-page: 456 year: 2019 publication-title: Express Polym. Lett. – volume: 53 start-page: 4119 year: 2012 publication-title: Polymer – volume: 27 start-page: 333 year: 2006 publication-title: Macromol. Rapid Commun. – volume: 37 start-page: 4487 year: 1996 publication-title: Polymer – volume: 43 start-page: 2249 year: 2012 publication-title: Compos. A Appl. S – volume: 46 start-page: 4909 year: 2005 publication-title: Polymer – volume: 181 start-page: 1720 year: 2006 publication-title: Appl Math Comput – volume: 93 start-page: 111 year: 2015 publication-title: React. Funct. Polym. – volume: 217 start-page: 270 year: 2018 publication-title: Mater. Chem. Phys. – volume: 25 start-page: 152 year: 2014 publication-title: Polym. Adv. Technol. – volume: 10 start-page: 596 year: 2018 publication-title: Polymer – volume: 34 start-page: 2067 year: 2013 publication-title: Polym. Compos. – volume: 6 year: 2017 publication-title: J Material Sci Eng – volume: 108 start-page: 182 year: 2018 publication-title: Eur. Polym. J. – volume: 29 start-page: 3 year: 2020 publication-title: Polym. Polym. Compos. – volume: 25 start-page: 263 year: 2018 publication-title: J. Polym. Res. – volume: 50 start-page: 2214 year: 2011 publication-title: J. Macromol Sci B – volume: 69 start-page: 2559 year: 1998 publication-title: J. Appl. Polym. Sci. – volume: 213 start-page: 146 year: 2018 publication-title: Mater. Chem. Phys. – volume: 114 start-page: 1256 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 40 start-page: 1815 year: 1999 publication-title: Polymer – volume: 32 start-page: 1344 year: 2007 publication-title: Prog. Sci. – volume: 34 start-page: 7257 year: 2001 publication-title: Macromolecules – volume: 34 start-page: 1117 year: 2003 publication-title: Compos. A Appl. S – volume: 40 start-page: 4365 year: 1999 publication-title: Polymer – volume: 55 start-page: 3071 year: 1977 publication-title: Can. J. Chem. – volume: 46 start-page: 151 year: 2009 publication-title: J Spacecraft Rockets – volume: 27 start-page: 1086 year: 2011 publication-title: Dent. Mater. – volume: 128 start-page: 1176 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 117 start-page: 60 year: 2017 publication-title: React. Funct. Polym. – volume: 144 start-page: 114 year: 2017 publication-title: Compos Sci Technol – volume: 331 start-page: 519 year: 2015 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 2142 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 762 year: 2012 publication-title: Fibers Polym. – volume: 19 start-page: 689 year: 2000 publication-title: J. Reinforc. Plast. Compos. – volume: 62 start-page: 339 year: 2002 publication-title: Compos Sci Technol – volume: 12 start-page: 2379 year: 2020 publication-title: Polymer – volume: 17 start-page: 79 year: 1998 publication-title: Polym. Test. – volume: 90 start-page: 470 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 53 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 201 year: 2020 publication-title: Polymer – volume: 115 start-page: 213 year: 2017 publication-title: Mater. Des. – volume: 9 start-page: 607 year: 2016 publication-title: Materials – ident: e_1_2_7_19_1 doi: 10.1002/pc.22615 – volume: 181 start-page: 1720 year: 2006 ident: e_1_2_7_25_1 publication-title: Appl Math Comput – ident: e_1_2_7_17_1 doi: 10.1007/s12221-012-0762-z – ident: e_1_2_7_33_1 doi: 10.1139/v77-430 – ident: e_1_2_7_6_1 doi: 10.1016/j.polymer.2005.03.096 – ident: e_1_2_7_8_1 doi: 10.1002/app.12678 – ident: e_1_2_7_32_1 doi: 10.1016/j.eurpolymj.2018.08.053 – ident: e_1_2_7_18_1 doi: 10.1002/app.38422 – ident: e_1_2_7_38_1 doi: 10.1106/UCWJ-HV2G-CERG-3L59 – ident: e_1_2_7_13_1 doi: 10.1021/ma0107915 – ident: e_1_2_7_14_1 doi: 10.3390/polym12102379 – ident: e_1_2_7_24_1 doi: 10.1002/pat.3216 – ident: e_1_2_7_15_1 doi: 10.1021/ie504070t – volume: 32 start-page: 1344 year: 2007 ident: e_1_2_7_28_1 publication-title: Prog. Sci. – ident: e_1_2_7_27_1 doi: 10.1007/s10965-018-1656-6 – ident: e_1_2_7_31_1 doi: 10.1002/app.30427 – ident: e_1_2_7_4_1 doi: 10.1002/(SICI)1097-4628(19980926)69:13<2559::AID-APP5>3.0.CO;2-9 – ident: e_1_2_7_39_1 doi: 10.1016/S1359-835X(03)00214-8 – ident: e_1_2_7_12_1 doi: 10.1002/(SICI)1097-4628(19990929)73:14<2937::AID-APP18>3.0.CO;2-E – ident: e_1_2_7_10_1 doi: 10.3144/expresspolymlett.2019.38 – ident: e_1_2_7_41_1 doi: 10.1016/j.matchemphys.2018.06.040 – ident: e_1_2_7_2_1 doi: 10.1016/j.polymer.2012.07.033 – ident: e_1_2_7_26_1 doi: 10.2514/1.30891 – ident: e_1_2_7_9_1 doi: 10.3390/polym10060596 – ident: e_1_2_7_44_1 doi: 10.1016/j.matdes.2016.11.062 – ident: e_1_2_7_29_1 doi: 10.1016/j.reactfunctpolym.2017.06.004 – ident: e_1_2_7_7_1 doi: 10.1016/0032-3861(96)00303-5 – ident: e_1_2_7_22_1 doi: 10.1016/j.compositesa.2012.07.025 – ident: e_1_2_7_23_1 doi: 10.1016/j.reactfunctpolym.2015.06.012 – ident: e_1_2_7_30_1 doi: 10.1016/j.apsusc.2015.01.062 – ident: e_1_2_7_5_1 doi: 10.1016/S0032-3861(98)00656-9 – volume: 6 year: 2017 ident: e_1_2_7_20_1 publication-title: J Material Sci Eng – ident: e_1_2_7_35_1 doi: 10.1016/S0142-9418(97)00019-6 – ident: e_1_2_7_37_1 doi: 10.1016/j.dental.2011.07.011 – ident: e_1_2_7_43_1 doi: 10.1016/j.polymer.2020.122647 – ident: e_1_2_7_34_1 doi: 10.1016/S0266-3538(01)00219-6 – ident: e_1_2_7_45_1 doi: 10.1080/00222348.2011.563216 – volume: 29 start-page: 3 year: 2020 ident: e_1_2_7_40_1 publication-title: Polym. Polym. Compos. doi: 10.1177/0967391120903664 – ident: e_1_2_7_11_1 doi: 10.1016/S0032-3861(98)00393-0 – ident: e_1_2_7_16_1 doi: 10.1016/j.compscitech.2017.03.024 – ident: e_1_2_7_42_1 doi: 10.1021/acs.jpclett.1c00186 – ident: e_1_2_7_21_1 doi: 10.1016/j.matchemphys.2018.04.012 – ident: e_1_2_7_36_1 doi: 10.3390/ma9070607 – ident: e_1_2_7_3_1 doi: 10.1002/marc.200500779 |
SSID | ssj0011506 |
Score | 2.4127438 |
Snippet | Polybenzoxazines, also known as Benzoxazine (Bz) is one kind of high‐performance thermoset polymers. It manifests several advantages when used for thermal... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Benzoxazines composites Curing Fiber composites Flexural strength Glass fibers glass transition Glass transition temperature High temperature Interfacial shear strength Materials science Mechanical properties Moisture absorption Oxidation resistance Polybenzoxazines Polymers Prepregs Shear strength Textile composites Thermal protection Thermodynamic properties thermogravimetric analysis (TGA) thermosets Thermosetting resins |
Title | The water uptake, thermal and mechanical properties, and aging resistance to thermo‐oxidation of phenylboronic acid‐modified benzoxazine‐glass fiber composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.52135 https://www.proquest.com/docview/2637131368 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLb5ZxIMHo8k2m7R4Kj4QUREf4EEI-4RSm5Q2xerJn-Cf8I_5S5zZNPWBgngL2dlkszub-WaZ-YaQTR-MnvVNzQsM117IQukJGVc8YQOtELLGGh3Fs_Po-CY8ueW3I2SvzIUp-CGGB264M9z_Gje4kN3dD9JQLIMFtqeCCeYYq4WA6HJIHYVAJyrCOwIPfApesgr5bHfY86st-gCYn2GqszNHU-SuHGERXtLc6eVyRz19I2_85ydMk8kB_qT1QmFmyIhJZ8nEJ1bCOfIKqkMfAIN2aK-di6bZpogSW9BNpJq2DCYL49rSNp7kd5CSdds1uYpHFBx4BKWgTTTPiq7Z2_NL1m8U9ZtoZilGlj3ey8wx81KhGhokWpluWIDEVJr0Kes74mu47QA-tRjaQjECHsPMTHee3BwdXu8fe4NqDp7C7F0PPGEdMhWJuKaMMKAVfmSk8KX0dUXFPICWSFkZKyMlD6qWSy5FJADPGhuzqLJARtMsNYuEmpgxpa3gYYh0grGoSWSSF4D1mBZBbYlsleuaqAHVOVbcuE8KkmaWwMwnbuaXyMZQtF3we_wktFoqRzLY4t0ERgQOPmheFV7nVvn3ByT1iwt3sfx30RUyzjDVApli-SoZzTs9swYAKJfrZKx-cHZ6te40_h1KcAqo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOLRQQtLRYqAcOhE2cOGGlXlBVtDyFKpC4VJGf0go2WS1ZlXLqT-BP8Mf6SzrjbJaHqIS4RfE4cexx5htr5huALyEaPRfadhBZYYKEJyqQKosD6SKjCbJmhhzFo-O0c5bsn4vzCfja5MLU_BDjAzfaGf5_TRucDqRb96yhVAcLjU8sJmGaKnp7h-rHmDyKoE5aB3hEAXoVouEVCnlr3PWxNbqHmA-Bqrc0u-_gZzPGOsDkYmtYqS1984S-8bUfMQdvRxCU7dQ6Mw8TtngPsw-ICRfgDrWH_UIYOmDDfiUv7CYjoNjDbrIwrGcpX5iWl_XpMH9ArKybvskXPWLowxMuRYViVVl3Lf_-uS2vu3UJJ1Y6RsFlvy9V6cl5mdRdgxK90nQdomKmbHFTXnvua7ztMT5zFN3CKAieIs3s1SKc7X4__dYJRgUdAk0JvAE6wybhOpVZW1tpUTHC1CoZKhWaWGciwpZUO5Vpq5SItp1QQslUIqS1LuNpvARTRVnYZWA241wbJ0WSEKNgJtuKyOQlwj1uZNRegY1mYXM9YjunohuXec3TzHOc-dzP_Aqsj0X7NcXHc0KrjXbko11-leOI0MeP4nQbX-eX-f8PyHdOTvzFh5eLrsGbzunRYX64d3zwEWY4ZV4QcaxYhalqMLSfEA9V6rNX-39h1A0v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7xI1X0QGlpVVqgVtVDDwQSJ3Z21RMCVvQPraoicagU-VdawSarJSsopz5CX6Iv1idhxtksFFGp6i2Kx4ljjzPfWDPfALyJ0ej52HWjxAkbZTzTkdJ5GimfWEOQNbfkKH4-kofH2YcTcTIH79pcmIYfYnbgRjsj_K9pg4-s37khDaUyWGh7UjEPi5mMO6TS-19m3FGEdGQT35FE6FSIllYo5juzrn8aoxuEeRunBkPTewTf2iE28SWn25Nab5urO-yN__kNK7A8BaBst9GYxzDnyifw8BYt4Sr8Qt1hFwhCx2wyqtWp22IEE4fYTZWWDR1lC9PishEd5Y-Jk3UrNIWSRww9eEKlqE6srpqu1e8fP6vLQVPAiVWeUWjZ9zNdBWpepszAosSwsgOPmJhpV15Vl4H5Gm8HhM88xbYwCoGnODN3_hSOewdf9w6jaTmHyFD6boSusM24kSrvGqccqkUsnVax1rFNTS4SbJHG69w4rUXS8UILraRCQOt8zmX6DBbKqnTPgbmcc2O9EllGfIK56mqiklcI9rhVSXcN3rbrWpgp1zmV3DgrGpZmXuDMF2Hm1-D1THTUEHzcJ7TeKkcx3ePnBY4IPfwklR18XVjlvz-g2O33w8WLfxd9BQ_6-73i0_ujjy9hiVPaBbHGinVYqMcTt4FgqNabQemvAWSKC-c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+water+uptake%2C+thermal+and+mechanical+properties%2C+and+aging+resistance+to+thermo%E2%80%90oxidation+of+phenylboronic+acid%E2%80%90modified+benzoxazine%E2%80%90glass+fiber+composites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Chin%E2%80%90shih+Hsu&rft.au=Po%E2%80%90Yu+Hwang&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=19&rft_id=info:doi/10.1002%2Fapp.52135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |