An enhanced framework for identifying brain tumor using discrete wavelet transform, deep convolutional network, and feature fusion‐based machine learning techniques

Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 34; no. 1
Main Authors Mehrotra, Rajat, Ansari, M. A., Agrawal, Rajeev, Al‐Ward, Hisham, Tripathi, Pragati, Singh, Jay
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22983

Cover

Abstract Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the brain. A primary BT affects an estimated 0.7 million persons in the United States now and more are expected to be detected in the coming years. The ability to categorize magnetic resonance (MR) brain images into ordinary and pathological categories has the boundless ability to significantly diminish the burden on the radiologist. Pre‐processing, extraction, and reduction of features along with their classification are the parameters of statistical‐based methodologies that have been frequently used for this purpose. In this work, an enhanced framework for the identification of the BT is proposed using discrete wavelet transform (DWT), deep convolutional network (DCN), and machine learning (ML). As DWT is primarily used for image compression and denoising applications however in the presented research work it has been utilized for extricating pivotal features from the MR images using the feature fusion technique. DCN is also utilized for the extraction of pivotal deep features which are then combined with the wavelet‐based features for the purpose of BT identification. The classification of tumorous and non‐tumorous MR images is done using ML applications. The results obtained from the proposed model exhibit an utmost accuracy of 99.5% with an area under curve of 1 in identifying tumorous and non‐tumorous MR images as compared to various state‐of‐the‐art models. The proposed model can be efficiently used for assisting radiologists and medical experts in validating their decisions for BT identification.
AbstractList Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the brain. A primary BT affects an estimated 0.7 million persons in the United States now and more are expected to be detected in the coming years. The ability to categorize magnetic resonance (MR) brain images into ordinary and pathological categories has the boundless ability to significantly diminish the burden on the radiologist. Pre‐processing, extraction, and reduction of features along with their classification are the parameters of statistical‐based methodologies that have been frequently used for this purpose. In this work, an enhanced framework for the identification of the BT is proposed using discrete wavelet transform (DWT), deep convolutional network (DCN), and machine learning (ML). As DWT is primarily used for image compression and denoising applications however in the presented research work it has been utilized for extricating pivotal features from the MR images using the feature fusion technique. DCN is also utilized for the extraction of pivotal deep features which are then combined with the wavelet‐based features for the purpose of BT identification. The classification of tumorous and non‐tumorous MR images is done using ML applications. The results obtained from the proposed model exhibit an utmost accuracy of 99.5% with an area under curve of 1 in identifying tumorous and non‐tumorous MR images as compared to various state‐of‐the‐art models. The proposed model can be efficiently used for assisting radiologists and medical experts in validating their decisions for BT identification.
Author Ansari, M. A.
Agrawal, Rajeev
Mehrotra, Rajat
Al‐Ward, Hisham
Singh, Jay
Tripathi, Pragati
Author_xml – sequence: 1
  givenname: Rajat
  surname: Mehrotra
  fullname: Mehrotra, Rajat
  organization: Amity University
– sequence: 2
  givenname: M. A.
  surname: Ansari
  fullname: Ansari, M. A.
  organization: Gautam Buddha University
– sequence: 3
  givenname: Rajeev
  surname: Agrawal
  fullname: Agrawal, Rajeev
  organization: Llyod Institute of Engineering & Technology
– sequence: 4
  givenname: Hisham
  surname: Al‐Ward
  fullname: Al‐Ward, Hisham
  email: hishamalward.tu@gmail.com
  organization: Thamar University
– sequence: 5
  givenname: Pragati
  surname: Tripathi
  fullname: Tripathi, Pragati
  organization: I.T.S. Engineering College
– sequence: 6
  givenname: Jay
  surname: Singh
  fullname: Singh, Jay
  organization: GL Bajaj Institute of Technology & Management
BookMark eNp1UUtu2zAQJYoEqJ1kkRsQ6KqAlZCUaIlLI2jTAAmySdYCRY1qptLQJSkb3vUIOUUP1pOUir0qms0MMPM-mHlzcoIOgZBLzq44Y-LaDvpKCFXlH8iMM1VlUzkhM1YplalClh_JPIQXxjiXTM7I7xVSwLVGAy3tvB5g5_wP2jlPbQsYbbe3-J02XlukcRzSfAzTpLXBeIhAd3oLPUQavcaQeMOCtgAbahxuXT9G61D3FCFOwguqMfmAjqMH2iUph39-vTY6JPtBm7VFoD1oj5NHBLNG-3OEcE5OO90HuDj2M_L89cvTzbfs_vH27mZ1nxmhyjxri9IUDZOcNcuc8UpWplRCCmVkl8u2UJUE04hWL5dMFG0FZdE0uSxylT4mlcrPyKeD7sa7yTfWL2706YBQC8VVnrBsmVDXB5TxLgQPXW1s1NOl6Qm2rzmrpzDqFEb9FkZifP6HsfFp6_f_xR7Vd7aH_fvA-u5hdWD8BTkrn2s
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104244
crossref_primary_10_1155_int_6914757
crossref_primary_10_1016_j_brainres_2025_149507
Cites_doi 10.1016/j.patrec.2019.11.016
10.1109/SICE.2008.4654828
10.1016/j.mlwa.2020.100003
10.1016/j.procs.2017.11.400
10.1117/12.2293943
10.1007/s40747-021-00310-3
10.1016/j.inffus.2023.101859
10.1007/s10278-013-9600-0
10.1007/978-3-319-45378-1_16
10.1016/j.compeleceng.2017.01.018
10.1016/j.eswa.2014.01.021
10.3390/s21227480
10.1109/TMI.2016.2538465
10.1007/s11042‐021‐11748‐5
10.1016/j.media.2016.10.004
10.3233/IFS-141396
10.1109/ICAPR.2015.7050671
10.1016/j.patrec.2007.10.010
10.1016/j.fcij.2017.12.001
10.1016/j.jvcir.2018.11.047
10.1007/978‐1‐4419‐9326‐7_1
10.1016/j.imu.2018.12.001
10.14257/ijbsbt.2016.8.6.10
10.21833/ijaas.2019.07.012
10.1016/j.eswa.2020.113274
10.1016/j.eswa.2011.02.012
10.17148/IJARCCE.2016.58116
10.1007/s11042-017-5023-0
10.1007/s11760-013-0456-z
10.1007/BF00994018
10.1080/21642583.2022.2045645
10.1007/978-981-15-6067-5_30
10.1109/ACCESS.2019.2902252
10.1038/s41598-020-76550-z
10.1109/ACCESS.2018.2885639
10.3390/diagnostics11061071
10.1016/j.mehy.2020.109684
10.1016/j.bspc.2006.12.001
10.1002/hbm.20398
10.1371/journal.pone.0185844
10.32604/biocell.2023.025905
10.3390/diagnostics10110904
10.1007/978‐3‐319‐09879‐1_16
10.1016/j.dsp.2009.07.002
10.1016/j.comcom.2020.01.013
10.1016/j.bspc.2006.05.002
10.1016/j.compmedimag.2019.101673
10.1109/ICCNIT.2011.6020885
10.1016/j.artmed.2019.101779
10.1016/j.semradonc.2015.02.002
10.1007/s10278-017-9983-4
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals, LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22983
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage n/a
ExternalDocumentID 10_1002_ima_22983
IMA22983
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2973-d47c4b0510b6301858c792529c5f35d4985ecb2da66024d8e74bb354399835993
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Tue Aug 12 10:41:16 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 01:29:50 EDT 2025
Wed Jan 22 16:16:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-d47c4b0510b6301858c792529c5f35d4985ecb2da66024d8e74bb354399835993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919335406
PQPubID 1026352
PageCount 18
ParticipantIDs proquest_journals_2919335406
crossref_citationtrail_10_1002_ima_22983
crossref_primary_10_1002_ima_22983
wiley_primary_10_1002_ima_22983_IMA22983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 8
2013; 26
2021; 21
2010; 17
2019; 14
2019; 58
2020; 129
2018; 10575
2020; 10
2016; 35
2007; 28
1995; 20
2017; 30
2010; 20
2018; 3
2020; 2
2022; 81
2017; 36
2008; 29
2020; 139
2017; 122
2018; 77
2023; 98
2019; 7
2021; 7
2019; 6
2012
2011
2019; 78
2008
2020; 149
2006; 1
2020; 102
2014; 41
2015; 9
2011; 38
2016; 5
2018; 17
2015; 25
2015; 28
2023; 47
2021; 11
2017; 58
2021
2020; 153
2020
2017; 12
2016
2015
2014
2022; 10
2016; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Maqsood S (e_1_2_10_34_1) 2021
Mustaf M (e_1_2_10_6_1) 2018; 17
Shree NV (e_1_2_10_5_1) 2014
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Fayaz M (e_1_2_10_16_1) 2016; 9
e_1_2_10_29_1
Kharrat A (e_1_2_10_19_1) 2010; 17
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 2011
– start-page: 172
  year: 2016
  end-page: 182
– volume: 14
  start-page: 59
  year: 2019
  end-page: 68
  article-title: CBIR system using capsule networks and 3D CNN for Alzheimer's disease diagnosis
  publication-title: Inform Med Unlocked
– volume: 10
  start-page: 904
  year: 2020
  article-title: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis
  publication-title: Diagnostics
– volume: 17
  start-page: 41
  issue: 3
  year: 2018
  end-page: 46
  article-title: Brain cancer: current concepts, diagnosis and prognosis
  publication-title: IOSR J Dental Med Sci
– volume: 139
  year: 2020
  article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture
  publication-title: Med Hypotheses
– volume: 28
  start-page: 1127
  year: 2015
  end-page: 1135
  article-title: A simple and intelligent approach for brain MRI classification
  publication-title: J Intell Fuzzy Syst
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  article-title: Deep learning for brain MRI segmentation: state of the Artand future directions
  publication-title: J Digit Imaging
– volume: 2
  year: 2020
  article-title: A transfer learning approach for AI‐based classification of brain tumors
  publication-title: Mach Learn Appl
– volume: 9
  start-page: 409
  issue: 2
  year: 2015
  end-page: 425
  article-title: Computer‐aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images
  publication-title: Signal Image Video Process
– start-page: 275
  year: 2021
  end-page: 285
– volume: 1
  start-page: 86
  year: 2006
  end-page: 92
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed Signal Process Control
– volume: 10
  start-page: 325
  issue: 1
  year: 2022
  end-page: 335
  article-title: Covid‐19 diagnosis by WE‐SAJ
  publication-title: Syst Sci Control Eng
– volume: 25
  start-page: 164
  year: 2015
  end-page: 171
  article-title: Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma
  publication-title: Semin Radiat Oncol
– volume: 11
  start-page: 1071
  year: 2021
  article-title: Analysis of features of Alzheimer's disease: detection of early stage from functional brain changes in magnetic resonance images using a finetuned ResNet18 network
  publication-title: Diagnostics
– year: 2014
– volume: 7
  start-page: 2023
  issue: 4
  year: 2021
  end-page: 2036
  article-title: An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network
  publication-title: Complex Intell Syst
– volume: 78
  year: 2019
  article-title: Convolutional neural networks for multi‐class brain disease detection using MRI images
  publication-title: Comput Med Imaging Graph
– volume: 17
  start-page: 71
  year: 2010
  end-page: 82
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine mesh region classification view project Imagerie et vision artificielle view project
  publication-title: Leonardo J Sci
– volume: 38
  start-page: 10049
  year: 2011
  end-page: 10053
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst Appl
– start-page: 105
  year: 2021
  end-page: 118
– start-page: 1130
  year: 2008
  end-page: 1134
– volume: 102
  year: 2020
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif Intell Med
– volume: 20
  start-page: 433
  year: 2010
  end-page: 441
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit Signal Process
– volume: 12
  year: 2017
  article-title: A deep convolutional neural network‐based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
  publication-title: PLoS One
– volume: 9
  start-page: 11
  year: 2016
  end-page: 20
  article-title: A robust technique of brain MRI classification using color features and K‐nearest neighbors algorithm
  publication-title: Int J Signal Process Image Process Pattern Recognit
– volume: 21
  start-page: 7480
  issue: 22
  year: 2021
  article-title: An efficient methodology for brain MRI classification based on DWT and convolutional neural network
  publication-title: Sensors
– volume: 81
  start-page: 7625
  year: 2022
  end-page: 7649
  article-title: Diagnosis of hypercritical chronic pulmonary disorders using dense convolutional network through chest radiography
  publication-title: Multimed Tools Appl
– volume: 149
  year: 2020
  article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method
  publication-title: Expert Syst Appl
– volume: 7
  start-page: 4275
  year: 2019
  end-page: 4283
  article-title: A modified deep convolutional neural network for abnormal brain image classification
  publication-title: IEEE Access
– start-page: 157
  year: 2014
  end-page: 166
– volume: 129
  start-page: 115
  year: 2020
  end-page: 122
  article-title: Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network
  publication-title: Pattern Recognit Lett
– volume: 58
  start-page: 489
  year: 2017
  end-page: 501
  article-title: MRI brain tissue classification using unsupervised optimized extenics‐based methods
  publication-title: Comput Electr Eng
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  article-title: Efficient multi‐scale 3DCNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
– volume: 153
  start-page: 196
  year: 2020
  end-page: 207
  article-title: Cascading handcrafted features and convolutional neural network for IoT‐enabled brain tumor segmentation
  publication-title: Comput Commun
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 553
  issue: 8
  year: 2016
  end-page: 557
  article-title: Brain tumor classification based on singular value decomposition
  publication-title: Int J Adv Res Computer Commun Eng
– start-page: 1
  year: 2015
  end-page: 6
– volume: 10575
  year: 2018
– volume: 1
  start-page: 299
  year: 2006
  end-page: 306
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomed Signal Process Control
– volume: 3
  start-page: 68
  year: 2018
  end-page: 71
  article-title: Classification using deep learning neural networks for brain tumors
  publication-title: Futur Comput Inform J
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– year: 2012
– volume: 122
  start-page: 510
  year: 2017
  end-page: 517
  article-title: Classification of brain MRI tumor images: a hybrid approach
  publication-title: Procedia Comput Sci
– volume: 29
  start-page: 343
  year: 2008
  end-page: 353
  article-title: Wavelet decomposition tree selection for palm and face authentication
  publication-title: Pattern Recognit Lett
– volume: 77
  start-page: 22629
  year: 2018
  end-page: 22648
  article-title: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm
  publication-title: Multimed Tools Appl
– volume: 7
  start-page: 46278
  year: 2019
  end-page: 46287
  article-title: Brain MRI image classification for cancer detection using deep wavelet autoencoder‐based deep neural network
  publication-title: IEEE Access
– year: 2020
– volume: 28
  start-page: 464
  year: 2007
  end-page: 473
  article-title: Genetic influences on human brain structure: a review of brain imaging studies in twins
  publication-title: Hum Brain Mapp
– volume: 58
  start-page: 316
  year: 2019
  end-page: 322
  article-title: A mix‐pooling CNN architecture with FCRF for brain tumor segmentation
  publication-title: J Vis Commun Image Represent
– volume: 41
  start-page: 5526
  year: 2014
  end-page: 5545
  article-title: Computer‐aided diagnosis of human brain tumor through MRI: a survey and a new algorithm
  publication-title: Expert Syst Appl
– volume: 26
  start-page: 1141
  issue: 6
  year: 2013
  end-page: 1150
  article-title: Segmentation, feature extraction, and multiclass brain tumor classification
  publication-title: J Digit Imaging
– volume: 8
  start-page: 93
  year: 2017
  end-page: 106
  article-title: Using probabilistic classification technique and statistical features for brain magnetic resonance imaging (MRI) classification: an application of AI technique in bio‐science
  publication-title: Int J Bio‐Sci Bio‐Technol
– volume: 6
  start-page: 89
  year: 2019
  end-page: 98
  article-title: Enhanced feature extraction technique for brain MRI classification based on Haar wavelet and statistical moments
  publication-title: Int J Adv Appl Sci
– volume: 47
  start-page: 373
  issue: 2
  year: 2023
  article-title: PSTCNN: explainable COVID‐19 diagnosis using PSO‐guided self‐tuning CNN
  publication-title: Biocell
– volume: 98
  year: 2023
  article-title: Deep learning in food category recognition
  publication-title: Inform Fusion
– ident: e_1_2_10_33_1
  doi: 10.1016/j.patrec.2019.11.016
– ident: e_1_2_10_27_1
  doi: 10.1109/SICE.2008.4654828
– ident: e_1_2_10_38_1
  doi: 10.1016/j.mlwa.2020.100003
– ident: e_1_2_10_28_1
  doi: 10.1016/j.procs.2017.11.400
– volume: 9
  start-page: 11
  year: 2016
  ident: e_1_2_10_16_1
  article-title: A robust technique of brain MRI classification using color features and K‐nearest neighbors algorithm
  publication-title: Int J Signal Process Image Process Pattern Recognit
– ident: e_1_2_10_45_1
  doi: 10.1117/12.2293943
– ident: e_1_2_10_52_1
  doi: 10.1007/s40747-021-00310-3
– ident: e_1_2_10_13_1
  doi: 10.1016/j.inffus.2023.101859
– ident: e_1_2_10_10_1
  doi: 10.1007/s10278-013-9600-0
– ident: e_1_2_10_56_1
  doi: 10.1007/978-3-319-45378-1_16
– ident: e_1_2_10_21_1
  doi: 10.1016/j.compeleceng.2017.01.018
– volume-title: Electrical Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference on IEEE
  year: 2014
  ident: e_1_2_10_5_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.eswa.2014.01.021
– start-page: 105
  volume-title: Proceedings of the International Conference on Computational Science and its Applications
  year: 2021
  ident: e_1_2_10_34_1
– ident: e_1_2_10_11_1
  doi: 10.3390/s21227480
– ident: e_1_2_10_42_1
  doi: 10.1109/TMI.2016.2538465
– ident: e_1_2_10_55_1
  doi: 10.1007/s11042‐021‐11748‐5
– ident: e_1_2_10_40_1
  doi: 10.1016/j.media.2016.10.004
– ident: e_1_2_10_53_1
– ident: e_1_2_10_25_1
  doi: 10.3233/IFS-141396
– ident: e_1_2_10_57_1
  doi: 10.1109/ICAPR.2015.7050671
– ident: e_1_2_10_58_1
  doi: 10.1016/j.patrec.2007.10.010
– ident: e_1_2_10_41_1
– ident: e_1_2_10_30_1
  doi: 10.1016/j.fcij.2017.12.001
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jvcir.2018.11.047
– ident: e_1_2_10_2_1
– ident: e_1_2_10_60_1
  doi: 10.1007/978‐1‐4419‐9326‐7_1
– volume: 17
  start-page: 41
  issue: 3
  year: 2018
  ident: e_1_2_10_6_1
  article-title: Brain cancer: current concepts, diagnosis and prognosis
  publication-title: IOSR J Dental Med Sci
– ident: e_1_2_10_49_1
  doi: 10.1016/j.imu.2018.12.001
– ident: e_1_2_10_31_1
  doi: 10.14257/ijbsbt.2016.8.6.10
– ident: e_1_2_10_32_1
  doi: 10.21833/ijaas.2019.07.012
– ident: e_1_2_10_44_1
  doi: 10.1016/j.eswa.2020.113274
– ident: e_1_2_10_20_1
  doi: 10.1016/j.eswa.2011.02.012
– ident: e_1_2_10_8_1
  doi: 10.17148/IJARCCE.2016.58116
– ident: e_1_2_10_37_1
  doi: 10.1007/s11042-017-5023-0
– ident: e_1_2_10_4_1
  doi: 10.1007/s11760-013-0456-z
– ident: e_1_2_10_59_1
  doi: 10.1007/BF00994018
– ident: e_1_2_10_14_1
  doi: 10.1080/21642583.2022.2045645
– ident: e_1_2_10_47_1
  doi: 10.1007/978-981-15-6067-5_30
– ident: e_1_2_10_22_1
  doi: 10.1109/ACCESS.2019.2902252
– ident: e_1_2_10_54_1
  doi: 10.1038/s41598-020-76550-z
– ident: e_1_2_10_39_1
  doi: 10.1109/ACCESS.2018.2885639
– ident: e_1_2_10_36_1
  doi: 10.3390/diagnostics11061071
– ident: e_1_2_10_46_1
  doi: 10.1016/j.mehy.2020.109684
– ident: e_1_2_10_17_1
  doi: 10.1016/j.bspc.2006.12.001
– ident: e_1_2_10_18_1
  doi: 10.1002/hbm.20398
– ident: e_1_2_10_43_1
  doi: 10.1371/journal.pone.0185844
– ident: e_1_2_10_12_1
  doi: 10.32604/biocell.2023.025905
– ident: e_1_2_10_35_1
  doi: 10.3390/diagnostics10110904
– ident: e_1_2_10_3_1
  doi: 10.1007/978‐3‐319‐09879‐1_16
– volume: 17
  start-page: 71
  year: 2010
  ident: e_1_2_10_19_1
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine mesh region classification view project Imagerie et vision artificielle view project
  publication-title: Leonardo J Sci
– ident: e_1_2_10_29_1
  doi: 10.1016/j.dsp.2009.07.002
– ident: e_1_2_10_48_1
  doi: 10.1016/j.comcom.2020.01.013
– ident: e_1_2_10_26_1
  doi: 10.1016/j.bspc.2006.05.002
– ident: e_1_2_10_51_1
  doi: 10.1016/j.compmedimag.2019.101673
– ident: e_1_2_10_7_1
  doi: 10.1109/ICCNIT.2011.6020885
– ident: e_1_2_10_24_1
  doi: 10.1016/j.artmed.2019.101779
– ident: e_1_2_10_9_1
  doi: 10.1016/j.semradonc.2015.02.002
– ident: e_1_2_10_23_1
  doi: 10.1007/s10278-017-9983-4
SSID ssj0011505
Score 2.3676293
Snippet Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Brain
brain tumor
Classification
deep convolutional network
Discrete Wavelet Transform
DWT
feature fusion
Image compression
Machine learning
Magnetic resonance imaging
Medical imaging
MRI
Tumors
Wavelet transforms
Title An enhanced framework for identifying brain tumor using discrete wavelet transform, deep convolutional network, and feature fusion‐based machine learning techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22983
https://www.proquest.com/docview/2919335406
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuVAEG1EGNCFjjrim0JczMKo6e7kduPq4gMVdCEKLgZC-hEVNYo3l4FZzSfMV8yHzZdY1XnoiIK4C6GTTlLVXSfFqVOMrTkrLEZSESFU1ZE0jkdaWRulwhZcx8JIRdXIxyfpwbk8ukguRth2WwtT60N0CTdaGWG_pgWem8Hms2joNckGca1I6TMWKenm75520lEEdAJ9UZECpUx6rarQFt_srvw_Fj0DzJcwNcSZ_Un2o33Cml5yszGszIb99Uq88ZOv8JVNNPgT-rXDTLERX06z8ReqhNPsS2CF2sEM-9svwZdXgSQARUvjAsS5cB0KfEORFBhqMwHV8A7PE4_-EqjW9xHhOPzMqbFFBVWLj9fBef8ARHZvnB6fpqy56OuQlziPD1qjUAwpkffv9x8KtA7uAuvTQ9Pm4hI69dnBN3a-v3e2cxA1jR0iS62yIid7VhraDkyKG4xKlO1pnnBtk0IkTmqVeGu4y9MUIYRTvieNEQn9OiFgREQ1y0bL-9LPMXBbuZCikLHWDpGh0rEqCiddHnNPWGuefW9NnNlG9Zyab9xmtV4zz9AIWTDCPFvthj7UUh9vDVpq_SRrVvsgQ6fWghJoKU4XDP7-DbLD4344WPj40EU2xvFD1JmfJTZaPQ79MmKhyqwEp38Ch3EIXg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEK4gxggHfxAjgloxHjwwwHb3zHYnXjYqWZTlYCDhYibTP4MEGQg7GxNPPoJP4YPxJFb1_IBGE-NtMumZ7pmq7v668tVXAC-8k452UpkQVDWJsl4kRjuXZNKVwgykVZqzkSd72fhAvTtMD-fgVZcL0-hD9AE3nhlxveYJzgHpzSvV0GPWDRJGyxtwUxHQ4KPXmw-9eBRDnUhg1KxBqdJhpyu0JTb7R3_dja4g5nWgGnea7bvwsRtjQzA52ZjVdsN9_U2-8X8_4h7caSEojhqfuQ9zoVqCxWvChEtwKxJD3fQB_BhVGKpPkSeAZcfkQoK6eBxzfGOeFFquNIH17JTuM5X-CDnd94IQOX4puLZFjXUHkdfRh3COzHdv_Z5GUzV09HUsKuonRLlRLGccy7v89p33Wo-nkfgZsK10cYS9AO10GQ623-6_HidtbYfEcbWsxKuhU5ZXBJvRGqNT7YZGpMK4tJSpV0anwVnhiywjFOF1GCprZcqnJ8KMBKoewnx1VoVHgH6rkEqWamCMJ3CozUCXpVe-GIjAcGsFXnY2zl0rfM71Nz7njWSzyMkIeTTCCjzvm543ah9_arTWOUreTvhpTn5tJMfQMuouWvzvL8h3JqN48fjfmz6D2-P9yW6-u7P3fhUWBP2UJhC0BvP1xSw8IWhU26dxBvwE_5MMfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datVAEB5qRdELrVWxWu0gXnjRtD27m5xdenVoPbRqi4iFXggh-5NatPHQk4PgVR-hT-GD-SSd2fy0ioJ4F8Imm2Rmd74M33wD8MI76SiSyoSgqkmU9SIx2rkkk64UZiCt0lyNvLef7Ryo14fp4RxsdrUwjT5En3DjlRH3a17gE1-uX4qGHrNskDBaXoPrKiMkwYjofa8dxUgn8hc1S1CqdNjJCm2I9f7SX4PRJcK8ilNjoBnfhY_dIzb8ks9rs9quue-_qTf-5zsswJ0WgOKo8Zh7MBeqRbh9RZZwEW5EWqib3ocfowpD9SmyBLDseFxIQBePY4VvrJJCy30msJ6d0Hkm0h8hF_ueEh7HbwV3tqix7gDyKvoQJshs99br6Wmqhoy-ikVF84QoNorljDN5P8_OOdJ6PIm0z4Btn4sj7OVnpw_gYPzqw9ZO0nZ2SBz3ykq8GjpleT-wGe0wOtVuaEQqjEtLmXpldBqcFb7IMsIQXoehslam_O9EiJEg1UOYr75W4RGg3yikkqUaGOMJGmoz0GXplS8GIjDYWoKXnYlz18qec_eNL3kj2CxyMkIejbAEz_uhk0br40-Dljs_ydvlPs3Jq43kDFpG00WD__0G-e7eKB48_vehK3Dz3fY4f7u7_-YJ3BL0TZos0DLM16ez8JRwUW2fRf-_AN2_Cyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+framework+for+identifying+brain+tumor+using+discrete+wavelet+transform%2C+deep+convolutional+network%2C+and+feature+fusion%E2%80%90based+machine+learning+techniques&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Mehrotra%2C+Rajat&rft.au=Ansari%2C+M.+A.&rft.au=Agrawal%2C+Rajeev&rft.au=Al%E2%80%90Ward%2C+Hisham&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fima.22983&rft.externalDBID=10.1002%252Fima.22983&rft.externalDocID=IMA22983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon