Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model

We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an i...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 76; no. 6; pp. 1208 - 1302
Main Authors Fan, Zhou, Sun, Yi, Wang, Tianhao, Wu, Yihong
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.06.2023
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit. We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain. We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC.
AbstractList We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit. We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain. We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC.
We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit.We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain.We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC.
We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit. We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on (multireference alignment), there may be spurious local optima when , and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain. We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC.
Author Fan, Zhou
Wu, Yihong
Sun, Yi
Wang, Tianhao
Author_xml – sequence: 1
  givenname: Zhou
  surname: Fan
  fullname: Fan, Zhou
  email: zhou.fan@yale.edu
  organization: Department of Statistics and Data Science
– sequence: 2
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  email: yisun@statistics.uchicago.edu
  organization: The University of Chicago
– sequence: 3
  givenname: Tianhao
  surname: Wang
  fullname: Wang, Tianhao
  email: tianhao.wang@yale.edu
  organization: Department of Statistics and Data Science
– sequence: 4
  givenname: Yihong
  surname: Wu
  fullname: Wu, Yihong
  email: yihong.wu@yale.edu
  organization: Department of Statistics and Data Science
BookMark eNp9kE1LAzEQhoNUsK0e_AcBTx62zUez2T2W4hcU9KA3IWSTWZq6u6nJVu2_N7aCIOhpZuB5Z-Z9R2jQ-Q4QOqdkQglhU7PRE8YIZ0doSEkpM8IpG6AhIZRkPJ-REzSKcZ1GOiv4ED0v3Qs0buW9xY3ubDR6Azg1uNUfrt22uPkBIPau1b3zHa59wP0KsHXRBOgB-1C5Hgcw_g3CDrfeQnOKjmvdRDj7rmP0dH31uLjNlvc3d4v5MjOslCwThayAcGHL2ogZWFEyXYgiZ1owLrQscmm5AS4rZnVlSpPrsqYUhKCy5szyMbo47N0E_7pNX6q134YunVSsIDmRpchpoi4PlAk-xgC12oRkJ-wUJeorPJXCU_vwEjv9xRrX7533QbvmP8W7a2D392q1eJgfFJ_uc4Lt
CitedBy_id crossref_primary_10_1137_23M155685X
crossref_primary_10_1214_23_AOS2346
crossref_primary_10_1107_S2052252524011771
crossref_primary_10_1007_s10208_022_09584_6
crossref_primary_10_1214_23_AOS2292
Cites_doi 10.1016/j.aam.2019.101972
10.1561/2200000050
10.1080/03610920008832519
10.1007/BF01077267
10.1093/acprof:oso/9780199535255.001.0001
10.1109/TSP.2017.2775591
10.1007/978-1-4757-2189-8
10.1214/17‐AOS1637
10.1006/eujc.1993.1022
10.4213/mzm12620
10.1088/1361-6420/ab6139
10.1109/TIT.2018.2889674
10.1016/0041‐5553(64)90137‐5
10.1016/S0076‐6879(10)82011‐7
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s10208‐017‐9365‐9
10.1007/978-1-4757-2181-2_7
10.1016/S0022‐2836(05)80271‐2
10.1016/j.str.2013.07.002
10.1137/16M1097171
10.1038/nmeth.4169
10.1006/jsbi.1998.4014
10.1146/annurev‐biodatasci‐021020‐093826
10.1007/978-1-4419-8853-9_1
10.1016/j.str.2007.09.003
10.1109/ISIT.2018.8437646
10.1007/s00440‐014‐0579‐3
10.1109/TIT.2016.2632162
10.1109/MSP.2019.2957822
10.1017/S0033583500004297
10.1038/nmeth992
10.1093/acprof:oso/9780195182187.001.0001
10.1137/18M1214317
10.1017/S0308210500018679
10.1016/j.jmb.2005.02.031
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.22032
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1302
ExternalDocumentID 10_1002_cpa_22032
CPA22032
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c2972-587be035d9fc54ed592a85862a5235a7867d3ce37b2dabc9c6a9f11e5517f32d3
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:24:33 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Wed Jan 22 16:22:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-587be035d9fc54ed592a85862a5235a7867d3ce37b2dabc9c6a9f11e5517f32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2806079561
PQPubID 48818
PageCount 1
ParticipantIDs proquest_journals_2806079561
crossref_primary_10_1002_cpa_22032
crossref_citationtrail_10_1002_cpa_22032
wiley_primary_10_1002_cpa_22032_CPA22032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2023
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
References 2015; 162
2000; 29
1989; 112
2012
2013; 21
2017; arXiv
2019; 1
2017; 66
1964; 4
1998
2020; 37
2010; 482
2006
2020; 107
2004
1992
2018; 65
2015; 8
2018; 46
1993; 14
2018; 18
2018; 2018
2020; 3
1990; 213
1986; 20
2017; 14
1977; 39
2017; 10
2020; arXiv
2005; 348
1988; 21
1987
2019
2018
2016; 63
2017
2015; arXiv
2007; 4
2015
2020; 113
2013
2016; 29
1998; 122
1948
e_1_2_1_20_1
e_1_2_1_41_1
Abramowitz M. (e_1_2_1_4_1) 1948
Jin C. (e_1_2_1_28_1) 2016; 29
e_1_2_1_24_1
McCullagh P. (e_1_2_1_34_1) 1987
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_26_1
e_1_2_1_47_1
Lehmann E. L. (e_1_2_1_32_1) 2006
Cox D. (e_1_2_1_18_1) 1992
Bandeira A. S. (e_1_2_1_8_1) 2017
e_1_2_1_31_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
Vershynin R. (e_1_2_1_53_1) 2018
e_1_2_1_10_1
e_1_2_1_2_1
Boumal N. (e_1_2_1_14_1) 2018
e_1_2_1_16_1
e_1_2_1_37_1
Xu J. (e_1_2_1_54_1) 2016; 29
Petersen K. B. (e_1_2_1_39_1) 2012
Sun J. (e_1_2_1_49_1) 2015
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
Dempster A. P. (e_1_2_1_19_1) 1977; 39
Bandeira A. S. (e_1_2_1_7_1) 2017
e_1_2_1_30_1
e_1_2_1_5_1
Van der Vaart A. W. (e_1_2_1_52_1) 1998
Macdonald I. G. (e_1_2_1_33_1) 2015
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_11_1
Katsevich A. (e_1_2_1_29_1) 2020
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
References_xml – volume: arXiv
  start-page: 1712.10163 [math.ST]
  year: 2017
  article-title: Estimation under group actions: recovering orbits from invariants
  publication-title: Preprint
– start-page: 306
  year: 1992
  end-page: 344
– volume: 21
  start-page: 129
  issue: 2
  year: 1988
  end-page: 228
  article-title: Cryo‐electron microscopy of vitrified specimens
  publication-title: Quarterly Reviews of Biophysics
– volume: 4
  start-page: 27
  issue: 1
  year: 2007
  end-page: 29
  article-title: Disentangling conformational states of macromolecules in 3D‐EM through likelihood optimization
  publication-title: Nature Methods
– volume: 213
  start-page: 899
  issue: 4
  year: 1990
  end-page: 929
  article-title: Model for the structure of bacteriorhodopsin based on high‐resolution electron cryo‐microscopy
  publication-title: Journal of Molecular Biology
– volume: 112
  start-page: 203
  issue: 3‐4
  year: 1989
  end-page: 211
  article-title: On the geometric properties of Vandermonde's mapping and on the problem of moments
  publication-title: Proc. Roy. Soc. Edinburgh Sect.
– volume: 482
  start-page: 263
  year: 2010
  end-page: 294
  article-title: Chapter ten—an introduction to maximum‐likelihood methods in cryo‐EM
  publication-title: Methods in Enzymology
– start-page: 3
  year: 1998
– start-page: 40
  year: 2015
– volume: 3
  start-page: 163
  year: 2020
  end-page: 190
  article-title: Computational methods for single‐particle electron cryomicroscopy
  publication-title: Annual Review of Biomedical Data Science
– volume: 20
  start-page: 52
  issue: 2
  year: 1986
  end-page: 53
  article-title: Hyperbolic polynomials and Vandermonde's mapping
  publication-title: Funktsional. Anal. i Prilozhen.
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  end-page: 17
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Computational Mathematics and Mathematical Physics
– year: 2004
– volume: 21
  start-page: 1299
  issue: 8
  year: 2013
  end-page: 1306
  article-title: PRIME: probabilistic initial 3D model generation for single‐particle cryo‐electron microscopy
  publication-title: Structure
– start-page: 47
  year: 2018
– volume: 10
  start-page: 1170
  issue: 3
  year: 2017
  end-page: 1195
  article-title: Rapid solution of the cryo‐EM reconstruction problem by frequency marching
  publication-title: SIAM J. Imaging Sci.
– volume: 37
  start-page: 58
  issue: 2
  year: 2020
  end-page: 76
  article-title: Single‐particle cryo‐electron microscopy: Mathematical theory, computational challenges, and opportunities
  publication-title: IEEE Signal Processing Magazine
– year: 2019
– volume: 65
  start-page: 3565
  issue: 6
  year: 2018
  end-page: 3584
  article-title: Multireference alignment is easier with an aperiodic translation distribution
  publication-title: IEEE Trans. Inform. Theory
– year: 2015
– volume: 63
  start-page: 853
  issue: 2
  year: 2016
  end-page: 884
  article-title: Complete dictionary recovery over the sphere I: Overview and the geometric picture
  publication-title: IEEE Trans. Inform. Theory
– volume: 18
  start-page: 1131
  issue: 5
  year: 2018
  end-page: 1198
  article-title: A geometric analysis of phase retrieval
  publication-title: Found. Comput. Math.
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. Ser. B
– volume: 162
  start-page: 531
  issue: 3‐4
  year: 2015
  end-page: 586
  article-title: Concentration inequalities for non‐Lipschitz functions with bounded derivatives of higher order
  publication-title: Probab. Theory Related Fields
– volume: 348
  start-page: 139
  issue: 1
  year: 2005
  end-page: 149
  article-title: Maximum‐likelihood multi‐reference refinement for electron microscopy images
  publication-title: Journal of Molecular Biology
– volume: 107
  start-page: 473
  issue: 3
  year: 2020
  end-page: 475
  article-title: The zero set of a real analytic function
  publication-title: Mat. Zametki
– year: 1987
– volume: 46
  start-page: 2747
  issue: 6A
  year: 2018
  end-page: 2774
  article-title: The landscape of empirical risk for nonconvex losses
  publication-title: Ann. Statist.
– year: 1948
– volume: 14
  start-page: 157
  issue: 3
  year: 1993
  end-page: 181
  article-title: Apolarity and canonical forms for homogeneous polynomials
  publication-title: European J. Combin.
– volume: 29
  start-page: 851
  issue: 4
  year: 2000
  end-page: 857
  article-title: Properties of doubly‐truncated gamma variables
  publication-title: Comm. Statist. Theory Methods
– volume: 14
  start-page: 290
  issue: 3
  year: 2017
  end-page: 296
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo‐EM structure determination
  publication-title: Nature Methods
– volume: 29
  start-page: 2676
  year: 2016
  end-page: 2684
  article-title: Global analysis of expectation maximization for mixtures of two Gaussians
  publication-title: Advances in Neural Information Processing Systems
– year: 1992
– volume: arXiv
  start-page: 2006.15202 [math.ST]
  year: 2020
  article-title: Likelihood maximization and moment matching in low SNR Gaussian mixture models
  publication-title: Preprint
– start-page: 1
  year: 2018
  end-page: 6
– volume: 66
  start-page: 1037
  issue: 4
  year: 2017
  end-page: 1050
  article-title: Bispectrum inversion with application to multireference alignment
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 231
  issue: 3‐4
  year: 2015
  end-page: 357
  article-title: Convex optimization: Algorithms and complexity
  publication-title: Foundations and Trends in Machine Learning
– volume: 2018
  year: 2018
  article-title: , 561–565
  publication-title: IEEE
– year: 2012
– volume: 113
  start-page: 101972
  year: 2020
  article-title: Asymptotic normality of the major index on standard tableaux
  publication-title: Adv. in Appl. Math.
– volume: 29
  start-page: 4116
  year: 2016
  end-page: 4124
  article-title: Local maxima in the likelihood of Gaussian mixture models: Structural results and algorithmic consequences
  publication-title: Advances in Neural Information Processing Systems
– volume: arXiv
  start-page: 1702.08546 [math.ST]
  year: 2017
  article-title: Optimal rates of estimation for multi‐reference alignment
  publication-title: Preprint
– year: 2006
– volume: 1
  start-page: 497
  issue: 3
  year: 2019
  end-page: 517
  article-title: The sample complexity of multireference alignment
  publication-title: SIAM J. Math. Data Sci.
– year: 2017
– volume: arXiv
  start-page: 1510.06096 [math.OC]
  year: 2015
  article-title: When are nonconvex problems not scary?
  publication-title: Preprint
– year: 2013
– volume: 122
  start-page: 328
  issue: 3
  year: 1998
  end-page: 339
  article-title: A maximum‐likelihood approach to single‐particle image refinement
  publication-title: Journal of Structural Biology
– ident: e_1_2_1_12_1
  doi: 10.1016/j.aam.2019.101972
– ident: e_1_2_1_16_1
  doi: 10.1561/2200000050
– ident: e_1_2_1_27_1
– start-page: 1
  volume-title: Heterogeneous multireference alignment: A single pass approach
  year: 2018
  ident: e_1_2_1_14_1
– ident: e_1_2_1_17_1
  doi: 10.1080/03610920008832519
– volume-title: Symmetric functions and Hall polynomials
  year: 2015
  ident: e_1_2_1_33_1
– ident: e_1_2_1_6_1
  doi: 10.1007/BF01077267
– ident: e_1_2_1_13_1
  doi: 10.1093/acprof:oso/9780199535255.001.0001
– ident: e_1_2_1_11_1
  doi: 10.1109/TSP.2017.2775591
– ident: e_1_2_1_25_1
  doi: 10.1007/978-1-4757-2189-8
– ident: e_1_2_1_35_1
  doi: 10.1214/17‐AOS1637
– ident: e_1_2_1_21_1
  doi: 10.1006/eujc.1993.1022
– ident: e_1_2_1_36_1
  doi: 10.4213/mzm12620
– start-page: 1712.10163 [mat
  year: 2017
  ident: e_1_2_1_7_1
  article-title: Estimation under group actions: recovering orbits from invariants
  publication-title: Preprint
– start-page: 1702.08546 [mat
  year: 2017
  ident: e_1_2_1_8_1
  article-title: Optimal rates of estimation for multi‐reference alignment
  publication-title: Preprint
– ident: e_1_2_1_45_1
  doi: 10.1088/1361-6420/ab6139
– ident: e_1_2_1_2_1
  doi: 10.1109/TIT.2018.2889674
– ident: e_1_2_1_40_1
  doi: 10.1016/0041‐5553(64)90137‐5
– ident: e_1_2_1_47_1
  doi: 10.1016/S0076‐6879(10)82011‐7
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_2_1_19_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_1_51_1
  doi: 10.1007/s10208‐017‐9365‐9
– start-page: 306
  volume-title: Invariant theory of finite groups. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
  year: 1992
  ident: e_1_2_1_18_1
  doi: 10.1007/978-1-4757-2181-2_7
– volume-title: Theory of point estimation
  year: 2006
  ident: e_1_2_1_32_1
– volume-title: Tensor methods in statistics
  year: 1987
  ident: e_1_2_1_34_1
– ident: e_1_2_1_26_1
  doi: 10.1016/S0022‐2836(05)80271‐2
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1948
  ident: e_1_2_1_4_1
– ident: e_1_2_1_22_1
  doi: 10.1016/j.str.2013.07.002
– volume: 29
  start-page: 2676
  year: 2016
  ident: e_1_2_1_54_1
  article-title: Global analysis of expectation maximization for mixtures of two Gaussians
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_1_24_1
– ident: e_1_2_1_9_1
  doi: 10.1137/16M1097171
– ident: e_1_2_1_41_1
  doi: 10.1038/nmeth.4169
– ident: e_1_2_1_46_1
  doi: 10.1006/jsbi.1998.4014
– ident: e_1_2_1_48_1
  doi: 10.1146/annurev‐biodatasci‐021020‐093826
– ident: e_1_2_1_37_1
  doi: 10.1007/978-1-4419-8853-9_1
– ident: e_1_2_1_43_1
  doi: 10.1016/j.str.2007.09.003
– ident: e_1_2_1_31_1
– start-page: 47
  volume-title: Cambridge Series in Statistical and Probabilistic Mathematics
  year: 2018
  ident: e_1_2_1_53_1
– ident: e_1_2_1_3_1
  doi: 10.1109/ISIT.2018.8437646
– ident: e_1_2_1_15_1
– start-page: 1510.06096 [mat
  year: 2015
  ident: e_1_2_1_49_1
  article-title: When are nonconvex problems not scary?
  publication-title: Preprint
– ident: e_1_2_1_5_1
  doi: 10.1007/s00440‐014‐0579‐3
– start-page: 3
  volume-title: Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics
  year: 1998
  ident: e_1_2_1_52_1
– ident: e_1_2_1_50_1
  doi: 10.1109/TIT.2016.2632162
– ident: e_1_2_1_10_1
  doi: 10.1109/MSP.2019.2957822
– ident: e_1_2_1_20_1
  doi: 10.1017/S0033583500004297
– ident: e_1_2_1_42_1
  doi: 10.1038/nmeth992
– ident: e_1_2_1_23_1
  doi: 10.1093/acprof:oso/9780195182187.001.0001
– volume: 29
  start-page: 4116
  year: 2016
  ident: e_1_2_1_28_1
  article-title: Local maxima in the likelihood of Gaussian mixture models: Structural results and algorithmic consequences
  publication-title: Advances in Neural Information Processing Systems
– volume-title: The matrix cookbook
  year: 2012
  ident: e_1_2_1_39_1
– start-page: 2006.15202 [mat
  year: 2020
  ident: e_1_2_1_29_1
  article-title: Likelihood maximization and moment matching in low SNR Gaussian mixture models
  publication-title: Preprint
– ident: e_1_2_1_38_1
  doi: 10.1137/18M1214317
– ident: e_1_2_1_30_1
  doi: 10.1017/S0308210500018679
– ident: e_1_2_1_44_1
  doi: 10.1016/j.jmb.2005.02.031
SSID ssj0011483
Score 2.4199946
Snippet We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1208
SubjectTerms Algorithms
Eigenvalues
Fisher information
Group theory
Image processing
Low noise
Maximum likelihood estimation
Normal distribution
Optimization
Permutations
Polynomials
Probabilistic models
Random noise
Recovery
Saddle points
Statistical analysis
Statistical models
Title Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.22032
https://www.proquest.com/docview/2806079561
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJz34FqtVgnjw0na7u9ns4qkUpYgVEQs9FJa8Fkqf9AHqr3cm-6iKgnjLYXZ2N8kk3yQz3xByFXFtFB69aabBQfG5Vwu9QNUQzeKWJKWNzek-Bp2ef99n_RK5yXNhUn6I4sANLcOu12jgQi4bG9JQNRd1F-t_w_qLsVoIiJ4L6iiE-entMq4zge_krEKO2yie_LoXbQDmZ5hq95m7XTLIvzANLxnV1ytZV-_fyBv_-Qt7ZCfDn7SVTph9UjLTA7LdLchbl4dk8DAcgWLkO6Y2ExhjpCg06ES8DifrCR1vBJCkI81-pAB_KaihmOi7ACxOZws5XFF0ucFe3qgtunNEene3L-1OLSvCUFNuxMFRDbk0jsd0lCjmG80iV4QM_CABLiwTPAy49pTxuHS1kCpSgYiSZtMAEuOJ52rvmJSns6k5IZT7gEaUbrIEfEqbIRs2HW2cBOSEYapCrvPhiFXGUI6FMsZxyq3sxtBhse2wCrksROcpLcdPQtV8TOPMMpcx3iQ7HNN54XV2cH5XELefWrZx-nfRM7KFFenTaLIqKa8Wa3MOuGUlL-wE_QDuTOf_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAH3ojxjBAHLhtd2zStxAUB04ANIQTSDqCqTVJpgj20hwT8eux07QCBhLjl4KZtEiefHfszwGEglJbkelNcoYHiCqfsO54sE5qlIymOTWxO88arP7hXLd4qwEmWC5PyQ-QON9IMs1-TgpND-njKGir7UcWmAuAzMEsVvYk5__wuJ48ioJ_eL9NO47lWxitk2cf5o19PoynE_AxUzUlTW4Kn7BvTAJPnyngUV-T7N_rG__7EMixOICg7TdfMChR0dxUWmjl_63ANHhvtZ-yZKI-ZSQamMCmGDdaJXtudcYe9TAWIpyNNgGSIgBl2wyjXd4BwnPUGcXvEyOpGlXljpu7OOjzULu7P6uVJHYaytAOBtqovYm05XAWJ5K5WPLAjn6MpFKEVyyPhe0I5UjsitlUUy0B6UZBUqxrBmEgcWzkbUOz2unoTmHARkEhV5QmalSZJ1q9aSlsJykWayxIcZfMRyglJOdXKeAlTemU7xAELzYCV4CAX7afMHD8J7WSTGk6UcxjSZbIlKKMXX2dm5_cOwrPbU9PY-rvoPszV75uNsHF5c70N81SgPg0u24HiaDDWuwhjRvGeWa0fcr7sGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt_h2EQ9e2qZJNpvgSVqLz1JEwUMhJLsbKH1Y-gD11zuzaVIVBfG2h8kk2d3Z_WZ35huA00AoLenoTXGFDoornKLveLJIaJa2pDg2sTn3De_qyb155s9zcJ7lwqT8EPmBG1mGWa_JwAcqKc9IQ-UgKtlU_3seFlzPCqhuQ-0h544inJ9eL9NC47lWRitk2eX80a-b0QxhfsapZqOpr0Ir-8Q0vqRTmozjknz_xt74z39Yg5UpAGUX6YxZhznd34Dl-5y9dbQJrbt2BxUT4TEzqcAUJMWwwXrRa7s36bHuTIBYOtL0R4b4l6EaRpm-QwTj7GUYt8eMfG40mDdmqu5swVP98rF6VZxWYShKOxDoqfoi1pbDVZBI7mrFAzvyOTpCEfqwPBK-J5QjtSNiW0WxDKQXBUmlohGKicSxlbMNhf5LX-8AEy7CEakqPEGn0qTI-hVLaStBuUhzuQtn2XCEckpRTpUyumFKrmyH2GGh6bBdOMlFBykvx09CB9mYhlPTHIV0lWwJyufF15nB-V1BWG1emMbe30WPYbFZq4d3143bfVii6vRpZNkBFMbDiT5EDDOOj8xc_QDDJ-rK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+landscape+and+maximum+likelihood+estimation+for+the+discrete+orbit+recovery+model&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Fan%2C+Zhou&rft.au=Sun%2C+Yi&rft.au=Wang%2C+Tianhao&rft.au=Wu%2C+Yihong&rft.date=2023-06-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=76&rft.issue=6&rft.spage=1208&rft.epage=1302&rft_id=info:doi/10.1002%2Fcpa.22032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_22032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon