Group Representation of Global Intrinsic Symmetries

Global intrinsic symmetry detection of 3D shapes has received considerable attentions in recent years. However, unlike extrinsic symmetry that can be represented compactly as a combination of an orthogonal matrix and a translation vector, representing the global intrinsic symmetry itself is still ch...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 7; pp. 51 - 61
Main Authors Wang, Hui, Huang, Hui
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global intrinsic symmetry detection of 3D shapes has received considerable attentions in recent years. However, unlike extrinsic symmetry that can be represented compactly as a combination of an orthogonal matrix and a translation vector, representing the global intrinsic symmetry itself is still challenging. Most previous works based on point‐to‐point representations of global intrinsic symmetries can only find reflectional symmetries, and are inadequate for describing the structure of a global intrinsic symmetry group. In this paper, we propose a novel group representation of global intrinsic symmetries, which describes each global intrinsic symmetry as a linear transformation of functional space on shapes. If the eigenfunctions of the Laplace‐Beltrami operator on shapes are chosen as the basis of functional space, the group representation has a block diagonal structure. We thus prove that the group representation of each symmetry can be uniquely determined from a small number of symmetric pairs of points under certain conditions, where the number of pairs is equal to the maximum multiplicity of eigenvalues of the Laplace‐Beltrami operator. Based on solid theoretical analysis, we propose an efficient global intrinsic symmetry detection method, which is the first one able to detect all reflectional and rotational global intrinsic symmetries with a clear group structure description. Experimental results demonstrate the effectiveness of our approach.
AbstractList Global intrinsic symmetry detection of 3D shapes has received considerable attentions in recent years. However, unlike extrinsic symmetry that can be represented compactly as a combination of an orthogonal matrix and a translation vector, representing the global intrinsic symmetry itself is still challenging. Most previous works based on point-to-point representations of global intrinsic symmetries can only find reflectional symmetries, and are inadequate for describing the structure of a global intrinsic symmetry group. In this paper, we propose a novel group representation of global intrinsic symmetries, which describes each global intrinsic symmetry as a linear transformation of functional space on shapes. If the eigenfunctions of the Laplace-Beltrami operator on shapes are chosen as the basis of functional space, the group representation has a block diagonal structure. We thus prove that the group representation of each symmetry can be uniquely determined from a small number of symmetric pairs of points under certain conditions, where the number of pairs is equal to the maximum multiplicity of eigenvalues of the Laplace-Beltrami operator. Based on solid theoretical analysis, we propose an efficient global intrinsic symmetry detection method, which is the first one able to detect all reflectional and rotational global intrinsic symmetries with a clear group structure description. Experimental results demonstrate the effectiveness of our approach.
Author Wang, Hui
Huang, Hui
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Shenzhen University
– sequence: 2
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  email: hhzhiyan@gmail.com
  organization: Shenzhen University
BookMark eNp9kE1LxDAQhoOs4O7qwX9Q8OShu0mTNO1RFrcuLAh-nEOTTqRLN6lJi-y_N1pPgs5lZuCZd2beBZpZZwGha4JXJMZav5kVoZkgZ2hOWC7SIuflDM0xibXAnF-gRQgHjDETOZ8jWnk39skT9B4C2KEeWmcTZ5Kqc6rukp0dfGtDq5Pn0_EIsYFwic5N3QW4-slL9Lq9f9k8pPvHare526c6KwVJdUEEU6TkBTTGaM0wIZoqLuqCAjNNWbJMYaW4JiU08ehGFazRFKAweZELukQ3k27v3fsIYZAHN3obV8qoiikTPKORup0o7V0IHozsfXus_UkSLL88kdET-e1JZNe_WN1OLw--brv_Jj7aDk5_S8tNtZ0mPgGoYnPu
CitedBy_id crossref_primary_10_1111_cgf_13865
crossref_primary_10_1109_TVCG_2022_3172361
crossref_primary_10_1007_s00371_020_02034_w
crossref_primary_10_1007_s00371_024_03313_6
crossref_primary_10_1016_j_gmod_2022_101163
crossref_primary_10_1109_TSP_2019_2893835
Cites_doi 10.1007/BF02568142
10.1201/9781003059325-27
10.1145/1057432.1057448
10.1145/1138450.1138462
10.1145/1073204.1073207
10.1111/j.1467-8659.2009.01515.x
10.1145/2366145.2366200
10.1145/1141911.1141923
10.1007/s11263-010-0320-3
10.1007/978-3-662-05105-4_2
10.1111/cgf.12076
10.1111/cgf.12010
10.1145/2601097.2601220
10.1111/j.1467-8659.2012.03166.x
10.1145/2988458.2988494
10.1111/cgf.13124
10.1109/34.1000236
10.1145/1141911.1141924
10.1145/2999535
10.1111/cgf.12978
10.1145/2461912.2461959
10.1111/cgf.12167
10.1145/2185520.2185607
10.1145/2010324.1964974
10.1016/j.cag.2014.09.016
10.1145/2185520.2185526
10.1145/1618452.1618484
10.1111/cgf.12963
10.1016/j.gmod.2015.09.003
10.1111/j.1467-8659.2010.01778.x
10.1145/1778765.1778840
10.1111/j.1467-8659.2010.01764.x
10.1109/ICCVW.2011.6130444
10.1111/j.1467-8659.2008.01273.x
10.1109/ICCV.2007.4409181
10.1017/CBO9780511623783
10.1073/pnas.95.15.8431
10.1111/cgf.12066
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13271
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 61
ExternalDocumentID 10_1111_cgf_13271
CGF13271
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2971-c8174b1958edffcc4011c3b57a83e4fd9942b0bb5c19ed132db84dc3ee8f68673
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Mon Jul 14 09:05:31 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Thu Jul 03 08:30:45 EDT 2025
Wed Aug 20 07:27:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-c8174b1958edffcc4011c3b57a83e4fd9942b0bb5c19ed132db84dc3ee8f68673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1950347523
PQPubID 30877
PageCount 11
ParticipantIDs proquest_journals_1950347523
crossref_primary_10_1111_cgf_13271
crossref_citationtrail_10_1111_cgf_13271
wiley_primary_10_1111_cgf_13271_CGF13271
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011
2010
2008
2011; 30
1997
2007
2006
2004
2002
2012; 31
2016; 35
2005; 24
2009; 28
2015; 46
2010; 89
1976; 51
2017; 36
2013; 32
2013; 35
2010; 29
2002; 24
2006; 25
2008; 27
2016; 83
2016
2014
2005; 2
1998; 95
2014; 33
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_26_2
e_1_2_8_47_2
Thevenaz J. (e_1_2_8_43_2) 2007
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
Bronstein A.M. (e_1_2_8_5_2) 2008
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
Gurarie D. (e_1_2_8_9_2) 2008
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Thrun S. (e_1_2_8_45_2) 2005; 2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
Ovsjanikovs M. (e_1_2_8_29_2) 2011
References_xml – year: 2011
– volume: 31
  start-page: 1607
  issue: 5
  year: 2012
  end-page: 1616
  article-title: Finding surface correspondences using symmetry axis curves
  publication-title: Computer Graphics Forum
– volume: 89
  start-page: 18
  issue: 1
  year: 2010
  end-page: 39
  article-title: Full and partial symmetries of non‐rigid shapes
  publication-title: International Journal of Computer Vision
– start-page: 209
  year: 2014
  end-page: 215
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 31
  start-page: 30:1
  issue: 4
  year: 2012
  end-page: 30:11
  article-title: Functional maps: A flexible representation of maps between shapes
  publication-title: ACM Transactions on Graphics
– volume: 29
  start-page: 439
  issue: 4
  year: 2010
  end-page: 464
  article-title: Symmetry factored embedding and distance
  publication-title: ACM Transactions on Graphics
– volume: 25
  start-page: 439
  issue: 2
  year: 2006
  end-page: 464
  article-title: Accurate detection of symmetries in 3D shapes
  publication-title: ACM Transactions on Graphics
– volume: 30
  start-page: 79:1
  issue: 4
  year: 2011
  end-page: 79:12
  article-title: Blended intrinsic maps
  publication-title: ACM Transactions on Graphics
– year: 2007
– volume: 28
  start-page: 138:1
  issue: 5
  year: 2009
  end-page: 138:10
  article-title: Partial intrinsic reflectional symmetry of 3D shapes
  publication-title: ACM Transactions on Graphics
– volume: 32
  start-page: 135
  issue: 6
  year: 2013
  end-page: 145
  article-title: Analysis and visualization of maps between shapes
  publication-title: Computer Graphics Forum
– volume: 32
  start-page: 459
  issue: 2pt4
  year: 2013
  end-page: 468
  article-title: Sparse modeling of intrinsic correspondences
  publication-title: Computer Graphics Forum
– volume: 24
  start-page: 408
  issue: 3
  year: 2005
  end-page: 416
  article-title: SCAPE: Shape completion and animation of people
  publication-title: ACM Transactions on Graphics
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  end-page: 23
  article-title: Symmetry in 3D geometry: extraction and applications
  publication-title: Computer Graphics Forum
– start-page: 1626
  year: 2011
  end-page: 1633
– volume: 83
  start-page: 2
  year: 2016
  end-page: 14
  article-title: Efficient 3D reflection symmetry detection: A view‐based approach
  publication-title: Graphical Models
– year: 2016
– start-page: 115
  year: 2004
  end-page: 123
– volume: 29
  start-page: 1555
  issue: 5
  year: 2010
  end-page: 1564
  article-title: One point isometric matching with the heat kernel
  publication-title: Computer Graphics Forum
– year: 2010
– start-page: 35
  year: 2002
  end-page: 57
– volume: 32
  start-page: 1
  issue: 5
  year: 2013
  end-page: 11
  article-title: Shape matching via quotient spaces
  publication-title: Computer Graphics Forum
– start-page: 111
  year: 2006
  end-page: 119
– volume: 35
  start-page: 217
  issue: 5
  year: 2016
  end-page: 227
  article-title: Symmetry and orbit detection via Lie‐algebra voting
  publication-title: Computer Graphics Forum
– volume: 2
  start-page: 1824
  year: 2005
  end-page: 1831
  article-title: Shape from symmetry
  publication-title: IEEE International Conference on Computer Vision
– start-page: 1
  year: 2007
  end-page: 7
– volume: 36
  start-page: 259
  issue: 2
  year: 2017
  end-page: 267
  article-title: Informative descriptor preservation via commutativity for shape matching
  publication-title: Computer Graphics Forum
– volume: 32
  start-page: 72:1
  issue: 4
  year: 2013
  end-page: 72:11
  article-title: Map‐based exploration of intrinsic shape differences and variability
  publication-title: ACM Transactions on Graphics
– volume: 51
  start-page: 43
  issue: 1
  year: 1976
  end-page: 55
  article-title: Eigenfunctions and nodal sets
  publication-title: Commentarii Mathematici Helvetici
– start-page: 235
  year: 2007
  end-page: 242
– year: 2008
– volume: 27
  start-page: 1341
  issue: 5
  year: 2008
  end-page: 1348
  article-title: Global intrinsic symmetries of shapes
  publication-title: Computer Graphics Forum
– volume: 25
  start-page: 549
  issue: 3
  year: 2006
  end-page: 559
  article-title: A planar‐reflective symmetry transform for 3D shapes
  publication-title: ACM Transactions on Graphics
– year: 1997
– volume: 35
  start-page: 55
  issue: 5
  year: 2013
  end-page: 64
  article-title: Advection‐based function matching on surfaces
  publication-title: Computer Graphics Forum
– volume: 28
  start-page: 1383
  issue: 5
  year: 2009
  end-page: 1392
  article-title: A concise and provably informative multi‐scale signature based on heat diffusion
  publication-title: Computer Graphics Forum
– volume: 31
  start-page: 181:1
  issue: 6
  year: 2012
  end-page: 181:11
  article-title: Multi‐scale partial intrinsic symmetry detection
  publication-title: ACM Transactions on Graphics
– volume: 25
  start-page: 560
  issue: 3
  year: 2006
  end-page: 568
  article-title: Partial and approximate symmetry detection for 3D geometry
  publication-title: ACM Transactions on Graphics
– volume: 31
  start-page: 111:1
  issue: 4
  year: 2012
  end-page: 111:12
  article-title: Fields on symmetric surfaces
  publication-title: ACM Transactions on Graphics
– volume: 36
  start-page: 14:1
  issue: 2
  year: 2017
  end-page: 14:17
  article-title: Functional characterization of intrinsic and extrinsic geometry
  publication-title: ACM Transactions on Graphics
– volume: 33
  start-page: 119:1
  issue: 4
  year: 2014
  end-page: 119:12
  article-title: Relating shapes via geometric symmetries and regularities
  publication-title: ACM Transactions on Graphics
– volume: 95
  start-page: 8431
  issue: 15
  year: 1998
  end-page: 8435
  article-title: Computing geodesic paths on manifolds
  publication-title: Proceedings of the national academy of Sciences
– start-page: 225
  year: 2007
  end-page: 233
– volume: 29
  start-page: 1689
  issue: 5
  year: 2010
  end-page: 1700
  article-title: Möbius transformations for global intrinsic symmetry analysis
  publication-title: Computer Graphics Forum
– volume: 46
  start-page: 198
  year: 2015
  end-page: 208
  article-title: Properly‐constrained orthonormal functional maps for intrinsic symmetries
  publication-title: Computer & Graphics
– ident: e_1_2_8_6_2
  doi: 10.1007/BF02568142
– ident: e_1_2_8_46_2
  doi: 10.1201/9781003059325-27
– ident: e_1_2_8_10_2
  doi: 10.1145/1057432.1057448
– ident: e_1_2_8_21_2
  doi: 10.1145/1138450.1138462
– ident: e_1_2_8_3_2
  doi: 10.1145/1073204.1073207
– ident: e_1_2_8_42_2
  doi: 10.1111/j.1467-8659.2009.01515.x
– ident: e_1_2_8_47_2
  doi: 10.1145/2366145.2366200
– ident: e_1_2_8_33_2
  doi: 10.1145/1141911.1141923
– ident: e_1_2_8_36_2
  doi: 10.1007/s11263-010-0320-3
– ident: e_1_2_8_18_2
  doi: 10.1007/978-3-662-05105-4_2
– ident: e_1_2_8_23_2
  doi: 10.1111/cgf.12076
– ident: e_1_2_8_41_2
– ident: e_1_2_8_20_2
  doi: 10.1111/cgf.12010
– volume-title: Group representation theory
  year: 2007
  ident: e_1_2_8_43_2
– ident: e_1_2_8_44_2
  doi: 10.1145/2601097.2601220
– ident: e_1_2_8_16_2
  doi: 10.1111/j.1467-8659.2012.03166.x
– ident: e_1_2_8_25_2
  doi: 10.1145/2988458.2988494
– ident: e_1_2_8_22_2
  doi: 10.1111/cgf.13124
– ident: e_1_2_8_7_2
  doi: 10.1109/34.1000236
– ident: e_1_2_8_19_2
  doi: 10.1145/1141911.1141924
– ident: e_1_2_8_8_2
  doi: 10.1145/2999535
– ident: e_1_2_8_40_2
  doi: 10.1111/cgf.12978
– ident: e_1_2_8_37_2
  doi: 10.1145/2461912.2461959
– ident: e_1_2_8_27_2
  doi: 10.1111/cgf.12167
– ident: e_1_2_8_32_2
  doi: 10.1145/2185520.2185607
– volume-title: Numerical geometry of non‐rigid shapes
  year: 2008
  ident: e_1_2_8_5_2
– ident: e_1_2_8_12_2
  doi: 10.1145/2010324.1964974
– ident: e_1_2_8_17_2
  doi: 10.1016/j.cag.2014.09.016
– ident: e_1_2_8_34_2
– volume: 2
  start-page: 1824
  year: 2005
  ident: e_1_2_8_45_2
  article-title: Shape from symmetry
  publication-title: IEEE International Conference on Computer Vision
– ident: e_1_2_8_31_2
– ident: e_1_2_8_24_2
  doi: 10.1145/2185520.2185526
– ident: e_1_2_8_48_2
  doi: 10.1145/1618452.1618484
– ident: e_1_2_8_4_2
  doi: 10.1111/cgf.12963
– ident: e_1_2_8_15_2
  doi: 10.1016/j.gmod.2015.09.003
– ident: e_1_2_8_11_2
  doi: 10.1111/j.1467-8659.2010.01778.x
– ident: e_1_2_8_14_2
  doi: 10.1145/1778765.1778840
– ident: e_1_2_8_26_2
  doi: 10.1111/j.1467-8659.2010.01764.x
– ident: e_1_2_8_2_2
  doi: 10.1109/ICCVW.2011.6130444
– ident: e_1_2_8_39_2
– ident: e_1_2_8_28_2
  doi: 10.1111/j.1467-8659.2008.01273.x
– ident: e_1_2_8_35_2
  doi: 10.1109/ICCV.2007.4409181
– volume-title: Symmetries and Laplacians: introduction to harmonic analysis, group representations, and applications
  year: 2008
  ident: e_1_2_8_9_2
– volume-title: Spectral methods for isometric shape matching and symmetry detection
  year: 2011
  ident: e_1_2_8_29_2
– ident: e_1_2_8_38_2
  doi: 10.1017/CBO9780511623783
– ident: e_1_2_8_13_2
  doi: 10.1073/pnas.95.15.8431
– ident: e_1_2_8_30_2
  doi: 10.1111/cgf.12066
SSID ssj0004765
Score 2.296761
Snippet Global intrinsic symmetry detection of 3D shapes has received considerable attentions in recent years. However, unlike extrinsic symmetry that can be...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Categories and Subject Descriptors (according to ACM CCS)
Eigenvalues
Eigenvectors
I.3.5 [Computer Graphics]: Computer Graphics/Computational Geometry and Object Modeling—[Geometric algorithms, languages, and systems]
Linear transformations
Mathematical analysis
Matrix algebra
Matrix methods
Shape recognition
Symmetry
Symmetry detection
Title Group Representation of Global Intrinsic Symmetries
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13271
https://www.proquest.com/docview/1950347523
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VnWDgjSgUFCEGllRNbOchJlRRHhIMhUodkCI_GaApoukAv56zk7QFgYTYPFwc586Xu886fwdwEnLFGZPG50xEPlUER1QhVMFYRbVmnDvGm9u76GpIb0Zs1ICz-i5MyQ8xP3CznuH-19bBuZguObl8Mh2EUu7-uK3VsgnRYEEdReOI1bzeljGmYhWyVTzzJ7_GokWCuZymujjTX4fHeoVleclzZ1aIjvz4Rt74z0_YgLUq__TOyw2zCQ2db8HqEivhNhB3HuUNXI1sdTUp9ybGK_sDeNd5gYJoXe_-fTx2HbmmOzDsXzz0rvyqt4IvwzQOfJmgLYRlmtHKGCkRZgWSCBbzhGhqVJrSUHSFYDJItcJFKpFQJYnWiYmSKCa70Mwnud4DzyC-5oSH2tCUBmGX4zxpGhPOhRKYrrTgtNZyJivicdv_4iWrAQjqIXN6aMHxXPS1ZNv4SahdmyqrHG6a2W62hMYIq_F1Tue_T5D1LvtusP930QNYCW1Ad2V8bWgWbzN9iOlIIY7cvvsELrDaqg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgADb0ShQIQYWFK1sZ2HxIIqSgtth9JKXVDkJwM0RTQd4NdzdpJSEEiIzcPFcc6-3H2n83cInXtMMkqFdhnlvkskhhGRAFXAVxGlKGOW8abX99sjcjum4xK6LO7CZPwQi4SbsQz7vzYGbhLSS1YuHnUNsJS5QL5iOnpbQDX4JI8igU8LZm_DGZPzCpk6nsWjX73RZ4i5HKhaT9PaRA_FGrMCk6faPOU18f6NvvG_H7GFNvIQ1LnKzsw2KqlkB60vERPuImxTUs7Alsnmt5MSZ6qdrEWA00lSEIQNdu7fJhPblGu2h0at62Gz7ebtFVzhRUHDFSFsBzdkM0pqLQQgrYbAnAYsxIpoGUXE43XOqWhESsIiJQ-JFFipUPuhH-B9VE6miTpAjgaIzTDzlCYRaXh1BvNEUYAZ45JDxFJBF4WaY5Fzj5sWGM9xgUFAD7HVQwWdLURfMsKNn4SqxV7Fuc3NYtPQFpMAkDW8zir99wni5k3LDg7_LnqKVtvDXjfudvp3R2jNM_7dVvVVUTl9natjiE5SfmIP4Qfjbt7F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBdGDb7FaNYgHLyltdvPCk7TG1keRaqEHIezTgzYtNj3or3d2k7RVFMTbHiabzTwyM8vMNwidOlRQ1-XKpi7zbCIwrIiAVAV8FZHSpdQg3tx1vXafXA_cQQmdF70wGT7E7MJNW4b5X2sDHwu1YOT8WdUgldL940vEqwdapVu9OXYU8T23APbWkDE5rJAu45k9-tUZzSPMxTjVOJpoHT0VR8zqS15q05TV-Mc39MZ_fsMGWssDUOsi05hNVJLJFlpdgCXcRthcSFk9UySb9yYl1khZ2YAAq5OkQAjitR7eh0Mzkmuyg_rR5WOzbefDFWzuhH7D5gEIg2moGSmU4hzyrAbHzPVpgCVRIgyJw-qMubwRSgGHFCwggmMpA-UFno93UTkZJXIPWQoSbIqpIxUJScOpU9gnDH1MKRMM4pUKOiu4HPMceVwPwHiNiwwE-BAbPlTQyYx0nMFt_ERULUQV5xY3ifU4W0x8yKvhdYbnv28QN68is9j_O-kxWr5vRfFtp3tzgFYc7dxNSV8VldO3qTyE0CRlR0YFPwF8t919
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Representation+of+Global+Intrinsic+Symmetries&rft.jtitle=Computer+graphics+forum&rft.au=Wang%2C+Hui&rft.au=Huang%2C+Hui&rft.date=2017-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=7&rft.spage=51&rft_id=info:doi/10.1111%2Fcgf.13271&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon