Stationary Boulders Increase River Seismic Frequency via Turbulence

Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 52; no. 6
Main Authors Nativ, Ron, Turowski, Jens M., Chang, Jui‐Ming, Hovius, Niels, Yang, Ci‐Jian, Chen, Wen‐Sheng, Chang, Wen‐Yen, Laronne, Jonathan B.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.03.2025
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. Plain Language Summary River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport. Key Points Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness
AbstractList Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. Plain Language Summary River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport. Key Points Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness
Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions. River processes, like water flow and sediment transport, generate energy that turns into seismic waves traveling through the ground. Studying these waves allows researchers to gain insights into how rivers function. We compared energy from rivers with large boulders to nearby streams with smoother surfaces. We found that boulder‐rich rivers produce higher seismic frequencies as the boulders reduce the size of turbulence‐related eddies. Our study shows how analyzing seismic energy helps to understand river dynamics, including flow and sediment transport. Boulder‐bed channels in the Liwu River, Taiwan, exhibit higher seismic frequency than channels with smoother beds The higher seismic frequencies are due to a reduction of turbulent eddy sizes constrained by boulder spacing The frequency‐depth relationship in seismic data shifts during and after bedload transport, likely due to energy partitioning or changes in bed roughness
Abstract Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions.
Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river dynamics. We studied the seismic signals emitted near rivers in two tributaries characterized by large boulders. Data show an unusually high dominant seismic frequency, reaching >2 times the frequency observed in nearby smoother channels. Consistent high‐frequency content during periods without bedload transport prompts the hypothesis that turbulence is a key contributor to generating higher frequencies. Assuming that dominant turbulent eddies decrease in size due to boulder‐constrained flow, we formulate a frequency scaling relationship that aligns well with field data. A positive relationship of the frequency with water depth breaks at bedload onset, indicating that dissipation of flow energy partitions between turbulence and bedload transport. Our study shows that seismic frequency captures contrasting bed morphologies in mountain streams, offering insights into flow‐roughness interactions.
Author Turowski, Jens M.
Nativ, Ron
Chang, Wen‐Yen
Hovius, Niels
Chen, Wen‐Sheng
Chang, Jui‐Ming
Laronne, Jonathan B.
Yang, Ci‐Jian
Author_xml – sequence: 1
  givenname: Ron
  orcidid: 0000-0002-5978-946X
  surname: Nativ
  fullname: Nativ, Ron
  email: ron.nativ@univ-rennes1.fr
  organization: Helmholtz Centre Potsdam
– sequence: 2
  givenname: Jens M.
  orcidid: 0000-0003-1558-0565
  surname: Turowski
  fullname: Turowski, Jens M.
  organization: Helmholtz Centre Potsdam
– sequence: 3
  givenname: Jui‐Ming
  orcidid: 0000-0003-1552-2744
  surname: Chang
  fullname: Chang, Jui‐Ming
  organization: National Yang Ming Chiao Tung University
– sequence: 4
  givenname: Niels
  orcidid: 0000-0002-9158-9871
  surname: Hovius
  fullname: Hovius, Niels
  organization: University of Potsdam
– sequence: 5
  givenname: Ci‐Jian
  orcidid: 0000-0002-6951-5593
  surname: Yang
  fullname: Yang, Ci‐Jian
  organization: National Taiwan University
– sequence: 6
  givenname: Wen‐Sheng
  surname: Chen
  fullname: Chen, Wen‐Sheng
  organization: National Dong Hwa University
– sequence: 7
  givenname: Wen‐Yen
  surname: Chang
  fullname: Chang, Wen‐Yen
  organization: National Dong Hwa University
– sequence: 8
  givenname: Jonathan B.
  orcidid: 0000-0002-2889-9316
  surname: Laronne
  fullname: Laronne, Jonathan B.
  organization: Dead Sea and Arava Science Center
BookMark eNp9kEtLLDEQhYMoOD52_oAGt3c0SSWdzlKH6zgwIPhYh0xSkQxtR5NpL_PvjY7IXbmqBx-nTp0jsj-kAQk5Y_SCUa4vOeVivmQMVCf2yIRpIaYdpWqfTCjVteeqPSRHpawppUCBTcjsYWM3MQ02b5vrNPYec2kWg8toCzb38R1z84CxvETX3GR8G3Fw2-Y92uZxzKuxryOekINg-4Kn3_WYPN38fZzdTpd388Xsajl1XCuYKtF5D2hRMq8FKhGQWScDCJRBWm51QAk2YCsZ-IBKt6CReuVhJUEBHJPFTtcnuzavOb5U1ybZaL4WKT8bmzfR9WjQ1gxCQC7BiVa6Tkum2EqHYIXvvKxa5zut15zqU2Vj1mnMQ7VvgHVMt5QzVak_O8rlVErG8HOVUfMZufk_8orzHf4v9rj9lTXz-6WitAX4AK5xg2E
Cites_doi 10.1029/2017jf004296
10.1029/96WR03134
10.1029/2006WR005432
10.1029/2010GL044638
10.1029/2011GL047759
10.5281/zenodo.10840641
10.1016/s0277‐3791(99)00076‐1
10.1080/00221689709498430
10.1080/00221680309499991
10.1002/2014JF003201
10.1029/2001WR000319
10.1029/2011wr010645
10.1007/BF02780991
10.1016/j.epsl.2014.07.019
10.1103/PhysRevLett.88.014501
10.1029/2019JF005416
10.1002/esp.4495
10.2166/hydro.2016.044
10.1007/s11629‐014‐3055‐8
10.1175/1520‐0469(1957)014<0160:psohws>2.0.co;2
10.1029/2012WR012091
10.1029/2020WR028700
10.1002/2016JF004112
10.5194/esurf‐4‐285‐2016
10.1029/2021jf006537
10.1016/j.earscirev.2021.103717
10.1002/esp.1217
10.1002/2016jf004062
10.1016/S0065‐2687(08)60464‐1
10.1029/2021JF006167
10.1029/2024JF007761
10.1061/JYCEAJ.0005780
10.1029/2011GL050255
10.1002/esp.4582
10.2478/s11600‐012‐0044‐6
10.1029/2007WR006219
10.1029/2023EA003416
10.1002/grl.50953
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL113784
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5
10_1029_2024GL113784
GRL70063
Genre article
GrantInformation_xml – fundername: NSF‐BSF
  funderid: 2018619
– fundername: Israel Science Foundation
  funderid: 832/14; 562/19
– fundername: Ben‐Gurion University of the Negev
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TG
7TN
8FD
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c2973-748dd3eae51d94e74fe1ac5f34e5f5a2a9fe53afe6513dfe79639e0d7d3b53733
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:30:53 EDT 2025
Fri Jul 25 12:15:05 EDT 2025
Tue Jul 01 05:08:30 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-748dd3eae51d94e74fe1ac5f34e5f5a2a9fe53afe6513dfe79639e0d7d3b53733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5978-946X
0000-0002-2889-9316
0000-0003-1552-2744
0000-0002-9158-9871
0000-0002-6951-5593
0000-0003-1558-0565
OpenAccessLink https://doaj.org/article/ea378ffe253c465c895171b9ffa4d8d5
PQID 3181960217
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5
proquest_journals_3181960217
crossref_primary_10_1029_2024GL113784
wiley_primary_10_1029_2024GL113784_GRL70063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 March 2025
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 28 March 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_2_3_1
e_1_2_10_2_2_1
e_1_2_10_1_27_1
e_1_2_10_1_28_1
e_1_2_10_1_29_1
Kolmogorov A. N. (e_1_2_10_1_18_1) 1941; 30
e_1_2_10_1_23_1
e_1_2_10_1_24_1
e_1_2_10_1_26_1
e_1_2_10_1_20_1
e_1_2_10_1_21_1
e_1_2_10_1_22_1
e_1_2_10_1_40_1
e_1_2_10_1_9_1
e_1_2_10_1_8_1
Smart G. M. (e_1_2_10_1_35_1) 1983
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_17_1
e_1_2_10_1_38_1
e_1_2_10_1_19_1
e_1_2_10_1_2_1
e_1_2_10_1_12_1
e_1_2_10_1_13_1
e_1_2_10_1_34_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_15_1
e_1_2_10_1_36_1
e_1_2_10_1_6_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
Nikora V. (e_1_2_10_1_25_1) 2008
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_3_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
References_xml – volume-title: Sediment transport on steep slopes
  year: 1983
  ident: e_1_2_10_1_35_1
– ident: e_1_2_10_1_9_1
  doi: 10.1029/2017jf004296
– ident: e_1_2_10_1_15_1
  doi: 10.1029/96WR03134
– ident: e_1_2_10_1_39_1
  doi: 10.1029/2006WR005432
– ident: e_1_2_10_1_17_1
  doi: 10.1029/2010GL044638
– ident: e_1_2_10_1_16_1
  doi: 10.1029/2011GL047759
– ident: e_1_2_10_1_23_1
  doi: 10.5281/zenodo.10840641
– ident: e_1_2_10_1_6_1
  doi: 10.1016/s0277‐3791(99)00076‐1
– ident: e_1_2_10_1_8_1
  doi: 10.1080/00221689709498430
– ident: e_1_2_10_1_3_1
  doi: 10.1080/00221680309499991
– ident: e_1_2_10_1_12_1
  doi: 10.1002/2014JF003201
– ident: e_1_2_10_1_31_1
  doi: 10.1029/2001WR000319
– ident: e_1_2_10_1_27_1
  doi: 10.1029/2011wr010645
– ident: e_1_2_10_1_28_1
  doi: 10.1007/BF02780991
– ident: e_1_2_10_1_32_1
  doi: 10.1016/j.epsl.2014.07.019
– ident: e_1_2_10_1_13_1
  doi: 10.1103/PhysRevLett.88.014501
– ident: e_1_2_10_1_2_1
  doi: 10.1029/2019JF005416
– ident: e_1_2_10_1_11_1
  doi: 10.1002/esp.4495
– ident: e_1_2_10_1_5_1
  doi: 10.2166/hydro.2016.044
– ident: e_1_2_10_1_37_1
  doi: 10.1007/s11629‐014‐3055‐8
– ident: e_1_2_10_1_38_1
  doi: 10.1175/1520‐0469(1957)014<0160:psohws>2.0.co;2
– ident: e_1_2_10_1_26_1
  doi: 10.1029/2012WR012091
– ident: e_1_2_10_1_19_1
  doi: 10.1029/2020WR028700
– ident: e_1_2_10_1_10_1
  doi: 10.1002/2016JF004112
– ident: e_1_2_10_1_4_1
  doi: 10.5194/esurf‐4‐285‐2016
– ident: e_1_2_10_1_24_1
  doi: 10.1029/2021jf006537
– ident: e_1_2_10_1_34_1
  doi: 10.1016/j.earscirev.2021.103717
– ident: e_1_2_10_1_7_1
  doi: 10.1002/esp.1217
– ident: e_1_2_10_2_3_1
  doi: 10.1002/2016jf004062
– ident: e_1_2_10_1_20_1
  doi: 10.1016/S0065‐2687(08)60464‐1
– ident: e_1_2_10_1_22_1
  doi: 10.1029/2021JF006167
– ident: e_1_2_10_1_21_1
  doi: 10.1029/2024JF007761
– ident: e_1_2_10_2_2_1
  doi: 10.1061/JYCEAJ.0005780
– volume: 30
  start-page: 299
  year: 1941
  ident: e_1_2_10_1_18_1
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Proceedings of the USSR Academy of Sciences
– ident: e_1_2_10_1_36_1
  doi: 10.1029/2011GL050255
– ident: e_1_2_10_1_14_1
  doi: 10.1002/esp.4582
– ident: e_1_2_10_1_29_1
  doi: 10.2478/s11600‐012‐0044‐6
– start-page: 61
  volume-title: Gravel‐Bed Rivers VI: From Process Understanding to River Restoration
  year: 2008
  ident: e_1_2_10_1_25_1
– ident: e_1_2_10_1_30_1
  doi: 10.1029/2007WR006219
– ident: e_1_2_10_1_40_1
  doi: 10.1029/2023EA003416
– ident: e_1_2_10_1_33_1
  doi: 10.1002/grl.50953
SSID ssj0003031
Score 2.4712064
Snippet Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river...
Abstract Despite a century of research, turbulent flows mobilizing bedload remain elusive, while seismic waves generated by surface processes can unravel river...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Bed load
bedload transport
Boulders
Creeks & streams
Eddies
Energy
environmental seismology
fluvial processes
Mountain streams
P-waves
Rivers
Sediment
Sediment transport
Seismic activity
Seismic energy
Seismic waves
Streams
Turbulence
Turbulent flow
Vortices
Water depth
Water flow
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVtSqGX0k-6TVJ0aE_FNPKMLPmYhO6GkpaSD8jNyNKo7CGbspsU8u8zIzvL5lLIzQjJ2CO90UgavafUZ-_RRKipSkhQYfax8qH1DLwUfESDpsi9_fzVHJ3jjwt7MW64yV2YgR9iveEmyCj-WgAe-tVINiAcmbxqx9mxMeA8PlXP5HatcOfX-Hvtidk9D4p5LVa-ds2Y-M7tv222fjAlFeb-B-HmZtBaZp3pK_VyDBf1_tC_r9UTWrxRz2dFjveWn0oCZ1y9VYenw5k6_48WrWjJT9YMfsk5J30i2Rf6lOary3nU0-WQP32r_82DPrthw5arR-_U-fT72eFRNQokVFEkp4QHNCWgQNakFslhJhOizYBksw11aDNZCJkaayBlcoy2lvaSS9BbcADv1dbiakEflMbQOH6HA3Q9Nr0JvDLuwRNwKbiAE_Xl3kbd34EHoyvn13Xbbdpyog7EgOs6wl5dCq6Wf7oRDB0Frpoz1RYiNjZ6DvOc6ducAyaf7ETt3Ju_GyG16tj5sLeQJdREfS1d8t8P6WYnx04CsI-Pqr2tXtSi8LsHVe131Nb18oZ2Oey47j-VsXUHau3MTg
  priority: 102
  providerName: Wiley-Blackwell
Title Stationary Boulders Increase River Seismic Frequency via Turbulence
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113784
https://www.proquest.com/docview/3181960217
https://doaj.org/article/ea378ffe253c465c895171b9ffa4d8d5
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFH-0FqEXsVpx_Vhy0JMMbJKXSeao4q4UW0RdkV6GTPICe-hWdlXY_94kMyvrxV56G8IQHu_N-5r88n4AR8Ygd1JQ4ZFkgcG4wtjKRMfz1jjkyDPd289f5eUYfzyohxWqr4QJa8cDt4pLf3m1CYGEkg5L5UwsCTRvqhAseuPz9NKY85bNVBeDY2BuufIqLIzQZQd5H4gqdfs4uuI8bovvklGe2f-u0FwtV3O-GW7CRlcostNWwG_wiaZbsD7KRLyL-JShm26-Dee37Wm6nS1YYolOyGQW3T6hzYndJNwFu6XJ_M_EseGsRU4v2MvEsrvnqNJ86eg7jIcXd-eXRUeNULhENpUmgHovyZLivkLSGIhbp4JEUkFZYatAStpApeLSB9LRzyoaeO1lo6SWcgfWpn-ntAsMbanjHlqibrBsuI09cSMNybgqtcUeHC91VD-2EzDqfHItqnpVlz04Swp8eyfNrc4L0Zp1Z836X9bswcFS_XXnTPM6hp0YJ1Lz1IOTbJIPBalHN1c6lV57_0OiffgqEuXvQBbCHMDa0-yZDmMd8tT04bPA6z58Ob0f_x738wf4Cm1z18o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BTxQxFG4QYvRiBDUuovYgJzKR9r1OO0cl7q64EAJLwq3ptK9kDy5mF0j497adYbNcTLxNmnYy89rv9bV9_T7GvhiDwoOkKiBBhdH4yrjGJOAFZzwKFEXu7eS0Hl_i8ZW66nVO812Yjh9iteGWkVH8dQZ43pDu2QYySWZatuNoIgRog8_YFtZSZ2RKPFu54uSfO8m8Bisjdd1nvqf2X9dbP5mTCnX_k3hzPWot087wNXvVx4v8W9fB22yD5jvs-ajo8T6kp5LB6Zdv2NFFd6iefohnseicoMwT-nPSOfHznH7BL2i2_D3zfLjoEqgf-P3M8eldsmy5e_SWXQ5_TI_GVa-QUPmsOZWJQEMAcqREaJA0RhLOqwhIKionXRNJgYtUKwEhkk5wa-gw6ACtAg3wjm3Ob-b0nnF0tU7v0IC6xboVLi2NWzAEqRS0wwHbf7SR_dMRYdhygC0bu27LAfueDbiqk-mrS8HN4tr2aLDkUtUYSSrwWCtvUpynRdvE6DCYoAZs79H8tsfU0ibvk9xFXkMN2EHpkn9-iB2dT3SOwHb_q_Zn9mI8PZnYyc_TXx_YS5nlfg-hkmaPbd4u7uhjikFu209lnP0FiNjPug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKxAXxKdYKOADnFBEHY9j51gKuwWWCrVdVHGxHHuM9sC22m2R-u8ZO-lqe0HiFlmOlYz9xmN7_B7AG2tRBlVTFZFUhcmGyvrWMvCitwElyiL39u2wOZjhl1N9Omy45bswPT_EesMtI6P46wzw85gGsoHMkcmrdpxMpVTG4m3YzkR5PKq3937Mfs7WvpgddK-Z12Jla9MMqe_cwvvN929MSoW7_0bAuRm2lnln_ADuDwGj2Ot7-CHcosUjuDMpgrxX_FRSOMPqMewf96fq_Eciq0XnDGXB8M9Z5ySOcv6FOKb56vc8iPGyz6C-En_mXpxcsmnL5aMnMBt_Otk_qAaJhCpk0anMBBqjIk9axhbJYCLpg04KSSfta98m0sonarRUMZFhvLW0G01UnVZGqaewtThb0DMQ6BvDbRiFpsOmk57Xxp2ypLhUGY8jeHttI3feM2G4coJdt27TliP4kA24rpP5q0vB2fKXG-DgyHPVlKjWKmCjg-VAz8iuTcljtFGPYOfa_G4A1cqx-2F_kRdRI3hXuuSfH-ImR1OTQ7Dn_1X7Ndz9_nHspp8Pv76Ae3WW-91VVW13YOtieUkvOQa56F4NA-0vcu3Qsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stationary+Boulders+Increase+River+Seismic+Frequency+via+Turbulence&rft.jtitle=Geophysical+research+letters&rft.au=Ron+Nativ&rft.au=Jens+M.+Turowski&rft.au=Jui%E2%80%90Ming+Chang&rft.au=Niels+Hovius&rft.date=2025-03-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL113784&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea378ffe253c465c895171b9ffa4d8d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon