Effect of electron‐withdrawing groups on photovoltaic performance of thiophene‐vinyl‐thiophene derivative and benzochalcogenadiazole based copolymers: A computational study

We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO2 on the geometrical, optoelectronic, intramolecular charge transfer (ICT), and photovoltaic properties of (E)‐1,2‐bis(5‐alkyl‐[2,3′‐bithiophene]‐2′‐yl)ethene (TVT‐T) based donor‐acceptor (D‐...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of quantum chemistry Vol. 119; no. 18
Main Authors Bhattacharya, Labanya, Sahoo, Smruti R., Sharma, Sagar, Sahu, Sridhar
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.09.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO2 on the geometrical, optoelectronic, intramolecular charge transfer (ICT), and photovoltaic properties of (E)‐1,2‐bis(5‐alkyl‐[2,3′‐bithiophene]‐2′‐yl)ethene (TVT‐T) based donor‐acceptor (D‐A) copolymers with different acceptor units, that is, benzo[c][1,2,5]thiadiazole, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]selenadiazole. The computed optical absorption spectra of the designed compounds lie in the visible and near‐infrared regions. Of all the studied copolymers, ‐CN substituted and Se‐based compound displays the lowest HOMO‐LUMO (E H ‐ L) gap and optical band gap (E opt). The exciton binding energy (E b) is found to be smaller for O‐incorporated compounds and ‐CN substituted copolymer as well, inferring more ICT. The electron‐hole coherence concentrated over the D‐A units is nearly the same for ‐CN and ‐NO2 substituted compounds, but larger in ‐F derivatives, indicating weak electron‐hole coupling in the formers. Comparatively larger dipole moment (6.421 Debye‐9.829 Debye) and charge transfer length (D CT) (1.976 Å‐3.122 Å) for ‐CN derivatives lead to enhanced ICT properties. The designed donors yield good hole mobilities (0.127‐6.61 cm2 V−1 s−1) and the predicted power conversion efficiencies are calculated to be as high as ~6%‐7% for –CN and –NO2 substituted compounds. The computational study shows that the (E)‐1,2‐bis(5‐alkyl‐[2,3′‐ bithiophen]‐2′‐yl)ethene (TVT‐T) and benzochalcogenadiazole‐based copolymers possess good electronic, photophysical properties and can act as potential donor materials for bulk heterojunction organic solar cell. Incorporation of electron‐withdrawing groups –F, –CN, –NO2 on the chalcogen (S, O, Se) containing acceptor unit improves the photovoltaic performance. The predicted power conversion efficiencies can be reached up to ~6%‐7% for –CN, –NO2 substituted copolymers.
AbstractList We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO2 on the geometrical, optoelectronic, intramolecular charge transfer (ICT), and photovoltaic properties of (E)‐1,2‐bis(5‐alkyl‐[2,3′‐bithiophene]‐2′‐yl)ethene (TVT‐T) based donor‐acceptor (D‐A) copolymers with different acceptor units, that is, benzo[c][1,2,5]thiadiazole, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]selenadiazole. The computed optical absorption spectra of the designed compounds lie in the visible and near‐infrared regions. Of all the studied copolymers, ‐CN substituted and Se‐based compound displays the lowest HOMO‐LUMO (EH ‐ L) gap and optical band gap (Eopt). The exciton binding energy (Eb) is found to be smaller for O‐incorporated compounds and ‐CN substituted copolymer as well, inferring more ICT. The electron‐hole coherence concentrated over the D‐A units is nearly the same for ‐CN and ‐NO2 substituted compounds, but larger in ‐F derivatives, indicating weak electron‐hole coupling in the formers. Comparatively larger dipole moment (6.421 Debye‐9.829 Debye) and charge transfer length (DCT) (1.976 Å‐3.122 Å) for ‐CN derivatives lead to enhanced ICT properties. The designed donors yield good hole mobilities (0.127‐6.61 cm2 V−1 s−1) and the predicted power conversion efficiencies are calculated to be as high as ~6%‐7% for –CN and –NO2 substituted compounds.
We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO2 on the geometrical, optoelectronic, intramolecular charge transfer (ICT), and photovoltaic properties of (E)‐1,2‐bis(5‐alkyl‐[2,3′‐bithiophene]‐2′‐yl)ethene (TVT‐T) based donor‐acceptor (D‐A) copolymers with different acceptor units, that is, benzo[c][1,2,5]thiadiazole, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]selenadiazole. The computed optical absorption spectra of the designed compounds lie in the visible and near‐infrared regions. Of all the studied copolymers, ‐CN substituted and Se‐based compound displays the lowest HOMO‐LUMO (E H ‐ L) gap and optical band gap (E opt). The exciton binding energy (E b) is found to be smaller for O‐incorporated compounds and ‐CN substituted copolymer as well, inferring more ICT. The electron‐hole coherence concentrated over the D‐A units is nearly the same for ‐CN and ‐NO2 substituted compounds, but larger in ‐F derivatives, indicating weak electron‐hole coupling in the formers. Comparatively larger dipole moment (6.421 Debye‐9.829 Debye) and charge transfer length (D CT) (1.976 Å‐3.122 Å) for ‐CN derivatives lead to enhanced ICT properties. The designed donors yield good hole mobilities (0.127‐6.61 cm2 V−1 s−1) and the predicted power conversion efficiencies are calculated to be as high as ~6%‐7% for –CN and –NO2 substituted compounds. The computational study shows that the (E)‐1,2‐bis(5‐alkyl‐[2,3′‐ bithiophen]‐2′‐yl)ethene (TVT‐T) and benzochalcogenadiazole‐based copolymers possess good electronic, photophysical properties and can act as potential donor materials for bulk heterojunction organic solar cell. Incorporation of electron‐withdrawing groups –F, –CN, –NO2 on the chalcogen (S, O, Se) containing acceptor unit improves the photovoltaic performance. The predicted power conversion efficiencies can be reached up to ~6%‐7% for –CN, –NO2 substituted copolymers.
We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO 2 on the geometrical, optoelectronic, intramolecular charge transfer (ICT), and photovoltaic properties of ( E )‐1,2‐bis(5‐alkyl‐[2,3′‐bithiophene]‐2′‐yl)ethene (TVT‐T) based donor‐acceptor (D‐A) copolymers with different acceptor units, that is, benzo[c][1,2,5]thiadiazole, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]selenadiazole. The computed optical absorption spectra of the designed compounds lie in the visible and near‐infrared regions. Of all the studied copolymers, ‐CN substituted and Se‐based compound displays the lowest HOMO‐LUMO ( E H ‐ L ) gap and optical band gap ( E opt ). The exciton binding energy ( E b ) is found to be smaller for O‐incorporated compounds and ‐CN substituted copolymer as well, inferring more ICT. The electron‐hole coherence concentrated over the D‐A units is nearly the same for ‐CN and ‐NO 2 substituted compounds, but larger in ‐F derivatives, indicating weak electron‐hole coupling in the formers. Comparatively larger dipole moment (6.421 Debye‐9.829 Debye) and charge transfer length ( D CT ) (1.976 Å‐3.122 Å) for ‐CN derivatives lead to enhanced ICT properties. The designed donors yield good hole mobilities (0.127‐6.61 cm 2 V −1 s −1 ) and the predicted power conversion efficiencies are calculated to be as high as ~6%‐7% for –CN and –NO 2 substituted compounds.
Author Bhattacharya, Labanya
Sharma, Sagar
Sahu, Sridhar
Sahoo, Smruti R.
Author_xml – sequence: 1
  givenname: Labanya
  surname: Bhattacharya
  fullname: Bhattacharya, Labanya
  organization: Indian Institute of Technology (Indian School of Mines)
– sequence: 2
  givenname: Smruti R.
  surname: Sahoo
  fullname: Sahoo, Smruti R.
  organization: Indian Institute of Technology (Indian School of Mines)
– sequence: 3
  givenname: Sagar
  surname: Sharma
  fullname: Sharma, Sagar
  organization: School of Fundamental and Applied Sciences, Assam Don Bosco University
– sequence: 4
  givenname: Sridhar
  orcidid: 0000-0001-7945-5187
  surname: Sahu
  fullname: Sahu, Sridhar
  email: sridharsahu@gmail.com, sridharsahu@iitism.ac.in
  organization: Indian Institute of Technology (Indian School of Mines)
BookMark eNp9kcFq3DAQhkVJoJukh76BoKcenEjy2pZ7W0KaFgIh0EBvRiuN1wpajSPJuzinPkKepY_UJ6nSLT0U2tNImu8bNPwn5MijB0LecnbOGRMXj5M6F1UrxSuy4KxtimXNvx6RRe6xoqmZfE1OYnxgjNVl3SzI96u-B50o9hRcPgT0P749720aTFB76zd0E3AaI0VPxwET7tAlZTUdIfQYtspreJHTYHEcwEO2d9bPLtc_b9RAsDuV7A6o8oauwT-hHpTTuAGvjFVP6ICuVQRDNY7o5i2E-IGu8m07Timr6JWjMU1mPiPHvXIR3vyup-T-49WXy0_Fze3158vVTaFF24iCy1aUVc-kXCvNawFL1oOUjV6rVkjG-lIb0JpzkKyuM2RYa4wotWCykbUpT8m7w9wx4OMEMXUPOIX8jdgJUS-rthJVk6n3B0oHjDFA343BblWYO866l0i6HEn3K5LMXvzFanvYLQVl3f-MvXUw_3t0d3e_Ohg_AUJrqK8
CitedBy_id crossref_primary_10_1016_j_jmgm_2022_108226
crossref_primary_10_1016_j_jpcs_2020_109532
crossref_primary_10_1016_j_mtcomm_2021_102370
crossref_primary_10_1088_1402_4896_ada0f3
crossref_primary_10_1002_qua_26524
crossref_primary_10_1016_j_jmgm_2023_108470
crossref_primary_10_1039_D0CE00770F
Cites_doi 10.1038/nenergy.2015.27
10.1021/acs.jpcc.6b09927
10.1021/jp503248a
10.1016/j.progpolymsci.2013.05.001
10.1002/adma.200501717
10.1039/C2CP23418A
10.1021/jp0495848
10.1016/j.cplett.2005.07.043
10.1021/jp109130y
10.1021/ma501236v
10.1016/j.orgel.2012.03.026
10.1038/nmat1928
10.1039/C7NJ02394D
10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
10.5185/amlett.2017.7005
10.1021/ma501888z
10.1021/jp306656c
10.1021/ma301164e
10.1021/jp103204q
10.1021/acs.jpcc.6b06758
10.1016/0378-4371(95)00164-6
10.1021/ma5014308
10.1021/jp309800f
10.1063/1.1925611
10.1021/jp2109829
10.1039/C1JM13028E
10.1002/aenm.201700944
10.1038/nphoton.2012.11
10.1039/C6RA13970A
10.1002/adma.201002189
10.1002/adma.201202873
10.1038/srep07711
10.1039/c3ta12421e
10.1103/RevModPhys.65.599
10.1021/jp203497e
10.1021/jp2062207
10.1002/jcc.22885
10.1038/srep07573
10.1021/acs.chemmater.6b04828
10.1021/jp061633o
10.1007/s00214-017-2131-x
10.1016/j.chemphys.2018.05.009
10.1039/c3ra40702k
10.1021/ja0771989
10.1039/C6PY01767C
10.1021/acs.chemmater.5b03124
10.1039/C6PY00640J
10.1002/anie.201005451
10.1103/PhysRevLett.77.3865
10.1063/1.1394921
10.1007/s00894-013-1939-0
10.1039/c3cp55243h
10.1016/S0009-2614(00)01082-4
10.1021/cm8002172
10.1002/chem.200601803
10.1039/C3CP53268B
10.1021/cr050140x
10.1021/ct200308m
10.1021/acs.chemrev.6b00176
10.1021/cr900271s
10.1021/acsenergylett.7b00551
10.1039/C6TC02915A
10.1021/ja073455y
10.1002/adfm.201201385
10.1039/C4CP03022B
10.1021/ar2002446
10.1039/c2jm30470h
10.1039/C6PY00370B
10.1063/1.1534621
10.1021/jp3030667
10.1016/0379-6779(93)90949-W
10.1016/S0031-8914(34)90011-2
10.1002/pola.28546
10.1002/adma.201302563
10.1002/cphc.201200384
10.1126/science.aad4424
10.1002/jcc.23298
10.1063/1.1696792
10.1021/ja0683537
10.1103/PhysRevB.88.085119
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
DOI 10.1002/qua.25982
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-461X
EndPage n/a
ExternalDocumentID 10_1002_qua_25982
QUA25982
Genre article
GrantInformation_xml – fundername: Indian Institute of Technology (Indian School of Mines), Dhanbad
– fundername: Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India
  funderid: EMR/2014/000141
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWK
RX1
SUPJJ
TN5
TUS
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2972-189235f088bac162e40fe887cba92800f3cdecc11e80668bad09dd23c208786d3
IEDL.DBID DR2
ISSN 0020-7608
IngestDate Fri Jul 25 12:02:38 EDT 2025
Tue Jul 01 02:38:11 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:39:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-189235f088bac162e40fe887cba92800f3cdecc11e80668bad09dd23c208786d3
Notes Funding information
Indian Institute of Technology (Indian School of Mines), Dhanbad; Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India, Grant/Award Number: EMR/2014/000141
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7945-5187
PQID 2264595257
PQPubID 1026346
PageCount 14
ParticipantIDs proquest_journals_2264595257
crossref_primary_10_1002_qua_25982
crossref_citationtrail_10_1002_qua_25982
wiley_primary_10_1002_qua_25982_QUA25982
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 15, 2019
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: September 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle International journal of quantum chemistry
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2011; 115
2017; 7
2017; 8
2017; 41
2013; 3
2007; 107
2017; 2
2013; 25
2013; 1
2013; 23
2005; 412
1993; 65
2000; 330
2003; 93
2012; 14
2012; 13
1996; 77
2013; 19
2010; 22
2014; 4
2010; 114
2013; 117
2014; 16
2010; 110
2007; 6
2016; 352
2016; 116
2008; 20
2001; 11
2012; 22
2014; 118
2007; 129
2015; 5
2013; 88
2006; 18
2014; 47
2017; 29
2004; 108
2012; 33
2017; 136
2016; 120
2007; 13
2011; 7
1934; 1
2016; 4
2016; 6
2016; 7
1965; 43
2016; 1
2015; 27
2013; 38
2005; 122
2013; 34
1993; 55
2017; 55
2007; 111
2011; 50
2018; 510
1995; 221
2013
2012; 6
2012; 45
2012; 116
2001; 115
2008; 130
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Khlaifia D. (e_1_2_6_50_1) 2017; 2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Frisch M. J. (e_1_2_6_46_1) 2013
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
References_xml – volume: 27
  start-page: 6558
  year: 2015
  publication-title: Chem. Mater.
– volume: 116
  start-page: 9166
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 65
  start-page: 599
  year: 1993
  publication-title: Rev. Mod. Phys.
– volume: 47
  start-page: 5889
  year: 2014
  publication-title: Macromolecules
– volume: 38
  start-page: 1929
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 25
  start-page: 1847
  year: 2013
  publication-title: Adv. Mater.
– volume: 117
  start-page: 7964
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 330
  start-page: 152
  year: 2000
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 497
  year: 2007
  publication-title: Nat. Mater.
– volume: 8
  start-page: 421
  year: 2017
  publication-title: Polym. Chem.
– volume: 18
  start-page: 789
  year: 2006
  publication-title: Adv. Mater.
– volume: 130
  start-page: 732
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4750
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 45
  start-page: 723
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 129
  start-page: 3472
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1700944
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 7711
  year: 2015
  publication-title: Sci. Rep.
– volume: 115
  start-page: 2406
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 122
  start-page: 234707
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 11568
  year: 2017
  publication-title: New J. Chem.
– volume: 108
  start-page: 8614
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 1971
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 47
  start-page: 8570
  year: 2014
  publication-title: Macromolecules
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 118
  start-page: 17266
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 136
  start-page: 99
  year: 2017
  publication-title: Theor Chem Acc
– volume: 129
  start-page: 14257
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 6405
  year: 2012
  publication-title: Macromolecules
– volume: 25
  start-page: 6642
  year: 2013
  publication-title: Adv. Mater.
– volume: 20
  start-page: 3205
  year: 2008
  publication-title: Chem. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 88
  start-page: 085119
  year: 2013
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 17515
  year: 2013
  publication-title: RSC Adv.
– volume: 7
  start-page: 4160
  year: 2016
  publication-title: Polym. Chem.
– volume: 111
  start-page: 1554
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 14
  start-page: 1685
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 34
  start-page: 1611
  year: 2013
  publication-title: J. Comput. Chem.
– volume: 120
  start-page: 28939
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 104
  year: 1934
  publication-title: Physica
– volume: 1
  start-page: 15027
  year: 2016
  publication-title: Nat. Energy
– volume: 22
  start-page: 4881
  year: 2010
  publication-title: Adv. Mater.
– volume: 412
  start-page: 425
  year: 2005
  publication-title: Chem. Phys. Lett.
– volume: 510
  start-page: 60
  year: 2018
  publication-title: Chem. Phys.
– volume: 116
  start-page: 7397
  year: 2016
  publication-title: Chem. Rev.
– volume: 115
  start-page: 13076
  year: 2011
  publication-title: J. Phys. Chem. C.
– volume: 6
  start-page: 68049
  year: 2016
  publication-title: RSC Adv.
– volume: 116
  start-page: 26154
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 115
  start-page: 4708
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 2498
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 29
  start-page: 2819
  year: 2017
  publication-title: Chem. Mater.
– volume: 16
  start-page: 25799
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 13828
  issue: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 6972
  year: 2010
  publication-title: J. Phys. Chem. A
– volume: 55
  start-page: 299
  year: 1993
  publication-title: Synth. Met.
– volume: 16
  start-page: 311
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 115
  start-page: 21508
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 7
  start-page: 4036
  year: 2016
  publication-title: Polym. Chem.
– volume: 13
  start-page: 3714
  year: 2012
  publication-title: Chem Phys Chem
– volume: 19
  start-page: 4283
  year: 2013
  publication-title: J. Mol. Model.
– volume: 120
  start-page: 21235
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 7573
  year: 2014
  publication-title: Sci. Rep.
– volume: 2
  start-page: 10082
  year: 2017
  publication-title: Chemistry Select
– volume: 50
  start-page: 2995
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 6736
  year: 2010
  publication-title: Chem. Rev.
– volume: 16
  start-page: 8563
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 352
  year: 2016
  publication-title: Science
– volume: 8
  start-page: 2
  year: 2017
  publication-title: Adv. Mater. Lett.
– volume: 22
  start-page: 568
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 374
  year: 2001
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1213
  year: 2012
  publication-title: Org. Electron.
– volume: 22
  start-page: 10416
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 55
  start-page: 1757
  year: 2017
  publication-title: J. Polym. Sci. A: Polym. Chem.
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Chem. Rev.
– volume: 43
  start-page: 679
  year: 1965
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 439
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 116
  start-page: 11946
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 47
  start-page: 7253
  year: 2014
  publication-title: Macromolecules
– volume: 4
  start-page: 9052
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 93
  start-page: 3693
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 221
  start-page: 495
  year: 1995
  publication-title: Physica A
– year: 2013
– ident: e_1_2_6_8_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_6_69_1
  doi: 10.1021/acs.jpcc.6b09927
– ident: e_1_2_6_42_1
  doi: 10.1021/jp503248a
– ident: e_1_2_6_3_1
  doi: 10.1016/j.progpolymsci.2013.05.001
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.200501717
– ident: e_1_2_6_65_1
  doi: 10.1039/C2CP23418A
– ident: e_1_2_6_80_1
  doi: 10.1021/jp0495848
– ident: e_1_2_6_64_1
  doi: 10.1016/j.cplett.2005.07.043
– ident: e_1_2_6_38_1
  doi: 10.1021/jp109130y
– ident: e_1_2_6_21_1
  doi: 10.1021/ma501236v
– ident: e_1_2_6_35_1
  doi: 10.1016/j.orgel.2012.03.026
– ident: e_1_2_6_45_1
  doi: 10.1038/nmat1928
– ident: e_1_2_6_28_1
  doi: 10.1039/C7NJ02394D
– ident: e_1_2_6_10_1
  doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
– ident: e_1_2_6_7_1
  doi: 10.5185/amlett.2017.7005
– ident: e_1_2_6_30_1
  doi: 10.1021/ma501888z
– ident: e_1_2_6_36_1
  doi: 10.1021/jp306656c
– ident: e_1_2_6_14_1
  doi: 10.1021/ma301164e
– ident: e_1_2_6_66_1
  doi: 10.1021/jp103204q
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.jpcc.6b06758
– ident: e_1_2_6_79_1
  doi: 10.1016/0378-4371(95)00164-6
– ident: e_1_2_6_20_1
  doi: 10.1021/ma5014308
– ident: e_1_2_6_56_1
  doi: 10.1021/jp309800f
– ident: e_1_2_6_40_1
  doi: 10.1063/1.1925611
– ident: e_1_2_6_59_1
  doi: 10.1021/jp2109829
– ident: e_1_2_6_58_1
  doi: 10.1039/C1JM13028E
– ident: e_1_2_6_9_1
  doi: 10.1002/aenm.201700944
– ident: e_1_2_6_57_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_6_29_1
  doi: 10.1039/C6RA13970A
– ident: e_1_2_6_52_1
  doi: 10.1002/adma.201002189
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.201202873
– ident: e_1_2_6_16_1
  doi: 10.1038/srep07711
– ident: e_1_2_6_41_1
  doi: 10.1039/c3ta12421e
– ident: e_1_2_6_74_1
  doi: 10.1103/RevModPhys.65.599
– ident: e_1_2_6_77_1
  doi: 10.1021/jp203497e
– ident: e_1_2_6_39_1
  doi: 10.1021/jp2062207
– ident: e_1_2_6_47_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_6_82_1
  doi: 10.1038/srep07573
– ident: e_1_2_6_17_1
  doi: 10.1021/acs.chemmater.6b04828
– volume: 2
  start-page: 10082
  year: 2017
  ident: e_1_2_6_50_1
  publication-title: Chemistry Select
– ident: e_1_2_6_51_1
  doi: 10.1021/jp061633o
– volume-title: Gaussian 09, Revision E.01
  year: 2013
  ident: e_1_2_6_46_1
– ident: e_1_2_6_83_1
  doi: 10.1007/s00214-017-2131-x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.chemphys.2018.05.009
– ident: e_1_2_6_60_1
  doi: 10.1039/c3ra40702k
– ident: e_1_2_6_53_1
  doi: 10.1021/ja0771989
– ident: e_1_2_6_32_1
  doi: 10.1039/C6PY01767C
– ident: e_1_2_6_22_1
  doi: 10.1021/acs.chemmater.5b03124
– ident: e_1_2_6_26_1
  doi: 10.1039/C6PY00640J
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.201005451
– ident: e_1_2_6_33_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_44_1
  doi: 10.1063/1.1394921
– ident: e_1_2_6_54_1
  doi: 10.1007/s00894-013-1939-0
– ident: e_1_2_6_75_1
  doi: 10.1039/c3cp55243h
– ident: e_1_2_6_43_1
  doi: 10.1016/S0009-2614(00)01082-4
– ident: e_1_2_6_72_1
  doi: 10.1021/cm8002172
– ident: e_1_2_6_81_1
  doi: 10.1002/chem.200601803
– ident: e_1_2_6_25_1
  doi: 10.1039/C3CP53268B
– ident: e_1_2_6_71_1
  doi: 10.1021/cr050140x
– ident: e_1_2_6_67_1
  doi: 10.1021/ct200308m
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.chemrev.6b00176
– ident: e_1_2_6_61_1
  doi: 10.1021/cr900271s
– ident: e_1_2_6_18_1
  doi: 10.1021/acsenergylett.7b00551
– ident: e_1_2_6_27_1
  doi: 10.1039/C6TC02915A
– ident: e_1_2_6_62_1
  doi: 10.1021/ja073455y
– ident: e_1_2_6_23_1
  doi: 10.1002/adfm.201201385
– ident: e_1_2_6_34_1
  doi: 10.1039/C4CP03022B
– ident: e_1_2_6_70_1
  doi: 10.1021/ar2002446
– ident: e_1_2_6_13_1
  doi: 10.1039/c2jm30470h
– ident: e_1_2_6_6_1
  doi: 10.1039/C6PY00370B
– ident: e_1_2_6_55_1
  doi: 10.1063/1.1534621
– ident: e_1_2_6_68_1
  doi: 10.1021/jp3030667
– ident: e_1_2_6_12_1
  doi: 10.1016/0379-6779(93)90949-W
– ident: e_1_2_6_76_1
  doi: 10.1016/S0031-8914(34)90011-2
– ident: e_1_2_6_31_1
  doi: 10.1002/pola.28546
– ident: e_1_2_6_49_1
  doi: 10.1002/adma.201302563
– ident: e_1_2_6_63_1
  doi: 10.1002/cphc.201200384
– ident: e_1_2_6_4_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_6_37_1
  doi: 10.1002/jcc.23298
– ident: e_1_2_6_73_1
  doi: 10.1063/1.1696792
– ident: e_1_2_6_78_1
  doi: 10.1021/ja0683537
– ident: e_1_2_6_11_1
  doi: 10.1103/PhysRevB.88.085119
SSID ssj0006367
Score 2.2895381
Snippet We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO2 on the geometrical, optoelectronic,...
We report a density functional theory study of the effect of electron‐withdrawing groups such as –F, –CN, –NO 2 on the geometrical, optoelectronic,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorption spectra
Charge transfer
Chemistry
Copolymers
Coupling (molecular)
Density functional theory
Derivatives
DFT
Dipole moments
donor‐acceptor copolymer
Electrons
electron‐withdrawing groups
Energy conversion efficiency
Ethylene
Excitons
Intramolecular charge transfer
Molecular orbitals
Nitrogen dioxide
Optoelectronics
Physical chemistry
power conversion efficiency
Quantum physics
Substitutes
Title Effect of electron‐withdrawing groups on photovoltaic performance of thiophene‐vinyl‐thiophene derivative and benzochalcogenadiazole based copolymers: A computational study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.25982
https://www.proquest.com/docview/2264595257
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhObSXJumD5okoPfTijS1LtpyeljwIoemhbSCHgpE0Mrt0sbdZb0L2lJ_Q35KflF-SkWzvpqGF0pONGfnBjGY-DzPfEPJeArdGMBlIoXnAQSaB5hAFiAWyRLAUIHWNwmefk5NzfnohLpbIx64XpuGHmCfc3M7w_tptcKUnewvS0J9T1WOOfg79r6vVcoDoy4I6KomTdlxrGKRJKDtWoZDtzVf-HosWAPMxTPVx5niVfO_esCkv-dGb1rpnZk_IG__zE9bIixZ_0n5jMOtkyZYvybODbuzbK3LX8BnTqqDdiJz7218uXQuX6hoDHfWNIBNalXQ8qOoK_VuthoaOFy0IbnE9GDrKgtLi6qtheTPC4_waBTT8K885TlUJVNtyVpmBGpkKDdrRJcyqkaUuxAI1bo7Djcuv79M-NX4MRZvCpJ4d9zU5Pz76dnAStIMdAsOylAWRRFgpCnRwWpkoYZaHhUVvZ7TKGCLYIjaAphVFViIiQiEIMwAWGxbKVCYQvyHLZVXat4QKViAiKbiIU-DCaG1AprFQwDMDOuQb5EOn4ty0rOdu-MYob_iaWY5KyL0SNsi7uei4ofr4k9B2Zyd5u9snuWtGFpnjlcXHeYX__QY5_qn4k81_F90izxGn-dK2SGyT5fpyancQC9V6l6z0D88-fd31xv8AvrcQHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcigX_lFLC7UQBy7ZJo6dOKiXqqJaoO0BtVIvKIo9jnbFKlnabKvuiUfgWXgknqRjJ9ktCCTEKVE0zo_m7_Mo8w3Aa4XCGslVoKQWgUCVBFpgFBAWyBLJU8TUNQofHSfDU_HhTJ6twG7fC9PyQywKbs4zfLx2Du4K0jtL1tCvs2LAHf_cHbjrJnr7DdWnJXlUEifdwNYwSJNQ9bxCId9ZLP01Gy0h5m2g6jPNwQP43L9j-4PJl8Gs0QMz_42-8X8_4iHc7yAo22tt5hGs2OoxrO33k9-ewI-W0pjVJeun5Pz89t1VbPG8uKJcx3wvyAWrKzYd1U1NIa4pxoZNl10IbnEzGjvWgsrS6stxdT2h4-IaQ7L9S087zooKmbbVvDajYmJqsmnHmDCvJ5a5LIvMuFEO167E_pbtMeMnUXRVTOYJcp_C6cG7k_1h0M12CAzPUh5EipClLCnG6cJECbciLC0FPKOLjBOILWODZF1RZBWBIhLCMEPkseGhSlWC8TNYrerKrgOTvCRQUgoZpyik0dqgSmNZoMgM6lBswJtex7npiM_d_I1J3lI285yUkHslbMCrhei0Zfv4k9BWbyh55_AXuetHlpmjlqXHeY3__QY5bVb8yfN_F92GteHJ0WF--P744ybcI9jm_3SL5BasNucz-4KgUaNfeg-4AfgBEqU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVgIuQPkRhQIW4sAl28SxE4eeqrarQqFCiEo9IEWxx9GuWCVLmy3qnngEnqWPxJMwdpJdikBCnBIlYyfRjGe-jDzfALxQKKyRXAVKahEIVEmgBUYBYYEskTxFTF2h8Luj5OBYvDmRJyuw3dfCtPwQi4SbWxneX7sFPsVya0ka-mVWDLijn7sGayKhqR0i-rDkjkripOvXGgYp3e9phUK-tRh6NRgtEeavONUHmuFt-NS_Yru_5PNg1uiBmf_G3vif33AHbnUAlO20FrMOK7a6Czd2-75v9-CyJTRmdcn6Hjk_vn13-Vo8Lb5SpGO-EuSM1RWbjuqmJgfXFGPDpssaBDe4GY0dZ0FlafT5uLqY0HFxjSFZ_rknHWdFhUzbal6bUTExNVm040uY1xPLXIxFZlwjhwuXYH_FdpjxfSi6HCbz9Lj34Xi4_3H3IOg6OwSGZykPIkW4Upbk4XRhooRbEZaW3J3RRcYJwpaxQbKtKLKKIBEJYZgh8tjwUKUqwfgBrFZ1ZR8Ck7wkSFIKGacopNHaoEpjWaDIDOpQbMDLXsW56WjPXfeNSd4SNvOclJB7JWzA84XotOX6-JPQZm8nebfcz3JXjSwzRyxLj_MK__sEOf2q-JNH_y76DK6_3xvmb18fHT6Gm4TZ_Da3SG7CanM6s08IFzX6qbf_n-uLEV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+electron%E2%80%90withdrawing+groups+on+photovoltaic+performance+of+thiophene%E2%80%90vinyl%E2%80%90thiophene+derivative+and+benzochalcogenadiazole+based+copolymers%3A+A+computational+study&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Bhattacharya%2C+Labanya&rft.au=Sahoo%2C+Smruti+R.&rft.au=Sharma%2C+Sagar&rft.au=Sahu%2C+Sridhar&rft.date=2019-09-15&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=119&rft.issue=18&rft_id=info:doi/10.1002%2Fqua.25982&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qua_25982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon