Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model
We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an i...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 76; no. 6; pp. 1208 - 1302 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons Australia, Ltd
01.06.2023
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit.
We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain.
We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC. |
---|---|
AbstractList | We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit.
We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain.
We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC. We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit.We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on ℝd (multireference alignment), there may be spurious local optima when d≥6, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain.We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC. We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical model motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a known rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit. We show that fundamental properties of the likelihood landscape depend on the signal‐to‐noise ratio and the group structure. At low noise, this landscape is “benign” for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape at high noise. For cyclic permutations of coordinates on (multireference alignment), there may be spurious local optima when , and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain. We show that the Fisher information matrix transitions from resembling that of a single Gaussian distribution in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, where the neighborhood size is independent of the signal‐to‐noise ratio, the landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation‐maximization, and possible advantages of momentum‐based acceleration and variable reparametrization for first‐ and second‐order descent methods. © 2021 Wiley Periodicals LLC. |
Author | Fan, Zhou Wu, Yihong Sun, Yi Wang, Tianhao |
Author_xml | – sequence: 1 givenname: Zhou surname: Fan fullname: Fan, Zhou email: zhou.fan@yale.edu organization: Department of Statistics and Data Science – sequence: 2 givenname: Yi surname: Sun fullname: Sun, Yi email: yisun@statistics.uchicago.edu organization: The University of Chicago – sequence: 3 givenname: Tianhao surname: Wang fullname: Wang, Tianhao email: tianhao.wang@yale.edu organization: Department of Statistics and Data Science – sequence: 4 givenname: Yihong surname: Wu fullname: Wu, Yihong email: yihong.wu@yale.edu organization: Department of Statistics and Data Science |
BookMark | eNp9kE1LAzEQhoNUsK0e_AcBTx62zUez2T2W4hcU9KA3IWSTWZq6u6nJVu2_N7aCIOhpZuB5Z-Z9R2jQ-Q4QOqdkQglhU7PRE8YIZ0doSEkpM8IpG6AhIZRkPJ-REzSKcZ1GOiv4ED0v3Qs0buW9xY3ubDR6Azg1uNUfrt22uPkBIPau1b3zHa59wP0KsHXRBOgB-1C5Hgcw_g3CDrfeQnOKjmvdRDj7rmP0dH31uLjNlvc3d4v5MjOslCwThayAcGHL2ogZWFEyXYgiZ1owLrQscmm5AS4rZnVlSpPrsqYUhKCy5szyMbo47N0E_7pNX6q134YunVSsIDmRpchpoi4PlAk-xgC12oRkJ-wUJeorPJXCU_vwEjv9xRrX7533QbvmP8W7a2D392q1eJgfFJ_uc4Lt |
CitedBy_id | crossref_primary_10_1137_23M155685X crossref_primary_10_1214_23_AOS2346 crossref_primary_10_1107_S2052252524011771 crossref_primary_10_1007_s10208_022_09584_6 crossref_primary_10_1214_23_AOS2292 |
Cites_doi | 10.1016/j.aam.2019.101972 10.1561/2200000050 10.1080/03610920008832519 10.1007/BF01077267 10.1093/acprof:oso/9780199535255.001.0001 10.1109/TSP.2017.2775591 10.1007/978-1-4757-2189-8 10.1214/17‐AOS1637 10.1006/eujc.1993.1022 10.4213/mzm12620 10.1088/1361-6420/ab6139 10.1109/TIT.2018.2889674 10.1016/0041‐5553(64)90137‐5 10.1016/S0076‐6879(10)82011‐7 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s10208‐017‐9365‐9 10.1007/978-1-4757-2181-2_7 10.1016/S0022‐2836(05)80271‐2 10.1016/j.str.2013.07.002 10.1137/16M1097171 10.1038/nmeth.4169 10.1006/jsbi.1998.4014 10.1146/annurev‐biodatasci‐021020‐093826 10.1007/978-1-4419-8853-9_1 10.1016/j.str.2007.09.003 10.1109/ISIT.2018.8437646 10.1007/s00440‐014‐0579‐3 10.1109/TIT.2016.2632162 10.1109/MSP.2019.2957822 10.1017/S0033583500004297 10.1038/nmeth992 10.1093/acprof:oso/9780195182187.001.0001 10.1137/18M1214317 10.1017/S0308210500018679 10.1016/j.jmb.2005.02.031 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.22032 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1302 |
ExternalDocumentID | 10_1002_cpa_22032 CPA22032 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c2972-587be035d9fc54ed592a85862a5235a7867d3ce37b2dabc9c6a9f11e5517f32d3 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:24:33 EDT 2025 Tue Jul 01 02:50:31 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Wed Jan 22 16:22:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2972-587be035d9fc54ed592a85862a5235a7867d3ce37b2dabc9c6a9f11e5517f32d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2806079561 |
PQPubID | 48818 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2806079561 crossref_primary_10_1002_cpa_22032 crossref_citationtrail_10_1002_cpa_22032 wiley_primary_10_1002_cpa_22032_CPA22032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2023 |
Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited |
References | 2015; 162 2000; 29 1989; 112 2012 2013; 21 2017; arXiv 2019; 1 2017; 66 1964; 4 1998 2020; 37 2010; 482 2006 2020; 107 2004 1992 2018; 65 2015; 8 2018; 46 1993; 14 2018; 18 2018; 2018 2020; 3 1990; 213 1986; 20 2017; 14 1977; 39 2017; 10 2020; arXiv 2005; 348 1988; 21 1987 2019 2018 2016; 63 2017 2015; arXiv 2007; 4 2015 2020; 113 2013 2016; 29 1998; 122 1948 e_1_2_1_20_1 e_1_2_1_41_1 Abramowitz M. (e_1_2_1_4_1) 1948 Jin C. (e_1_2_1_28_1) 2016; 29 e_1_2_1_24_1 McCullagh P. (e_1_2_1_34_1) 1987 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_26_1 e_1_2_1_47_1 Lehmann E. L. (e_1_2_1_32_1) 2006 Cox D. (e_1_2_1_18_1) 1992 Bandeira A. S. (e_1_2_1_8_1) 2017 e_1_2_1_31_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 Vershynin R. (e_1_2_1_53_1) 2018 e_1_2_1_10_1 e_1_2_1_2_1 Boumal N. (e_1_2_1_14_1) 2018 e_1_2_1_16_1 e_1_2_1_37_1 Xu J. (e_1_2_1_54_1) 2016; 29 Petersen K. B. (e_1_2_1_39_1) 2012 Sun J. (e_1_2_1_49_1) 2015 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 Dempster A. P. (e_1_2_1_19_1) 1977; 39 Bandeira A. S. (e_1_2_1_7_1) 2017 e_1_2_1_30_1 e_1_2_1_5_1 Van der Vaart A. W. (e_1_2_1_52_1) 1998 Macdonald I. G. (e_1_2_1_33_1) 2015 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_51_1 e_1_2_1_11_1 Katsevich A. (e_1_2_1_29_1) 2020 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 |
References_xml | – volume: arXiv start-page: 1712.10163 [math.ST] year: 2017 article-title: Estimation under group actions: recovering orbits from invariants publication-title: Preprint – start-page: 306 year: 1992 end-page: 344 – volume: 21 start-page: 129 issue: 2 year: 1988 end-page: 228 article-title: Cryo‐electron microscopy of vitrified specimens publication-title: Quarterly Reviews of Biophysics – volume: 4 start-page: 27 issue: 1 year: 2007 end-page: 29 article-title: Disentangling conformational states of macromolecules in 3D‐EM through likelihood optimization publication-title: Nature Methods – volume: 213 start-page: 899 issue: 4 year: 1990 end-page: 929 article-title: Model for the structure of bacteriorhodopsin based on high‐resolution electron cryo‐microscopy publication-title: Journal of Molecular Biology – volume: 112 start-page: 203 issue: 3‐4 year: 1989 end-page: 211 article-title: On the geometric properties of Vandermonde's mapping and on the problem of moments publication-title: Proc. Roy. Soc. Edinburgh Sect. – volume: 482 start-page: 263 year: 2010 end-page: 294 article-title: Chapter ten—an introduction to maximum‐likelihood methods in cryo‐EM publication-title: Methods in Enzymology – start-page: 3 year: 1998 – start-page: 40 year: 2015 – volume: 3 start-page: 163 year: 2020 end-page: 190 article-title: Computational methods for single‐particle electron cryomicroscopy publication-title: Annual Review of Biomedical Data Science – volume: 20 start-page: 52 issue: 2 year: 1986 end-page: 53 article-title: Hyperbolic polynomials and Vandermonde's mapping publication-title: Funktsional. Anal. i Prilozhen. – volume: 4 start-page: 1 issue: 5 year: 1964 end-page: 17 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Computational Mathematics and Mathematical Physics – year: 2004 – volume: 21 start-page: 1299 issue: 8 year: 2013 end-page: 1306 article-title: PRIME: probabilistic initial 3D model generation for single‐particle cryo‐electron microscopy publication-title: Structure – start-page: 47 year: 2018 – volume: 10 start-page: 1170 issue: 3 year: 2017 end-page: 1195 article-title: Rapid solution of the cryo‐EM reconstruction problem by frequency marching publication-title: SIAM J. Imaging Sci. – volume: 37 start-page: 58 issue: 2 year: 2020 end-page: 76 article-title: Single‐particle cryo‐electron microscopy: Mathematical theory, computational challenges, and opportunities publication-title: IEEE Signal Processing Magazine – year: 2019 – volume: 65 start-page: 3565 issue: 6 year: 2018 end-page: 3584 article-title: Multireference alignment is easier with an aperiodic translation distribution publication-title: IEEE Trans. Inform. Theory – year: 2015 – volume: 63 start-page: 853 issue: 2 year: 2016 end-page: 884 article-title: Complete dictionary recovery over the sphere I: Overview and the geometric picture publication-title: IEEE Trans. Inform. Theory – volume: 18 start-page: 1131 issue: 5 year: 2018 end-page: 1198 article-title: A geometric analysis of phase retrieval publication-title: Found. Comput. Math. – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. Ser. B – volume: 162 start-page: 531 issue: 3‐4 year: 2015 end-page: 586 article-title: Concentration inequalities for non‐Lipschitz functions with bounded derivatives of higher order publication-title: Probab. Theory Related Fields – volume: 348 start-page: 139 issue: 1 year: 2005 end-page: 149 article-title: Maximum‐likelihood multi‐reference refinement for electron microscopy images publication-title: Journal of Molecular Biology – volume: 107 start-page: 473 issue: 3 year: 2020 end-page: 475 article-title: The zero set of a real analytic function publication-title: Mat. Zametki – year: 1987 – volume: 46 start-page: 2747 issue: 6A year: 2018 end-page: 2774 article-title: The landscape of empirical risk for nonconvex losses publication-title: Ann. Statist. – year: 1948 – volume: 14 start-page: 157 issue: 3 year: 1993 end-page: 181 article-title: Apolarity and canonical forms for homogeneous polynomials publication-title: European J. Combin. – volume: 29 start-page: 851 issue: 4 year: 2000 end-page: 857 article-title: Properties of doubly‐truncated gamma variables publication-title: Comm. Statist. Theory Methods – volume: 14 start-page: 290 issue: 3 year: 2017 end-page: 296 article-title: cryoSPARC: algorithms for rapid unsupervised cryo‐EM structure determination publication-title: Nature Methods – volume: 29 start-page: 2676 year: 2016 end-page: 2684 article-title: Global analysis of expectation maximization for mixtures of two Gaussians publication-title: Advances in Neural Information Processing Systems – year: 1992 – volume: arXiv start-page: 2006.15202 [math.ST] year: 2020 article-title: Likelihood maximization and moment matching in low SNR Gaussian mixture models publication-title: Preprint – start-page: 1 year: 2018 end-page: 6 – volume: 66 start-page: 1037 issue: 4 year: 2017 end-page: 1050 article-title: Bispectrum inversion with application to multireference alignment publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 231 issue: 3‐4 year: 2015 end-page: 357 article-title: Convex optimization: Algorithms and complexity publication-title: Foundations and Trends in Machine Learning – volume: 2018 year: 2018 article-title: , 561–565 publication-title: IEEE – year: 2012 – volume: 113 start-page: 101972 year: 2020 article-title: Asymptotic normality of the major index on standard tableaux publication-title: Adv. in Appl. Math. – volume: 29 start-page: 4116 year: 2016 end-page: 4124 article-title: Local maxima in the likelihood of Gaussian mixture models: Structural results and algorithmic consequences publication-title: Advances in Neural Information Processing Systems – volume: arXiv start-page: 1702.08546 [math.ST] year: 2017 article-title: Optimal rates of estimation for multi‐reference alignment publication-title: Preprint – year: 2006 – volume: 1 start-page: 497 issue: 3 year: 2019 end-page: 517 article-title: The sample complexity of multireference alignment publication-title: SIAM J. Math. Data Sci. – year: 2017 – volume: arXiv start-page: 1510.06096 [math.OC] year: 2015 article-title: When are nonconvex problems not scary? publication-title: Preprint – year: 2013 – volume: 122 start-page: 328 issue: 3 year: 1998 end-page: 339 article-title: A maximum‐likelihood approach to single‐particle image refinement publication-title: Journal of Structural Biology – ident: e_1_2_1_12_1 doi: 10.1016/j.aam.2019.101972 – ident: e_1_2_1_16_1 doi: 10.1561/2200000050 – ident: e_1_2_1_27_1 – start-page: 1 volume-title: Heterogeneous multireference alignment: A single pass approach year: 2018 ident: e_1_2_1_14_1 – ident: e_1_2_1_17_1 doi: 10.1080/03610920008832519 – volume-title: Symmetric functions and Hall polynomials year: 2015 ident: e_1_2_1_33_1 – ident: e_1_2_1_6_1 doi: 10.1007/BF01077267 – ident: e_1_2_1_13_1 doi: 10.1093/acprof:oso/9780199535255.001.0001 – ident: e_1_2_1_11_1 doi: 10.1109/TSP.2017.2775591 – ident: e_1_2_1_25_1 doi: 10.1007/978-1-4757-2189-8 – ident: e_1_2_1_35_1 doi: 10.1214/17‐AOS1637 – ident: e_1_2_1_21_1 doi: 10.1006/eujc.1993.1022 – ident: e_1_2_1_36_1 doi: 10.4213/mzm12620 – start-page: 1712.10163 [mat year: 2017 ident: e_1_2_1_7_1 article-title: Estimation under group actions: recovering orbits from invariants publication-title: Preprint – start-page: 1702.08546 [mat year: 2017 ident: e_1_2_1_8_1 article-title: Optimal rates of estimation for multi‐reference alignment publication-title: Preprint – ident: e_1_2_1_45_1 doi: 10.1088/1361-6420/ab6139 – ident: e_1_2_1_2_1 doi: 10.1109/TIT.2018.2889674 – ident: e_1_2_1_40_1 doi: 10.1016/0041‐5553(64)90137‐5 – ident: e_1_2_1_47_1 doi: 10.1016/S0076‐6879(10)82011‐7 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: e_1_2_1_19_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. Roy. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_1_51_1 doi: 10.1007/s10208‐017‐9365‐9 – start-page: 306 volume-title: Invariant theory of finite groups. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra year: 1992 ident: e_1_2_1_18_1 doi: 10.1007/978-1-4757-2181-2_7 – volume-title: Theory of point estimation year: 2006 ident: e_1_2_1_32_1 – volume-title: Tensor methods in statistics year: 1987 ident: e_1_2_1_34_1 – ident: e_1_2_1_26_1 doi: 10.1016/S0022‐2836(05)80271‐2 – volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables year: 1948 ident: e_1_2_1_4_1 – ident: e_1_2_1_22_1 doi: 10.1016/j.str.2013.07.002 – volume: 29 start-page: 2676 year: 2016 ident: e_1_2_1_54_1 article-title: Global analysis of expectation maximization for mixtures of two Gaussians publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_1_24_1 – ident: e_1_2_1_9_1 doi: 10.1137/16M1097171 – ident: e_1_2_1_41_1 doi: 10.1038/nmeth.4169 – ident: e_1_2_1_46_1 doi: 10.1006/jsbi.1998.4014 – ident: e_1_2_1_48_1 doi: 10.1146/annurev‐biodatasci‐021020‐093826 – ident: e_1_2_1_37_1 doi: 10.1007/978-1-4419-8853-9_1 – ident: e_1_2_1_43_1 doi: 10.1016/j.str.2007.09.003 – ident: e_1_2_1_31_1 – start-page: 47 volume-title: Cambridge Series in Statistical and Probabilistic Mathematics year: 2018 ident: e_1_2_1_53_1 – ident: e_1_2_1_3_1 doi: 10.1109/ISIT.2018.8437646 – ident: e_1_2_1_15_1 – start-page: 1510.06096 [mat year: 2015 ident: e_1_2_1_49_1 article-title: When are nonconvex problems not scary? publication-title: Preprint – ident: e_1_2_1_5_1 doi: 10.1007/s00440‐014‐0579‐3 – start-page: 3 volume-title: Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics year: 1998 ident: e_1_2_1_52_1 – ident: e_1_2_1_50_1 doi: 10.1109/TIT.2016.2632162 – ident: e_1_2_1_10_1 doi: 10.1109/MSP.2019.2957822 – ident: e_1_2_1_20_1 doi: 10.1017/S0033583500004297 – ident: e_1_2_1_42_1 doi: 10.1038/nmeth992 – ident: e_1_2_1_23_1 doi: 10.1093/acprof:oso/9780195182187.001.0001 – volume: 29 start-page: 4116 year: 2016 ident: e_1_2_1_28_1 article-title: Local maxima in the likelihood of Gaussian mixture models: Structural results and algorithmic consequences publication-title: Advances in Neural Information Processing Systems – volume-title: The matrix cookbook year: 2012 ident: e_1_2_1_39_1 – start-page: 2006.15202 [mat year: 2020 ident: e_1_2_1_29_1 article-title: Likelihood maximization and moment matching in low SNR Gaussian mixture models publication-title: Preprint – ident: e_1_2_1_38_1 doi: 10.1137/18M1214317 – ident: e_1_2_1_30_1 doi: 10.1017/S0308210500018679 – ident: e_1_2_1_44_1 doi: 10.1016/j.jmb.2005.02.031 |
SSID | ssj0011483 |
Score | 2.4199946 |
Snippet | We study the nonconvex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This is a statistical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1208 |
SubjectTerms | Algorithms Eigenvalues Fisher information Group theory Image processing Low noise Maximum likelihood estimation Normal distribution Optimization Permutations Polynomials Probabilistic models Random noise Recovery Saddle points Statistical analysis Statistical models |
Title | Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.22032 https://www.proquest.com/docview/2806079561 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJz34FqtVgnjw0na7u9ns4qkUpYgVEQs9FJa8Fkqf9AHqr3cm-6iKgnjLYXZ2N8kk3yQz3xByFXFtFB69aabBQfG5Vwu9QNUQzeKWJKWNzek-Bp2ef99n_RK5yXNhUn6I4sANLcOu12jgQi4bG9JQNRd1F-t_w_qLsVoIiJ4L6iiE-entMq4zge_krEKO2yie_LoXbQDmZ5hq95m7XTLIvzANLxnV1ytZV-_fyBv_-Qt7ZCfDn7SVTph9UjLTA7LdLchbl4dk8DAcgWLkO6Y2ExhjpCg06ES8DifrCR1vBJCkI81-pAB_KaihmOi7ACxOZws5XFF0ucFe3qgtunNEene3L-1OLSvCUFNuxMFRDbk0jsd0lCjmG80iV4QM_CABLiwTPAy49pTxuHS1kCpSgYiSZtMAEuOJ52rvmJSns6k5IZT7gEaUbrIEfEqbIRs2HW2cBOSEYapCrvPhiFXGUI6FMsZxyq3sxtBhse2wCrksROcpLcdPQtV8TOPMMpcx3iQ7HNN54XV2cH5XELefWrZx-nfRM7KFFenTaLIqKa8Wa3MOuGUlL-wE_QDuTOf_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAH3ojxjBAHLhtd2zStxAUB04ANIQTSDqCqTVJpgj20hwT8eux07QCBhLjl4KZtEiefHfszwGEglJbkelNcoYHiCqfsO54sE5qlIymOTWxO88arP7hXLd4qwEmWC5PyQ-QON9IMs1-TgpND-njKGir7UcWmAuAzMEsVvYk5__wuJ48ioJ_eL9NO47lWxitk2cf5o19PoynE_AxUzUlTW4Kn7BvTAJPnyngUV-T7N_rG__7EMixOICg7TdfMChR0dxUWmjl_63ANHhvtZ-yZKI-ZSQamMCmGDdaJXtudcYe9TAWIpyNNgGSIgBl2wyjXd4BwnPUGcXvEyOpGlXljpu7OOjzULu7P6uVJHYaytAOBtqovYm05XAWJ5K5WPLAjn6MpFKEVyyPhe0I5UjsitlUUy0B6UZBUqxrBmEgcWzkbUOz2unoTmHARkEhV5QmalSZJ1q9aSlsJykWayxIcZfMRyglJOdXKeAlTemU7xAELzYCV4CAX7afMHD8J7WSTGk6UcxjSZbIlKKMXX2dm5_cOwrPbU9PY-rvoPszV75uNsHF5c70N81SgPg0u24HiaDDWuwhjRvGeWa0fcr7sGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt_h2EQ9e2qZJNpvgSVqLz1JEwUMhJLsbKH1Y-gD11zuzaVIVBfG2h8kk2d3Z_WZ35huA00AoLenoTXGFDoornKLveLJIaJa2pDg2sTn3De_qyb155s9zcJ7lwqT8EPmBG1mGWa_JwAcqKc9IQ-UgKtlU_3seFlzPCqhuQ-0h544inJ9eL9NC47lWRitk2eX80a-b0QxhfsapZqOpr0Ir-8Q0vqRTmozjknz_xt74z39Yg5UpAGUX6YxZhznd34Dl-5y9dbQJrbt2BxUT4TEzqcAUJMWwwXrRa7s36bHuTIBYOtL0R4b4l6EaRpm-QwTj7GUYt8eMfG40mDdmqu5swVP98rF6VZxWYShKOxDoqfoi1pbDVZBI7mrFAzvyOTpCEfqwPBK-J5QjtSNiW0WxDKQXBUmlohGKicSxlbMNhf5LX-8AEy7CEakqPEGn0qTI-hVLaStBuUhzuQtn2XCEckpRTpUyumFKrmyH2GGh6bBdOMlFBykvx09CB9mYhlPTHIV0lWwJyufF15nB-V1BWG1emMbe30WPYbFZq4d3143bfVii6vRpZNkBFMbDiT5EDDOOj8xc_QDDJ-rK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+landscape+and+maximum+likelihood+estimation+for+the+discrete+orbit+recovery+model&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Fan%2C+Zhou&rft.au=Sun%2C+Yi&rft.au=Wang%2C+Tianhao&rft.au=Wu%2C+Yihong&rft.date=2023-06-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=76&rft.issue=6&rft.spage=1208&rft.epage=1302&rft_id=info:doi/10.1002%2Fcpa.22032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_22032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |