He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space
At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity...
Saved in:
Published in | Numerical methods for partial differential equations Vol. 37; no. 2; pp. 1374 - 1384 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity space is modeled by using the fractal derivative, and its frequency is obtained by He's frequency formula. The variational principle of the fractal model is established by the fractal semi‐inverse method. The example shows that the proposed method is simple, efficient, and accurate. The frequency‐amplitude relationship is elucidated and the effect of the microgravity condition on vibration property is discussed. |
---|---|
AbstractList | At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity space is modeled by using the fractal derivative, and its frequency is obtained by He's frequency formula. The variational principle of the fractal model is established by the fractal semi‐inverse method. The example shows that the proposed method is simple, efficient, and accurate. The frequency‐amplitude relationship is elucidated and the effect of the microgravity condition on vibration property is discussed. |
Author | Wang, KangLe |
Author_xml | – sequence: 1 givenname: KangLe orcidid: 0000-0002-6637-5687 surname: Wang fullname: Wang, KangLe email: kangle140917@163.com organization: Henan Polytechnic University |
BookMark | eNp1kE1LAzEQhoMo2FYP_oOAB_Gw7SRNdpOjFLVC1YsFwUNI02xJ2WZrsqvsvzf9OImeZph53vl4--jU194idEVgSADoyLebIaVcsBPUIyBFRhnNT1EPCiYzwuX7OerHuAYghBPZQx9TexNxGexna73pcFmHTVvpxtV-l6eONo2ucFpTOW91wHU0rkpEaurgovMr7DzWeONMqFdBf7mmw3Grjb1AZ6Wuor08xgGaP9y_TabZ7PXxaXI3ywyVBcuIsLbgTJSFNZKBKMkSBOQUiIExt3LJCaEl51BILai04yVdWL2whqVivhDjAbo-zN2GOr0RG7Wu2-DTSkWZIELmEiBRowOVzowx2FIZ1-wfbYJ2lSKgdg6q5KDaO5gUt78U2-A2OnR_ssfp366y3f-gepk_HxQ_skSDGw |
CitedBy_id | crossref_primary_10_1142_S0218348X22500098 crossref_primary_10_2298_TSCI2403165R crossref_primary_10_1142_S0218348X2450066X crossref_primary_10_1016_j_cjph_2024_06_001 crossref_primary_10_1177_14613484211059264 crossref_primary_10_1142_S0218348X23501116 crossref_primary_10_1108_HFF_09_2020_0552 crossref_primary_10_1142_S0218348X24500233 crossref_primary_10_1016_j_cnsns_2022_107036 crossref_primary_10_1142_S0218348X24500117 crossref_primary_10_1002_mma_7200 crossref_primary_10_1088_1572_9494_acc646 crossref_primary_10_1002_mma_8533 crossref_primary_10_1007_s13137_021_00175_1 crossref_primary_10_2139_ssrn_4073572 crossref_primary_10_1209_0295_5075_ac1aab crossref_primary_10_1108_HFF_02_2021_0136 crossref_primary_10_1002_zamm_202100187 crossref_primary_10_1142_S0218348X22500463 crossref_primary_10_1142_S0218348X22501596 crossref_primary_10_3390_sym13061022 crossref_primary_10_1016_j_rinp_2021_104085 crossref_primary_10_1016_j_cjph_2024_03_047 crossref_primary_10_1142_S0218348X24500245 crossref_primary_10_1142_S0218348X21501681 crossref_primary_10_1142_S0218348X21502054 crossref_primary_10_1002_mma_7683 crossref_primary_10_1142_S0218348X21501449 crossref_primary_10_1142_S0218348X21500754 crossref_primary_10_1142_S0218348X2250061X crossref_primary_10_1142_S0218348X24500919 crossref_primary_10_1002_zamm_202100391 crossref_primary_10_1142_S0218348X22500268 crossref_primary_10_1177_14613484221085413 crossref_primary_10_1142_S0218348X22501560 crossref_primary_10_1142_S0218348X23500366 crossref_primary_10_1142_S0218348X23500883 crossref_primary_10_1142_S0217979222500151 crossref_primary_10_1142_S0218348X23500123 crossref_primary_10_1142_S0218348X23500287 crossref_primary_10_1088_1572_9494_abdea1 crossref_primary_10_1142_S0218348X22500839 crossref_primary_10_1177_14613484231185907 crossref_primary_10_1002_mma_7664 crossref_primary_10_1142_S0218348X2150122X crossref_primary_10_1142_S0218348X22501924 crossref_primary_10_1142_S0218348X21501279 crossref_primary_10_1142_S021988782350072X crossref_primary_10_1002_mma_7428 crossref_primary_10_1142_S0218348X22500438 crossref_primary_10_1016_j_rinp_2022_105602 crossref_primary_10_1177_14613484211070883 crossref_primary_10_1177_14613484221138560 crossref_primary_10_1142_S0218348X22500086 crossref_primary_10_1016_j_matcom_2021_12_014 crossref_primary_10_1142_S0218348X22500165 crossref_primary_10_1016_j_chaos_2022_112694 crossref_primary_10_1142_S0218348X22500360 crossref_primary_10_1177_14613484211044613 crossref_primary_10_1155_2023_3136490 crossref_primary_10_1142_S0218348X24500269 crossref_primary_10_1142_S0218348X24400401 crossref_primary_10_1002_mma_8588 crossref_primary_10_1155_2022_8304107 crossref_primary_10_1177_14613484211032757 crossref_primary_10_2298_TSCI2303779M crossref_primary_10_1142_S0218348X22501614 crossref_primary_10_1142_S0218348X21501905 crossref_primary_10_1142_S0218348X22501894 crossref_primary_10_1142_S0218348X21500936 |
Cites_doi | 10.1016/j.nonrwa.2007.10.002 10.1016/j.asej.2020.01.016 10.1186/s13662-020-02684-z 10.2298/TSCI190408138A 10.2298/TSCI200127065H 10.1016/j.rinp.2020.103031 10.1016/j.aej.2020.01.055 10.1177/1461348418818973 10.1142/S0218348X20500589 10.1016/j.aej.2020.04.019 10.3934/math.2020197 10.1142/S0218348X20500243 10.1007/s00707-019-02569-7 10.1016/j.aej.2013.09.005 10.1142/S0218348X19501342 10.1142/S0218348X19501226 10.1142/S0218348X20500310 10.1115/1.4043617 10.2298/TSCI1904163W 10.1016/j.rinp.2018.06.011 10.1515/ijnsns-2018-0362 10.2298/TSCI1904131H 10.1002/mma.6347 10.1142/S0218348X1850086X 10.1016/j.aml.2018.05.008 10.1177/1461348419844145 10.1108/HFF-05-2020-0247 10.1007/s10773-014-2123-8 10.1016/S0045-7825(99)00018-3 10.3389/fphy.2020.00064 10.1016/j.rinp.2019.102546 10.1016/j.apm.2013.11.035 10.1177/1461348418811028 10.1002/mma.6726 10.1142/S0218348X19500476 10.1002/mma.6297 10.1186/s13662-019-2488-3 10.1002/mma.6208 10.2298/TSCI1804871W 10.1002/mma.6335 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/num.22584 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2426 |
EndPage | 1384 |
ExternalDocumentID | 10_1002_num_22584 NUM22584 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2974-18ee7548f7ec9408f1d0806201c035e9d5112f55079a829e3d2beabec4f556b83 |
IEDL.DBID | DR2 |
ISSN | 0749-159X |
IngestDate | Fri Jul 25 12:23:46 EDT 2025 Tue Jul 01 03:28:35 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:31:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2974-18ee7548f7ec9408f1d0806201c035e9d5112f55079a829e3d2beabec4f556b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6637-5687 |
PQID | 2481896900 |
PQPubID | 1016406 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2481896900 crossref_citationtrail_10_1002_num_22584 crossref_primary_10_1002_num_22584 wiley_primary_10_1002_num_22584_NUM22584 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | Numerical methods for partial differential equations |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 4 2010; 15 2015; 3 2019; 10 2019; 15 2019; 14 2020; 17 2019; 38 2020; 59 2018; 84 2018; 22 2020; 8 2018; 6 2020; 6 2020; 5 2020; 2020 2019; 20 2020 2019; 23 2013; 52 2014; 38 2020; 28 2019; 27 2020; 24 1999; 178 2020; 43 2018; 10 2020; 6(SI) 2014; 53 2019; 231 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 He J. H. (e_1_2_6_41_1) 2020; 6 e_1_2_6_19_1 Yang X. J. (e_1_2_6_5_1) 2015; 3 Li Z. B. (e_1_2_6_39_1) 2010; 15 He J. H. (e_1_2_6_44_1) 2020; 6 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 20 start-page: 803 year: 2019 end-page: 809 article-title: A new investigation on fractional‐ordered neutral differential systems with state‐dependent delay publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 59 start-page: 1435 year: 2020 end-page: 1449 article-title: A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator publication-title: Alex. Eng. J. – volume: 27 year: 2019 article-title: Physical insight of local fractional calculus and its application to fractional Kdv‐burgers‐Kuramoto equation publication-title: Fractals – volume: 2020 start-page: 28 year: 2020 article-title: A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations publication-title: Adv. Differ. Equ. – volume: 178 start-page: 257 year: 1999 end-page: 262 article-title: Homotopy perturbation technique publication-title: Comput. Methods Appl. Mech. Eng. – volume: 53 start-page: 3698 issue: 11 year: 2014 end-page: 3718 article-title: A tutorial review on fractal spacetime and fractional calculus publication-title: Int. J. Theor. Phy. – volume: 10 start-page: 272 year: 2018 end-page: 276 article-title: Fractal calculus and its geometrical explanation publication-title: Results. Phys. – volume: 2020 start-page: 252 year: 2020 article-title: A fractional derivative with two singular kernels and application to a heat conduction problem publication-title: Adv. Differ. Equ. – volume: 38 start-page: 1252 year: 2019 end-page: 1260 article-title: The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators publication-title: J. Low Freq. Noise V. A. – year: 2020 article-title: A fractional model for propagation of classical optical solitons by using nonsingular derivative publication-title: Math. Method. Appl. Sci. – volume: 10 start-page: 416 year: 2019 end-page: 427 article-title: Solution for an anti‐symmetric nonlinear oscillator by a modified He's homotopy perturbation method publication-title: Nonlinear Anal‐Real – volume: 6 start-page: 735 year: 2020 end-page: 740 article-title: Variational principle for the generalized KdV‐burgers equation with fractal derivatives for shallow water waves publication-title: J. Appl. Comput. Mech. – volume: 8 start-page: 64 year: 2020 article-title: Generalization of Caputo‐Fabrizio fractional derivative and applications to electrical circuits publication-title: Front. Phys. – volume: 38 start-page: 1540 issue: 3–4 year: 2019 end-page: 1554 article-title: Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators publication-title: J. Low Freq. Noise Vib. Act. Control – volume: 52 start-page: 813 year: 2013 end-page: 819 article-title: A new fractional modeling arising in engineering sciences and its analytical approximate solution publication-title: Alex. Eng. J. – volume: 15 start-page: 970 year: 2010 end-page: 973 article-title: Fractional complex transform for fractional differential equations publication-title: Math. Comput. Appl. – volume: 27 year: 2019 article-title: A remark on Wang's fractal variational principle publication-title: Fractals – volume: 3 start-page: 752 year: 2015 end-page: 761 article-title: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics publication-title: Rom. Rep. Phys. – volume: 23 start-page: 2163 issue: 4 year: 2019 end-page: 2170 article-title: Numerical method for fractional Zakharov‐Kuznetsov equation with He's fractional derivative publication-title: Therm. Sci. – volume: 38 start-page: 1060 year: 2019 end-page: 1074 article-title: He‐Laplace method for nonlinear vibration systems and nonlinear wave equations publication-title: J. Low. Freq. Noise. V. A. – volume: 28 year: 2020 article-title: A fractal variational theory for one‐dimensional compressible flow in a microgravity space publication-title: Fractals – volume: 6(SI) start-page: 1184 year: 2020 end-page: 1186 article-title: A simple approach to Volterra‐Fredholm integral equations publication-title: J. Appl. Comput. Mech. – volume: 14 year: 2019 article-title: A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations publication-title: J. Comput. Nonlinear Dyn. – year: 2020 article-title: Taylor series solution for a third order boundary value problem arising in architectural engineering publication-title: Ain Shams Eng. J. – volume: 59 start-page: 2891 year: 2020 end-page: 2899 article-title: New results on nonlocal functional integro‐differential equations via Hilfer fractional derivative publication-title: Alex. Eng. J. – volume: 28 year: 2020 article-title: On a high‐pass filter described by local fractional derivative publication-title: Fractals – volume: 43 start-page: 6062 year: 2020 end-page: 6080 article-title: An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator publication-title: Math. Method .Appl. Sci. – volume: 4 year: 2019 article-title: A variational formulation for anisotropic wave traveling in a porous medium publication-title: Fractals – volume: 22 start-page: 1871 issue: 4 year: 2018 end-page: 1875 article-title: A modification of the reduced differential transform method for fractional calculus publication-title: Therm. Sci. – volume: 4 start-page: 1707 year: 2019 end-page: 1712 article-title: On two‐scale dimension and its applications publication-title: Therm. Sci. – volume: 5 start-page: 3035 year: 2020 end-page: 3055 article-title: A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow publication-title: AIMS Math. – volume: 38 start-page: 3154 year: 2014 end-page: 3163 article-title: A new analytical modelling for fractional telegraph equation via Laplace transform publication-title: Appl. Math. Model. – volume: 28 year: 2020 article-title: A fractal variational principle for the telegraph equation with fractal derivative publication-title: Fractals – volume: 84 start-page: 143 year: 2018 end-page: 147 article-title: A remark on Samuelson's variational principle in economics publication-title: Appl. Math. Lett. – year: 2020 article-title: Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system publication-title: Math. Method Appl. Sci. – volume: 17 year: 2020 article-title: Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation publication-title: Results Phys. – volume: 43 start-page: 5564 year: 2020 end-page: 5578 article-title: A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods publication-title: Math. Method. Appl. Sci. – volume: 23 start-page: 2131 issue: 4 year: 2019 end-page: 2133 article-title: Two‐scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. – volume: 43 start-page: 4460 year: 2020 end-page: 4471 article-title: A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force publication-title: Math. Method. Appl. Sci. – year: 2020 article-title: A new fractal model for the soliton motion in a microgravity space publication-title: Int. J. Numer. Method. H. – volume: 231 start-page: 899 year: 2019 end-page: 906 article-title: Generalized variational principles for buckling analysis of circular cylinders publication-title: Acta Mech. – volume: 24 start-page: 659 year: 2020 end-page: 681 article-title: New promises and future challenges of fractal calculus: from two‐scale thermodynamics to fractal variational principle publication-title: Therm. Sci. – volume: 15 year: 2019 article-title: The simplest approach to nonlinear oscillators publication-title: Results. Phys – volume: 6 year: 2018 article-title: Fractal calculus and its application to explanation of biomechanism of polar bear hairs publication-title: Fractals – ident: e_1_2_6_2_1 doi: 10.1016/j.nonrwa.2007.10.002 – ident: e_1_2_6_9_1 doi: 10.1016/j.asej.2020.01.016 – ident: e_1_2_6_23_1 doi: 10.1186/s13662-020-02684-z – volume: 6 start-page: 1184 year: 2020 ident: e_1_2_6_44_1 article-title: A simple approach to Volterra‐Fredholm integral equations publication-title: J. Appl. Comput. Mech. – volume: 3 start-page: 752 year: 2015 ident: e_1_2_6_5_1 article-title: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics publication-title: Rom. Rep. Phys. – ident: e_1_2_6_34_1 doi: 10.2298/TSCI190408138A – ident: e_1_2_6_37_1 doi: 10.2298/TSCI200127065H – ident: e_1_2_6_45_1 doi: 10.1016/j.rinp.2020.103031 – ident: e_1_2_6_13_1 doi: 10.1016/j.aej.2020.01.055 – ident: e_1_2_6_18_1 doi: 10.1177/1461348418818973 – ident: e_1_2_6_28_1 doi: 10.1142/S0218348X20500589 – ident: e_1_2_6_20_1 doi: 10.1016/j.aej.2020.04.019 – ident: e_1_2_6_11_1 doi: 10.3934/math.2020197 – ident: e_1_2_6_24_1 doi: 10.1142/S0218348X20500243 – ident: e_1_2_6_40_1 doi: 10.1007/s00707-019-02569-7 – ident: e_1_2_6_15_1 doi: 10.1016/j.aej.2013.09.005 – ident: e_1_2_6_31_1 doi: 10.1142/S0218348X19501342 – ident: e_1_2_6_35_1 doi: 10.1142/S0218348X19501226 – ident: e_1_2_6_38_1 doi: 10.1142/S0218348X20500310 – ident: e_1_2_6_7_1 doi: 10.1115/1.4043617 – ident: e_1_2_6_17_1 doi: 10.2298/TSCI1904163W – ident: e_1_2_6_29_1 doi: 10.1016/j.rinp.2018.06.011 – ident: e_1_2_6_16_1 doi: 10.1515/ijnsns-2018-0362 – ident: e_1_2_6_36_1 doi: 10.2298/TSCI1904131H – ident: e_1_2_6_22_1 doi: 10.1002/mma.6347 – ident: e_1_2_6_27_1 doi: 10.1142/S0218348X1850086X – volume: 15 start-page: 970 year: 2010 ident: e_1_2_6_39_1 article-title: Fractional complex transform for fractional differential equations publication-title: Math. Comput. Appl. – volume: 6 start-page: 735 year: 2020 ident: e_1_2_6_41_1 article-title: Variational principle for the generalized KdV‐burgers equation with fractal derivatives for shallow water waves publication-title: J. Appl. Comput. Mech. – ident: e_1_2_6_43_1 doi: 10.1016/j.aml.2018.05.008 – ident: e_1_2_6_33_1 doi: 10.1177/1461348419844145 – ident: e_1_2_6_25_1 doi: 10.1108/HFF-05-2020-0247 – ident: e_1_2_6_26_1 doi: 10.1007/s10773-014-2123-8 – ident: e_1_2_6_3_1 doi: 10.1016/S0045-7825(99)00018-3 – ident: e_1_2_6_19_1 doi: 10.3389/fphy.2020.00064 – ident: e_1_2_6_32_1 doi: 10.1016/j.rinp.2019.102546 – ident: e_1_2_6_14_1 doi: 10.1016/j.apm.2013.11.035 – ident: e_1_2_6_4_1 doi: 10.1177/1461348418811028 – ident: e_1_2_6_42_1 doi: 10.1002/mma.6726 – ident: e_1_2_6_30_1 doi: 10.1142/S0218348X19500476 – ident: e_1_2_6_8_1 doi: 10.1002/mma.6297 – ident: e_1_2_6_12_1 doi: 10.1186/s13662-019-2488-3 – ident: e_1_2_6_10_1 doi: 10.1002/mma.6208 – ident: e_1_2_6_6_1 doi: 10.2298/TSCI1804871W – ident: e_1_2_6_21_1 doi: 10.1002/mma.6335 |
SSID | ssj0011519 |
Score | 2.5213974 |
Snippet | At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1374 |
SubjectTerms | fractal derivative Fractal models Fractals fractional differential equation frequency formulation Gravitational effects Inverse method Microgravity microgravity space Space flight two‐scale transform method Vibration |
Title | He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22584 https://www.proquest.com/docview/2481896900 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgb3E6RxBBL926tMlaPG3qGMJ2EAcDhZKkKYhuyLod9K_3vfSHUxTEW2jTNu37Xt6X8Po9Qs6YlwgRyzY4kk4cnyvuKCmFAwsxKbRuS26FtIcjMRj7txM-qZDL4l-YTB-i3HBDz7DzNTq4VGlrRTR0OW0CGAPUAsVcLSREd6V0FBAdW9QDImToQMieFKpCLmuVV36NRZ8Ec5Wm2jjT3yKPxQiz9JLn5nKhmvr9m3jjP19hm2zm_JN2M8DskIqZ7ZKNYSnemu6Rh4E5T2kyz5Ks3yjS2rzIF7bhjNRA2eksG4KcUxTEBDjB8p1iTUOIhvRpRiWdYrYfFjgCqk9h6tJmn4z7N_dXAyevweBoBksNpx0Y0wF7JR2jQ98NknYMHFMAbdCux00YI2FLUBQtlAELjRczZSQAw4eDQgXeAanCcMwhoQbCsRvHmgN4fcWUDDrAzRLhh4nk3MQ1clFYI9K5QDnWyXiJMmllhkVSIvu9auS07PqaqXL81KlemDTKHTONmA8MJQQkuvA4a5vfbxCNxkPbOPp712OyzjDrxWap1Ul1MV-aE6AtC9Uga93eda_fsDj9APWZ7KU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M-aA-eBenU4MI-tKtTZuuBV9ElKrbHmSDgUhJ0wREN2SXB_31nqQXpyiIb6FN27TnnJwv4fT7AE6oq3w_5Q4GklCWxxJmJZz7Fi7EuC-Ew5kh0u50_ajv3Q7YoALnxb8wGT9EueGmI8PM1zrA9YZ0c441dDZsoDcG3gIsakVvs6C6L8mjEOoYWQ_MkaGFSXtQ8ArZtFle-jUbfULMeaBqMs31GjwWY8wKTJ4bs2nSEO_f6Bv_-xLrsJpDUHKR-cwGVORoE1Y6JX_rZAseInk6IWqc1Vm_EY1sc50v3cYzXCBqJ6NsDHxMNCcmehSu4ImWNcSESJ5GhJOhLvjTGkeI9gnOXkJuQ__6qncZWbkMgyUorjYsJ5CyhSZTLSlCzw6UkyLM9BE5CNtlMkw1ZlOaFy3kAQ2lm9JEcvQNDw_6SeDuQBWHI3eBSMzIdpoKhv7rJTThQQvhmfK9UHHGZFqDs8Icscg5yrVUxkucsStTrZMSm-9Vg-Oy62tGzPFTp3ph0ziPzUlMPQQpITqjjY8zxvn9BnG33zGNvb93PYKlqNdpx-2b7t0-LFNdBGOK1upQnY5n8gBRzDQ5NM76AT_x704 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBNEH7-J0ahBBX7p1WZq1-CTOMS8bIg4GCiVNExDdGLs86K_3JL04RUF8C23apj3fyfkSTr8DcExrmvNYVNGRpHaYF3lOJAR3cCEmuJRV4Vkh7XaHt7rsuuf15uAs-xcm0YfIN9yMZ9j52jj4MNaVGdHQab-MYPTZPCww7voG0o37XDsKmY6t6oEhMnAwZvcyWSGXVvJLvwajT4Y5y1NtoGmuwlM2xCS_5KU8nURl-f5NvfGf77AGKykBJecJYtZhTg02YLmdq7eON-GxpU7GRI-SLOs3YnhtWuXLtPGMkMjZySAZghgRo4iJeML1OzFFDTEckucBEaRv0v1MhSPk-gTnLqm2oNu8fLhoOWkRBkdSXGs4VV-pOhpM15UMmOvraowkkyNvkG7NU0FsGJs2qmiB8GmgajGNlEBkMDzII7-2DQUcjtoBojAeu3EsPUQvi2gk_DqSM81ZoIXnqbgIp5k1QpkqlJtCGa9hoq1MTZWU0H6vIhzlXYeJLMdPnUqZScPUM8chZUhRAoSii4-ztvn9BmGn27aN3b93PYTFu0YzvL3q3OzBEjUZMDZjrQSFyWiq9pHCTKIDC9UPo_buBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=He%27s+frequency+formulation+for+fractal+nonlinear+oscillator+arising+in+a+microgravity+space&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Wang%2C+KangLe&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=37&rft.issue=2&rft.spage=1374&rft.epage=1384&rft_id=info:doi/10.1002%2Fnum.22584&rft.externalDBID=10.1002%252Fnum.22584&rft.externalDocID=NUM22584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |