An enhanced framework for identifying brain tumor using discrete wavelet transform, deep convolutional network, and feature fusion‐based machine learning techniques
Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the...
Saved in:
Published in | International journal of imaging systems and technology Vol. 34; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0899-9457 1098-1098 |
DOI | 10.1002/ima.22983 |
Cover
Abstract | Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the brain. A primary BT affects an estimated 0.7 million persons in the United States now and more are expected to be detected in the coming years. The ability to categorize magnetic resonance (MR) brain images into ordinary and pathological categories has the boundless ability to significantly diminish the burden on the radiologist. Pre‐processing, extraction, and reduction of features along with their classification are the parameters of statistical‐based methodologies that have been frequently used for this purpose. In this work, an enhanced framework for the identification of the BT is proposed using discrete wavelet transform (DWT), deep convolutional network (DCN), and machine learning (ML). As DWT is primarily used for image compression and denoising applications however in the presented research work it has been utilized for extricating pivotal features from the MR images using the feature fusion technique. DCN is also utilized for the extraction of pivotal deep features which are then combined with the wavelet‐based features for the purpose of BT identification. The classification of tumorous and non‐tumorous MR images is done using ML applications. The results obtained from the proposed model exhibit an utmost accuracy of 99.5% with an area under curve of 1 in identifying tumorous and non‐tumorous MR images as compared to various state‐of‐the‐art models. The proposed model can be efficiently used for assisting radiologists and medical experts in validating their decisions for BT identification. |
---|---|
AbstractList | Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the brain. A primary BT affects an estimated 0.7 million persons in the United States now and more are expected to be detected in the coming years. The ability to categorize magnetic resonance (MR) brain images into ordinary and pathological categories has the boundless ability to significantly diminish the burden on the radiologist. Pre‐processing, extraction, and reduction of features along with their classification are the parameters of statistical‐based methodologies that have been frequently used for this purpose. In this work, an enhanced framework for the identification of the BT is proposed using discrete wavelet transform (DWT), deep convolutional network (DCN), and machine learning (ML). As DWT is primarily used for image compression and denoising applications however in the presented research work it has been utilized for extricating pivotal features from the MR images using the feature fusion technique. DCN is also utilized for the extraction of pivotal deep features which are then combined with the wavelet‐based features for the purpose of BT identification. The classification of tumorous and non‐tumorous MR images is done using ML applications. The results obtained from the proposed model exhibit an utmost accuracy of 99.5% with an area under curve of 1 in identifying tumorous and non‐tumorous MR images as compared to various state‐of‐the‐art models. The proposed model can be efficiently used for assisting radiologists and medical experts in validating their decisions for BT identification. |
Author | Ansari, M. A. Agrawal, Rajeev Mehrotra, Rajat Al‐Ward, Hisham Singh, Jay Tripathi, Pragati |
Author_xml | – sequence: 1 givenname: Rajat surname: Mehrotra fullname: Mehrotra, Rajat organization: Amity University – sequence: 2 givenname: M. A. surname: Ansari fullname: Ansari, M. A. organization: Gautam Buddha University – sequence: 3 givenname: Rajeev surname: Agrawal fullname: Agrawal, Rajeev organization: Llyod Institute of Engineering & Technology – sequence: 4 givenname: Hisham surname: Al‐Ward fullname: Al‐Ward, Hisham email: hishamalward.tu@gmail.com organization: Thamar University – sequence: 5 givenname: Pragati surname: Tripathi fullname: Tripathi, Pragati organization: I.T.S. Engineering College – sequence: 6 givenname: Jay surname: Singh fullname: Singh, Jay organization: GL Bajaj Institute of Technology & Management |
BookMark | eNp1UUtu2zAQJYoEqJ1kkRsQ6KqAlZCUaIlLI2jTAAmySdYCRY1qptLQJSkb3vUIOUUP1pOUir0qms0MMPM-mHlzcoIOgZBLzq44Y-LaDvpKCFXlH8iMM1VlUzkhM1YplalClh_JPIQXxjiXTM7I7xVSwLVGAy3tvB5g5_wP2jlPbQsYbbe3-J02XlukcRzSfAzTpLXBeIhAd3oLPUQavcaQeMOCtgAbahxuXT9G61D3FCFOwguqMfmAjqMH2iUph39-vTY6JPtBm7VFoD1oj5NHBLNG-3OEcE5OO90HuDj2M_L89cvTzbfs_vH27mZ1nxmhyjxri9IUDZOcNcuc8UpWplRCCmVkl8u2UJUE04hWL5dMFG0FZdE0uSxylT4mlcrPyKeD7sa7yTfWL2706YBQC8VVnrBsmVDXB5TxLgQPXW1s1NOl6Qm2rzmrpzDqFEb9FkZifP6HsfFp6_f_xR7Vd7aH_fvA-u5hdWD8BTkrn2s |
CitedBy_id | crossref_primary_10_1016_j_rineng_2025_104244 crossref_primary_10_1155_int_6914757 crossref_primary_10_1016_j_brainres_2025_149507 |
Cites_doi | 10.1016/j.patrec.2019.11.016 10.1109/SICE.2008.4654828 10.1016/j.mlwa.2020.100003 10.1016/j.procs.2017.11.400 10.1117/12.2293943 10.1007/s40747-021-00310-3 10.1016/j.inffus.2023.101859 10.1007/s10278-013-9600-0 10.1007/978-3-319-45378-1_16 10.1016/j.compeleceng.2017.01.018 10.1016/j.eswa.2014.01.021 10.3390/s21227480 10.1109/TMI.2016.2538465 10.1007/s11042‐021‐11748‐5 10.1016/j.media.2016.10.004 10.3233/IFS-141396 10.1109/ICAPR.2015.7050671 10.1016/j.patrec.2007.10.010 10.1016/j.fcij.2017.12.001 10.1016/j.jvcir.2018.11.047 10.1007/978‐1‐4419‐9326‐7_1 10.1016/j.imu.2018.12.001 10.14257/ijbsbt.2016.8.6.10 10.21833/ijaas.2019.07.012 10.1016/j.eswa.2020.113274 10.1016/j.eswa.2011.02.012 10.17148/IJARCCE.2016.58116 10.1007/s11042-017-5023-0 10.1007/s11760-013-0456-z 10.1007/BF00994018 10.1080/21642583.2022.2045645 10.1007/978-981-15-6067-5_30 10.1109/ACCESS.2019.2902252 10.1038/s41598-020-76550-z 10.1109/ACCESS.2018.2885639 10.3390/diagnostics11061071 10.1016/j.mehy.2020.109684 10.1016/j.bspc.2006.12.001 10.1002/hbm.20398 10.1371/journal.pone.0185844 10.32604/biocell.2023.025905 10.3390/diagnostics10110904 10.1007/978‐3‐319‐09879‐1_16 10.1016/j.dsp.2009.07.002 10.1016/j.comcom.2020.01.013 10.1016/j.bspc.2006.05.002 10.1016/j.compmedimag.2019.101673 10.1109/ICCNIT.2011.6020885 10.1016/j.artmed.2019.101779 10.1016/j.semradonc.2015.02.002 10.1007/s10278-017-9983-4 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. 2024 Wiley Periodicals, LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals, LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22983 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ima_22983 IMA22983 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2973-d47c4b0510b6301858c792529c5f35d4985ecb2da66024d8e74bb354399835993 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Tue Aug 12 10:41:16 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 01:29:50 EDT 2025 Wed Jan 22 16:16:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2973-d47c4b0510b6301858c792529c5f35d4985ecb2da66024d8e74bb354399835993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919335406 |
PQPubID | 1026352 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2919335406 crossref_citationtrail_10_1002_ima_22983 crossref_primary_10_1002_ima_22983 wiley_primary_10_1002_ima_22983_IMA22983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 26 2021; 21 2010; 17 2019; 14 2019; 58 2020; 129 2018; 10575 2020; 10 2016; 35 2007; 28 1995; 20 2017; 30 2010; 20 2018; 3 2020; 2 2022; 81 2017; 36 2008; 29 2020; 139 2017; 122 2018; 77 2023; 98 2019; 7 2021; 7 2019; 6 2012 2011 2019; 78 2008 2020; 149 2006; 1 2020; 102 2014; 41 2015; 9 2011; 38 2016; 5 2018; 17 2015; 25 2015; 28 2023; 47 2021; 11 2017; 58 2021 2020; 153 2020 2017; 12 2016 2015 2014 2022; 10 2016; 9 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Maqsood S (e_1_2_10_34_1) 2021 Mustaf M (e_1_2_10_6_1) 2018; 17 Shree NV (e_1_2_10_5_1) 2014 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Fayaz M (e_1_2_10_16_1) 2016; 9 e_1_2_10_29_1 Kharrat A (e_1_2_10_19_1) 2010; 17 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 2011 – start-page: 172 year: 2016 end-page: 182 – volume: 14 start-page: 59 year: 2019 end-page: 68 article-title: CBIR system using capsule networks and 3D CNN for Alzheimer's disease diagnosis publication-title: Inform Med Unlocked – volume: 10 start-page: 904 year: 2020 article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis publication-title: Diagnostics – volume: 17 start-page: 41 issue: 3 year: 2018 end-page: 46 article-title: Brain cancer: current concepts, diagnosis and prognosis publication-title: IOSR J Dental Med Sci – volume: 139 year: 2020 article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture publication-title: Med Hypotheses – volume: 28 start-page: 1127 year: 2015 end-page: 1135 article-title: A simple and intelligent approach for brain MRI classification publication-title: J Intell Fuzzy Syst – volume: 30 start-page: 449 year: 2017 end-page: 459 article-title: Deep learning for brain MRI segmentation: state of the Artand future directions publication-title: J Digit Imaging – volume: 2 year: 2020 article-title: A transfer learning approach for AI‐based classification of brain tumors publication-title: Mach Learn Appl – volume: 9 start-page: 409 issue: 2 year: 2015 end-page: 425 article-title: Computer‐aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images publication-title: Signal Image Video Process – start-page: 275 year: 2021 end-page: 285 – volume: 1 start-page: 86 year: 2006 end-page: 92 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed Signal Process Control – volume: 10 start-page: 325 issue: 1 year: 2022 end-page: 335 article-title: Covid‐19 diagnosis by WE‐SAJ publication-title: Syst Sci Control Eng – volume: 25 start-page: 164 year: 2015 end-page: 171 article-title: Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma publication-title: Semin Radiat Oncol – volume: 11 start-page: 1071 year: 2021 article-title: Analysis of features of Alzheimer's disease: detection of early stage from functional brain changes in magnetic resonance images using a finetuned ResNet18 network publication-title: Diagnostics – year: 2014 – volume: 7 start-page: 2023 issue: 4 year: 2021 end-page: 2036 article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network publication-title: Complex Intell Syst – volume: 78 year: 2019 article-title: Convolutional neural networks for multi‐class brain disease detection using MRI images publication-title: Comput Med Imaging Graph – volume: 17 start-page: 71 year: 2010 end-page: 82 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine mesh region classification view project Imagerie et vision artificielle view project publication-title: Leonardo J Sci – volume: 38 start-page: 10049 year: 2011 end-page: 10053 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst Appl – start-page: 105 year: 2021 end-page: 118 – start-page: 1130 year: 2008 end-page: 1134 – volume: 102 year: 2020 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif Intell Med – volume: 20 start-page: 433 year: 2010 end-page: 441 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit Signal Process – volume: 12 year: 2017 article-title: A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery publication-title: PLoS One – volume: 9 start-page: 11 year: 2016 end-page: 20 article-title: A robust technique of brain MRI classification using color features and K‐nearest neighbors algorithm publication-title: Int J Signal Process Image Process Pattern Recognit – volume: 21 start-page: 7480 issue: 22 year: 2021 article-title: An efficient methodology for brain MRI classification based on DWT and convolutional neural network publication-title: Sensors – volume: 81 start-page: 7625 year: 2022 end-page: 7649 article-title: Diagnosis of hypercritical chronic pulmonary disorders using dense convolutional network through chest radiography publication-title: Multimed Tools Appl – volume: 149 year: 2020 article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method publication-title: Expert Syst Appl – volume: 7 start-page: 4275 year: 2019 end-page: 4283 article-title: A modified deep convolutional neural network for abnormal brain image classification publication-title: IEEE Access – start-page: 157 year: 2014 end-page: 166 – volume: 129 start-page: 115 year: 2020 end-page: 122 article-title: Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network publication-title: Pattern Recognit Lett – volume: 58 start-page: 489 year: 2017 end-page: 501 article-title: MRI brain tissue classification using unsupervised optimized extenics‐based methods publication-title: Comput Electr Eng – volume: 36 start-page: 61 year: 2017 end-page: 78 article-title: Efficient multi‐scale 3DCNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med Image Anal – volume: 153 start-page: 196 year: 2020 end-page: 207 article-title: Cascading handcrafted features and convolutional neural network for IoT‐enabled brain tumor segmentation publication-title: Comput Commun – volume: 35 start-page: 1240 year: 2016 end-page: 1251 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 553 issue: 8 year: 2016 end-page: 557 article-title: Brain tumor classification based on singular value decomposition publication-title: Int J Adv Res Computer Commun Eng – start-page: 1 year: 2015 end-page: 6 – volume: 10575 year: 2018 – volume: 1 start-page: 299 year: 2006 end-page: 306 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomed Signal Process Control – volume: 3 start-page: 68 year: 2018 end-page: 71 article-title: Classification using deep learning neural networks for brain tumors publication-title: Futur Comput Inform J – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – year: 2012 – volume: 122 start-page: 510 year: 2017 end-page: 517 article-title: Classification of brain MRI tumor images: a hybrid approach publication-title: Procedia Comput Sci – volume: 29 start-page: 343 year: 2008 end-page: 353 article-title: Wavelet decomposition tree selection for palm and face authentication publication-title: Pattern Recognit Lett – volume: 77 start-page: 22629 year: 2018 end-page: 22648 article-title: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm publication-title: Multimed Tools Appl – volume: 7 start-page: 46278 year: 2019 end-page: 46287 article-title: Brain MRI image classification for cancer detection using deep wavelet autoencoder‐based deep neural network publication-title: IEEE Access – year: 2020 – volume: 28 start-page: 464 year: 2007 end-page: 473 article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins publication-title: Hum Brain Mapp – volume: 58 start-page: 316 year: 2019 end-page: 322 article-title: A mix‐pooling CNN architecture with FCRF for brain tumor segmentation publication-title: J Vis Commun Image Represent – volume: 41 start-page: 5526 year: 2014 end-page: 5545 article-title: Computer‐aided diagnosis of human brain tumor through MRI: a survey and a new algorithm publication-title: Expert Syst Appl – volume: 26 start-page: 1141 issue: 6 year: 2013 end-page: 1150 article-title: Segmentation, feature extraction, and multiclass brain tumor classification publication-title: J Digit Imaging – volume: 8 start-page: 93 year: 2017 end-page: 106 article-title: Using probabilistic classification technique and statistical features for brain magnetic resonance imaging (MRI) classification: an application of AI technique in bio‐science publication-title: Int J Bio‐Sci Bio‐Technol – volume: 6 start-page: 89 year: 2019 end-page: 98 article-title: Enhanced feature extraction technique for brain MRI classification based on Haar wavelet and statistical moments publication-title: Int J Adv Appl Sci – volume: 47 start-page: 373 issue: 2 year: 2023 article-title: PSTCNN: explainable COVID‐19 diagnosis using PSO‐guided self‐tuning CNN publication-title: Biocell – volume: 98 year: 2023 article-title: Deep learning in food category recognition publication-title: Inform Fusion – ident: e_1_2_10_33_1 doi: 10.1016/j.patrec.2019.11.016 – ident: e_1_2_10_27_1 doi: 10.1109/SICE.2008.4654828 – ident: e_1_2_10_38_1 doi: 10.1016/j.mlwa.2020.100003 – ident: e_1_2_10_28_1 doi: 10.1016/j.procs.2017.11.400 – volume: 9 start-page: 11 year: 2016 ident: e_1_2_10_16_1 article-title: A robust technique of brain MRI classification using color features and K‐nearest neighbors algorithm publication-title: Int J Signal Process Image Process Pattern Recognit – ident: e_1_2_10_45_1 doi: 10.1117/12.2293943 – ident: e_1_2_10_52_1 doi: 10.1007/s40747-021-00310-3 – ident: e_1_2_10_13_1 doi: 10.1016/j.inffus.2023.101859 – ident: e_1_2_10_10_1 doi: 10.1007/s10278-013-9600-0 – ident: e_1_2_10_56_1 doi: 10.1007/978-3-319-45378-1_16 – ident: e_1_2_10_21_1 doi: 10.1016/j.compeleceng.2017.01.018 – volume-title: Electrical Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference on IEEE year: 2014 ident: e_1_2_10_5_1 – ident: e_1_2_10_15_1 doi: 10.1016/j.eswa.2014.01.021 – start-page: 105 volume-title: Proceedings of the International Conference on Computational Science and its Applications year: 2021 ident: e_1_2_10_34_1 – ident: e_1_2_10_11_1 doi: 10.3390/s21227480 – ident: e_1_2_10_42_1 doi: 10.1109/TMI.2016.2538465 – ident: e_1_2_10_55_1 doi: 10.1007/s11042‐021‐11748‐5 – ident: e_1_2_10_40_1 doi: 10.1016/j.media.2016.10.004 – ident: e_1_2_10_53_1 – ident: e_1_2_10_25_1 doi: 10.3233/IFS-141396 – ident: e_1_2_10_57_1 doi: 10.1109/ICAPR.2015.7050671 – ident: e_1_2_10_58_1 doi: 10.1016/j.patrec.2007.10.010 – ident: e_1_2_10_41_1 – ident: e_1_2_10_30_1 doi: 10.1016/j.fcij.2017.12.001 – ident: e_1_2_10_50_1 doi: 10.1016/j.jvcir.2018.11.047 – ident: e_1_2_10_2_1 – ident: e_1_2_10_60_1 doi: 10.1007/978‐1‐4419‐9326‐7_1 – volume: 17 start-page: 41 issue: 3 year: 2018 ident: e_1_2_10_6_1 article-title: Brain cancer: current concepts, diagnosis and prognosis publication-title: IOSR J Dental Med Sci – ident: e_1_2_10_49_1 doi: 10.1016/j.imu.2018.12.001 – ident: e_1_2_10_31_1 doi: 10.14257/ijbsbt.2016.8.6.10 – ident: e_1_2_10_32_1 doi: 10.21833/ijaas.2019.07.012 – ident: e_1_2_10_44_1 doi: 10.1016/j.eswa.2020.113274 – ident: e_1_2_10_20_1 doi: 10.1016/j.eswa.2011.02.012 – ident: e_1_2_10_8_1 doi: 10.17148/IJARCCE.2016.58116 – ident: e_1_2_10_37_1 doi: 10.1007/s11042-017-5023-0 – ident: e_1_2_10_4_1 doi: 10.1007/s11760-013-0456-z – ident: e_1_2_10_59_1 doi: 10.1007/BF00994018 – ident: e_1_2_10_14_1 doi: 10.1080/21642583.2022.2045645 – ident: e_1_2_10_47_1 doi: 10.1007/978-981-15-6067-5_30 – ident: e_1_2_10_22_1 doi: 10.1109/ACCESS.2019.2902252 – ident: e_1_2_10_54_1 doi: 10.1038/s41598-020-76550-z – ident: e_1_2_10_39_1 doi: 10.1109/ACCESS.2018.2885639 – ident: e_1_2_10_36_1 doi: 10.3390/diagnostics11061071 – ident: e_1_2_10_46_1 doi: 10.1016/j.mehy.2020.109684 – ident: e_1_2_10_17_1 doi: 10.1016/j.bspc.2006.12.001 – ident: e_1_2_10_18_1 doi: 10.1002/hbm.20398 – ident: e_1_2_10_43_1 doi: 10.1371/journal.pone.0185844 – ident: e_1_2_10_12_1 doi: 10.32604/biocell.2023.025905 – ident: e_1_2_10_35_1 doi: 10.3390/diagnostics10110904 – ident: e_1_2_10_3_1 doi: 10.1007/978‐3‐319‐09879‐1_16 – volume: 17 start-page: 71 year: 2010 ident: e_1_2_10_19_1 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine mesh region classification view project Imagerie et vision artificielle view project publication-title: Leonardo J Sci – ident: e_1_2_10_29_1 doi: 10.1016/j.dsp.2009.07.002 – ident: e_1_2_10_48_1 doi: 10.1016/j.comcom.2020.01.013 – ident: e_1_2_10_26_1 doi: 10.1016/j.bspc.2006.05.002 – ident: e_1_2_10_51_1 doi: 10.1016/j.compmedimag.2019.101673 – ident: e_1_2_10_7_1 doi: 10.1109/ICCNIT.2011.6020885 – ident: e_1_2_10_24_1 doi: 10.1016/j.artmed.2019.101779 – ident: e_1_2_10_9_1 doi: 10.1016/j.semradonc.2015.02.002 – ident: e_1_2_10_23_1 doi: 10.1007/s10278-017-9983-4 |
SSID | ssj0011505 |
Score | 2.3676293 |
Snippet | Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Brain brain tumor Classification deep convolutional network Discrete Wavelet Transform DWT feature fusion Image compression Machine learning Magnetic resonance imaging Medical imaging MRI Tumors Wavelet transforms |
Title | An enhanced framework for identifying brain tumor using discrete wavelet transform, deep convolutional network, and feature fusion‐based machine learning techniques |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22983 https://www.proquest.com/docview/2919335406 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuVAEG1EGNCFjjrim0JczMKo6e7kduPq4gMVdCEKLgZC-hEVNYo3l4FZzSfMV8yHzZdY1XnoiIK4C6GTTlLVXSfFqVOMrTkrLEZSESFU1ZE0jkdaWRulwhZcx8JIRdXIxyfpwbk8ukguRth2WwtT60N0CTdaGWG_pgWem8Hms2joNckGca1I6TMWKenm75520lEEdAJ9UZECpUx6rarQFt_srvw_Fj0DzJcwNcSZ_Un2o33Cml5yszGszIb99Uq88ZOv8JVNNPgT-rXDTLERX06z8ReqhNPsS2CF2sEM-9svwZdXgSQARUvjAsS5cB0KfEORFBhqMwHV8A7PE4_-EqjW9xHhOPzMqbFFBVWLj9fBef8ARHZvnB6fpqy56OuQlziPD1qjUAwpkffv9x8KtA7uAuvTQ9Pm4hI69dnBN3a-v3e2cxA1jR0iS62yIid7VhraDkyKG4xKlO1pnnBtk0IkTmqVeGu4y9MUIYRTvieNEQn9OiFgREQ1y0bL-9LPMXBbuZCikLHWDpGh0rEqCiddHnNPWGuefW9NnNlG9Zyab9xmtV4zz9AIWTDCPFvthj7UUh9vDVpq_SRrVvsgQ6fWghJoKU4XDP7-DbLD4344WPj40EU2xvFD1JmfJTZaPQ79MmKhyqwEp38Ch3EIXg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEK4gxggHfxAjgloxHjwwwHb3zHYnXjYqWZTlYCDhYibTP4MEGQg7GxNPPoJP4YPxJFb1_IBGE-NtMumZ7pmq7v668tVXAC-8k452UpkQVDWJsl4kRjuXZNKVwgykVZqzkSd72fhAvTtMD-fgVZcL0-hD9AE3nhlxveYJzgHpzSvV0GPWDRJGyxtwUxHQ4KPXmw-9eBRDnUhg1KxBqdJhpyu0JTb7R3_dja4g5nWgGnea7bvwsRtjQzA52ZjVdsN9_U2-8X8_4h7caSEojhqfuQ9zoVqCxWvChEtwKxJD3fQB_BhVGKpPkSeAZcfkQoK6eBxzfGOeFFquNIH17JTuM5X-CDnd94IQOX4puLZFjXUHkdfRh3COzHdv_Z5GUzV09HUsKuonRLlRLGccy7v89p33Wo-nkfgZsK10cYS9AO10GQ623-6_HidtbYfEcbWsxKuhU5ZXBJvRGqNT7YZGpMK4tJSpV0anwVnhiywjFOF1GCprZcqnJ8KMBKoewnx1VoVHgH6rkEqWamCMJ3CozUCXpVe-GIjAcGsFXnY2zl0rfM71Nz7njWSzyMkIeTTCCjzvm543ah9_arTWOUreTvhpTn5tJMfQMuouWvzvL8h3JqN48fjfmz6D2-P9yW6-u7P3fhUWBP2UJhC0BvP1xSw8IWhU26dxBvwE_5MMfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datVAEB5qRdELrVWxWu0gXnjRtD27m5xdenVoPbRqi4iFXggh-5NatPHQk4PgVR-hT-GD-SSd2fy0ioJ4F8Imm2Rmd74M33wD8MI76SiSyoSgqkmU9SIx2rkkk64UZiCt0lyNvLef7Ryo14fp4RxsdrUwjT5En3DjlRH3a17gE1-uX4qGHrNskDBaXoPrKiMkwYjofa8dxUgn8hc1S1CqdNjJCm2I9f7SX4PRJcK8ilNjoBnfhY_dIzb8ks9rs9quue-_qTf-5zsswJ0WgOKo8Zh7MBeqRbh9RZZwEW5EWqib3ocfowpD9SmyBLDseFxIQBePY4VvrJJCy30msJ6d0Hkm0h8hF_ueEh7HbwV3tqix7gDyKvoQJshs99br6Wmqhoy-ikVF84QoNorljDN5P8_OOdJ6PIm0z4Btn4sj7OVnpw_gYPzqw9ZO0nZ2SBz3ykq8GjpleT-wGe0wOtVuaEQqjEtLmXpldBqcFb7IMsIQXoehslam_O9EiJEg1UOYr75W4RGg3yikkqUaGOMJGmoz0GXplS8GIjDYWoKXnYlz18qec_eNL3kj2CxyMkIejbAEz_uhk0br40-Dljs_ydvlPs3Jq43kDFpG00WD__0G-e7eKB48_vehK3Dz3fY4f7u7_-YJ3BL0TZos0DLM16ez8JRwUW2fRf-_AN2_Cyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+framework+for+identifying+brain+tumor+using+discrete+wavelet+transform%2C+deep+convolutional+network%2C+and+feature+fusion%E2%80%90based+machine+learning+techniques&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Mehrotra%2C+Rajat&rft.au=Ansari%2C+M.+A.&rft.au=Agrawal%2C+Rajeev&rft.au=Al%E2%80%90Ward%2C+Hisham&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fima.22983&rft.externalDBID=10.1002%252Fima.22983&rft.externalDocID=IMA22983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |