He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space

At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 37; no. 2; pp. 1374 - 1384
Main Author Wang, KangLe
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity space is modeled by using the fractal derivative, and its frequency is obtained by He's frequency formula. The variational principle of the fractal model is established by the fractal semi‐inverse method. The example shows that the proposed method is simple, efficient, and accurate. The frequency‐amplitude relationship is elucidated and the effect of the microgravity condition on vibration property is discussed.
AbstractList At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity on the vibration property. Here we give a fractal vibration model by the two‐scale thermodynamics. The fractal oscillator in the microgravity space is modeled by using the fractal derivative, and its frequency is obtained by He's frequency formula. The variational principle of the fractal model is established by the fractal semi‐inverse method. The example shows that the proposed method is simple, efficient, and accurate. The frequency‐amplitude relationship is elucidated and the effect of the microgravity condition on vibration property is discussed.
Author Wang, KangLe
Author_xml – sequence: 1
  givenname: KangLe
  orcidid: 0000-0002-6637-5687
  surname: Wang
  fullname: Wang, KangLe
  email: kangle140917@163.com
  organization: Henan Polytechnic University
BookMark eNp1kE1LAzEQhoMo2FYP_oOAB_Gw7SRNdpOjFLVC1YsFwUNI02xJ2WZrsqvsvzf9OImeZph53vl4--jU194idEVgSADoyLebIaVcsBPUIyBFRhnNT1EPCiYzwuX7OerHuAYghBPZQx9TexNxGexna73pcFmHTVvpxtV-l6eONo2ucFpTOW91wHU0rkpEaurgovMr7DzWeONMqFdBf7mmw3Grjb1AZ6Wuor08xgGaP9y_TabZ7PXxaXI3ywyVBcuIsLbgTJSFNZKBKMkSBOQUiIExt3LJCaEl51BILai04yVdWL2whqVivhDjAbo-zN2GOr0RG7Wu2-DTSkWZIELmEiBRowOVzowx2FIZ1-wfbYJ2lSKgdg6q5KDaO5gUt78U2-A2OnR_ssfp366y3f-gepk_HxQ_skSDGw
CitedBy_id crossref_primary_10_1142_S0218348X22500098
crossref_primary_10_2298_TSCI2403165R
crossref_primary_10_1142_S0218348X2450066X
crossref_primary_10_1016_j_cjph_2024_06_001
crossref_primary_10_1177_14613484211059264
crossref_primary_10_1142_S0218348X23501116
crossref_primary_10_1108_HFF_09_2020_0552
crossref_primary_10_1142_S0218348X24500233
crossref_primary_10_1016_j_cnsns_2022_107036
crossref_primary_10_1142_S0218348X24500117
crossref_primary_10_1002_mma_7200
crossref_primary_10_1088_1572_9494_acc646
crossref_primary_10_1002_mma_8533
crossref_primary_10_1007_s13137_021_00175_1
crossref_primary_10_2139_ssrn_4073572
crossref_primary_10_1209_0295_5075_ac1aab
crossref_primary_10_1108_HFF_02_2021_0136
crossref_primary_10_1002_zamm_202100187
crossref_primary_10_1142_S0218348X22500463
crossref_primary_10_1142_S0218348X22501596
crossref_primary_10_3390_sym13061022
crossref_primary_10_1016_j_rinp_2021_104085
crossref_primary_10_1016_j_cjph_2024_03_047
crossref_primary_10_1142_S0218348X24500245
crossref_primary_10_1142_S0218348X21501681
crossref_primary_10_1142_S0218348X21502054
crossref_primary_10_1002_mma_7683
crossref_primary_10_1142_S0218348X21501449
crossref_primary_10_1142_S0218348X21500754
crossref_primary_10_1142_S0218348X2250061X
crossref_primary_10_1142_S0218348X24500919
crossref_primary_10_1002_zamm_202100391
crossref_primary_10_1142_S0218348X22500268
crossref_primary_10_1177_14613484221085413
crossref_primary_10_1142_S0218348X22501560
crossref_primary_10_1142_S0218348X23500366
crossref_primary_10_1142_S0218348X23500883
crossref_primary_10_1142_S0217979222500151
crossref_primary_10_1142_S0218348X23500123
crossref_primary_10_1142_S0218348X23500287
crossref_primary_10_1088_1572_9494_abdea1
crossref_primary_10_1142_S0218348X22500839
crossref_primary_10_1177_14613484231185907
crossref_primary_10_1002_mma_7664
crossref_primary_10_1142_S0218348X2150122X
crossref_primary_10_1142_S0218348X22501924
crossref_primary_10_1142_S0218348X21501279
crossref_primary_10_1142_S021988782350072X
crossref_primary_10_1002_mma_7428
crossref_primary_10_1142_S0218348X22500438
crossref_primary_10_1016_j_rinp_2022_105602
crossref_primary_10_1177_14613484211070883
crossref_primary_10_1177_14613484221138560
crossref_primary_10_1142_S0218348X22500086
crossref_primary_10_1016_j_matcom_2021_12_014
crossref_primary_10_1142_S0218348X22500165
crossref_primary_10_1016_j_chaos_2022_112694
crossref_primary_10_1142_S0218348X22500360
crossref_primary_10_1177_14613484211044613
crossref_primary_10_1155_2023_3136490
crossref_primary_10_1142_S0218348X24500269
crossref_primary_10_1142_S0218348X24400401
crossref_primary_10_1002_mma_8588
crossref_primary_10_1155_2022_8304107
crossref_primary_10_1177_14613484211032757
crossref_primary_10_2298_TSCI2303779M
crossref_primary_10_1142_S0218348X22501614
crossref_primary_10_1142_S0218348X21501905
crossref_primary_10_1142_S0218348X22501894
crossref_primary_10_1142_S0218348X21500936
Cites_doi 10.1016/j.nonrwa.2007.10.002
10.1016/j.asej.2020.01.016
10.1186/s13662-020-02684-z
10.2298/TSCI190408138A
10.2298/TSCI200127065H
10.1016/j.rinp.2020.103031
10.1016/j.aej.2020.01.055
10.1177/1461348418818973
10.1142/S0218348X20500589
10.1016/j.aej.2020.04.019
10.3934/math.2020197
10.1142/S0218348X20500243
10.1007/s00707-019-02569-7
10.1016/j.aej.2013.09.005
10.1142/S0218348X19501342
10.1142/S0218348X19501226
10.1142/S0218348X20500310
10.1115/1.4043617
10.2298/TSCI1904163W
10.1016/j.rinp.2018.06.011
10.1515/ijnsns-2018-0362
10.2298/TSCI1904131H
10.1002/mma.6347
10.1142/S0218348X1850086X
10.1016/j.aml.2018.05.008
10.1177/1461348419844145
10.1108/HFF-05-2020-0247
10.1007/s10773-014-2123-8
10.1016/S0045-7825(99)00018-3
10.3389/fphy.2020.00064
10.1016/j.rinp.2019.102546
10.1016/j.apm.2013.11.035
10.1177/1461348418811028
10.1002/mma.6726
10.1142/S0218348X19500476
10.1002/mma.6297
10.1186/s13662-019-2488-3
10.1002/mma.6208
10.2298/TSCI1804871W
10.1002/mma.6335
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.22584
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 1384
ExternalDocumentID 10_1002_num_22584
NUM22584
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2974-18ee7548f7ec9408f1d0806201c035e9d5112f55079a829e3d2beabec4f556b83
IEDL.DBID DR2
ISSN 0749-159X
IngestDate Fri Jul 25 12:23:46 EDT 2025
Tue Jul 01 03:28:35 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:31:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2974-18ee7548f7ec9408f1d0806201c035e9d5112f55079a829e3d2beabec4f556b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6637-5687
PQID 2481896900
PQPubID 1016406
PageCount 21
ParticipantIDs proquest_journals_2481896900
crossref_citationtrail_10_1002_num_22584
crossref_primary_10_1002_num_22584
wiley_primary_10_1002_num_22584_NUM22584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 4
2010; 15
2015; 3
2019; 10
2019; 15
2019; 14
2020; 17
2019; 38
2020; 59
2018; 84
2018; 22
2020; 8
2018; 6
2020; 6
2020; 5
2020; 2020
2019; 20
2020
2019; 23
2013; 52
2014; 38
2020; 28
2019; 27
2020; 24
1999; 178
2020; 43
2018; 10
2020; 6(SI)
2014; 53
2019; 231
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
He J. H. (e_1_2_6_41_1) 2020; 6
e_1_2_6_19_1
Yang X. J. (e_1_2_6_5_1) 2015; 3
Li Z. B. (e_1_2_6_39_1) 2010; 15
He J. H. (e_1_2_6_44_1) 2020; 6
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 20
  start-page: 803
  year: 2019
  end-page: 809
  article-title: A new investigation on fractional‐ordered neutral differential systems with state‐dependent delay
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 59
  start-page: 1435
  year: 2020
  end-page: 1449
  article-title: A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator
  publication-title: Alex. Eng. J.
– volume: 27
  year: 2019
  article-title: Physical insight of local fractional calculus and its application to fractional Kdv‐burgers‐Kuramoto equation
  publication-title: Fractals
– volume: 2020
  start-page: 28
  year: 2020
  article-title: A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations
  publication-title: Adv. Differ. Equ.
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  article-title: Homotopy perturbation technique
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 53
  start-page: 3698
  issue: 11
  year: 2014
  end-page: 3718
  article-title: A tutorial review on fractal spacetime and fractional calculus
  publication-title: Int. J. Theor. Phy.
– volume: 10
  start-page: 272
  year: 2018
  end-page: 276
  article-title: Fractal calculus and its geometrical explanation
  publication-title: Results. Phys.
– volume: 2020
  start-page: 252
  year: 2020
  article-title: A fractional derivative with two singular kernels and application to a heat conduction problem
  publication-title: Adv. Differ. Equ.
– volume: 38
  start-page: 1252
  year: 2019
  end-page: 1260
  article-title: The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators
  publication-title: J. Low Freq. Noise V. A.
– year: 2020
  article-title: A fractional model for propagation of classical optical solitons by using nonsingular derivative
  publication-title: Math. Method. Appl. Sci.
– volume: 10
  start-page: 416
  year: 2019
  end-page: 427
  article-title: Solution for an anti‐symmetric nonlinear oscillator by a modified He's homotopy perturbation method
  publication-title: Nonlinear Anal‐Real
– volume: 6
  start-page: 735
  year: 2020
  end-page: 740
  article-title: Variational principle for the generalized KdV‐burgers equation with fractal derivatives for shallow water waves
  publication-title: J. Appl. Comput. Mech.
– volume: 8
  start-page: 64
  year: 2020
  article-title: Generalization of Caputo‐Fabrizio fractional derivative and applications to electrical circuits
  publication-title: Front. Phys.
– volume: 38
  start-page: 1540
  issue: 3–4
  year: 2019
  end-page: 1554
  article-title: Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators
  publication-title: J. Low Freq. Noise Vib. Act. Control
– volume: 52
  start-page: 813
  year: 2013
  end-page: 819
  article-title: A new fractional modeling arising in engineering sciences and its analytical approximate solution
  publication-title: Alex. Eng. J.
– volume: 15
  start-page: 970
  year: 2010
  end-page: 973
  article-title: Fractional complex transform for fractional differential equations
  publication-title: Math. Comput. Appl.
– volume: 27
  year: 2019
  article-title: A remark on Wang's fractal variational principle
  publication-title: Fractals
– volume: 3
  start-page: 752
  year: 2015
  end-page: 761
  article-title: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics
  publication-title: Rom. Rep. Phys.
– volume: 23
  start-page: 2163
  issue: 4
  year: 2019
  end-page: 2170
  article-title: Numerical method for fractional Zakharov‐Kuznetsov equation with He's fractional derivative
  publication-title: Therm. Sci.
– volume: 38
  start-page: 1060
  year: 2019
  end-page: 1074
  article-title: He‐Laplace method for nonlinear vibration systems and nonlinear wave equations
  publication-title: J. Low. Freq. Noise. V. A.
– volume: 28
  year: 2020
  article-title: A fractal variational theory for one‐dimensional compressible flow in a microgravity space
  publication-title: Fractals
– volume: 6(SI)
  start-page: 1184
  year: 2020
  end-page: 1186
  article-title: A simple approach to Volterra‐Fredholm integral equations
  publication-title: J. Appl. Comput. Mech.
– volume: 14
  year: 2019
  article-title: A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations
  publication-title: J. Comput. Nonlinear Dyn.
– year: 2020
  article-title: Taylor series solution for a third order boundary value problem arising in architectural engineering
  publication-title: Ain Shams Eng. J.
– volume: 59
  start-page: 2891
  year: 2020
  end-page: 2899
  article-title: New results on nonlocal functional integro‐differential equations via Hilfer fractional derivative
  publication-title: Alex. Eng. J.
– volume: 28
  year: 2020
  article-title: On a high‐pass filter described by local fractional derivative
  publication-title: Fractals
– volume: 43
  start-page: 6062
  year: 2020
  end-page: 6080
  article-title: An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator
  publication-title: Math. Method .Appl. Sci.
– volume: 4
  year: 2019
  article-title: A variational formulation for anisotropic wave traveling in a porous medium
  publication-title: Fractals
– volume: 22
  start-page: 1871
  issue: 4
  year: 2018
  end-page: 1875
  article-title: A modification of the reduced differential transform method for fractional calculus
  publication-title: Therm. Sci.
– volume: 4
  start-page: 1707
  year: 2019
  end-page: 1712
  article-title: On two‐scale dimension and its applications
  publication-title: Therm. Sci.
– volume: 5
  start-page: 3035
  year: 2020
  end-page: 3055
  article-title: A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow
  publication-title: AIMS Math.
– volume: 38
  start-page: 3154
  year: 2014
  end-page: 3163
  article-title: A new analytical modelling for fractional telegraph equation via Laplace transform
  publication-title: Appl. Math. Model.
– volume: 28
  year: 2020
  article-title: A fractal variational principle for the telegraph equation with fractal derivative
  publication-title: Fractals
– volume: 84
  start-page: 143
  year: 2018
  end-page: 147
  article-title: A remark on Samuelson's variational principle in economics
  publication-title: Appl. Math. Lett.
– year: 2020
  article-title: Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system
  publication-title: Math. Method Appl. Sci.
– volume: 17
  year: 2020
  article-title: Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation
  publication-title: Results Phys.
– volume: 43
  start-page: 5564
  year: 2020
  end-page: 5578
  article-title: A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods
  publication-title: Math. Method. Appl. Sci.
– volume: 23
  start-page: 2131
  issue: 4
  year: 2019
  end-page: 2133
  article-title: Two‐scale mathematics and fractional calculus for thermodynamics
  publication-title: Therm. Sci.
– volume: 43
  start-page: 4460
  year: 2020
  end-page: 4471
  article-title: A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force
  publication-title: Math. Method. Appl. Sci.
– year: 2020
  article-title: A new fractal model for the soliton motion in a microgravity space
  publication-title: Int. J. Numer. Method. H.
– volume: 231
  start-page: 899
  year: 2019
  end-page: 906
  article-title: Generalized variational principles for buckling analysis of circular cylinders
  publication-title: Acta Mech.
– volume: 24
  start-page: 659
  year: 2020
  end-page: 681
  article-title: New promises and future challenges of fractal calculus: from two‐scale thermodynamics to fractal variational principle
  publication-title: Therm. Sci.
– volume: 15
  year: 2019
  article-title: The simplest approach to nonlinear oscillators
  publication-title: Results. Phys
– volume: 6
  year: 2018
  article-title: Fractal calculus and its application to explanation of biomechanism of polar bear hairs
  publication-title: Fractals
– ident: e_1_2_6_2_1
  doi: 10.1016/j.nonrwa.2007.10.002
– ident: e_1_2_6_9_1
  doi: 10.1016/j.asej.2020.01.016
– ident: e_1_2_6_23_1
  doi: 10.1186/s13662-020-02684-z
– volume: 6
  start-page: 1184
  year: 2020
  ident: e_1_2_6_44_1
  article-title: A simple approach to Volterra‐Fredholm integral equations
  publication-title: J. Appl. Comput. Mech.
– volume: 3
  start-page: 752
  year: 2015
  ident: e_1_2_6_5_1
  article-title: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics
  publication-title: Rom. Rep. Phys.
– ident: e_1_2_6_34_1
  doi: 10.2298/TSCI190408138A
– ident: e_1_2_6_37_1
  doi: 10.2298/TSCI200127065H
– ident: e_1_2_6_45_1
  doi: 10.1016/j.rinp.2020.103031
– ident: e_1_2_6_13_1
  doi: 10.1016/j.aej.2020.01.055
– ident: e_1_2_6_18_1
  doi: 10.1177/1461348418818973
– ident: e_1_2_6_28_1
  doi: 10.1142/S0218348X20500589
– ident: e_1_2_6_20_1
  doi: 10.1016/j.aej.2020.04.019
– ident: e_1_2_6_11_1
  doi: 10.3934/math.2020197
– ident: e_1_2_6_24_1
  doi: 10.1142/S0218348X20500243
– ident: e_1_2_6_40_1
  doi: 10.1007/s00707-019-02569-7
– ident: e_1_2_6_15_1
  doi: 10.1016/j.aej.2013.09.005
– ident: e_1_2_6_31_1
  doi: 10.1142/S0218348X19501342
– ident: e_1_2_6_35_1
  doi: 10.1142/S0218348X19501226
– ident: e_1_2_6_38_1
  doi: 10.1142/S0218348X20500310
– ident: e_1_2_6_7_1
  doi: 10.1115/1.4043617
– ident: e_1_2_6_17_1
  doi: 10.2298/TSCI1904163W
– ident: e_1_2_6_29_1
  doi: 10.1016/j.rinp.2018.06.011
– ident: e_1_2_6_16_1
  doi: 10.1515/ijnsns-2018-0362
– ident: e_1_2_6_36_1
  doi: 10.2298/TSCI1904131H
– ident: e_1_2_6_22_1
  doi: 10.1002/mma.6347
– ident: e_1_2_6_27_1
  doi: 10.1142/S0218348X1850086X
– volume: 15
  start-page: 970
  year: 2010
  ident: e_1_2_6_39_1
  article-title: Fractional complex transform for fractional differential equations
  publication-title: Math. Comput. Appl.
– volume: 6
  start-page: 735
  year: 2020
  ident: e_1_2_6_41_1
  article-title: Variational principle for the generalized KdV‐burgers equation with fractal derivatives for shallow water waves
  publication-title: J. Appl. Comput. Mech.
– ident: e_1_2_6_43_1
  doi: 10.1016/j.aml.2018.05.008
– ident: e_1_2_6_33_1
  doi: 10.1177/1461348419844145
– ident: e_1_2_6_25_1
  doi: 10.1108/HFF-05-2020-0247
– ident: e_1_2_6_26_1
  doi: 10.1007/s10773-014-2123-8
– ident: e_1_2_6_3_1
  doi: 10.1016/S0045-7825(99)00018-3
– ident: e_1_2_6_19_1
  doi: 10.3389/fphy.2020.00064
– ident: e_1_2_6_32_1
  doi: 10.1016/j.rinp.2019.102546
– ident: e_1_2_6_14_1
  doi: 10.1016/j.apm.2013.11.035
– ident: e_1_2_6_4_1
  doi: 10.1177/1461348418811028
– ident: e_1_2_6_42_1
  doi: 10.1002/mma.6726
– ident: e_1_2_6_30_1
  doi: 10.1142/S0218348X19500476
– ident: e_1_2_6_8_1
  doi: 10.1002/mma.6297
– ident: e_1_2_6_12_1
  doi: 10.1186/s13662-019-2488-3
– ident: e_1_2_6_10_1
  doi: 10.1002/mma.6208
– ident: e_1_2_6_6_1
  doi: 10.2298/TSCI1804871W
– ident: e_1_2_6_21_1
  doi: 10.1002/mma.6335
SSID ssj0011519
Score 2.5213974
Snippet At a microgravity condition, a spaceflight might be subject to a microgravity‐induced vibration. There is no theory so far to study the effect of microgravity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1374
SubjectTerms fractal derivative
Fractal models
Fractals
fractional differential equation
frequency formulation
Gravitational effects
Inverse method
Microgravity
microgravity space
Space flight
two‐scale transform method
Vibration
Title He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22584
https://www.proquest.com/docview/2481896900
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgb3E6RxBBL926tMlaPG3qGMJ2EAcDhZKkKYhuyLod9K_3vfSHUxTEW2jTNu37Xt6X8Po9Qs6YlwgRyzY4kk4cnyvuKCmFAwsxKbRuS26FtIcjMRj7txM-qZDL4l-YTB-i3HBDz7DzNTq4VGlrRTR0OW0CGAPUAsVcLSREd6V0FBAdW9QDImToQMieFKpCLmuVV36NRZ8Ec5Wm2jjT3yKPxQiz9JLn5nKhmvr9m3jjP19hm2zm_JN2M8DskIqZ7ZKNYSnemu6Rh4E5T2kyz5Ks3yjS2rzIF7bhjNRA2eksG4KcUxTEBDjB8p1iTUOIhvRpRiWdYrYfFjgCqk9h6tJmn4z7N_dXAyevweBoBksNpx0Y0wF7JR2jQ98NknYMHFMAbdCux00YI2FLUBQtlAELjRczZSQAw4eDQgXeAanCcMwhoQbCsRvHmgN4fcWUDDrAzRLhh4nk3MQ1clFYI9K5QDnWyXiJMmllhkVSIvu9auS07PqaqXL81KlemDTKHTONmA8MJQQkuvA4a5vfbxCNxkPbOPp712OyzjDrxWap1Ul1MV-aE6AtC9Uga93eda_fsDj9APWZ7KU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M-aA-eBenU4MI-tKtTZuuBV9ElKrbHmSDgUhJ0wREN2SXB_31nqQXpyiIb6FN27TnnJwv4fT7AE6oq3w_5Q4GklCWxxJmJZz7Fi7EuC-Ew5kh0u50_ajv3Q7YoALnxb8wGT9EueGmI8PM1zrA9YZ0c441dDZsoDcG3gIsakVvs6C6L8mjEOoYWQ_MkaGFSXtQ8ArZtFle-jUbfULMeaBqMs31GjwWY8wKTJ4bs2nSEO_f6Bv_-xLrsJpDUHKR-cwGVORoE1Y6JX_rZAseInk6IWqc1Vm_EY1sc50v3cYzXCBqJ6NsDHxMNCcmehSu4ImWNcSESJ5GhJOhLvjTGkeI9gnOXkJuQ__6qncZWbkMgyUorjYsJ5CyhSZTLSlCzw6UkyLM9BE5CNtlMkw1ZlOaFy3kAQ2lm9JEcvQNDw_6SeDuQBWHI3eBSMzIdpoKhv7rJTThQQvhmfK9UHHGZFqDs8Icscg5yrVUxkucsStTrZMSm-9Vg-Oy62tGzPFTp3ph0ziPzUlMPQQpITqjjY8zxvn9BnG33zGNvb93PYKlqNdpx-2b7t0-LFNdBGOK1upQnY5n8gBRzDQ5NM76AT_x704
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBNEH7-J0ahBBX7p1WZq1-CTOMS8bIg4GCiVNExDdGLs86K_3JL04RUF8C23apj3fyfkSTr8DcExrmvNYVNGRpHaYF3lOJAR3cCEmuJRV4Vkh7XaHt7rsuuf15uAs-xcm0YfIN9yMZ9j52jj4MNaVGdHQab-MYPTZPCww7voG0o37XDsKmY6t6oEhMnAwZvcyWSGXVvJLvwajT4Y5y1NtoGmuwlM2xCS_5KU8nURl-f5NvfGf77AGKykBJecJYtZhTg02YLmdq7eON-GxpU7GRI-SLOs3YnhtWuXLtPGMkMjZySAZghgRo4iJeML1OzFFDTEckucBEaRv0v1MhSPk-gTnLqm2oNu8fLhoOWkRBkdSXGs4VV-pOhpM15UMmOvraowkkyNvkG7NU0FsGJs2qmiB8GmgajGNlEBkMDzII7-2DQUcjtoBojAeu3EsPUQvi2gk_DqSM81ZoIXnqbgIp5k1QpkqlJtCGa9hoq1MTZWU0H6vIhzlXYeJLMdPnUqZScPUM8chZUhRAoSii4-ztvn9BmGn27aN3b93PYTFu0YzvL3q3OzBEjUZMDZjrQSFyWiq9pHCTKIDC9UPo_buBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=He%27s+frequency+formulation+for+fractal+nonlinear+oscillator+arising+in+a+microgravity+space&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Wang%2C+KangLe&rft.date=2021-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=37&rft.issue=2&rft.spage=1374&rft.epage=1384&rft_id=info:doi/10.1002%2Fnum.22584&rft.externalDBID=10.1002%252Fnum.22584&rft.externalDocID=NUM22584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon