Patch2Vec: Globally Consistent Image Patch Representation
Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec. However, there is a signi...
Saved in:
Published in | Computer graphics forum Vol. 36; no. 7; pp. 183 - 194 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7055 1467-8659 |
DOI | 10.1111/cgf.13284 |
Cover
Abstract | Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec. However, there is a significant difference between words and patches. Words have a fairly small and well defined dictionary. Image patches, on the other hand, have no such dictionary and the number of different patch types is not well defined. The problem is aggravated by the fact that each patch might contain several objects and textures. Moreover, Patch2Vec should be universal because it must be able to map never‐seen‐before texture to the vector space. The mapping is learned by analyzing the distribution of all natural patches. We use Convolutional Neural Networks (CNN) to learn Patch2Vec. In particular, we train a CNN on labeled images with a triplet‐loss objective function. The trained network encodes a given patch to a 128D vector. Patch2Vec is evaluated visually, qualitatively, and quantitatively. We then use several variants of an interactive single‐click image segmentation algorithm to demonstrate the power of our method. |
---|---|
AbstractList | Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec . However, there is a significant difference between words and patches. Words have a fairly small and well defined dictionary. Image patches, on the other hand, have no such dictionary and the number of different patch types is not well defined. The problem is aggravated by the fact that each patch might contain several objects and textures. Moreover, Patch2Vec should be universal because it must be able to map never‐seen‐before texture to the vector space. The mapping is learned by analyzing the distribution of all natural patches. We use Convolutional Neural Networks (CNN) to learn Patch2Vec. In particular, we train a CNN on labeled images with a triplet‐loss objective function. The trained network encodes a given patch to a 128D vector. Patch2Vec is evaluated visually, qualitatively, and quantitatively. We then use several variants of an interactive single‐click image segmentation algorithm to demonstrate the power of our method. |
Author | Avidan, S. Cohen‐Or, D. Fried, O. |
Author_xml | – sequence: 1 givenname: O. surname: Fried fullname: Fried, O. organization: Princeton University – sequence: 2 givenname: S. surname: Avidan fullname: Avidan, S. organization: Tel‐Aviv University – sequence: 3 givenname: D. surname: Cohen‐Or fullname: Cohen‐Or, D. organization: Tel‐Aviv University |
BookMark | eNp9kE1Lw0AQhhepYFs9-A8Cnjyk3e_NepNga6GgiHpdNttJTUmTuptS-u9dG0-CzmWG4Xnn4x2hQdM2gNA1wRMSY-rW5YQwmvEzNCRcqjSTQg_QEJNYKyzEBRqFsMEYcyXFEOln27kP-g7uLpnXbWHr-pjkbROq0EHTJYutXUNygpIX2HkIsWu7qm0u0Xlp6wBXP3mM3mYPr_ljunyaL_L7ZeqoVjx1FoTmGli8AICtgK8yrgqJsRWgM8YkJaRUTJZa04gUjCpHsSs4l1Zbx8bopp-78-3nHkJnNu3eN3GlIVpgxpXIskjd9pTzbQgeSrPz1db6oyHYfDtjojPm5Exkp79YV_U_dd5W9X-KQ1XD8e_RJp_PesUXYDh0sQ |
CitedBy_id | crossref_primary_10_1007_s11042_022_12251_1 crossref_primary_10_1016_j_neucom_2020_02_069 crossref_primary_10_1111_cgf_14292 crossref_primary_10_1016_j_tree_2019_03_006 crossref_primary_10_1109_TVCG_2019_2949295 crossref_primary_10_1155_2023_5131440 crossref_primary_10_1109_TVCG_2023_3237739 crossref_primary_10_1007_s41095_019_0147_y crossref_primary_10_3390_electronics9091368 |
Cites_doi | 10.1109/ICCV.1999.790383 10.1109/TSMC.1979.4310076 10.1109/TPAMI.2012.120 10.1007/BF00133570 10.1007/s11263-008-0191-z 10.1109/34.761261 10.1016/0031-3203(91)90143-S 10.1109/ICCV.2015.167 10.1109/CVPR.2016.305 10.1109/CVPR.2015.7298682 10.1109/CVPR.2015.7299007 10.1109/ICCV.2013.231 10.1109/TPAMI.2004.1273918 10.1109/TPAMI.2010.161 10.1145/1882261.1866171 10.1109/CVPR.2014.461 10.1109/TPAMI.2008.168 10.1145/2508363.2508381 10.1109/ICCV.2015.22 10.1145/2508363.2508421 10.1145/2766934 10.1145/1015706.1015720 10.1109/CVPR.2015.7298594 10.1109/CVPR.2005.38 10.1109/CVPR.2003.1211534 10.1145/2980179.2980253 10.1145/1531326.1531330 10.1007/978-3-540-88693-8_3 10.1109/CVPR.2016.47 10.1007/978-3-642-33715-4_54 10.1038/290091a0 10.1007/s41095-016-0064-2 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2017 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2017 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/cgf.13284 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 194 |
ExternalDocumentID | 10_1111_cgf_13284 CGF13284 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2974-cae5949e3016ee3de4d847b600a5e98336211f736f99216eb327c20cb446a9ac3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 25 07:14:32 EDT 2025 Thu Jul 03 08:30:45 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Wed Aug 20 07:27:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2974-cae5949e3016ee3de4d847b600a5e98336211f736f99216eb327c20cb446a9ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1950347588 |
PQPubID | 30877 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1950347588 crossref_primary_10_1111_cgf_13284 crossref_citationtrail_10_1111_cgf_13284 wiley_primary_10_1111_cgf_13284_CGF13284 |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 3 2012 2004; 26 2004; 23 1998 2008 2011; 33 1995 1999; 21 2005 2008; 30 2003 2016; 17 2012; 34 2016; 35 2009; 28 1999 1988; 1 1981; 290 2013; 32 1991; 24 2010; 29 2016 2015 2014 2013 2009; 2 1979; 9 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 Žbontar J. (e_1_2_7_39_2) 2016; 17 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 Heeger D.J. (e_1_2_7_20_2) 1995 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_34_2 Bearman A. (e_1_2_7_8_2) 2016 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 |
References_xml | – start-page: 118 year: 2015 end-page: 126 – volume: 23 start-page: 309 issue: 3 year: 2004 end-page: 314 article-title: “grabcut”: interactive foreground extraction using iterated graph cuts publication-title: ACM Trans. Graph – start-page: 30 year: 2008 end-page: 44 – volume: 35 start-page: 208:1 issue: 6 year: 2016 end-page: 208:12 article-title: Shape2vec: Semantic‐based descriptors for 3d shapes, sketches and images publication-title: ACM Trans. Graph – volume: 32 start-page: 198:1 issue: 6 year: 2013 end-page: 198:10 article-title: Wysiwyg computational photography via viewfinder editing publication-title: ACM Trans. Graph – volume: 3 start-page: 3 issue: 1 year: 2017 end-page: 20 article-title: A survey of the state‐of‐the‐art in patch‐based synthesis publication-title: Computational Visual Media – volume: 32 start-page: 196:1 issue: 6 year: 2013 end-page: 196:12 article-title: Patchnet: A patch‐based image representation for interactive library‐driven image editing publication-title: ACM Trans. Graph – volume: 290 start-page: 91 issue: 5802 year: 1981 end-page: 97 article-title: Textons, the elements of texture perception, and their interactions publication-title: Nature – start-page: 3828 year: 2015 end-page: 3836 – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2282 article-title: SLIC superpixels compared to state‐of‐the‐art super‐pixel methods publication-title: TPAMI – start-page: 1033 year: 1999 end-page: 1038 – volume: 2 start-page: 113 year: 2009 end-page: 132 article-title: Geodesic matting: A framework for fast interactive image and video segmentation and matting publication-title: IJCV 82 – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Tran. on Sys., Man, and Cyb – volume: 21 start-page: 291 issue: 4 year: 1999 end-page: 310 article-title: Filtering for texture classification: a comparative study publication-title: TPAMI – year: 2016 – start-page: 746 year: 2013 end-page: 751 – start-page: 641 year: 1998 end-page: 647 – year: 2012 – start-page: 815 year: 2015 end-page: 823 – volume: 1 start-page: 321 issue: 4 year: 1988 end-page: 331 article-title: Snakes: Active contour models publication-title: IJCV – start-page: 549 year: 2016 end-page: 565 – start-page: 1 year: 2015 end-page: 9 – start-page: 373 year: 2016 end-page: 381 – volume: 30 start-page: 1699 issue: 10 year: 2008 end-page: 1712 article-title: Spectral matting publication-title: TPAMI – start-page: 229 year: 1995 end-page: 238 – start-page: 691 year: 2003 end-page: 698 – start-page: 3606 year: 2014 end-page: 3613 – volume: 17 start-page: 2287 issue: 1 year: 2016 end-page: 2318 article-title: Stereo matching by training a convolutional neural network to compare image patches publication-title: J. Mach. Learn. Res – volume: 26 start-page: 530 issue: 5 year: 2004 end-page: 549 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: TPAMI – volume: 29 start-page: 145:1 issue: 6 year: 2010 end-page: 145:10 article-title: Diffusion maps for edge‐aware image editing publication-title: ACM Trans. Graph – volume: 24 start-page: 1167 issue: 12 year: 1991 end-page: 1186 article-title: Unsupervised texture segmentation using gabor filters publication-title: Pattern Recogn – volume: 33 start-page: 898 issue: 5 year: 2011 end-page: 916 article-title: Contour detection and hierarchical image segmentation publication-title: TPAMI – start-page: 60 year: 2005 end-page: 65 – year: 2015 – volume: 28 issue: 3 year: 2009 article-title: PatchMatch: A randomized correspondence algorithm for structural image editing publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – year: 2013 – ident: e_1_2_7_2_2 – start-page: 549 volume-title: What's the Point: Semantic Segmentation with Point Supervision year: 2016 ident: e_1_2_7_8_2 – ident: e_1_2_7_18_2 doi: 10.1109/ICCV.1999.790383 – start-page: 229 volume-title: Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques year: 1995 ident: e_1_2_7_20_2 – ident: e_1_2_7_32_2 doi: 10.1109/TSMC.1979.4310076 – ident: e_1_2_7_4_2 doi: 10.1109/TPAMI.2012.120 – ident: e_1_2_7_24_2 doi: 10.1007/BF00133570 – ident: e_1_2_7_30_2 – ident: e_1_2_7_9_2 doi: 10.1007/s11263-008-0191-z – ident: e_1_2_7_33_2 doi: 10.1109/34.761261 – ident: e_1_2_7_27_2 – ident: e_1_2_7_22_2 doi: 10.1016/0031-3203(91)90143-S – ident: e_1_2_7_16_2 doi: 10.1109/ICCV.2015.167 – ident: e_1_2_7_25_2 doi: 10.1109/CVPR.2016.305 – ident: e_1_2_7_35_2 doi: 10.1109/CVPR.2015.7298682 – ident: e_1_2_7_15_2 doi: 10.1109/CVPR.2015.7299007 – ident: e_1_2_7_17_2 doi: 10.1109/ICCV.2013.231 – ident: e_1_2_7_29_2 doi: 10.1109/TPAMI.2004.1273918 – ident: e_1_2_7_3_2 doi: 10.1109/TPAMI.2010.161 – ident: e_1_2_7_19_2 doi: 10.1145/1882261.1866171 – ident: e_1_2_7_14_2 doi: 10.1109/CVPR.2014.461 – ident: e_1_2_7_26_2 doi: 10.1109/TPAMI.2008.168 – ident: e_1_2_7_21_2 doi: 10.1145/2508363.2508381 – ident: e_1_2_7_37_2 doi: 10.1109/ICCV.2015.22 – ident: e_1_2_7_7_2 doi: 10.1145/2508363.2508421 – ident: e_1_2_7_13_2 doi: 10.1145/2766934 – ident: e_1_2_7_34_2 doi: 10.1145/1015706.1015720 – volume: 17 start-page: 2287 issue: 1 year: 2016 ident: e_1_2_7_39_2 article-title: Stereo matching by training a convolutional neural network to compare image patches publication-title: J. Mach. Learn. Res – ident: e_1_2_7_36_2 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_7_6_2 doi: 10.1109/CVPR.2005.38 – ident: e_1_2_7_40_2 doi: 10.1109/CVPR.2003.1211534 – ident: e_1_2_7_38_2 doi: 10.1145/2980179.2980253 – ident: e_1_2_7_10_2 doi: 10.1145/1531326.1531330 – ident: e_1_2_7_11_2 – ident: e_1_2_7_5_2 doi: 10.1007/978-3-540-88693-8_3 – ident: e_1_2_7_41_2 doi: 10.1109/CVPR.2016.47 – ident: e_1_2_7_31_2 doi: 10.1007/978-3-642-33715-4_54 – ident: e_1_2_7_23_2 doi: 10.1038/290091a0 – ident: e_1_2_7_12_2 doi: 10.1007/s41095-016-0064-2 – ident: e_1_2_7_28_2 |
SSID | ssj0004765 |
Score | 2.2967842 |
Snippet | Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | Artificial neural networks Categories and Subject Descriptors (according to ACM CCS) Dictionaries Euclidean geometry I.4.10 [Image Processing and Computer Vision]: Image Representation—Multidimensional Image segmentation Neural networks Patches (structures) Vector space |
Title | Patch2Vec: Globally Consistent Image Patch Representation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13284 https://www.proquest.com/docview/1950347588 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ409aIH38ZqbYjx4IVGFlhYPfUhVg_GNNb0YEJ2t4smVjSWHvTXO7tAW40mxhuHYYFhHt_A7DcAR1IIHxNHYieBTGxPcIyD2paFYpQQ_WtHmm6La9obeFdDf1iBs3IvTM4PMfvgpj3DxGvt4FxMFpxcPiRNLKVCzQXquFTz5nf7c-ooL6B-yeutGWMKViHdxTM782sumgPMRZhq8ky0BvflHebtJU_NaSaa8uMbeeM_H2EdVgv8abVyg9mAiko3YWWBlXAL2A2G50dyp-SplY8EGL9bZrAnWkSaWZfPGIMsI2T1TSNtsX8p3YZBdH7b6dnFhAVbEiwkbMmVzzym0MupUu5IeSPMVgJBEPcVC13Mbo6TBC5NGCMoIlwSSHIiBRaRnHHp7kA1fUnVLlg-E6FelEqGKJFjpSTIKORUIh5zRjKowXGp61gW9ON6CsY4LssQ1EZstFGDw5noa8658ZNQvXxhceF2k1jPtHU9LIFCvJzR_O8LxJ2LyBzs_V10H5aJTuumma8O1extqg4QlGSiAUutdrcdNYwVfgIq0dv_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7UelAPvo3VqsR48EIjy_JY48VUa6u1MU1rejGEXRZNrGiUHvTXO7tAW40mxhuHYYFhHt8swzcAB4JzBxNHbMaeiE3KQ4yDypa5ZC4h6tOO0N0WHbfZp5cDZ1CCk-JfmIwfYrzhpjxDx2vl4GpDesrLxX1cw1rKpzMwSxFoqNLrrDshj6Ke6xTM3oozJucVUn0841O_ZqMJxJwGqjrTNJbgrrjHrMHksTZKeU18fKNv_O9DLMNiDkGN08xmVqAkk1VYmCImXAN2gxH6gdxKcWxkUwGG74ae7YlGkaRG6wnDkKGFjK7upc1_YUrWod8479WbZj5kwRQEawlThNJhlEl0dFdKO5I0woTFEQeFjmS-jQnOsmLPdmPGCIpwm3iCHAmOdWTIQmFvQDl5TuQmGA7jvlrUFQyBYojFEieRH7oCIZkVCa8Ch4WyA5EzkKtBGMOgqERQG4HWRgX2x6IvGe3GT0LV4o0Fuee9BWqsrU2xCvLxclr1vy8Q1C8a-mDr76J7MNfsXbeDdqtztQ3zRGV53dtXhXL6OpI7iFFSvqtN8RMTNd6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1itGsSDlxS72WyyepJqbVVKKVZ6EEJ2s1GwxqLpQX-9s5ukraIg3nKYbJLJPL5JZr8BOJRCuJg4Yjv2ZGxTEWIc1LYsFGeE6F870nRbtFmzR6_6bn8GTou9MBk_xPiDm_YME6-1gw-jeMrJ5UNcxVLKp7MwRxkiCY2IuhPuKOoxtyD21pQxOa2QbuMZn_o1GU0Q5jRONYmmsQz3xS1m_SVP1VEqqvLjG3vjP59hBZZyAGqdZRazCjMqWYPFKVrCdeAdjM-P5E7JEyubCTB4t8xkTzSJJLVazxiELCNkdU0nbb6BKdmAXuPitt608xELtiRYSdgyVC6nXKGbM6WcSNEI05VAFBS6ivsOprdaLfYcFnNOUEQ4xJPkWAqsIkMeSmcTSslLorbAcrnw9aJMcoSJIZZKgkR-yCQCslokvTIcFboOZM4_rsdgDIKiDkFtBEYbZTgYiw4z0o2fhCrFCwtyv3sL9FBbh2IN5OPljOZ_XyCoXzbMwfbfRfdhvnPeCG5a7esdWCA6xZvGvgqU0teR2kWAkoo9Y4ifkNDdWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patch2Vec%3A+Globally+Consistent+Image+Patch+Representation&rft.jtitle=Computer+graphics+forum&rft.au=Fried%2C+O.&rft.au=Avidan%2C+S.&rft.au=Cohen%E2%80%90Or%2C+D.&rft.date=2017-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=7&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1111%2Fcgf.13284&rft.externalDBID=10.1111%252Fcgf.13284&rft.externalDocID=CGF13284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |