ADRC‐SMC‐based disturbance rejection depth‐tracking control of underactuated AUV

The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 41; no. 4; pp. 1103 - 1115
Main Authors Liu, Chuan, Xiang, Xianbo, Duan, Yu, Yang, Lichun, Yang, Shaolong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22312

Cover

Abstract The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (ADRC) framework is adopted to compensate the complicated and unknown pitch dynamics into an approximate integral series type. Sliding mode control (SMC) feedback law is designed to further compensate for dynamic feedback linearization inaccuracy of the ADRC framework. Second, the disturbance rejection double‐loop depth‐tracking approach is suggested in conjunction with adaptive line‐of‐sight (ALOS), which converts depth tracking into pitch tracking. The ALOS not only estimates the actual angle of attack but also compensates the pitch‐tracking inaccuracy from the ADRC‐SMC in the inner loop. Then, the uniformly semiglobally exponential stability of the closed‐loop depth controller is proved after a detailed analysis of the stability from the inner loop to the outer loop. Finally, comparative field experiments are conducted to verify the proposed method. The effectiveness and strong disturbance rejection capabilities of the ADRC‐SMC pitch autopilot method and the suggested depth‐tracking approach are demonstrated by experimental results.
AbstractList The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (ADRC) framework is adopted to compensate the complicated and unknown pitch dynamics into an approximate integral series type. Sliding mode control (SMC) feedback law is designed to further compensate for dynamic feedback linearization inaccuracy of the ADRC framework. Second, the disturbance rejection double‐loop depth‐tracking approach is suggested in conjunction with adaptive line‐of‐sight (ALOS), which converts depth tracking into pitch tracking. The ALOS not only estimates the actual angle of attack but also compensates the pitch‐tracking inaccuracy from the ADRC‐SMC in the inner loop. Then, the uniformly semiglobally exponential stability of the closed‐loop depth controller is proved after a detailed analysis of the stability from the inner loop to the outer loop. Finally, comparative field experiments are conducted to verify the proposed method. The effectiveness and strong disturbance rejection capabilities of the ADRC‐SMC pitch autopilot method and the suggested depth‐tracking approach are demonstrated by experimental results.
Author Yang, Shaolong
Xiang, Xianbo
Yang, Lichun
Liu, Chuan
Duan, Yu
Author_xml – sequence: 1
  givenname: Chuan
  surname: Liu
  fullname: Liu, Chuan
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Xianbo
  orcidid: 0000-0002-6215-9864
  surname: Xiang
  fullname: Xiang, Xianbo
  email: xbxiang@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Lichun
  surname: Yang
  fullname: Yang, Lichun
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Shaolong
  surname: Yang
  fullname: Yang, Shaolong
  organization: Huazhong University of Science and Technology
BookMark eNp1kE1OwzAQhS1UJNrCghtEYsWirf-SOMtSfqWiSoV2aznOBFKCXRxHqDuOwBk5CS5FLBBsZkaj783ovR7qGGsAoWOChwRjOnI2H1LKCN1DXRLHyYBnSdr5mePsAPWaZoUxZyKLu2g5Pp9PPt7e7263NVcNFFFRNb51uTIaIgcr0L6yJipg7R8D453ST5V5iLQ13tk6smXUmgLC2rfKB_14sTxE-6WqGzj67n20uLy4n1wPprOrm8l4OtA0S-mAxLyIE5UkmWYcYoxzlSrM8iTHIAgnBXDCC5HkgmWiFAAp01QQASVjRYoZ66OT3d21sy8tNF6ubOtMeCkZ5oKmTAgcqNGO0s42jYNS6sqrratgpqolwXIbngzhya_wguL0l2LtqmflNn-y39dfqxo2_4NyPjvbKT4B07mCVA
CitedBy_id crossref_primary_10_1016_j_conengprac_2024_106230
crossref_primary_10_3390_fractalfract8060354
crossref_primary_10_1002_rob_22492
Cites_doi 10.1016/j.oceaneng.2020.108257
10.1016/j.apor.2021.102694
10.1016/j.conengprac.2023.105740
10.1109/TIE.2017.2779442
10.3390/biomimetics8020168
10.1109/TSMC.2023.3280065
10.1016/j.oceaneng.2019.04.011
10.1007/s12204-020-2194-z
10.1016/j.oceaneng.2018.04.010
10.1016/j.engappai.2023.107728
10.1109/AUV.2016.7778711
10.1109/OCEANSAP.2016.7485557
10.1016/S1474-6670(17)31709-3
10.1016/j.neucom.2021.03.136
10.1109/JOE.2016.2569218
10.1155/2021/5542920
10.1109/TMECH.2017.2660528
10.1016/j.oceaneng.2022.112458
10.1007/s00773-015-0312-7
10.1016/j.oceaneng.2022.113300
10.34133/olar.0036
10.23919/ACC53348.2022.9867324
10.1109/JOE.2017.2769938
10.1109/TIE.2008.2011621
10.1109/ChiCC.2014.6896328
10.1016/j.neucom.2015.09.010
10.1016/j.arcontrol.2018.10.002
10.1016/j.oceaneng.2005.02.012
10.3390/s19010162
10.1109/TCST.2014.2338354
10.1007/s40313-016-0237-3
10.1109/TMECH.2023.3256707
10.1002/9781119994138
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22312
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 1115
ExternalDocumentID 10_1002_rob_22312
ROB22312
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52131101; 52071153
– fundername: Hubei Provincial Natural Science Foundation, China for Innovation Groups
  funderid: 2021CFA026
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2972-154d56a669c34e500ba7a03b6b0e8141de414d86b8398f8ee73c2818ef33d7033
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 08:47:56 EDT 2025
Tue Jul 01 04:33:54 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Wed Jan 22 17:20:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-154d56a669c34e500ba7a03b6b0e8141de414d86b8398f8ee73c2818ef33d7033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6215-9864
PQID 3048273880
PQPubID 1006410
PageCount 13
ParticipantIDs proquest_journals_3048273880
crossref_citationtrail_10_1002_rob_22312
crossref_primary_10_1002_rob_22312
wiley_primary_10_1002_rob_22312_ROB22312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 42
2012
2011
2023a; 28
2017; 22
2023; 8
2017; 43
2017; 65
2024; 142
2019; 19
2023; 268
2014; 687–691
2005
2021; 220
2014; 23
2014; 22
2018; 46
2009; 56
2022; 484
2022; 264
2019; 181
2022
2021; 112
2015; 20
2004; 37
2018; 159
2024; 130
2005; 32
2023b; 53
2020; 25
2016
2014
2024; 3
2016; 27
2014; 1006–1007
2021; 2021
2016; 173
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_33_1
Loría A. (e_1_2_9_21_1) 2005
Koofigar H.R. (e_1_2_9_12_1) 2014; 22
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
Wan L. (e_1_2_9_32_1) 2014
Obreja C. (e_1_2_9_23_1) 2012
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
Liu J.J. (e_1_2_9_19_1) 2014
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 264
  year: 2022
  article-title: A hierarchical disturbance rejection depth tracking control of underactuated AUV with experimental verification
  publication-title: Ocean Engineering
– volume: 23
  start-page: 820
  issue: 2
  year: 2014
  end-page: 827
  article-title: Line‐of‐sight path following for dubins paths with adaptive sideslip compensation of drift forces
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 8
  start-page: 168
  issue: 2
  year: 2023
  article-title: A survey on reinforcement learning methods in bionic underwater robots
  publication-title: Biomimetics
– volume: 142
  year: 2024
  article-title: Improved path following for autonomous marine vehicles with low‐cost heading/course sensors: comparative experiments
  publication-title: Control Engineering Practice
– volume: 37
  start-page: 65
  issue: 10
  year: 2004
  end-page: 70
  article-title: Path following of straight lines and circles for marine surface vessels
  publication-title: IFAC Proceedings Volumes
– volume: 22
  start-page: 7
  issue: 4
  year: 2014
  article-title: Robust adaptive motion control with environmental disturbance rejection for perturbed underwater vehicles
  publication-title: Journal of Marine Science and Technology
– volume: 220
  year: 2021
  article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque's effect and model uncertainty
  publication-title: Ocean Engineering
– start-page: 2084
  year: 2022
  end-page: 2090
– volume: 3
  year: 2024
  article-title: Current status and technical challenges in the development of biomimetic robotic fish‐type submersible
  publication-title: Ocean–Land–Atmosphere Research
– volume: 2021
  start-page: 26
  year: 2021
  article-title: Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control
  publication-title: Journal of Robotics
– volume: 484
  start-page: 1
  year: 2022
  end-page: 12
  article-title: Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation
  publication-title: Neurocomputing
– volume: 19
  start-page: 162
  issue: 1
  year: 2019
  article-title: Optimization of the energy consumption of depth tracking control based on model predictive control for autonomous underwater vehicles
  publication-title: Sensors
– volume: 56
  start-page: 900
  issue: 3
  year: 2009
  end-page: 906
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 112
  year: 2021
  article-title: Extended state observer‐based composite‐system control for trajectory tracking of underactuated AUVs
  publication-title: Applied Ocean Research
– volume: 687–691
  start-page: 157
  year: 2014
  end-page: 162
– volume: 22
  start-page: 1121
  issue: 3
  year: 2017
  end-page: 1131
  article-title: Advanced control in marine mechatronic systems: a survey
  publication-title: IEEE/ASME Transactions on Mechatronics
– start-page: 53
  year: 2012
  end-page: 62
– start-page: 7948
  year: 2014
  end-page: 7952
– volume: 159
  start-page: 98
  year: 2018
  end-page: 111
  article-title: A self‐searching optimal ADRC for the pitch angle control of an underwater thermal glider in the vertical plane motion
  publication-title: Ocean Engineering
– start-page: 1
  year: 2016
  end-page: 9
– volume: 65
  start-page: 5796
  issue: 7
  year: 2017
  end-page: 5805
  article-title: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov‐based model predictive control
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 42
  start-page: 477
  issue: 2
  year: 2017
  end-page: 487
  article-title: ESO‐based line‐of‐sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 173
  start-page: 1377
  year: 2016
  end-page: 1385
  article-title: Diving control of autonomous underwater vehicle based on improved active disturbance rejection control approach
  publication-title: Neurocomputing
– volume: 181
  start-page: 145
  year: 2019
  end-page: 160
  article-title: Advancements in the field of autonomous underwater vehicle
  publication-title: Ocean Engineering
– volume: 268
  year: 2023
  article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle
  publication-title: Ocean Engineering
– volume: 25
  start-page: 441
  year: 2020
  end-page: 446
  article-title: Active disturbance rejection controller based heading control of underwater flight vehicles
  publication-title: Journal of Shanghai Jiaotong University (Science)
– volume: 130
  year: 2024
  article-title: Adversarial deep reinforcement learning based robust depth tracking control for underactuated autonomous underwater vehicle
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 28
  start-page: 2976
  issue: 5
  year: 2023a
  end-page: 2987
  article-title: Adaptive neural control of flight‐style AUV for subsea cable tracking under electromagnetic localization guidance
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 43
  start-page: 888
  issue: 4
  year: 2017
  end-page: 904
  article-title: Impact of current disturbances on AUV docking: model‐based motion prediction and countering approaches
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 27
  start-page: 250
  issue: 3
  year: 2016
  end-page: 262
  article-title: Adaptive robust control of autonomous underwater vehicle
  publication-title: Journal of Control, Automation and Electrical Systems
– volume: 46
  start-page: 350
  year: 2018
  end-page: 368
  article-title: Challenges and future trends in marine robotics
  publication-title: Annual Reviews in Control
– volume: 32
  start-page: 2165
  issue: 17–18
  year: 2005
  end-page: 2181
  article-title: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle
  publication-title: Ocean Engineering
– volume: 53
  start-page: 6018
  issue: 10
  year: 2023b
  end-page: 6030
  article-title: Adaptive saturated path following control of underactuated AUV with unmodeled Dynamics and unknown actuator hysteresis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 20
  start-page: 559
  issue: 3
  year: 2015
  end-page: 578
  article-title: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self‐adaptive fuzzy PID controller
  publication-title: Journal of Marine Science and Technology
– start-page: 1
  year: 2016
  end-page: 4
– volume: 1006–1007
  start-page: 581
  year: 2014
  end-page: 585
– start-page: 23
  year: 2005
  end-page: 64
– ident: e_1_2_9_30_1
  doi: 10.1016/j.oceaneng.2020.108257
– ident: e_1_2_9_13_1
  doi: 10.1016/j.apor.2021.102694
– ident: e_1_2_9_17_1
  doi: 10.1016/j.conengprac.2023.105740
– ident: e_1_2_9_26_1
  doi: 10.1109/TIE.2017.2779442
– ident: e_1_2_9_29_1
  doi: 10.3390/biomimetics8020168
– start-page: 581
  volume-title: Advanced Materials Research
  year: 2014
  ident: e_1_2_9_32_1
– ident: e_1_2_9_37_1
  doi: 10.1109/TSMC.2023.3280065
– ident: e_1_2_9_25_1
  doi: 10.1016/j.oceaneng.2019.04.011
– ident: e_1_2_9_38_1
  doi: 10.1007/s12204-020-2194-z
– ident: e_1_2_9_10_1
  doi: 10.1016/j.oceaneng.2018.04.010
– ident: e_1_2_9_33_1
  doi: 10.1016/j.engappai.2023.107728
– ident: e_1_2_9_31_1
  doi: 10.1109/AUV.2016.7778711
– ident: e_1_2_9_39_1
  doi: 10.1109/OCEANSAP.2016.7485557
– ident: e_1_2_9_4_1
  doi: 10.1016/S1474-6670(17)31709-3
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neucom.2021.03.136
– ident: e_1_2_9_20_1
  doi: 10.1109/JOE.2016.2569218
– ident: e_1_2_9_22_1
  doi: 10.1155/2021/5542920
– start-page: 23
  volume-title: 2 Cascaded nonlinear time‐varying systems: analysis and design
  year: 2005
  ident: e_1_2_9_21_1
– ident: e_1_2_9_28_1
  doi: 10.1109/TMECH.2017.2660528
– ident: e_1_2_9_18_1
  doi: 10.1016/j.oceaneng.2022.112458
– ident: e_1_2_9_11_1
  doi: 10.1007/s00773-015-0312-7
– ident: e_1_2_9_2_1
  doi: 10.1016/j.oceaneng.2022.113300
– volume: 22
  start-page: 7
  issue: 4
  year: 2014
  ident: e_1_2_9_12_1
  article-title: Robust adaptive motion control with environmental disturbance rejection for perturbed underwater vehicles
  publication-title: Journal of Marine Science and Technology
– start-page: 157
  volume-title: Applied Mechanics and Materials
  year: 2014
  ident: e_1_2_9_19_1
– ident: e_1_2_9_14_1
  doi: 10.34133/olar.0036
– ident: e_1_2_9_3_1
  doi: 10.23919/ACC53348.2022.9867324
– ident: e_1_2_9_6_1
  doi: 10.1109/JOE.2017.2769938
– ident: e_1_2_9_9_1
  doi: 10.1109/TIE.2008.2011621
– start-page: 53
  volume-title: The Annals of “Dunarea de Jos” University of Galati XI – Shipbuiliding
  year: 2012
  ident: e_1_2_9_23_1
– ident: e_1_2_9_5_1
  doi: 10.1109/ChiCC.2014.6896328
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neucom.2015.09.010
– ident: e_1_2_9_35_1
  doi: 10.1016/j.arcontrol.2018.10.002
– ident: e_1_2_9_16_1
  doi: 10.1016/j.oceaneng.2005.02.012
– ident: e_1_2_9_34_1
  doi: 10.3390/s19010162
– ident: e_1_2_9_8_1
  doi: 10.1109/TCST.2014.2338354
– ident: e_1_2_9_24_1
  doi: 10.1007/s40313-016-0237-3
– ident: e_1_2_9_36_1
  doi: 10.1109/TMECH.2023.3256707
– ident: e_1_2_9_7_1
  doi: 10.1002/9781119994138
SSID ssj0043895
Score 2.4299252
Snippet The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1103
SubjectTerms Active control
active disturbance rejection controller
adaptive line‐of‐sight
Angle of attack
Automatic pilots
Autonomous underwater vehicles
depth tracking
Feedback linearization
Inertia
pitch autopilot
Rejection
Sliding mode control
Tracking control
Title ADRC‐SMC‐based disturbance rejection depth‐tracking control of underactuated AUV
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22312
https://www.proquest.com/docview/3048273880
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF5KT3rwX6xWWcSDl7RJdrNN8FRbSxGqUG3pQQjZnyAqbUnTiycfwWf0SdzZJG0VBfGy5DDZJLszO192Z75B6IzwQOpFMLYYnA9SohufM89SMuKKKUpjDie6vRvWHdDrkTcqoYsiFybjh1hsuIFlmPUaDDzis_qSNDSZ8Jr2babCsEMY8Oa3-wvqKCjq7RmuVI9Z-icgKFiFbLe-uPOrL1oCzFWYavxMZxM9FG-YhZc81-Ypr4nXb-SN__yELbSR40_czBRmG5XUeAetr7AS7qJhs91vfby93_WgBTcnsdTaME84qAhO1JOJ3xpjqabpo5ZJk0jAljvOA9_xJMaQnAYZWHMNZiVuDoZ7aNC5um91rbz8giXcoOFaGlxJj0WMBYJQ5dk2jxqRTTjjtvId6khFHSp9xjXG8mNfqQYRwC2lYkKkXkjIPiqPJ2N1gLArHRHDESSnlOpueMRU4HPfF4JRm6gKOi8mIhQ5NzmUyHgJM1ZlN9RDFZqhqqDTheg0I-T4SahazGaY2-QsJDZQngL5jX6cmZbfOwj7t5fm4vDvokdozdWIJ4sjq6JymszVsUYsKT8xqvkJ-VTo_A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYCBN-JRwEIMLGnT2HETiaUUUIG2SKWtuqAofkQIUItCsjDxE_iN_BJ8eVEQSIjFynBxYvvs-3w-f4fQIeGu1ItgYDA4H6REFw5ntqGkzxVTlAYcTnQ7XdYa0MuRPZpBx_ldmJQfonC4wcxI1muY4OCQrn6yhoYTXtHGDVIMz1INNGDrddoryKMgrbedsKXazNDbADfnFTKtavHqV2v0CTGngWpiac6X0G3-j2mAyUMljnhFvHyjb_xvI5bRYgZBcSPVmRU0o8araGGKmHANDRunveb769tNB0qwdBJLrRBxyEFLcKjukxCuMZbqKbrTMlHoC_C64yz2HU8CDPfT4BJWrPGsxI3BcB0Nzs_6zZaRZWAwhOXWLUPjK2kznzFXEKps0-R-3TcJZ9xUTo3WpKI1Kh3GNcxyAkepOhFAL6UCQqReS8gGKo0nY7WJsCVrIoBTSE4p1dVwnynX4Y4jBKMmUVvoKB8JT2T05JAl49FLiZUtT3eVl3TVFjooRJ9STo6fhMr5cHrZtHz2iAmsp8B_oz-XjMvvFXi965PkYfvvovtortXvtL32RfdqB81bGgClYWVlVIrCWO1qABPxvURPPwCNYO0b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QTYwefBtR1I3x4KVQutuljScECT5Ag0I4mDTdR2PUAKnl4smf4G_0l7jTB6DRxHjZ9DDdtrszO193Z75B6IhwV-pFMDAYnA9SohuHM9tQ0ueKKUoDDie6rTZrdulF3-7n0EmWC5PwQ0w23MAy4vUaDHwkg9KUNDQc8qL2bVBheJ4yjSQAEXUm3FFQ1duOyVJtZui_ADejFTKt0uTWr85oijBncWrsaBor6D57xSS-5Kk4jnhRvH5jb_znN6yi5RSA4mqiMWsopwbraGmGlnAD9ar1Tu3j7f22BS34OYmlVodxyEFHcKge4wCuAZZqFD1omSj0Bey54zTyHQ8DDNlpkII11mhW4mq3t4m6jbO7WtNI6y8YwnIrlqHRlbSZz5grCFW2aXK_4puEM24qp0zLUtEylQ7jGmQ5gaNUhQggl1IBIVKvJGQLzQ2GA7WNsCXLIoAzSE4p1d1wnynX4Y4jBKMmUXl0nE2EJ1JycqiR8ewltMqWp4fKi4cqjw4noqOEkeMnoUI2m15qlC8eMYHzFNhv9OPiafm9A69zfRpf7Pxd9AAt3NQb3tV5-3IXLVoa_SQxZQU0F4VjtafRS8T3Yy39BOCG68o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADRC%E2%80%90SMC%E2%80%90based+disturbance+rejection+depth%E2%80%90tracking+control+of+underactuated+AUV&rft.jtitle=Journal+of+field+robotics&rft.au=Liu%2C+Chuan&rft.au=Xiang%2C+Xianbo&rft.au=Duan%2C+Yu&rft.au=Yang%2C+Lichun&rft.date=2024-06-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=41&rft.issue=4&rft.spage=1103&rft.epage=1115&rft_id=info:doi/10.1002%2Frob.22312&rft.externalDBID=10.1002%252Frob.22312&rft.externalDocID=ROB22312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon