Compression stiffness evaluation of polycaprolactone‐amorphous calcium phosphate 3D‐designed scaffolds oriented by finite element analysis
Scaffolds are implants used to accelerate bone regeneration process, being a relevant element of research in bone tissue engineering field. In this context, the proposal of this research was to perform a mechanical behavior evaluation, by finite element analysis (FEA), of two different configuration...
Saved in:
Published in | Journal of applied polymer science Vol. 138; no. 42 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.09.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scaffolds are implants used to accelerate bone regeneration process, being a relevant element of research in bone tissue engineering field. In this context, the proposal of this research was to perform a mechanical behavior evaluation, by finite element analysis (FEA), of two different configurations of 3D scaffolds fabricated in a type of composite material of PCL‐ACP (polycaprolactone and amorphous calcium phosphate). The numerical results were compared with the experimental data and also, used to determine the compression stiffness of each studied scaffold configuration. Thus, it was possible to conclude that FEA is a tool that helps understand complex problems while being able to reduce time and cost in analysis, resulting in more efficient and less invasive medical procedures and treatments. In addition, the novelty of this multidisciplinary research work contributes as an application in tissue engineering area by relating a PCL‐ACP biomaterial with one unprecedented geometry of scaffold faced to FEA mechanical evaluation. Therefore, demonstrating to be a relevant subject for science by not only providing procedures that increases people's life quality but also for being a new application.
Mechanical behavior of PLC‐ACP 3D printed scaffolds, according to stress analyzes performed by Finite Element Analysis (FEA) method. It presents the displacements and von Mises stresses obtained from the solutions, being possible to observe the deformations and the most critical stress points on the scaffolds. |
---|---|
AbstractList | Scaffolds are implants used to accelerate bone regeneration process, being a relevant element of research in bone tissue engineering field. In this context, the proposal of this research was to perform a mechanical behavior evaluation, by finite element analysis (FEA), of two different configurations of 3D scaffolds fabricated in a type of composite material of PCL‐ACP (polycaprolactone and amorphous calcium phosphate). The numerical results were compared with the experimental data and also, used to determine the compression stiffness of each studied scaffold configuration. Thus, it was possible to conclude that FEA is a tool that helps understand complex problems while being able to reduce time and cost in analysis, resulting in more efficient and less invasive medical procedures and treatments. In addition, the novelty of this multidisciplinary research work contributes as an application in tissue engineering area by relating a PCL‐ACP biomaterial with one unprecedented geometry of scaffold faced to FEA mechanical evaluation. Therefore, demonstrating to be a relevant subject for science by not only providing procedures that increases people's life quality but also for being a new application. Scaffolds are implants used to accelerate bone regeneration process, being a relevant element of research in bone tissue engineering field. In this context, the proposal of this research was to perform a mechanical behavior evaluation, by finite element analysis (FEA), of two different configurations of 3D scaffolds fabricated in a type of composite material of PCL‐ACP (polycaprolactone and amorphous calcium phosphate). The numerical results were compared with the experimental data and also, used to determine the compression stiffness of each studied scaffold configuration. Thus, it was possible to conclude that FEA is a tool that helps understand complex problems while being able to reduce time and cost in analysis, resulting in more efficient and less invasive medical procedures and treatments. In addition, the novelty of this multidisciplinary research work contributes as an application in tissue engineering area by relating a PCL‐ACP biomaterial with one unprecedented geometry of scaffold faced to FEA mechanical evaluation. Therefore, demonstrating to be a relevant subject for science by not only providing procedures that increases people's life quality but also for being a new application. Mechanical behavior of PLC‐ACP 3D printed scaffolds, according to stress analyzes performed by Finite Element Analysis (FEA) method. It presents the displacements and von Mises stresses obtained from the solutions, being possible to observe the deformations and the most critical stress points on the scaffolds. |
Author | Roque, Renan Malavolta, Alexandre Tácito Barbosa, Gustavo Franco Liu, James |
Author_xml | – sequence: 1 givenname: James surname: Liu fullname: Liu, James organization: Federal University of Sao Carlos – sequence: 2 givenname: Renan surname: Roque fullname: Roque, Renan organization: Federal University of Sao Carlos – sequence: 3 givenname: Gustavo Franco orcidid: 0000-0002-2961-5178 surname: Barbosa fullname: Barbosa, Gustavo Franco email: gustavofb1974@hotmail.com organization: Federal University of Sao Carlos – sequence: 4 givenname: Alexandre Tácito surname: Malavolta fullname: Malavolta, Alexandre Tácito organization: Federal University of Sao Carlos |
BookMark | eNp1kD1OxDAQhS0EEstCwQ0sUVEEbCdO4hItvxISFFBHXv-AkRMHTwJKxwkQZ-QkmF0qBNVonr8343k7aLMLnUFon5IjSgg7ln1_xCkr-AaaUSKqrChZvYlm6Y1mtRB8G-0APBFCKSflDL0vQttHA-BCh2Fw1napweZF-lEO32KwuA9-UrKPwUs1pH2fbx-yDbF_DCNgJb1yY4tTB_2jHAzOTxOgDbiHzmgMSlobvAYcojPdkKTlhK3rXEKNN23SsOykn8DBLtqy0oPZ-6lzdH9-dre4zK5vLq4WJ9eZYqLiGbOqEkVRELGslWKkqEWueK5szoQ2lOmC65zU1DK9rImmtrAVN8u8LLW2KZF8jg7Wc9NRz6OBoXkKY0yfgIZxXlEhSsYTdbymVAwA0dhGuWGVyhCl8w0lzXfoTQq9WYWeHIe_HH10rYzTn-zP9FfnzfQ_2Jzc3q4dX8KDmQk |
CitedBy_id | crossref_primary_10_1080_25740881_2022_2113890 crossref_primary_10_3390_app122312280 crossref_primary_10_1002_app_54432 crossref_primary_10_1142_S0219519423500677 crossref_primary_10_3390_computation12040074 crossref_primary_10_1002_adhm_202202110 |
Cites_doi | 10.1016/j.matdes.2020.108488 10.1016/S1369-7021(03)01128-3 10.1080/03008207.2019.1656720 10.1557/mrs2003.85 10.1016/j.jmbbm.2019.103517 10.1016/j.jmbbm.2020.103638 10.1002/adem.201700648 10.1186/1556-276X-6-137 10.1016/j.biomaterials.2016.01.012 10.1590/S1415-54192006000200006 10.1016/j.biomaterials.2004.01.046 10.1039/C4BM00291A 10.1155/2018/1654782 10.1016/S0928-4931(03)00052-3 10.1016/j.addma.2020.101137 10.1016/j.bioactmat.2017.10.001 10.1016/j.jmbbm.2017.11.044 10.1016/j.actbio.2011.01.018 10.1146/annurev.med.52.1.443 10.1590/S0100-40422010000600025 10.1590/S0100-40422000000400015 10.1007/s00170-019-04085-3 10.1016/j.biomaterials.2004.11.057 10.1126/science.8493529 10.1016/j.compstruct.2014.07.052 10.4103/2155-8213.136757 10.3389/fbioe.2020.00609 10.1016/j.actbio.2006.07.008 10.1002/jbm.a.31587 10.1002/jbm.a.34470 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.51245 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_51245 APP51245 |
Genre | article |
GrantInformation_xml | – fundername: CNPq |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2975-2fc7944409b8cc204893c53cf329de12d45d3081f2db80d1f4f75eb366ddf4623 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 12:13:09 EDT 2025 Tue Jul 01 01:59:43 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Wed Jan 22 16:29:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2975-2fc7944409b8cc204893c53cf329de12d45d3081f2db80d1f4f75eb366ddf4623 |
Notes | Funding information CNPq ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2961-5178 |
PQID | 2557199625 |
PQPubID | 1006379 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2557199625 crossref_citationtrail_10_1002_app_51245 crossref_primary_10_1002_app_51245 wiley_primary_10_1002_app_51245_APP51245 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-10 |
PublicationDateYYYYMMDD | 2021-09-10 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2014; 118 2010; 33 2015; 3 2000; 23 2006; 11 2020; 61 2004; 25 1993; 260 2019; 104 2020; 104 2020; 188 2020; 102 2020; 33 1991 2005; 26 2013; 101A 2011; 6 2018; 20 2011; 7 2020; 8 2018; 7 2018; 3 2018; 2018 2014; 5 2008; 85A 2000 2003; 6 2019 2003; 28 2016 2016; 83 2014 2007; 3 2018; 78 2001; 52 2003; C‐23 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Garcia A. (e_1_2_8_31_1) 2000 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Ragaert K. (e_1_2_8_19_1) 2014 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Aoki H. (e_1_2_8_24_1) 1991 Oladapo B. I. (e_1_2_8_37_1) 2018; 7 e_1_2_8_30_1 |
References_xml | – volume: 33 year: 2020 publication-title: Addit. Manuf. – volume: 52 start-page: 443 year: 2001 publication-title: Annu. Rev. Med. – start-page: 230 year: 1991 – volume: 260 start-page: 920 year: 1993 publication-title: Science – volume: 78 start-page: 381 year: 2018 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 83 start-page: 127 year: 2016 publication-title: Biomaterials – volume: 7 start-page: 461 year: 2018 publication-title: J. Basic Appl. Sci. – year: 2000 – volume: 104 year: 2020 publication-title: J. Mech. Behav. Biomed. Materials – volume: 2018 year: 2018 publication-title: Appl. Bionics Biomech. – volume: 8 start-page: 609 year: 2020 publication-title: Front. Bioeng. Biotechnol. – volume: 11 start-page: 35 year: 2006 publication-title: Rev. Dent. Press Ortodon Ortop. Facial – year: 2016 – volume: 188 year: 2020 publication-title: Mater. Des. – volume: 7 start-page: 1999 year: 2011 publication-title: Acta Biomater. – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 118 start-page: 328 year: 2014 publication-title: Compos. Struct. – volume: 61 start-page: 174 year: 2020 publication-title: Connect. Tissue Res. – volume: 101A start-page: 1670 year: 2013 publication-title: J. Biomed. Mater. Res. Part A – volume: 3 start-page: 278 year: 2018 publication-title: Bioactive Mater. – start-page: 339 year: 2014 publication-title: Polym. Mold Innovations Int. Conf. – volume: 5 start-page: 109 year: 2014 publication-title: Dent. Hypotheses – volume: 23 start-page: 518 year: 2000 publication-title: Química Nova – volume: 85A start-page: 218 year: 2008 publication-title: J. Biomed. Mater. Res. Part A – volume: 28 start-page: 301 year: 2003 publication-title: MRS Bull. – volume: 3 start-page: 231 year: 2015 publication-title: Biomater. Sci. – volume: 104 start-page: 3489 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 33 start-page: 1352 year: 2010 publication-title: Quím. Nova – volume: 25 start-page: 4955 year: 2004 publication-title: Biomaterials – volume: C‐23 start-page: 611 year: 2003 publication-title: Mater. Sci. Eng. – volume: 6 start-page: 26 year: 2003 publication-title: Mater. Today – volume: 6 start-page: 137 year: 2011 publication-title: Nanoscale Res. Lett. – volume: 102 year: 2020 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 3 start-page: 1 year: 2007 publication-title: Acta Biomater. – year: 2019 – volume: 26 start-page: 4817 year: 2005 publication-title: Biomaterials – ident: e_1_2_8_29_1 doi: 10.1016/j.matdes.2020.108488 – ident: e_1_2_8_26_1 doi: 10.1016/S1369-7021(03)01128-3 – ident: e_1_2_8_35_1 doi: 10.1080/03008207.2019.1656720 – ident: e_1_2_8_5_1 doi: 10.1557/mrs2003.85 – ident: e_1_2_8_6_1 – ident: e_1_2_8_9_1 doi: 10.1016/j.jmbbm.2019.103517 – ident: e_1_2_8_30_1 doi: 10.1016/j.jmbbm.2020.103638 – ident: e_1_2_8_16_1 doi: 10.1002/adem.201700648 – ident: e_1_2_8_33_1 doi: 10.1186/1556-276X-6-137 – ident: e_1_2_8_17_1 doi: 10.1016/j.biomaterials.2016.01.012 – ident: e_1_2_8_27_1 doi: 10.1590/S1415-54192006000200006 – start-page: 339 year: 2014 ident: e_1_2_8_19_1 publication-title: Polym. Mold Innovations Int. Conf. – ident: e_1_2_8_11_1 doi: 10.1016/j.biomaterials.2004.01.046 – ident: e_1_2_8_7_1 doi: 10.1039/C4BM00291A – ident: e_1_2_8_15_1 doi: 10.1155/2018/1654782 – start-page: 230 volume-title: Science and Medical Applications of Hydroxyapatite year: 1991 ident: e_1_2_8_24_1 – ident: e_1_2_8_13_1 doi: 10.1016/S0928-4931(03)00052-3 – ident: e_1_2_8_21_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.addma.2020.101137 – ident: e_1_2_8_3_1 doi: 10.1016/j.bioactmat.2017.10.001 – ident: e_1_2_8_8_1 doi: 10.1016/j.jmbbm.2017.11.044 – ident: e_1_2_8_10_1 doi: 10.1016/j.actbio.2011.01.018 – volume-title: Ensaios Dos Materiais year: 2000 ident: e_1_2_8_31_1 – ident: e_1_2_8_4_1 doi: 10.1146/annurev.med.52.1.443 – volume: 7 start-page: 461 year: 2018 ident: e_1_2_8_37_1 publication-title: J. Basic Appl. Sci. – ident: e_1_2_8_23_1 doi: 10.1590/S0100-40422010000600025 – ident: e_1_2_8_25_1 doi: 10.1590/S0100-40422000000400015 – ident: e_1_2_8_14_1 doi: 10.1007/s00170-019-04085-3 – ident: e_1_2_8_20_1 doi: 10.1016/j.biomaterials.2004.11.057 – ident: e_1_2_8_12_1 – ident: e_1_2_8_2_1 doi: 10.1126/science.8493529 – ident: e_1_2_8_28_1 doi: 10.1016/j.compstruct.2014.07.052 – ident: e_1_2_8_36_1 doi: 10.4103/2155-8213.136757 – ident: e_1_2_8_18_1 doi: 10.3389/fbioe.2020.00609 – ident: e_1_2_8_32_1 doi: 10.1016/j.actbio.2006.07.008 – ident: e_1_2_8_34_1 doi: 10.1002/jbm.a.31587 – ident: e_1_2_8_22_1 doi: 10.1002/jbm.a.34470 |
SSID | ssj0011506 |
Score | 2.3865376 |
Snippet | Scaffolds are implants used to accelerate bone regeneration process, being a relevant element of research in bone tissue engineering field. In this context,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amorphous materials biomaterials biomedical applications Biomedical materials Calcium phosphates Composite materials composites Compression tests Configurations Cost analysis Finite element analysis Finite element method manufacturing Materials science Mechanical properties Medical research Multidisciplinary research Polycaprolactone Polymers Regeneration (physiology) Scaffolds Stiffness Surgical implants Tissue engineering |
Title | Compression stiffness evaluation of polycaprolactone‐amorphous calcium phosphate 3D‐designed scaffolds oriented by finite element analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.51245 https://www.proquest.com/docview/2557199625 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvejBt_hmEQ-9pG12N2mDp-IDESviAzwIIfvCYmyKaQ968heIv9Ff4kwerYqCCDkkZBI2OzO734SZbwjZDaImHFY7hvHIET53HRlw6QD4iJSQgeQWC4W7Z_7xtTi58W4qZK-shcn5IcY_3NAzsvUaHTySaWNCGoptsGC3ElhgjrlaCIguxtRRCHT8PL3DdSCm8EpWoSZrjJ_8uhdNAOZnmJrtM0dz5LYcYZ5ecl8fDWVdPX8jb_znJ8yT2QJ_0k5uMAukYvqLZOYTK-ESecU1Ik-P7VNYAazF5ZBOeMFpYukgiZ9UBKOMsWFP37y_vEUPCSgtGaUU9K56owcKV-ngDtAs5QcgoLNsEaNpqiJrk1inNEGaZQC9VD5R20P8S02e0E6jgi5lmVwfHV7tHztF2wZHYZmuw6wCJxcQOMq2UkgMHHDlcWU5C7RxmRae5oBELNOy3dSuFbblQUzv-1pbAXBshVT7MPBVQgMh2y2jXQVAUSjflxB-wtMta7jhQps1UisVGKqC0xxba8RhzsbMQpjiMJviNbIzFh3kRB4_CW2WVhAWvpyGEHS1MFebwe1aps7fXxB2zs-zk_W_i26QaYZWin0pmpukOnwcmS1AOkO5TaY6B93Ty-3MtD8AY7ABew |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6c9ND20Hdo0rRZSg--yJF2V7IFuYS2xmltY0oCvgShfVFTxzKRfUhP-QWhvzG_pDN62G5JoQR0kNCsWO3M7H6zzH4D8CFOfbyc8SwXqScjEXgqFspD8JFqqWIlHB0UHgyj3pn8Mg7HDTiqz8KU_BCrDTfyjGK-JgenDenDNWso1cHC5UqGW_CAKnoXAdW3FXkUQZ2oTPAIPIwqwppXyOeHq6Z_rkZriLkJVIuVpvsUzus-lgkmP1rLhWrpn3_RN973J57BkwqCsuPSZp5Dw85ewOMNYsKXcEPTRJkhO2M4CThHMyJbU4OzzLF5Nr3SKXZzSjV7Zvb2-ld6kaHesmXOUPV6srxg-JTPvyOgZeITCpgiYcQaluvUuWxqcpYR0zLiXqaumJsQBGa2zGlnacWY8grOup9PP_a8qnKDp-mkrsedRj-XGDuqjtbEDRwLHQrtBI-NDbiRoREIRhw3quObwEnXDjGsjyJjnEREtgPbM-z4a2CxVJ22NYFGrCh1FCmMQLF121lhhTR2F5q1BhNd0ZpTdY1pUhIy8wSHOCmGeBfer0TnJZfHXUL7tRkklTvnCcZdbUrX5vi6Wejz3x9Ijkej4mbv_0UP4GHvdNBP-ifDr2_gESeTpTIV_j5sLy6X9i0Cn4V6V9j3bzwZBAI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5cBdHD-lrR9dUse_ASTbo7mQmexHHwzbAoeFgI6ReK42TYzBzck79A_I3-EqvymHFlF2Qhh4RUQqfr0V-F6q8Avsepj4cznuUi9WQkAk_FQnkIPlItVayEo43C5xfR0ZU8uQ6vJ2Cv3gtT8kOMfriRZxTxmhy8b9zumDSU2mDhaiXDTzAlI79JJt36MeKOIqQTlfUdgYdJRVjTCvl8d_Ton4vRGGG-xanFQtOeg5_1EMv6krud4UDt6N_v2Bv_8xvm4XMFQNl-aTELMGF7izD7hpZwCZ4oSJT1sT2GIcA5iodsTAzOMsf6WfdBpzjKLnXs6dmXx-f0PkOtZcOcoeL17fCe4VXev0E4y0QLBUxRLmINy3XqXNY1OcuIZxlRL1MPzN0SAGa2rGhnacWX8gWu2oeXB0de1bfB07RP1-NOo5dLzBxVU2tiBo6FDoV2gsfGBtzI0AiEIo4b1fRN4KRrhJjUR5ExTiIeW4bJHg58BVgsVbNhTaARKUodRQrzT3y64aywQhq7Ctu1AhNdkZpTb41uUtIx8wSnOCmmeBW-jUT7JZPH34TWaytIKmfOE8y6GlSszfH2dqHOf78g2e90ipOvHxfdgulOq52cHV-crsEMJ4OlHhX-OkwOfg3tBqKegdosrPsVXH4Cug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compression+stiffness+evaluation+of+polycaprolactone%E2%80%90amorphous+calcium+phosphate+3D%E2%80%90designed+scaffolds+oriented+by+finite+element+analysis&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Liu%2C+James&rft.au=Roque%2C+Renan&rft.au=Gustavo+Franco+Barbosa&rft.au=Malavolta%2C+Alexandre+T%C3%A1cito&rft.date=2021-09-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=138&rft.issue=42&rft_id=info:doi/10.1002%2Fapp.51245&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |