A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm

A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable lo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 22
Main Authors Li, Haifeng, Jin, Tao, Xu, Xian, Shi, Lin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 04.08.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation.
AbstractList A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation.
A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation.
Abstract A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation.
ArticleNumber 200
Author Jin, Tao
Shi, Lin
Li, Haifeng
Xu, Xian
Author_xml – sequence: 1
  givenname: Haifeng
  surname: Li
  fullname: Li, Haifeng
  email: fenhuang209593@163.com
  organization: State Grid Jiangsu Electric Power Company, Ltd
– sequence: 2
  givenname: Tao
  surname: Jin
  fullname: Jin, Tao
  organization: State Grid Jiangsu Electric Power Company, Ltd
– sequence: 3
  givenname: Xian
  surname: Xu
  fullname: Xu, Xian
  organization: State Grid Jiangsu Electric Power Company, Ltd
– sequence: 4
  givenname: Lin
  surname: Shi
  fullname: Shi, Lin
  organization: State Grid Jiangsu Electric Power Company, Ltd
BookMark eNp9kV9PFTEQxRuDiYh8AZ-a-Fyd_tnt7uOVIJJAJEp8bXrb6aU3yxbabgz65S2sEZ98msn0nN9Mel6TgznNSMhbDu85gP5QlOJjz0B0DGBUnPEX5JAPumP9MMiDf_pX5LiUPQAIrgCUOiS_NvRbXfwDTYFeLlONzMdSc9wuFT39iiUt2SE9vV_sFH_aGtNMN9OU3NqGlOn3mGt7pVfpB2Z6Ndm5FvrRluZvijOcsUbHbnDJjRxds-9SjvXm9g15GexU8PhPPSLXn06vTz6ziy9n5yebC-bEqDmT1uvOgdDajzJIjmMYuk6g7r2C0LutC70QjksJijsVrEBAO3IPI2x1J4_I-Yr1ye7NXY63Nj-YZKN5GqS8Mza3wyY0ahw6ROdw65Ry1g9BWcUbpB-CdiAb693KusvpfsFSzb590NyuN1LIvu8EDI8qsapcTqVkDH-3cjCPkZk1MtMiM0-RGd5McjWVJp53mJ_R_3H9BsnInAc
Cites_doi 10.1109/TSG.2024.3446873
10.1016/j.apenergy.2022.118997
10.1002/er.5759
10.1016/j.ress.2021.107495
10.1007/s42979-023-02027-1
10.1109/TCE.2024.3470112
10.3390/su17020648
10.1007/s11831-022-09860-2
10.1016/j.apenergy.2021.116736
10.1109/TCNS.2021.3070664
10.1016/j.epsr.2021.107564
10.1109/JIOT.2021.3075250
10.1002/er.7671
10.1016/j.epsr.2023.109285
10.1109/TPWRS.2021.3062582
10.1002/er.7381
10.1109/TCNS.2022.3181553
10.1016/j.apenergy.2022.120031
10.1016/j.energy.2021.122379
10.1007/s00202-022-01514-7
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1007/s44196-025-00941-1
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 22
ExternalDocumentID oai_doaj_org_article_4985eeccebc44cad8f4a41b7568f7c03
10_1007_s44196_025_00941_1
GrantInformation_xml – fundername: This work was supported by the SGCC Jiangsu Electric Power Company project, "Research on the key technologies of online risk assessment, early warning and intelligent control of dual-high AC/DC hybrid power system".
  grantid: SGJSLY00KJJS2311330; SGJSLY00KJJS2311330; SGJSLY00KJJS2311330; SGJSLY00KJJS2311330
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HZ~
J~4
O9-
OK1
SOJ
TFW
TR2
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2971-3ad75c0277d93f31e9f8552e76d40f6cbcf622c133041c4fa2e0ea91d090b753
IEDL.DBID C24
ISSN 1875-6883
1875-6891
IngestDate Wed Aug 27 00:52:20 EDT 2025
Tue Aug 05 15:11:55 EDT 2025
Thu Aug 07 05:56:38 EDT 2025
Tue Aug 05 01:11:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genetic-heuristic algorithm
Ant colony
Virtual power plant
Distributed generation resource allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-3ad75c0277d93f31e9f8552e76d40f6cbcf622c133041c4fa2e0ea91d090b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s44196-025-00941-1
PQID 3236652083
PQPubID 4869256
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_4985eeccebc44cad8f4a41b7568f7c03
proquest_journals_3236652083
crossref_primary_10_1007_s44196_025_00941_1
springer_journals_10_1007_s44196_025_00941_1
PublicationCentury 2000
PublicationDate 20250804
PublicationDateYYYYMMDD 2025-08-04
PublicationDate_xml – month: 8
  year: 2025
  text: 20250804
  day: 4
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References B Joakim (941_CR5) 2023; 10
B Ahmadi (941_CR10) 2021; 201
RR Appino (941_CR18) 2021; 8
941_CR7
941_CR12
D Ahmet (941_CR3) 2023; 30
P Rokhforoz (941_CR17) 2021; 210
A Flores-Quiroz (941_CR16) 2021; 291
V Kansal (941_CR13) 2022; 326
SW Su (941_CR14) 2022; 39
Z Fenghui (941_CR15) 2021; 8
M Shafiekhani (941_CR1) 2022; 239
J Naughton (941_CR8) 2021; 36
L Wu (941_CR21) 2024; 70
P Subhasis (941_CR4) 2022; 46
BA Taye (941_CR11) 2023; 4
M Sambeet (941_CR19) 2022; 46
G Sreenivasulu (941_CR20) 2022; 104
M Zhang (941_CR2) 2025; 16
TM Alabi (941_CR9) 2022; 314
A Arman (941_CR22) 2022; 203
T Zhang (941_CR6) 2025; 17
References_xml – volume: 16
  start-page: 194
  issue: 1
  year: 2025
  ident: 941_CR2
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2024.3446873
– volume: 314
  year: 2022
  ident: 941_CR9
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118997
– ident: 941_CR12
  doi: 10.1002/er.5759
– volume: 210
  start-page: 107495.1
  year: 2021
  ident: 941_CR17
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107495
– volume: 4
  start-page: 576
  issue: 5
  year: 2023
  ident: 941_CR11
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-023-02027-1
– volume: 70
  start-page: 6630
  issue: 4
  year: 2024
  ident: 941_CR21
  publication-title: IEEE Trans. Consumer Electron.
  doi: 10.1109/TCE.2024.3470112
– volume: 17
  start-page: 648
  issue: 2
  year: 2025
  ident: 941_CR6
  publication-title: Sustainability
  doi: 10.3390/su17020648
– volume: 30
  start-page: 2081
  issue: 3
  year: 2023
  ident: 941_CR3
  publication-title: Arch. Comput. Methods Eng. State Art Rev.
  doi: 10.1007/s11831-022-09860-2
– volume: 291
  start-page: 116736.1
  year: 2021
  ident: 941_CR16
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116736
– volume: 8
  start-page: 1477
  issue: 3
  year: 2021
  ident: 941_CR18
  publication-title: IEEE Trans. Control. Netw. Syst.
  doi: 10.1109/TCNS.2021.3070664
– volume: 201
  year: 2021
  ident: 941_CR10
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107564
– volume: 8
  start-page: 16522
  issue: 22
  year: 2021
  ident: 941_CR15
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3075250
– volume: 46
  start-page: 7021
  issue: 6
  year: 2022
  ident: 941_CR4
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7671
– ident: 941_CR7
  doi: 10.1016/j.epsr.2023.109285
– volume: 36
  start-page: 3960
  issue: 5
  year: 2021
  ident: 941_CR8
  publication-title: IEEE Trans. Power Syst. Public. Power Eng. Soc.
  doi: 10.1109/TPWRS.2021.3062582
– volume: 46
  start-page: 3272
  issue: 3
  year: 2022
  ident: 941_CR19
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7381
– volume: 39
  start-page: 56
  issue: 2
  year: 2022
  ident: 941_CR14
  publication-title: Computer Simul.
– volume: 10
  start-page: 1266
  issue: 3
  year: 2023
  ident: 941_CR5
  publication-title: IEEE Trans. Control Network Syst.
  doi: 10.1109/TCNS.2022.3181553
– volume: 326
  start-page: 1129
  year: 2022
  ident: 941_CR13
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120031
– volume: 203
  year: 2022
  ident: 941_CR22
  publication-title: Electr. Power Syst. Res.
– volume: 239
  year: 2022
  ident: 941_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122379
– volume: 104
  start-page: 2729
  issue: 4
  year: 2022
  ident: 941_CR20
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-022-01514-7
SSID ssj0002140044
ssib050732782
Score 2.3579009
Snippet A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation...
Abstract A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Ant colony
Ant colony optimization
Artificial Intelligence
Computational Intelligence
Control
Controllability
Convergence
Distributed generation
Distributed generation resource allocation
Engineering
Genetic algorithms
Genetic-heuristic algorithm
Heuristic methods
Local optimization
Mathematical Logic and Foundations
Mechatronics
Optimization models
Power plants
Resource allocation
Robotics
Systems stability
Virtual power plant
Virtual power plants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwtvRHnJAxtYxI4fyVhQUcWAGApis1I_oBK0qJQB8ee5c5JSkBALUoYocZLT3SXfxb77jpDjPAAqgfZZBHBj0vsMOSA1UxoLfIrMCJ-yfK91_1Ze3av7hVZfmBNW0wPXijuTZaECPCcMnZSu8kWUleRDo3QRjat5PgHzFn6m8BssOPqmbKpkUq0c4H7Kt1UMs-k449-QKBH2f4syfyyMJry5XCerTaBIu7WAG2QpjDfJWtuEgTbv5Bb56FLMBXynk0hTNS3zyIWLbayCp-3sPO2l6sm65pJ2nxDC0i7ErPRuNMUqEnqDHdMotjGavdJzgDdPYQQSU4MM7DG81azOcPnDZDqaPT5vk8Flb3DRZ01HBeZEaTjLK2-Uw2VbX-Yx56GMhVIiGO1lFrUbuqiFcBwnObiTsRIhC1XJfVZmoPJ8hyyPJ-OwS6gq4A6VM6WBmCaGAnCfm-CMVhG2KnbISatc-1LzZtg5Q3IyhQVT2GQKyzvkHPU_H4mc1-kAeIJtPMH-5QkdctBazzYv4qvNRa61EhBodshpa9Gv07-LtPcfIu2TFZE8rmCZPCDLs-lbOIQgZjY8Sv76CXIN7Z0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm
URI https://link.springer.com/article/10.1007/s44196-025-00941-1
https://www.proquest.com/docview/3236652083
https://doaj.org/article/4985eeccebc44cad8f4a41b7568f7c03
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz34FtcXOXjTQJPm1eO6KOJBPKh4C908VNBd2V0P4p93JtuuD_QglFKatITMJDNJ5vuGkMMyglWC3mcJjBuTIRTIAamZ0gjwsYURIUf5XurzG3lxp-4aUNi4jXZvjyTzTD0Du4HhzgGzimE4HGew5llQsHZHve41GAecfwVHvZQNQub3T79ZoUzW_83D_HEomm3N2SpZbpxE2p1KdY3MxcE6WWkTMNBmPK6TpS9sghvkvUsxKvCNDhPNuFoWkBUXE1rFQNt9enqacZRT9CXtPqExy4_gvdLbxxHiSegV5k6jmNBoMqYnYOgChRpIUQ0tYg_xdcrvDJ_fD0ePk4fnTXJ9dnrdO2dNbgXmRWU4K-tglMcD3FCVqeSxSlYpEY0Oskja933SQniO2x3cy1SLWMS64qGoij4scbbI_GA4iNuEKgt_qL2pDHg3KVrwALiJ3miV4KpThxy1Xe1epgwabsaVnAXjQDAuC8bxDjlBacxqIvt1fjEc3btmMDlZWRVB92LfS-nrYJOsJYdmaZuML8oO2Wtl6ZohOXalKLUGfbFQfNzK97P47ybt_K_6LlkUWdMsK-QemZ-MXuM-OC6T_kHWU7zr3kFe_H8AR__m2w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hOLQ9QEtbsZQWH3prrcaOP5LjsgJtgaIethU3K-sPQIJdtLscEH--M95kW1B7qJRDlNiR5TfWm9gzbwA-lhFZCWefJyQ3rkIoSAPScG0owacqrAw5yvfMDH-o43N93srkUC7Mk_P7L3Ok6xwmqzkFwQmOfzob-Kii8L2BGaz2U6Qga1RtXszfuz7inizR_8ivfHIUmhnm6CVstq4h6y-xfAVrcbINW13ZBdauwm148YeG4Gt46DOKBbxn08RyNi0PpIVLZaxiYN3uPDvM2ZPLnEvWvyYKy7fos7KfVzPKImHfqWIaozJGizk7QHoLDFuQMDWOiF_Gu6WqM3a_mM6uFpc3b2B0dDgaDHlbUYF7WVvByyZY7enYNtRlKkWsU6W1jNYEVSTjxz4ZKb2gTQ7hVWpkLGJTi1DUxRh_bN7C-mQ6iTvAdIVfaLytLfo0KVbI-8JGb41OeDWpB5-6qXa3S90Mt1JIzsA4BMZlYJzowQGhsWpJmtf5AZqCa5eQUwh6RIuLY6-Ub0KVVKMEDstUyfqi7MFeh6VrF-LclbI0Rkt0NHvwucP39-t_D2n3_5rvw7Ph6NupO_16dvIOnstsdRUv1B6sL2Z38T26Lovxh2yzvwBhEeQa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VVKrKAVoo6hba-tBbaxE7fiTHZcuKPoQ40IqblfUDkMouWsKh6p_vjJNsoaKHSjlEsR1ZnrFm7JnvG4B3ZUSrhKvPExo3rkIoiAPScG0I4FMVVoac5Xtsjr6pz2f67A6KP2e7DyHJDtNALE3zdv86pP0V8A2NeE6e1ZxS4wTH889jPKnkQO3ETFa3LFKQjqoeLfPw0HsWKRP33_M2_wqQZrszfQYbvcPIxp2En8OjON-CzaEYA-v35has32EW3IZfY0YZgj_ZIrGMseWBGHKpuFUMbLizZ4cZU9khMdn4Bxm2_IqeLPt-uSRsCTuhOmqMihu1N-wAjV5g2IPoqnFG_CLedlzPOPx8sbxsL65ewOn08HRyxPs6C9zL2gpeNsFqT8HcUJepFLFOldYyWhNUkYyf-WSk9IKuPoRXqZGxiE0tQlEXMzzu7MDafDGPL4HpCv_QeFtb9HRSrNAbEDZ6a3TCp0kjeD8stbvu2DTcijc5C8ahYFwWjBMjOCBprHoSE3b-sFieu35jOVVXOqIexplXyjehSqpRAqdlqmR9UY5gb5Cl67fnjStlaYyW6H6O4MMg3z_N_57Sq__r_haenHycuq-fjr_swlOZla7ihdqDtXZ5G1-jP9PO3mSV_Q0FWOxh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+Multi-distributed+Resource+Equalization+Allocation+for+Virtual+Power+Plants+Based+on+Genetic-heuristic+Algorithm&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Haifeng&rft.au=Jin%2C+Tao&rft.au=Xu%2C+Xian&rft.au=Shi%2C+Lin&rft.date=2025-08-04&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00941-1&rft.externalDocID=10_1007_s44196_025_00941_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon