ADRC‐SMC‐based disturbance rejection depth‐tracking control of underactuated AUV
The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (...
Saved in:
Published in | Journal of field robotics Vol. 41; no. 4; pp. 1103 - 1115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22312 |
Cover
Abstract | The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (ADRC) framework is adopted to compensate the complicated and unknown pitch dynamics into an approximate integral series type. Sliding mode control (SMC) feedback law is designed to further compensate for dynamic feedback linearization inaccuracy of the ADRC framework. Second, the disturbance rejection double‐loop depth‐tracking approach is suggested in conjunction with adaptive line‐of‐sight (ALOS), which converts depth tracking into pitch tracking. The ALOS not only estimates the actual angle of attack but also compensates the pitch‐tracking inaccuracy from the ADRC‐SMC in the inner loop. Then, the uniformly semiglobally exponential stability of the closed‐loop depth controller is proved after a detailed analysis of the stability from the inner loop to the outer loop. Finally, comparative field experiments are conducted to verify the proposed method. The effectiveness and strong disturbance rejection capabilities of the ADRC‐SMC pitch autopilot method and the suggested depth‐tracking approach are demonstrated by experimental results. |
---|---|
AbstractList | The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a model‐free ADRC‐SMC pitch autopilot method is proposed to eliminate dynamics‐related disturbances. The active disturbance rejection control (ADRC) framework is adopted to compensate the complicated and unknown pitch dynamics into an approximate integral series type. Sliding mode control (SMC) feedback law is designed to further compensate for dynamic feedback linearization inaccuracy of the ADRC framework. Second, the disturbance rejection double‐loop depth‐tracking approach is suggested in conjunction with adaptive line‐of‐sight (ALOS), which converts depth tracking into pitch tracking. The ALOS not only estimates the actual angle of attack but also compensates the pitch‐tracking inaccuracy from the ADRC‐SMC in the inner loop. Then, the uniformly semiglobally exponential stability of the closed‐loop depth controller is proved after a detailed analysis of the stability from the inner loop to the outer loop. Finally, comparative field experiments are conducted to verify the proposed method. The effectiveness and strong disturbance rejection capabilities of the ADRC‐SMC pitch autopilot method and the suggested depth‐tracking approach are demonstrated by experimental results. |
Author | Yang, Shaolong Xiang, Xianbo Yang, Lichun Liu, Chuan Duan, Yu |
Author_xml | – sequence: 1 givenname: Chuan surname: Liu fullname: Liu, Chuan organization: Huazhong University of Science and Technology – sequence: 2 givenname: Xianbo orcidid: 0000-0002-6215-9864 surname: Xiang fullname: Xiang, Xianbo email: xbxiang@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 3 givenname: Yu surname: Duan fullname: Duan, Yu organization: Huazhong University of Science and Technology – sequence: 4 givenname: Lichun surname: Yang fullname: Yang, Lichun organization: Huazhong University of Science and Technology – sequence: 5 givenname: Shaolong surname: Yang fullname: Yang, Shaolong organization: Huazhong University of Science and Technology |
BookMark | eNp1kE1OwzAQhS1UJNrCghtEYsWirf-SOMtSfqWiSoV2aznOBFKCXRxHqDuOwBk5CS5FLBBsZkaj783ovR7qGGsAoWOChwRjOnI2H1LKCN1DXRLHyYBnSdr5mePsAPWaZoUxZyKLu2g5Pp9PPt7e7263NVcNFFFRNb51uTIaIgcr0L6yJipg7R8D453ST5V5iLQ13tk6smXUmgLC2rfKB_14sTxE-6WqGzj67n20uLy4n1wPprOrm8l4OtA0S-mAxLyIE5UkmWYcYoxzlSrM8iTHIAgnBXDCC5HkgmWiFAAp01QQASVjRYoZ66OT3d21sy8tNF6ubOtMeCkZ5oKmTAgcqNGO0s42jYNS6sqrratgpqolwXIbngzhya_wguL0l2LtqmflNn-y39dfqxo2_4NyPjvbKT4B07mCVA |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2024_106230 crossref_primary_10_3390_fractalfract8060354 crossref_primary_10_1002_rob_22492 |
Cites_doi | 10.1016/j.oceaneng.2020.108257 10.1016/j.apor.2021.102694 10.1016/j.conengprac.2023.105740 10.1109/TIE.2017.2779442 10.3390/biomimetics8020168 10.1109/TSMC.2023.3280065 10.1016/j.oceaneng.2019.04.011 10.1007/s12204-020-2194-z 10.1016/j.oceaneng.2018.04.010 10.1016/j.engappai.2023.107728 10.1109/AUV.2016.7778711 10.1109/OCEANSAP.2016.7485557 10.1016/S1474-6670(17)31709-3 10.1016/j.neucom.2021.03.136 10.1109/JOE.2016.2569218 10.1155/2021/5542920 10.1109/TMECH.2017.2660528 10.1016/j.oceaneng.2022.112458 10.1007/s00773-015-0312-7 10.1016/j.oceaneng.2022.113300 10.34133/olar.0036 10.23919/ACC53348.2022.9867324 10.1109/JOE.2017.2769938 10.1109/TIE.2008.2011621 10.1109/ChiCC.2014.6896328 10.1016/j.neucom.2015.09.010 10.1016/j.arcontrol.2018.10.002 10.1016/j.oceaneng.2005.02.012 10.3390/s19010162 10.1109/TCST.2014.2338354 10.1007/s40313-016-0237-3 10.1109/TMECH.2023.3256707 10.1002/9781119994138 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22312 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 1115 |
ExternalDocumentID | 10_1002_rob_22312 ROB22312 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52131101; 52071153 – fundername: Hubei Provincial Natural Science Foundation, China for Innovation Groups funderid: 2021CFA026 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2972-154d56a669c34e500ba7a03b6b0e8141de414d86b8398f8ee73c2818ef33d7033 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 08:47:56 EDT 2025 Tue Jul 01 04:33:54 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Wed Jan 22 17:20:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2972-154d56a669c34e500ba7a03b6b0e8141de414d86b8398f8ee73c2818ef33d7033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6215-9864 |
PQID | 3048273880 |
PQPubID | 1006410 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3048273880 crossref_citationtrail_10_1002_rob_22312 crossref_primary_10_1002_rob_22312 wiley_primary_10_1002_rob_22312_ROB22312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 42 2012 2011 2023a; 28 2017; 22 2023; 8 2017; 43 2017; 65 2024; 142 2019; 19 2023; 268 2014; 687–691 2005 2021; 220 2014; 23 2014; 22 2018; 46 2009; 56 2022; 484 2022; 264 2019; 181 2022 2021; 112 2015; 20 2004; 37 2018; 159 2024; 130 2005; 32 2023b; 53 2020; 25 2016 2014 2024; 3 2016; 27 2014; 1006–1007 2021; 2021 2016; 173 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_33_1 Loría A. (e_1_2_9_21_1) 2005 Koofigar H.R. (e_1_2_9_12_1) 2014; 22 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 Wan L. (e_1_2_9_32_1) 2014 Obreja C. (e_1_2_9_23_1) 2012 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Liu J.J. (e_1_2_9_19_1) 2014 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 264 year: 2022 article-title: A hierarchical disturbance rejection depth tracking control of underactuated AUV with experimental verification publication-title: Ocean Engineering – volume: 23 start-page: 820 issue: 2 year: 2014 end-page: 827 article-title: Line‐of‐sight path following for dubins paths with adaptive sideslip compensation of drift forces publication-title: IEEE Transactions on Control Systems Technology – volume: 8 start-page: 168 issue: 2 year: 2023 article-title: A survey on reinforcement learning methods in bionic underwater robots publication-title: Biomimetics – volume: 142 year: 2024 article-title: Improved path following for autonomous marine vehicles with low‐cost heading/course sensors: comparative experiments publication-title: Control Engineering Practice – volume: 37 start-page: 65 issue: 10 year: 2004 end-page: 70 article-title: Path following of straight lines and circles for marine surface vessels publication-title: IFAC Proceedings Volumes – volume: 22 start-page: 7 issue: 4 year: 2014 article-title: Robust adaptive motion control with environmental disturbance rejection for perturbed underwater vehicles publication-title: Journal of Marine Science and Technology – volume: 220 year: 2021 article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque's effect and model uncertainty publication-title: Ocean Engineering – start-page: 2084 year: 2022 end-page: 2090 – volume: 3 year: 2024 article-title: Current status and technical challenges in the development of biomimetic robotic fish‐type submersible publication-title: Ocean–Land–Atmosphere Research – volume: 2021 start-page: 26 year: 2021 article-title: Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control publication-title: Journal of Robotics – volume: 484 start-page: 1 year: 2022 end-page: 12 article-title: Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation publication-title: Neurocomputing – volume: 19 start-page: 162 issue: 1 year: 2019 article-title: Optimization of the energy consumption of depth tracking control based on model predictive control for autonomous underwater vehicles publication-title: Sensors – volume: 56 start-page: 900 issue: 3 year: 2009 end-page: 906 article-title: From PID to active disturbance rejection control publication-title: IEEE Transactions on Industrial Electronics – volume: 112 year: 2021 article-title: Extended state observer‐based composite‐system control for trajectory tracking of underactuated AUVs publication-title: Applied Ocean Research – volume: 687–691 start-page: 157 year: 2014 end-page: 162 – volume: 22 start-page: 1121 issue: 3 year: 2017 end-page: 1131 article-title: Advanced control in marine mechatronic systems: a survey publication-title: IEEE/ASME Transactions on Mechatronics – start-page: 53 year: 2012 end-page: 62 – start-page: 7948 year: 2014 end-page: 7952 – volume: 159 start-page: 98 year: 2018 end-page: 111 article-title: A self‐searching optimal ADRC for the pitch angle control of an underwater thermal glider in the vertical plane motion publication-title: Ocean Engineering – start-page: 1 year: 2016 end-page: 9 – volume: 65 start-page: 5796 issue: 7 year: 2017 end-page: 5805 article-title: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov‐based model predictive control publication-title: IEEE Transactions on Industrial Electronics – volume: 42 start-page: 477 issue: 2 year: 2017 end-page: 487 article-title: ESO‐based line‐of‐sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation publication-title: IEEE Journal of Oceanic Engineering – volume: 173 start-page: 1377 year: 2016 end-page: 1385 article-title: Diving control of autonomous underwater vehicle based on improved active disturbance rejection control approach publication-title: Neurocomputing – volume: 181 start-page: 145 year: 2019 end-page: 160 article-title: Advancements in the field of autonomous underwater vehicle publication-title: Ocean Engineering – volume: 268 year: 2023 article-title: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle publication-title: Ocean Engineering – volume: 25 start-page: 441 year: 2020 end-page: 446 article-title: Active disturbance rejection controller based heading control of underwater flight vehicles publication-title: Journal of Shanghai Jiaotong University (Science) – volume: 130 year: 2024 article-title: Adversarial deep reinforcement learning based robust depth tracking control for underactuated autonomous underwater vehicle publication-title: Engineering Applications of Artificial Intelligence – volume: 28 start-page: 2976 issue: 5 year: 2023a end-page: 2987 article-title: Adaptive neural control of flight‐style AUV for subsea cable tracking under electromagnetic localization guidance publication-title: IEEE/ASME Transactions on Mechatronics – volume: 43 start-page: 888 issue: 4 year: 2017 end-page: 904 article-title: Impact of current disturbances on AUV docking: model‐based motion prediction and countering approaches publication-title: IEEE Journal of Oceanic Engineering – volume: 27 start-page: 250 issue: 3 year: 2016 end-page: 262 article-title: Adaptive robust control of autonomous underwater vehicle publication-title: Journal of Control, Automation and Electrical Systems – volume: 46 start-page: 350 year: 2018 end-page: 368 article-title: Challenges and future trends in marine robotics publication-title: Annual Reviews in Control – volume: 32 start-page: 2165 issue: 17–18 year: 2005 end-page: 2181 article-title: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle publication-title: Ocean Engineering – volume: 53 start-page: 6018 issue: 10 year: 2023b end-page: 6030 article-title: Adaptive saturated path following control of underactuated AUV with unmodeled Dynamics and unknown actuator hysteresis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 20 start-page: 559 issue: 3 year: 2015 end-page: 578 article-title: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self‐adaptive fuzzy PID controller publication-title: Journal of Marine Science and Technology – start-page: 1 year: 2016 end-page: 4 – volume: 1006–1007 start-page: 581 year: 2014 end-page: 585 – start-page: 23 year: 2005 end-page: 64 – ident: e_1_2_9_30_1 doi: 10.1016/j.oceaneng.2020.108257 – ident: e_1_2_9_13_1 doi: 10.1016/j.apor.2021.102694 – ident: e_1_2_9_17_1 doi: 10.1016/j.conengprac.2023.105740 – ident: e_1_2_9_26_1 doi: 10.1109/TIE.2017.2779442 – ident: e_1_2_9_29_1 doi: 10.3390/biomimetics8020168 – start-page: 581 volume-title: Advanced Materials Research year: 2014 ident: e_1_2_9_32_1 – ident: e_1_2_9_37_1 doi: 10.1109/TSMC.2023.3280065 – ident: e_1_2_9_25_1 doi: 10.1016/j.oceaneng.2019.04.011 – ident: e_1_2_9_38_1 doi: 10.1007/s12204-020-2194-z – ident: e_1_2_9_10_1 doi: 10.1016/j.oceaneng.2018.04.010 – ident: e_1_2_9_33_1 doi: 10.1016/j.engappai.2023.107728 – ident: e_1_2_9_31_1 doi: 10.1109/AUV.2016.7778711 – ident: e_1_2_9_39_1 doi: 10.1109/OCEANSAP.2016.7485557 – ident: e_1_2_9_4_1 doi: 10.1016/S1474-6670(17)31709-3 – ident: e_1_2_9_15_1 doi: 10.1016/j.neucom.2021.03.136 – ident: e_1_2_9_20_1 doi: 10.1109/JOE.2016.2569218 – ident: e_1_2_9_22_1 doi: 10.1155/2021/5542920 – start-page: 23 volume-title: 2 Cascaded nonlinear time‐varying systems: analysis and design year: 2005 ident: e_1_2_9_21_1 – ident: e_1_2_9_28_1 doi: 10.1109/TMECH.2017.2660528 – ident: e_1_2_9_18_1 doi: 10.1016/j.oceaneng.2022.112458 – ident: e_1_2_9_11_1 doi: 10.1007/s00773-015-0312-7 – ident: e_1_2_9_2_1 doi: 10.1016/j.oceaneng.2022.113300 – volume: 22 start-page: 7 issue: 4 year: 2014 ident: e_1_2_9_12_1 article-title: Robust adaptive motion control with environmental disturbance rejection for perturbed underwater vehicles publication-title: Journal of Marine Science and Technology – start-page: 157 volume-title: Applied Mechanics and Materials year: 2014 ident: e_1_2_9_19_1 – ident: e_1_2_9_14_1 doi: 10.34133/olar.0036 – ident: e_1_2_9_3_1 doi: 10.23919/ACC53348.2022.9867324 – ident: e_1_2_9_6_1 doi: 10.1109/JOE.2017.2769938 – ident: e_1_2_9_9_1 doi: 10.1109/TIE.2008.2011621 – start-page: 53 volume-title: The Annals of “Dunarea de Jos” University of Galati XI – Shipbuiliding year: 2012 ident: e_1_2_9_23_1 – ident: e_1_2_9_5_1 doi: 10.1109/ChiCC.2014.6896328 – ident: e_1_2_9_27_1 doi: 10.1016/j.neucom.2015.09.010 – ident: e_1_2_9_35_1 doi: 10.1016/j.arcontrol.2018.10.002 – ident: e_1_2_9_16_1 doi: 10.1016/j.oceaneng.2005.02.012 – ident: e_1_2_9_34_1 doi: 10.3390/s19010162 – ident: e_1_2_9_8_1 doi: 10.1109/TCST.2014.2338354 – ident: e_1_2_9_24_1 doi: 10.1007/s40313-016-0237-3 – ident: e_1_2_9_36_1 doi: 10.1109/TMECH.2023.3256707 – ident: e_1_2_9_7_1 doi: 10.1002/9781119994138 |
SSID | ssj0043895 |
Score | 2.4299252 |
Snippet | The underactuated autonomous underwater vehicle (AUV) depth‐tracking approach is presented in this research along with comparative field experiments. First, a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1103 |
SubjectTerms | Active control active disturbance rejection controller adaptive line‐of‐sight Angle of attack Automatic pilots Autonomous underwater vehicles depth tracking Feedback linearization Inertia pitch autopilot Rejection Sliding mode control Tracking control |
Title | ADRC‐SMC‐based disturbance rejection depth‐tracking control of underactuated AUV |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22312 https://www.proquest.com/docview/3048273880 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF5KT3rwX6xWWcSDl7RJdrNN8FRbSxGqUG3pQQjZnyAqbUnTiycfwWf0SdzZJG0VBfGy5DDZJLszO192Z75B6IzwQOpFMLYYnA9SohufM89SMuKKKUpjDie6vRvWHdDrkTcqoYsiFybjh1hsuIFlmPUaDDzis_qSNDSZ8Jr2babCsEMY8Oa3-wvqKCjq7RmuVI9Z-icgKFiFbLe-uPOrL1oCzFWYavxMZxM9FG-YhZc81-Ypr4nXb-SN__yELbSR40_czBRmG5XUeAetr7AS7qJhs91vfby93_WgBTcnsdTaME84qAhO1JOJ3xpjqabpo5ZJk0jAljvOA9_xJMaQnAYZWHMNZiVuDoZ7aNC5um91rbz8giXcoOFaGlxJj0WMBYJQ5dk2jxqRTTjjtvId6khFHSp9xjXG8mNfqQYRwC2lYkKkXkjIPiqPJ2N1gLArHRHDESSnlOpueMRU4HPfF4JRm6gKOi8mIhQ5NzmUyHgJM1ZlN9RDFZqhqqDTheg0I-T4SahazGaY2-QsJDZQngL5jX6cmZbfOwj7t5fm4vDvokdozdWIJ4sjq6JymszVsUYsKT8xqvkJ-VTo_A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYCBN-JRwEIMLGnT2HETiaUUUIG2SKWtuqAofkQIUItCsjDxE_iN_BJ8eVEQSIjFynBxYvvs-3w-f4fQIeGu1ItgYDA4H6REFw5ntqGkzxVTlAYcTnQ7XdYa0MuRPZpBx_ldmJQfonC4wcxI1muY4OCQrn6yhoYTXtHGDVIMz1INNGDrddoryKMgrbedsKXazNDbADfnFTKtavHqV2v0CTGngWpiac6X0G3-j2mAyUMljnhFvHyjb_xvI5bRYgZBcSPVmRU0o8araGGKmHANDRunveb769tNB0qwdBJLrRBxyEFLcKjukxCuMZbqKbrTMlHoC_C64yz2HU8CDPfT4BJWrPGsxI3BcB0Nzs_6zZaRZWAwhOXWLUPjK2kznzFXEKps0-R-3TcJZ9xUTo3WpKI1Kh3GNcxyAkepOhFAL6UCQqReS8gGKo0nY7WJsCVrIoBTSE4p1dVwnynX4Y4jBKMmUVvoKB8JT2T05JAl49FLiZUtT3eVl3TVFjooRJ9STo6fhMr5cHrZtHz2iAmsp8B_oz-XjMvvFXi965PkYfvvovtortXvtL32RfdqB81bGgClYWVlVIrCWO1qABPxvURPPwCNYO0b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QTYwefBtR1I3x4KVQutuljScECT5Ag0I4mDTdR2PUAKnl4smf4G_0l7jTB6DRxHjZ9DDdtrszO193Z75B6IhwV-pFMDAYnA9SohuHM9tQ0ueKKUoDDie6rTZrdulF3-7n0EmWC5PwQ0w23MAy4vUaDHwkg9KUNDQc8qL2bVBheJ4yjSQAEXUm3FFQ1duOyVJtZui_ADejFTKt0uTWr85oijBncWrsaBor6D57xSS-5Kk4jnhRvH5jb_znN6yi5RSA4mqiMWsopwbraGmGlnAD9ar1Tu3j7f22BS34OYmlVodxyEFHcKge4wCuAZZqFD1omSj0Bey54zTyHQ8DDNlpkII11mhW4mq3t4m6jbO7WtNI6y8YwnIrlqHRlbSZz5grCFW2aXK_4puEM24qp0zLUtEylQ7jGmQ5gaNUhQggl1IBIVKvJGQLzQ2GA7WNsCXLIoAzSE4p1d1wnynX4Y4jBKMmUXl0nE2EJ1JycqiR8ewltMqWp4fKi4cqjw4noqOEkeMnoUI2m15qlC8eMYHzFNhv9OPiafm9A69zfRpf7Pxd9AAt3NQb3tV5-3IXLVoa_SQxZQU0F4VjtafRS8T3Yy39BOCG68o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADRC%E2%80%90SMC%E2%80%90based+disturbance+rejection+depth%E2%80%90tracking+control+of+underactuated+AUV&rft.jtitle=Journal+of+field+robotics&rft.au=Liu%2C+Chuan&rft.au=Xiang%2C+Xianbo&rft.au=Duan%2C+Yu&rft.au=Yang%2C+Lichun&rft.date=2024-06-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=41&rft.issue=4&rft.spage=1103&rft.epage=1115&rft_id=info:doi/10.1002%2Frob.22312&rft.externalDBID=10.1002%252Frob.22312&rft.externalDocID=ROB22312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |