Stationary Boulders Increase River Seismic Frequency via Turbulence
Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant...
Saved in:
Published in | Geophysical research letters Vol. 52; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.03.2025
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions.
Plain Language Summary
River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport.
Key Points
Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds
The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing
The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness |
---|---|
AbstractList | Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions.
Plain Language Summary
River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport.
Key Points
Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds
The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing
The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport. Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness Abstract Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. |
Author | Turowski, Jens M. Nativ, Ron Chang, Wen‐Yen Hovius, Niels Chen, Wen‐Sheng Chang, Jui‐Ming Laronne, Jonathan B. Yang, Ci‐Jian |
Author_xml | – sequence: 1 givenname: Ron orcidid: 0000-0002-5978-946X surname: Nativ fullname: Nativ, Ron email: ron.nativ@univ-rennes1.fr organization: Helmholtz Centre Potsdam – sequence: 2 givenname: Jens M. orcidid: 0000-0003-1558-0565 surname: Turowski fullname: Turowski, Jens M. organization: Helmholtz Centre Potsdam – sequence: 3 givenname: Jui‐Ming orcidid: 0000-0003-1552-2744 surname: Chang fullname: Chang, Jui‐Ming organization: National Yang Ming Chiao Tung University – sequence: 4 givenname: Niels orcidid: 0000-0002-9158-9871 surname: Hovius fullname: Hovius, Niels organization: University of Potsdam – sequence: 5 givenname: Ci‐Jian orcidid: 0000-0002-6951-5593 surname: Yang fullname: Yang, Ci‐Jian organization: National Taiwan University – sequence: 6 givenname: Wen‐Sheng surname: Chen fullname: Chen, Wen‐Sheng organization: National Dong Hwa University – sequence: 7 givenname: Wen‐Yen surname: Chang fullname: Chang, Wen‐Yen organization: National Dong Hwa University – sequence: 8 givenname: Jonathan B. orcidid: 0000-0002-2889-9316 surname: Laronne fullname: Laronne, Jonathan B. organization: Dead Sea and Arava Science Center |
BookMark | eNp9kEtLLDEQhYMoOD52_oAGt3c0SSWdzlKH6zgwIPhYh0xSkQxtR5NpL_PvjY7IXbmqBx-nTp0jsj-kAQk5Y_SCUa4vOeVivmQMVCf2yIRpIaYdpWqfTCjVteeqPSRHpawppUCBTcjsYWM3MQ02b5vrNPYec2kWg8toCzb38R1z84CxvETX3GR8G3Fw2-Y92uZxzKuxryOekINg-4Kn3_WYPN38fZzdTpd388Xsajl1XCuYKtF5D2hRMq8FKhGQWScDCJRBWm51QAk2YCsZ-IBKt6CReuVhJUEBHJPFTtcnuzavOb5U1ybZaL4WKT8bmzfR9WjQ1gxCQC7BiVa6Tkum2EqHYIXvvKxa5zut15zqU2Vj1mnMQ7VvgHVMt5QzVak_O8rlVErG8HOVUfMZufk_8orzHf4v9rj9lTXz-6WitAX4AK5xg2E |
Cites_doi | 10.1029/2017jf004296 10.1029/96WR03134 10.1029/2006WR005432 10.1029/2010GL044638 10.1029/2011GL047759 10.5281/zenodo.10840641 10.1016/s0277‐3791(99)00076‐1 10.1080/00221689709498430 10.1080/00221680309499991 10.1002/2014JF003201 10.1029/2001WR000319 10.1029/2011wr010645 10.1007/BF02780991 10.1016/j.epsl.2014.07.019 10.1103/PhysRevLett.88.014501 10.1029/2019JF005416 10.1002/esp.4495 10.2166/hydro.2016.044 10.1007/s11629‐014‐3055‐8 10.1175/1520‐0469(1957)014<0160:psohws>2.0.co;2 10.1029/2012WR012091 10.1029/2020WR028700 10.1002/2016JF004112 10.5194/esurf‐4‐285‐2016 10.1029/2021jf006537 10.1016/j.earscirev.2021.103717 10.1002/esp.1217 10.1002/2016jf004062 10.1016/S0065‐2687(08)60464‐1 10.1029/2021JF006167 10.1029/2024JF007761 10.1061/JYCEAJ.0005780 10.1029/2011GL050255 10.1002/esp.4582 10.2478/s11600‐012‐0044‐6 10.1029/2007WR006219 10.1029/2023EA003416 10.1002/grl.50953 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL113784 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5 10_1029_2024GL113784 GRL70063 |
Genre | article |
GrantInformation_xml | – fundername: NSF‐BSF funderid: 2018619 – fundername: Israel Science Foundation funderid: 832/14; 562/19 – fundername: Ben‐Gurion University of the Negev |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TG 7TN 8FD AFPKN F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c2973-748dd3eae51d94e74fe1ac5f34e5f5a2a9fe53afe6513dfe79639e0d7d3b53733 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Fri Jul 25 12:15:05 EDT 2025 Tue Jul 01 05:08:30 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2973-748dd3eae51d94e74fe1ac5f34e5f5a2a9fe53afe6513dfe79639e0d7d3b53733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5978-946X 0000-0002-2889-9316 0000-0003-1552-2744 0000-0002-9158-9871 0000-0002-6951-5593 0000-0003-1558-0565 |
OpenAccessLink | https://doaj.org/article/ea378ffe253c465c895171b9ffa4d8d5 |
PQID | 3181960217 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5 proquest_journals_3181960217 crossref_primary_10_1029_2024GL113784 wiley_primary_10_1029_2024GL113784_GRL70063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 March 2025 |
PublicationDateYYYYMMDD | 2025-03-28 |
PublicationDate_xml | – month: 03 year: 2025 text: 28 March 2025 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_10_2_3_1 e_1_2_10_2_2_1 e_1_2_10_1_27_1 e_1_2_10_1_28_1 e_1_2_10_1_29_1 Kolmogorov A. N. (e_1_2_10_1_18_1) 1941; 30 e_1_2_10_1_23_1 e_1_2_10_1_24_1 e_1_2_10_1_26_1 e_1_2_10_1_20_1 e_1_2_10_1_21_1 e_1_2_10_1_22_1 e_1_2_10_1_40_1 e_1_2_10_1_9_1 e_1_2_10_1_8_1 Smart G. M. (e_1_2_10_1_35_1) 1983 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_17_1 e_1_2_10_1_38_1 e_1_2_10_1_19_1 e_1_2_10_1_2_1 e_1_2_10_1_12_1 e_1_2_10_1_13_1 e_1_2_10_1_34_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_15_1 e_1_2_10_1_36_1 e_1_2_10_1_6_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 Nikora V. (e_1_2_10_1_25_1) 2008 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_3_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 |
References_xml | – volume-title: Sediment transport on steep slopes year: 1983 ident: e_1_2_10_1_35_1 – ident: e_1_2_10_1_9_1 doi: 10.1029/2017jf004296 – ident: e_1_2_10_1_15_1 doi: 10.1029/96WR03134 – ident: e_1_2_10_1_39_1 doi: 10.1029/2006WR005432 – ident: e_1_2_10_1_17_1 doi: 10.1029/2010GL044638 – ident: e_1_2_10_1_16_1 doi: 10.1029/2011GL047759 – ident: e_1_2_10_1_23_1 doi: 10.5281/zenodo.10840641 – ident: e_1_2_10_1_6_1 doi: 10.1016/s0277‐3791(99)00076‐1 – ident: e_1_2_10_1_8_1 doi: 10.1080/00221689709498430 – ident: e_1_2_10_1_3_1 doi: 10.1080/00221680309499991 – ident: e_1_2_10_1_12_1 doi: 10.1002/2014JF003201 – ident: e_1_2_10_1_31_1 doi: 10.1029/2001WR000319 – ident: e_1_2_10_1_27_1 doi: 10.1029/2011wr010645 – ident: e_1_2_10_1_28_1 doi: 10.1007/BF02780991 – ident: e_1_2_10_1_32_1 doi: 10.1016/j.epsl.2014.07.019 – ident: e_1_2_10_1_13_1 doi: 10.1103/PhysRevLett.88.014501 – ident: e_1_2_10_1_2_1 doi: 10.1029/2019JF005416 – ident: e_1_2_10_1_11_1 doi: 10.1002/esp.4495 – ident: e_1_2_10_1_5_1 doi: 10.2166/hydro.2016.044 – ident: e_1_2_10_1_37_1 doi: 10.1007/s11629‐014‐3055‐8 – ident: e_1_2_10_1_38_1 doi: 10.1175/1520‐0469(1957)014<0160:psohws>2.0.co;2 – ident: e_1_2_10_1_26_1 doi: 10.1029/2012WR012091 – ident: e_1_2_10_1_19_1 doi: 10.1029/2020WR028700 – ident: e_1_2_10_1_10_1 doi: 10.1002/2016JF004112 – ident: e_1_2_10_1_4_1 doi: 10.5194/esurf‐4‐285‐2016 – ident: e_1_2_10_1_24_1 doi: 10.1029/2021jf006537 – ident: e_1_2_10_1_34_1 doi: 10.1016/j.earscirev.2021.103717 – ident: e_1_2_10_1_7_1 doi: 10.1002/esp.1217 – ident: e_1_2_10_2_3_1 doi: 10.1002/2016jf004062 – ident: e_1_2_10_1_20_1 doi: 10.1016/S0065‐2687(08)60464‐1 – ident: e_1_2_10_1_22_1 doi: 10.1029/2021JF006167 – ident: e_1_2_10_1_21_1 doi: 10.1029/2024JF007761 – ident: e_1_2_10_2_2_1 doi: 10.1061/JYCEAJ.0005780 – volume: 30 start-page: 299 year: 1941 ident: e_1_2_10_1_18_1 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Proceedings of the USSR Academy of Sciences – ident: e_1_2_10_1_36_1 doi: 10.1029/2011GL050255 – ident: e_1_2_10_1_14_1 doi: 10.1002/esp.4582 – ident: e_1_2_10_1_29_1 doi: 10.2478/s11600‐012‐0044‐6 – start-page: 61 volume-title: Gravel‐Bed Rivers VI: From Process Understanding to River Restoration year: 2008 ident: e_1_2_10_1_25_1 – ident: e_1_2_10_1_30_1 doi: 10.1029/2007WR006219 – ident: e_1_2_10_1_40_1 doi: 10.1029/2023EA003416 – ident: e_1_2_10_1_33_1 doi: 10.1002/grl.50953 |
SSID | ssj0003031 |
Score | 2.4712064 |
Snippet | Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river... Abstract Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Bed load bedload transport Boulders Creeks & streams Eddies Energy environmental seismology fluvial processes Mountain streams P-waves Rivers Sediment Sediment transport Seismic activity Seismic energy Seismic waves Streams Turbulence Turbulent flow Vortices Water depth Water flow |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVtSqGX0k-6TVJ0aE_FNPKMLPmYhO6GkpaSD8jNyNKo7CGbspsU8u8zIzvL5lLIzQjJ2CO90UgavafUZ-_RRKipSkhQYfax8qH1DLwUfESDpsi9_fzVHJ3jjwt7MW64yV2YgR9iveEmyCj-WgAe-tVINiAcmbxqx9mxMeA8PlXP5HatcOfX-Hvtidk9D4p5LVa-ds2Y-M7tv222fjAlFeb-B-HmZtBaZp3pK_VyDBf1_tC_r9UTWrxRz2dFjveWn0oCZ1y9VYenw5k6_48WrWjJT9YMfsk5J30i2Rf6lOary3nU0-WQP32r_82DPrthw5arR-_U-fT72eFRNQokVFEkp4QHNCWgQNakFslhJhOizYBksw11aDNZCJkaayBlcoy2lvaSS9BbcADv1dbiakEflMbQOH6HA3Q9Nr0JvDLuwRNwKbiAE_Xl3kbd34EHoyvn13Xbbdpyog7EgOs6wl5dCq6Wf7oRDB0Frpoz1RYiNjZ6DvOc6ducAyaf7ETt3Ju_GyG16tj5sLeQJdREfS1d8t8P6WYnx04CsI-Pqr2tXtSi8LsHVe131Nb18oZ2Oey47j-VsXUHau3MTg priority: 102 providerName: Wiley-Blackwell |
Title | Stationary Boulders Increase River Seismic Frequency via Turbulence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113784 https://www.proquest.com/docview/3181960217 https://doaj.org/article/ea378ffe253c465c895171b9ffa4d8d5 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFH-0FqEXsVpx_Vhy0JMMbJKXSeao4q4UW0RdkV6GTPICe-hWdlXY_94kMyvrxV56G8IQHu_N-5r88n4AR8Ygd1JQ4ZFkgcG4wtjKRMfz1jjkyDPd289f5eUYfzyohxWqr4QJa8cDt4pLf3m1CYGEkg5L5UwsCTRvqhAseuPz9NKY85bNVBeDY2BuufIqLIzQZQd5H4gqdfs4uuI8bovvklGe2f-u0FwtV3O-GW7CRlcostNWwG_wiaZbsD7KRLyL-JShm26-Dee37Wm6nS1YYolOyGQW3T6hzYndJNwFu6XJ_M_EseGsRU4v2MvEsrvnqNJ86eg7jIcXd-eXRUeNULhENpUmgHovyZLivkLSGIhbp4JEUkFZYatAStpApeLSB9LRzyoaeO1lo6SWcgfWpn-ntAsMbanjHlqibrBsuI09cSMNybgqtcUeHC91VD-2EzDqfHItqnpVlz04Swp8eyfNrc4L0Zp1Z836X9bswcFS_XXnTPM6hp0YJ1Lz1IOTbJIPBalHN1c6lV57_0OiffgqEuXvQBbCHMDa0-yZDmMd8tT04bPA6z58Ob0f_x738wf4Cm1z18o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BTxQxFG4QYvRiBDUuovYgJzKR9r1OO0cl7q64EAJLwq3ptK9kDy5mF0j497adYbNcTLxNmnYy89rv9bV9_T7GvhiDwoOkKiBBhdH4yrjGJOAFZzwKFEXu7eS0Hl_i8ZW66nVO812Yjh9iteGWkVH8dQZ43pDu2QYySWZatuNoIgRog8_YFtZSZ2RKPFu54uSfO8m8Bisjdd1nvqf2X9dbP5mTCnX_k3hzPWot087wNXvVx4v8W9fB22yD5jvs-ajo8T6kp5LB6Zdv2NFFd6iefohnseicoMwT-nPSOfHznH7BL2i2_D3zfLjoEqgf-P3M8eldsmy5e_SWXQ5_TI_GVa-QUPmsOZWJQEMAcqREaJA0RhLOqwhIKionXRNJgYtUKwEhkk5wa-gw6ACtAg3wjm3Ob-b0nnF0tU7v0IC6xboVLi2NWzAEqRS0wwHbf7SR_dMRYdhygC0bu27LAfueDbiqk-mrS8HN4tr2aLDkUtUYSSrwWCtvUpynRdvE6DCYoAZs79H8tsfU0ibvk9xFXkMN2EHpkn9-iB2dT3SOwHb_q_Zn9mI8PZnYyc_TXx_YS5nlfg-hkmaPbd4u7uhjikFu209lnP0FiNjPug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKxAXxKdYKOADnFBEHY9j51gKuwWWCrVdVHGxHHuM9sC22m2R-u8ZO-lqe0HiFlmOlYz9xmN7_B7AG2tRBlVTFZFUhcmGyvrWMvCitwElyiL39u2wOZjhl1N9Omy45bswPT_EesMtI6P46wzw85gGsoHMkcmrdpxMpVTG4m3YzkR5PKq3937Mfs7WvpgddK-Z12Jla9MMqe_cwvvN929MSoW7_0bAuRm2lnln_ADuDwGj2Ot7-CHcosUjuDMpgrxX_FRSOMPqMewf96fq_Eciq0XnDGXB8M9Z5ySOcv6FOKb56vc8iPGyz6C-En_mXpxcsmnL5aMnMBt_Otk_qAaJhCpk0anMBBqjIk9axhbJYCLpg04KSSfta98m0sonarRUMZFhvLW0G01UnVZGqaewtThb0DMQ6BvDbRiFpsOmk57Xxp2ypLhUGY8jeHttI3feM2G4coJdt27TliP4kA24rpP5q0vB2fKXG-DgyHPVlKjWKmCjg-VAz8iuTcljtFGPYOfa_G4A1cqx-2F_kRdRI3hXuuSfH-ImR1OTQ7Dn_1X7Ndz9_nHspp8Pv76Ae3WW-91VVW13YOtieUkvOQa56F4NA-0vcu3Qsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stationary+Boulders+Increase+River+Seismic+Frequency+via+Turbulence&rft.jtitle=Geophysical+research+letters&rft.au=Ron+Nativ&rft.au=Jens+M.+Turowski&rft.au=Jui%E2%80%90Ming+Chang&rft.au=Niels+Hovius&rft.date=2025-03-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL113784&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |