Patch2Vec: Globally Consistent Image Patch Representation

Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec. However, there is a signi...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 7; pp. 183 - 194
Main Authors Fried, O., Avidan, S., Cohen‐Or, D.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2017
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.13284

Cover

Abstract Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec. However, there is a significant difference between words and patches. Words have a fairly small and well defined dictionary. Image patches, on the other hand, have no such dictionary and the number of different patch types is not well defined. The problem is aggravated by the fact that each patch might contain several objects and textures. Moreover, Patch2Vec should be universal because it must be able to map never‐seen‐before texture to the vector space. The mapping is learned by analyzing the distribution of all natural patches. We use Convolutional Neural Networks (CNN) to learn Patch2Vec. In particular, we train a CNN on labeled images with a triplet‐loss objective function. The trained network encodes a given patch to a 128D vector. Patch2Vec is evaluated visually, qualitatively, and quantitatively. We then use several variants of an interactive single‐click image segmentation algorithm to demonstrate the power of our method.
AbstractList Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term our approach Patch2Vec . However, there is a significant difference between words and patches. Words have a fairly small and well defined dictionary. Image patches, on the other hand, have no such dictionary and the number of different patch types is not well defined. The problem is aggravated by the fact that each patch might contain several objects and textures. Moreover, Patch2Vec should be universal because it must be able to map never‐seen‐before texture to the vector space. The mapping is learned by analyzing the distribution of all natural patches. We use Convolutional Neural Networks (CNN) to learn Patch2Vec. In particular, we train a CNN on labeled images with a triplet‐loss objective function. The trained network encodes a given patch to a 128D vector. Patch2Vec is evaluated visually, qualitatively, and quantitatively. We then use several variants of an interactive single‐click image segmentation algorithm to demonstrate the power of our method.
Author Avidan, S.
Cohen‐Or, D.
Fried, O.
Author_xml – sequence: 1
  givenname: O.
  surname: Fried
  fullname: Fried, O.
  organization: Princeton University
– sequence: 2
  givenname: S.
  surname: Avidan
  fullname: Avidan, S.
  organization: Tel‐Aviv University
– sequence: 3
  givenname: D.
  surname: Cohen‐Or
  fullname: Cohen‐Or, D.
  organization: Tel‐Aviv University
BookMark eNp9kE1Lw0AQhhepYFs9-A8Cnjyk3e_NepNga6GgiHpdNttJTUmTuptS-u9dG0-CzmWG4Xnn4x2hQdM2gNA1wRMSY-rW5YQwmvEzNCRcqjSTQg_QEJNYKyzEBRqFsMEYcyXFEOln27kP-g7uLpnXbWHr-pjkbROq0EHTJYutXUNygpIX2HkIsWu7qm0u0Xlp6wBXP3mM3mYPr_ljunyaL_L7ZeqoVjx1FoTmGli8AICtgK8yrgqJsRWgM8YkJaRUTJZa04gUjCpHsSs4l1Zbx8bopp-78-3nHkJnNu3eN3GlIVpgxpXIskjd9pTzbQgeSrPz1db6oyHYfDtjojPm5Exkp79YV_U_dd5W9X-KQ1XD8e_RJp_PesUXYDh0sQ
CitedBy_id crossref_primary_10_1007_s11042_022_12251_1
crossref_primary_10_1016_j_neucom_2020_02_069
crossref_primary_10_1111_cgf_14292
crossref_primary_10_1016_j_tree_2019_03_006
crossref_primary_10_1109_TVCG_2019_2949295
crossref_primary_10_1155_2023_5131440
crossref_primary_10_1109_TVCG_2023_3237739
crossref_primary_10_1007_s41095_019_0147_y
crossref_primary_10_3390_electronics9091368
Cites_doi 10.1109/ICCV.1999.790383
10.1109/TSMC.1979.4310076
10.1109/TPAMI.2012.120
10.1007/BF00133570
10.1007/s11263-008-0191-z
10.1109/34.761261
10.1016/0031-3203(91)90143-S
10.1109/ICCV.2015.167
10.1109/CVPR.2016.305
10.1109/CVPR.2015.7298682
10.1109/CVPR.2015.7299007
10.1109/ICCV.2013.231
10.1109/TPAMI.2004.1273918
10.1109/TPAMI.2010.161
10.1145/1882261.1866171
10.1109/CVPR.2014.461
10.1109/TPAMI.2008.168
10.1145/2508363.2508381
10.1109/ICCV.2015.22
10.1145/2508363.2508421
10.1145/2766934
10.1145/1015706.1015720
10.1109/CVPR.2015.7298594
10.1109/CVPR.2005.38
10.1109/CVPR.2003.1211534
10.1145/2980179.2980253
10.1145/1531326.1531330
10.1007/978-3-540-88693-8_3
10.1109/CVPR.2016.47
10.1007/978-3-642-33715-4_54
10.1038/290091a0
10.1007/s41095-016-0064-2
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13284
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 194
ExternalDocumentID 10_1111_cgf_13284
CGF13284
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2974-cae5949e3016ee3de4d847b600a5e98336211f736f99216eb327c20cb446a9ac3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 25 07:14:32 EDT 2025
Thu Jul 03 08:30:45 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Wed Aug 20 07:27:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2974-cae5949e3016ee3de4d847b600a5e98336211f736f99216eb327c20cb446a9ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1950347588
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_1950347588
crossref_primary_10_1111_cgf_13284
crossref_citationtrail_10_1111_cgf_13284
wiley_primary_10_1111_cgf_13284_CGF13284
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 3
2012
2004; 26
2004; 23
1998
2008
2011; 33
1995
1999; 21
2005
2008; 30
2003
2016; 17
2012; 34
2016; 35
2009; 28
1999
1988; 1
1981; 290
2013; 32
1991; 24
2010; 29
2016
2015
2014
2013
2009; 2
1979; 9
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Žbontar J. (e_1_2_7_39_2) 2016; 17
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
Heeger D.J. (e_1_2_7_20_2) 1995
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_34_2
Bearman A. (e_1_2_7_8_2) 2016
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
References_xml – start-page: 118
  year: 2015
  end-page: 126
– volume: 23
  start-page: 309
  issue: 3
  year: 2004
  end-page: 314
  article-title: “grabcut”: interactive foreground extraction using iterated graph cuts
  publication-title: ACM Trans. Graph
– start-page: 30
  year: 2008
  end-page: 44
– volume: 35
  start-page: 208:1
  issue: 6
  year: 2016
  end-page: 208:12
  article-title: Shape2vec: Semantic‐based descriptors for 3d shapes, sketches and images
  publication-title: ACM Trans. Graph
– volume: 32
  start-page: 198:1
  issue: 6
  year: 2013
  end-page: 198:10
  article-title: Wysiwyg computational photography via viewfinder editing
  publication-title: ACM Trans. Graph
– volume: 3
  start-page: 3
  issue: 1
  year: 2017
  end-page: 20
  article-title: A survey of the state‐of‐the‐art in patch‐based synthesis
  publication-title: Computational Visual Media
– volume: 32
  start-page: 196:1
  issue: 6
  year: 2013
  end-page: 196:12
  article-title: Patchnet: A patch‐based image representation for interactive library‐driven image editing
  publication-title: ACM Trans. Graph
– volume: 290
  start-page: 91
  issue: 5802
  year: 1981
  end-page: 97
  article-title: Textons, the elements of texture perception, and their interactions
  publication-title: Nature
– start-page: 3828
  year: 2015
  end-page: 3836
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  end-page: 2282
  article-title: SLIC superpixels compared to state‐of‐the‐art super‐pixel methods
  publication-title: TPAMI
– start-page: 1033
  year: 1999
  end-page: 1038
– volume: 2
  start-page: 113
  year: 2009
  end-page: 132
  article-title: Geodesic matting: A framework for fast interactive image and video segmentation and matting
  publication-title: IJCV 82
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Tran. on Sys., Man, and Cyb
– volume: 21
  start-page: 291
  issue: 4
  year: 1999
  end-page: 310
  article-title: Filtering for texture classification: a comparative study
  publication-title: TPAMI
– year: 2016
– start-page: 746
  year: 2013
  end-page: 751
– start-page: 641
  year: 1998
  end-page: 647
– year: 2012
– start-page: 815
  year: 2015
  end-page: 823
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  end-page: 331
  article-title: Snakes: Active contour models
  publication-title: IJCV
– start-page: 549
  year: 2016
  end-page: 565
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 373
  year: 2016
  end-page: 381
– volume: 30
  start-page: 1699
  issue: 10
  year: 2008
  end-page: 1712
  article-title: Spectral matting
  publication-title: TPAMI
– start-page: 229
  year: 1995
  end-page: 238
– start-page: 691
  year: 2003
  end-page: 698
– start-page: 3606
  year: 2014
  end-page: 3613
– volume: 17
  start-page: 2287
  issue: 1
  year: 2016
  end-page: 2318
  article-title: Stereo matching by training a convolutional neural network to compare image patches
  publication-title: J. Mach. Learn. Res
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  end-page: 549
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: TPAMI
– volume: 29
  start-page: 145:1
  issue: 6
  year: 2010
  end-page: 145:10
  article-title: Diffusion maps for edge‐aware image editing
  publication-title: ACM Trans. Graph
– volume: 24
  start-page: 1167
  issue: 12
  year: 1991
  end-page: 1186
  article-title: Unsupervised texture segmentation using gabor filters
  publication-title: Pattern Recogn
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  end-page: 916
  article-title: Contour detection and hierarchical image segmentation
  publication-title: TPAMI
– start-page: 60
  year: 2005
  end-page: 65
– year: 2015
– volume: 28
  issue: 3
  year: 2009
  article-title: PatchMatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– year: 2013
– ident: e_1_2_7_2_2
– start-page: 549
  volume-title: What's the Point: Semantic Segmentation with Point Supervision
  year: 2016
  ident: e_1_2_7_8_2
– ident: e_1_2_7_18_2
  doi: 10.1109/ICCV.1999.790383
– start-page: 229
  volume-title: Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques
  year: 1995
  ident: e_1_2_7_20_2
– ident: e_1_2_7_32_2
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_7_4_2
  doi: 10.1109/TPAMI.2012.120
– ident: e_1_2_7_24_2
  doi: 10.1007/BF00133570
– ident: e_1_2_7_30_2
– ident: e_1_2_7_9_2
  doi: 10.1007/s11263-008-0191-z
– ident: e_1_2_7_33_2
  doi: 10.1109/34.761261
– ident: e_1_2_7_27_2
– ident: e_1_2_7_22_2
  doi: 10.1016/0031-3203(91)90143-S
– ident: e_1_2_7_16_2
  doi: 10.1109/ICCV.2015.167
– ident: e_1_2_7_25_2
  doi: 10.1109/CVPR.2016.305
– ident: e_1_2_7_35_2
  doi: 10.1109/CVPR.2015.7298682
– ident: e_1_2_7_15_2
  doi: 10.1109/CVPR.2015.7299007
– ident: e_1_2_7_17_2
  doi: 10.1109/ICCV.2013.231
– ident: e_1_2_7_29_2
  doi: 10.1109/TPAMI.2004.1273918
– ident: e_1_2_7_3_2
  doi: 10.1109/TPAMI.2010.161
– ident: e_1_2_7_19_2
  doi: 10.1145/1882261.1866171
– ident: e_1_2_7_14_2
  doi: 10.1109/CVPR.2014.461
– ident: e_1_2_7_26_2
  doi: 10.1109/TPAMI.2008.168
– ident: e_1_2_7_21_2
  doi: 10.1145/2508363.2508381
– ident: e_1_2_7_37_2
  doi: 10.1109/ICCV.2015.22
– ident: e_1_2_7_7_2
  doi: 10.1145/2508363.2508421
– ident: e_1_2_7_13_2
  doi: 10.1145/2766934
– ident: e_1_2_7_34_2
  doi: 10.1145/1015706.1015720
– volume: 17
  start-page: 2287
  issue: 1
  year: 2016
  ident: e_1_2_7_39_2
  article-title: Stereo matching by training a convolutional neural network to compare image patches
  publication-title: J. Mach. Learn. Res
– ident: e_1_2_7_36_2
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_7_6_2
  doi: 10.1109/CVPR.2005.38
– ident: e_1_2_7_40_2
  doi: 10.1109/CVPR.2003.1211534
– ident: e_1_2_7_38_2
  doi: 10.1145/2980179.2980253
– ident: e_1_2_7_10_2
  doi: 10.1145/1531326.1531330
– ident: e_1_2_7_11_2
– ident: e_1_2_7_5_2
  doi: 10.1007/978-3-540-88693-8_3
– ident: e_1_2_7_41_2
  doi: 10.1109/CVPR.2016.47
– ident: e_1_2_7_31_2
  doi: 10.1007/978-3-642-33715-4_54
– ident: e_1_2_7_23_2
  doi: 10.1038/290091a0
– ident: e_1_2_7_12_2
  doi: 10.1007/s41095-016-0064-2
– ident: e_1_2_7_28_2
SSID ssj0004765
Score 2.2967842
Snippet Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches by embedding them to a vector...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Artificial neural networks
Categories and Subject Descriptors (according to ACM CCS)
Dictionaries
Euclidean geometry
I.4.10 [Image Processing and Computer Vision]: Image Representation—Multidimensional
Image segmentation
Neural networks
Patches (structures)
Vector space
Title Patch2Vec: Globally Consistent Image Patch Representation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13284
https://www.proquest.com/docview/1950347588
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ409aIH38ZqbYjx4IVGFlhYPfUhVg_GNNb0YEJ2t4smVjSWHvTXO7tAW40mxhuHYYFhHt_A7DcAR1IIHxNHYieBTGxPcIyD2paFYpQQ_WtHmm6La9obeFdDf1iBs3IvTM4PMfvgpj3DxGvt4FxMFpxcPiRNLKVCzQXquFTz5nf7c-ooL6B-yeutGWMKViHdxTM782sumgPMRZhq8ky0BvflHebtJU_NaSaa8uMbeeM_H2EdVgv8abVyg9mAiko3YWWBlXAL2A2G50dyp-SplY8EGL9bZrAnWkSaWZfPGIMsI2T1TSNtsX8p3YZBdH7b6dnFhAVbEiwkbMmVzzym0MupUu5IeSPMVgJBEPcVC13Mbo6TBC5NGCMoIlwSSHIiBRaRnHHp7kA1fUnVLlg-E6FelEqGKJFjpSTIKORUIh5zRjKowXGp61gW9ON6CsY4LssQ1EZstFGDw5noa8658ZNQvXxhceF2k1jPtHU9LIFCvJzR_O8LxJ2LyBzs_V10H5aJTuumma8O1extqg4QlGSiAUutdrcdNYwVfgIq0dv_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7UelAPvo3VqsR48EIjy_JY48VUa6u1MU1rejGEXRZNrGiUHvTXO7tAW40mxhuHYYFhHt8swzcAB4JzBxNHbMaeiE3KQ4yDypa5ZC4h6tOO0N0WHbfZp5cDZ1CCk-JfmIwfYrzhpjxDx2vl4GpDesrLxX1cw1rKpzMwSxFoqNLrrDshj6Ke6xTM3oozJucVUn0841O_ZqMJxJwGqjrTNJbgrrjHrMHksTZKeU18fKNv_O9DLMNiDkGN08xmVqAkk1VYmCImXAN2gxH6gdxKcWxkUwGG74ae7YlGkaRG6wnDkKGFjK7upc1_YUrWod8479WbZj5kwRQEawlThNJhlEl0dFdKO5I0woTFEQeFjmS-jQnOsmLPdmPGCIpwm3iCHAmOdWTIQmFvQDl5TuQmGA7jvlrUFQyBYojFEieRH7oCIZkVCa8Ch4WyA5EzkKtBGMOgqERQG4HWRgX2x6IvGe3GT0LV4o0Fuee9BWqsrU2xCvLxclr1vy8Q1C8a-mDr76J7MNfsXbeDdqtztQ3zRGV53dtXhXL6OpI7iFFSvqtN8RMTNd6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1itGsSDlxS72WyyepJqbVVKKVZ6EEJ2s1GwxqLpQX-9s5ukraIg3nKYbJLJPL5JZr8BOJRCuJg4Yjv2ZGxTEWIc1LYsFGeE6F870nRbtFmzR6_6bn8GTou9MBk_xPiDm_YME6-1gw-jeMrJ5UNcxVLKp7MwRxkiCY2IuhPuKOoxtyD21pQxOa2QbuMZn_o1GU0Q5jRONYmmsQz3xS1m_SVP1VEqqvLjG3vjP59hBZZyAGqdZRazCjMqWYPFKVrCdeAdjM-P5E7JEyubCTB4t8xkTzSJJLVazxiELCNkdU0nbb6BKdmAXuPitt608xELtiRYSdgyVC6nXKGbM6WcSNEI05VAFBS6ivsOprdaLfYcFnNOUEQ4xJPkWAqsIkMeSmcTSslLorbAcrnw9aJMcoSJIZZKgkR-yCQCslokvTIcFboOZM4_rsdgDIKiDkFtBEYbZTgYiw4z0o2fhCrFCwtyv3sL9FBbh2IN5OPljOZ_XyCoXzbMwfbfRfdhvnPeCG5a7esdWCA6xZvGvgqU0teR2kWAkoo9Y4ifkNDdWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patch2Vec%3A+Globally+Consistent+Image+Patch+Representation&rft.jtitle=Computer+graphics+forum&rft.au=Fried%2C+O.&rft.au=Avidan%2C+S.&rft.au=Cohen%E2%80%90Or%2C+D.&rft.date=2017-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=7&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1111%2Fcgf.13284&rft.externalDBID=10.1111%252Fcgf.13284&rft.externalDocID=CGF13284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon