Research on double‐USVs fuzzy‐priority NSB behavior fusion formation control method for oil spill recovery
Replacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies the formation control method of dual USVs during the process of capturing oil spill, based on the engineering background of towing oil boom...
Saved in:
Published in | Journal of field robotics Vol. 42; no. 1; pp. 302 - 326 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22404 |
Cover
Abstract | Replacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies the formation control method of dual USVs during the process of capturing oil spill, based on the engineering background of towing oil boom by dual USVs oil spill recovery system. To calculate the drag force of the oil boom acting on the USV, the shape of the oil boom is simplified into a catenary, the oil boom is modeled, and the hydrodynamic numerical simulation is carried out. To address the issue of “winding” phenomenon and “towing separation,” the formation behavior is designed when double USVs are towing oil fences to capture oil spill. In response to the problem of low task execution efficiency caused by fixed behavior priority in traditional null‐space‐based (NSB) behavior fusion methods, a fuzzy‐priority NSB (FNSB) behavior fusion formation method is proposed by combining fuzzy control with NSB behavior fusion method. In the FNSB behavior fusion formation control method, a smooth transition rule is introduced to make the behavior priority change, USVs can still maintain good formation performance, ensuring the smooth execution of oil spill recovery tasks. Simulation shows that FNSB behavior fusion formation method based on flexible transition rules can improve the rounding efficiency by 26.6% in the environment without obstacles and 37.2% in the environment with multiple obstacles compared with the NSB method. The effectiveness and practicality of this method have been verified through simulation experiments and field experiments on the “Dolphin” series of small USVs. |
---|---|
AbstractList | Replacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies the formation control method of dual USVs during the process of capturing oil spill, based on the engineering background of towing oil boom by dual USVs oil spill recovery system. To calculate the drag force of the oil boom acting on the USV, the shape of the oil boom is simplified into a catenary, the oil boom is modeled, and the hydrodynamic numerical simulation is carried out. To address the issue of “winding” phenomenon and “towing separation,” the formation behavior is designed when double USVs are towing oil fences to capture oil spill. In response to the problem of low task execution efficiency caused by fixed behavior priority in traditional null‐space‐based (NSB) behavior fusion methods, a fuzzy‐priority NSB (FNSB) behavior fusion formation method is proposed by combining fuzzy control with NSB behavior fusion method. In the FNSB behavior fusion formation control method, a smooth transition rule is introduced to make the behavior priority change, USVs can still maintain good formation performance, ensuring the smooth execution of oil spill recovery tasks. Simulation shows that FNSB behavior fusion formation method based on flexible transition rules can improve the rounding efficiency by 26.6% in the environment without obstacles and 37.2% in the environment with multiple obstacles compared with the NSB method. The effectiveness and practicality of this method have been verified through simulation experiments and field experiments on the “Dolphin” series of small USVs. Replacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies the formation control method of dual USVs during the process of capturing oil spill, based on the engineering background of towing oil boom by dual USVs oil spill recovery system. To calculate the drag force of the oil boom acting on the USV, the shape of the oil boom is simplified into a catenary, the oil boom is modeled, and the hydrodynamic numerical simulation is carried out. To address the issue of “winding” phenomenon and “towing separation,” the formation behavior is designed when double USVs are towing oil fences to capture oil spill. In response to the problem of low task execution efficiency caused by fixed behavior priority in traditional null‐space‐based (NSB) behavior fusion methods, a fuzzy‐priority NSB (FNSB) behavior fusion formation method is proposed by combining fuzzy control with NSB behavior fusion method. In the FNSB behavior fusion formation control method, a smooth transition rule is introduced to make the behavior priority change, USVs can still maintain good formation performance, ensuring the smooth execution of oil spill recovery tasks. Simulation shows that FNSB behavior fusion formation method based on flexible transition rules can improve the rounding efficiency by 26.6% in the environment without obstacles and 37.2% in the environment with multiple obstacles compared with the NSB method. The effectiveness and practicality of this method have been verified through simulation experiments and field experiments on the “Dolphin” series of small USVs. |
Author | Tang, Xiaoyu Li, Ye Sun, Jiaqi Li, Haohan Wang, Bo Zhai, Zizheng Pang, Shuo Liao, Yulei Gu, Junlin Chen, Congcong Ren, Zijia |
Author_xml | – sequence: 1 givenname: Congcong surname: Chen fullname: Chen, Congcong organization: Southeast University – sequence: 2 givenname: Yulei surname: Liao fullname: Liao, Yulei email: liaoyulei@hrbeu.edu.cn organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 3 givenname: Xiaoyu surname: Tang fullname: Tang, Xiaoyu organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 4 givenname: Jiaqi surname: Sun fullname: Sun, Jiaqi organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 5 givenname: Junlin surname: Gu fullname: Gu, Junlin organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 6 givenname: Haohan surname: Li fullname: Li, Haohan organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 7 givenname: Zijia surname: Ren fullname: Ren, Zijia organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 8 givenname: Zizheng surname: Zhai fullname: Zhai, Zizheng organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 9 givenname: Ye surname: Li fullname: Li, Ye organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 10 givenname: Bo orcidid: 0000-0002-1485-5873 surname: Wang fullname: Wang, Bo organization: Sanya Nanhai Innovation and Development Base of Harbin Engineering University – sequence: 11 givenname: Shuo surname: Pang fullname: Pang, Shuo organization: Embry‐Riddle Aeronautical University |
BookMark | eNp1UMtKAzEUDVLBWl34BwFXLqZNZjKPLG3xBcVCa90OmUxCU9JJTWYq05Wf4Df6JaYPXIiu7j2cx-Wec9CpTCUAuMKojxEKB9YU_TAkiJyALo7jJCA0STs_e0zPwLlzS4RIlNG4C6qpcIJZvoCmgqVpCi2-Pj7ns1cHZbPdth6srTJW1S18ng1hIRZs47FnnfIWaeyK1buNm6q2RsOVqBem3BHQKA3dWmkNreBmI2x7AU4l005cHmcPzO_vXkaPwXjy8DS6HQc8pCkJKGZlJpIsy5BERUISEsY4LZAsPItLyVIeizBKM4lSImlJKJdcFowXMkGR_60Hrg-5a2veGuHqfGkaW_mTeYQJjmIao8SrBgcVt8Y5K2TOVb3_prZM6RyjfFdq7kvN96V6x80vh29nxWz7p_aY_q60aP8X5tPJ8OD4Bj4cjB4 |
CitedBy_id | crossref_primary_10_3390_jmse13030480 |
Cites_doi | 10.1109/TCST.2016.2549279 10.1007/s11804-024-00437-y 10.1007/s11370-011-0104-9 10.1016/j.ifacol.2018.07.281 10.20016/j.cnki.hykfygl.2020.12.009 10.1016/j.oceaneng.2014.11.034 10.1109/ICUAS.2019.8798031 10.1007/978-3-642-13408-1_40 10.1109/TAC.2009.2031202 10.1109/ACCESS.2019.2925466 10.1109/TSMC.2022.3162862 10.1109/OCEANSE.2005.1513234 10.1002/rob.22148 10.1109/TSMC.2022.3184811 10.1109/TMECH.2014.2326304 10.16183/j.cnki.jsjtu.2020.03.009 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22404 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 326 |
ExternalDocumentID | 10_1002_rob_22404 ROB22404 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Key Research and Development Program of Heilongjiang Province funderid: 2022ZX01A05 – fundername: Stable Supporting Fund of National Key Laboratory of Autonomous Marine Vehicle Technology funderid: 2024‐HYHXQ‐WDZC01 – fundername: National Natural Science Foundation of China funderid: 52071097 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2974-91ad8e68880f0b64642517b0fb9741dfa7c5e2378f074f9d49cfcfbacbf603043 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 08:51:41 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 04:33:54 EDT 2025 Wed Jan 22 17:12:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2974-91ad8e68880f0b64642517b0fb9741dfa7c5e2378f074f9d49cfcfbacbf603043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1485-5873 |
PQID | 3141359506 |
PQPubID | 1006410 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3141359506 crossref_citationtrail_10_1002_rob_22404 crossref_primary_10_1002_rob_22404 wiley_primary_10_1002_rob_22404_ROB22404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 53 2019; 7 2009; 54 2023 2012 2017; 25 2021 2015; 95 2020 2015; 20 2019 2008 2010a; 29 2010b 2020; 37 2017 2018; 51 2005; 2 2024 2020; 54 2012; 5 2022; 39 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Jiang W. (e_1_2_7_13_1) 2020 e_1_2_7_8_1 e_1_2_7_7_1 Chen C. (e_1_2_7_6_1) 2023 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 Liao Y. (e_1_2_7_16_1) 2012 e_1_2_7_20_1 Fan J. (e_1_2_7_9_1) 2021 Li Y. (e_1_2_7_15_1) 2017 Shi X. (e_1_2_7_23_1) 2008 |
References_xml | – volume: 51 start-page: 216 issue: 13 year: 2018 end-page: 222 article-title: Priority task‐based formation control and obstacle avoidance of holonomic agents with continuous control inputs publication-title: IFAC‐PapersOnLine – start-page: 187 year: 2019 end-page: 195 – start-page: 443 year: 2010b end-page: 453 – volume: 53 start-page: 563 year: 2023 end-page: 575 article-title: Barrier‐certified distributed model predictive control of under‐actuated autonomous surface vehicles via neurodynamic optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 5 start-page: 73 issue: 4 year: 2012 end-page: 87 article-title: Cooperative caging and transport using autonomous aquatic surface vehicles publication-title: Intelligent Service Robotics – volume: 7 start-page: 87647 issue: 1 year: 2019 end-page: 87657 article-title: Formation control of multiple unmanned surface vehicles using the adaptive null‐space‐based behavioral method publication-title: IEEE Access – volume: 95 start-page: 23 issue: 12 year: 2015 end-page: 33 article-title: Preparing the automatic spill recovery by two unmanned boats towing a boom: development with scale experiments publication-title: Ocean Engineering – volume: 54 start-page: 2493 issue: 11 year: 2009 end-page: 2505 article-title: Continuity of varying‐feature‐set control laws publication-title: IEEE Transactions on Automatic Control – year: 2008 – volume: 20 start-page: 944 issue: 2 year: 2015 end-page: 955 article-title: Closed‐loop inverse kinematics for redundant robots: comparative assessment and two enhancements publication-title: IEEE/ASME Transactions on Mechatronics – year: 2021 – year: 2020 – year: 2023 – volume: 39 start-page: 1 issue: 12 year: 2022 end-page: 21 article-title: Research on disturbance rejection motion control method of USV for UUV recovery publication-title: Journal of Field Robotics – start-page: 1 year: 2024 end-page: 13 article-title: Path planning of oil spill recovery system with double USVs based on artificial potential field method publication-title: Journal of Marine Science and Application – year: 2017 – volume: 2 start-page: 1226 year: 2005 end-page: 1231 – volume: 37 start-page: 49 issue: 12 year: 2020 end-page: 53 article-title: Marine oil spill accidents in China's coastal zone publication-title: Ocean Development and Management – volume: 54 start-page: 295 issue: 3 year: 2020 end-page: 304 article-title: Collision avoidance strategy for autonomous underwater vehicle based on null‐space‐based behavioral approach publication-title: Journal of Shanghai Jiao Tong University – volume: 29 start-page: 1317 issue: 10 year: 2010a end-page: 1337 article-title: The null‐space‐based behavioral control for mobile robots with velocity actuator saturations publication-title: The International Journal of Robotics Research – volume: 53 start-page: 12 year: 2023 end-page: 28 article-title: Advances in line‐of‐sight guidance for path following of autonomous marine vehicles: an overview publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 25 start-page: 334 issue: 1 year: 2017 end-page: 341 article-title: Hierarchical task‐based control of multirobot systems with terminal attractors publication-title: IEEE Transactions on Control Systems Technology – year: 2012 – volume-title: Research on cooperative control method for double USVs oil spill recovery system year: 2023 ident: e_1_2_7_6_1 – ident: e_1_2_7_2_1 doi: 10.1109/TCST.2016.2549279 – ident: e_1_2_7_18_1 doi: 10.1007/s11804-024-00437-y – ident: e_1_2_7_3_1 doi: 10.1007/s11370-011-0104-9 – ident: e_1_2_7_5_1 doi: 10.1007/s11370-011-0104-9 – ident: e_1_2_7_24_1 doi: 10.1016/j.ifacol.2018.07.281 – ident: e_1_2_7_7_1 doi: 10.20016/j.cnki.hykfygl.2020.12.009 – ident: e_1_2_7_11_1 doi: 10.1016/j.oceaneng.2014.11.034 – ident: e_1_2_7_21_1 doi: 10.1109/ICUAS.2019.8798031 – volume-title: Fuzzy control and MATLAB simulation year: 2008 ident: e_1_2_7_23_1 – ident: e_1_2_7_4_1 doi: 10.1007/978-3-642-13408-1_40 – ident: e_1_2_7_25_1 – volume-title: Research on target‐guard‐oriented coordinated control method of multiple unmanned surface vehicle year: 2021 ident: e_1_2_7_9_1 – volume-title: Research on collaborative planning and control method of double‐USVs for oil spill containment year: 2020 ident: e_1_2_7_13_1 – ident: e_1_2_7_20_1 doi: 10.1109/TAC.2009.2031202 – ident: e_1_2_7_10_1 doi: 10.1109/ACCESS.2019.2925466 – ident: e_1_2_7_12_1 doi: 10.1109/TSMC.2022.3162862 – ident: e_1_2_7_14_1 doi: 10.1109/OCEANSE.2005.1513234 – volume-title: Research on the autonomous cooperative control of a flexible joint dual unmanned surface vehicles year: 2017 ident: e_1_2_7_15_1 – volume-title: Nonlinear motion control methods of unmanned surface vehicle year: 2012 ident: e_1_2_7_16_1 – ident: e_1_2_7_17_1 doi: 10.1002/rob.22148 – ident: e_1_2_7_19_1 doi: 10.1109/TSMC.2022.3184811 – ident: e_1_2_7_8_1 doi: 10.1109/TMECH.2014.2326304 – ident: e_1_2_7_22_1 doi: 10.16183/j.cnki.jsjtu.2020.03.009 |
SSID | ssj0043895 |
Score | 2.4316468 |
Snippet | Replacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 302 |
SubjectTerms | Barriers Catenaries Control methods double USVs oil spill recovery system Drag Fuzzy control fuzzy priority NSB oil spill recovery Oil spills Recovery Simulation Surface vehicles Towing Unmanned vehicles USV |
Title | Research on double‐USVs fuzzy‐priority NSB behavior fusion formation control method for oil spill recovery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22404 https://www.proquest.com/docview/3141359506 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJz34FqtVgnjwsu2-H3iyaimCFVorPQhLkk2guOyWPg7tyZ_gb_SXOMk-WkVBvO2S2VeSycw3m_kGoQtCbD8Sgmm2R7hmW9zSiBlZWqTI2HWDcEdmIz903c7Avh86wwq6KnJhMn6IMuAmNUOt11LBCZ02V6Shk5Q2pD2SXKCG5Ure_NteSR0li3o7iivVcTUAAUHBKqSbzfLKr7Zo5WCuu6nKzrS30Uvxhtn2ktfGfEYbbPmNvPGfn7CDtnL_E19nE2YXVXiyhzbXWAn3UVLsxsNpgqN0TmP-8fY-6D9PsZgvlws4GU9Gqax6h7v9Fi4y_aFVht5wmQ-J833wOCtTLRtwOorxdDyKYyyhOOjR4gAN2ndPNx0tL8ugMRPQByyPJPK5C9BZFzp1bUAwjuFRXVBoNSJBPOZw0_J8Ae6JCCI7YIIJShgVrvwRax2iapIm_AhhlwEy54EOQsymfuAT6T6IADCRIIR6NXRZDFDIcs5yWTojDjO2ZTOELgxVF9bQeSk6zog6fhKqF6Mc5ro6DS0DDLkTOLoLj1PD9fsNwt5jSx0c_130BG2YsmiwitvUUXU2mfNT8GRm9ExN2U8oVfLh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPpQWq0tLWqnrgkt08nJfUCxRW25bdSsAiLiiyHVtaNUpWu5sDe-pP4DfySzp2HmwRlRC3RJ68bI9nvonnG4AvjNEoVUpYNGTSop70LOamnpUaMnbbYdLX2ciDYdAf0R9X_tUKfG1yYSp-iDbgpjXDrNdawXVAunvPGjoteEcbJLoK6xQdDQ29js9a8ihd1ts3bKl-YCEMiBteIdvttpf-a43uXcxlR9VYmt4WXDfvWG0w-d0p57wjFg_oG5_7Ea_gZe2CksNqzryGFZlvw4slYsIdyJsNeaTISVqUPJN3f25H55czosrF4gZPJtNxoQvfkeH5EWmS_bFVR99ImxJJ6q3wpKpUrRtIMc7IbDLOMqLROKrSzS6MeicX3_pWXZnBEi4CEFwhWRrJANGzrWweUAQxvhNyW3FsdVLFQuFL1wsjhR6KilMaCyUUZ4KrQP-L9d7AWl7k8i2QQCA4l7GNQoLyKI6Y9iBUjLBIMcbDPThoRigRNW25rp6RJRXhsptgFyamC_fgcys6qbg6HhPab4Y5qdV1lngO2nI_9u0AH2fG6_83SM5-HZmDd08X_QQb_YvBaXL6ffjzPWy6uoawCePsw9p8WsoP6NjM-Uczf_8CUYb3AA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RULtgVKgastCLdQDl2zzcF7ixBZW25YuqGVRD5Ui27GlVaMk2t0cuid-Ar-RX8LYeWxBIKHeEnnysj2ebyaebwCOGKNRqpSwaMikRT3pWcxNPSs1ZOy2w6Svs5EvxsFoQs-u_es1eNfmwtT8EF3ATWuGWa-1gpepOl6Rhs4K3tf2iK7DIxogktCI6LLjjtJVvX1DluoHFnoBcUsrZLvH3aW_G6MVwryPU42hGW7DTfuK9f6S23614H2x_IO98YHf8BSeNACUvK9nzA6syfwZbN2jJXwOebsdjxQ5SYuKZ_Ln9x-Tq29zoqrl8g5Pytm00GXvyPhqQNpUf2zVsTfSJUSSZiM8qetU6wZSTDMyL6dZRrQvjop09wImw49fT0ZWU5fBEi66H7g-sjSSAfrOtrJ5QNGF8Z2Q24pjq5MqFgpful4YKcQnKk5pLJRQnAmuAv0n1tuFjbzI5R6QQKBrLmMbhQTlURwxjR9UjE6RYoyH-_C2HaBENKTlunZGltR0y26CXZiYLtyHN51oWTN1_E2o145y0ijrPPEctOR-7NsBPs4M179vkFx-HpiDg_8XPYTHXz4Mk0-n4_OXsOnqAsImhtODjcWskq8Q1Sz4azN7fwGC9fWv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+double%E2%80%90USVs+fuzzy%E2%80%90priority+NSB+behavior+fusion+formation+control+method+for+oil+spill+recovery&rft.jtitle=Journal+of+field+robotics&rft.au=Chen%2C+Congcong&rft.au=Liao%2C+Yulei&rft.au=Tang%2C+Xiaoyu&rft.au=Sun%2C+Jiaqi&rft.date=2025-01-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=1&rft.spage=302&rft.epage=326&rft_id=info:doi/10.1002%2Frob.22404&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |