A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm
A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable lo...
Saved in:
Published in | International journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
04.08.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation. |
---|---|
AbstractList | A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation. A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation. Abstract A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation resource allocation and the over-generation problem in virtual power plants. By establishing models of wind, solar, storage, and controllable load characteristics, an optimization model is constructed with objectives of resource allocation balance and minimization of call costs, subject to constraints such as power balance. Combining the global search capability of a genetic algorithm and the local optimization capability of an ant colony algorithm, the genetic algorithm stage adopts real-number encoding and a dynamic crossover-mutation strategy, while the ant colony algorithm stage optimizes the pheromone update mechanism to avoid premature convergence. The experimental results show that this method achieves 100% accurate allocation of resources without any over-generation occurrences and reduces the resource allocation deviation rate by 32–67% compared to alternative methods. The algorithm demonstrates fast convergence, yielding solutions in less than 0.6 s across 14 repeated experiments, with an average convergence time reduction of 42% compared to traditional algorithms. Under a comprehensive fluctuation scenario with 30% renewable energy fluctuation rate and 15% load forecasting error, the system stability index remains at 0.865, demonstrating the algorithm’s efficiency and robustness under complex conditions and providing an effective approach for optimizing virtual power plant resource allocation. |
ArticleNumber | 200 |
Author | Jin, Tao Shi, Lin Li, Haifeng Xu, Xian |
Author_xml | – sequence: 1 givenname: Haifeng surname: Li fullname: Li, Haifeng email: fenhuang209593@163.com organization: State Grid Jiangsu Electric Power Company, Ltd – sequence: 2 givenname: Tao surname: Jin fullname: Jin, Tao organization: State Grid Jiangsu Electric Power Company, Ltd – sequence: 3 givenname: Xian surname: Xu fullname: Xu, Xian organization: State Grid Jiangsu Electric Power Company, Ltd – sequence: 4 givenname: Lin surname: Shi fullname: Shi, Lin organization: State Grid Jiangsu Electric Power Company, Ltd |
BookMark | eNp9kV9PFTEQxRuDiYh8AZ-a-Fyd_tnt7uOVIJJAJEp8bXrb6aU3yxbabgz65S2sEZ98msn0nN9Mel6TgznNSMhbDu85gP5QlOJjz0B0DGBUnPEX5JAPumP9MMiDf_pX5LiUPQAIrgCUOiS_NvRbXfwDTYFeLlONzMdSc9wuFT39iiUt2SE9vV_sFH_aGtNMN9OU3NqGlOn3mGt7pVfpB2Z6Ndm5FvrRluZvijOcsUbHbnDJjRxds-9SjvXm9g15GexU8PhPPSLXn06vTz6ziy9n5yebC-bEqDmT1uvOgdDajzJIjmMYuk6g7r2C0LutC70QjksJijsVrEBAO3IPI2x1J4_I-Yr1ye7NXY63Nj-YZKN5GqS8Mza3wyY0ahw6ROdw65Ry1g9BWcUbpB-CdiAb693KusvpfsFSzb590NyuN1LIvu8EDI8qsapcTqVkDH-3cjCPkZk1MtMiM0-RGd5McjWVJp53mJ_R_3H9BsnInAc |
Cites_doi | 10.1109/TSG.2024.3446873 10.1016/j.apenergy.2022.118997 10.1002/er.5759 10.1016/j.ress.2021.107495 10.1007/s42979-023-02027-1 10.1109/TCE.2024.3470112 10.3390/su17020648 10.1007/s11831-022-09860-2 10.1016/j.apenergy.2021.116736 10.1109/TCNS.2021.3070664 10.1016/j.epsr.2021.107564 10.1109/JIOT.2021.3075250 10.1002/er.7671 10.1016/j.epsr.2023.109285 10.1109/TPWRS.2021.3062582 10.1002/er.7381 10.1109/TCNS.2022.3181553 10.1016/j.apenergy.2022.120031 10.1016/j.energy.2021.122379 10.1007/s00202-022-01514-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1007/s44196-025-00941-1 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1875-6883 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_4985eeccebc44cad8f4a41b7568f7c03 10_1007_s44196_025_00941_1 |
GrantInformation_xml | – fundername: This work was supported by the SGCC Jiangsu Electric Power Company project, "Research on the key technologies of online risk assessment, early warning and intelligent control of dual-high AC/DC hybrid power system". grantid: SGJSLY00KJJS2311330; SGJSLY00KJJS2311330; SGJSLY00KJJS2311330; SGJSLY00KJJS2311330 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AASML ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2971-3ad75c0277d93f31e9f8552e76d40f6cbcf622c133041c4fa2e0ea91d090b753 |
IEDL.DBID | C24 |
ISSN | 1875-6883 1875-6891 |
IngestDate | Wed Aug 27 00:52:20 EDT 2025 Tue Aug 05 15:11:55 EDT 2025 Thu Aug 07 05:56:38 EDT 2025 Tue Aug 05 01:11:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genetic-heuristic algorithm Ant colony Virtual power plant Distributed generation resource allocation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2971-3ad75c0277d93f31e9f8552e76d40f6cbcf622c133041c4fa2e0ea91d090b753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s44196-025-00941-1 |
PQID | 3236652083 |
PQPubID | 4869256 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4985eeccebc44cad8f4a41b7568f7c03 proquest_journals_3236652083 crossref_primary_10_1007_s44196_025_00941_1 springer_journals_10_1007_s44196_025_00941_1 |
PublicationCentury | 2000 |
PublicationDate | 20250804 |
PublicationDateYYYYMMDD | 2025-08-04 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250804 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | B Joakim (941_CR5) 2023; 10 B Ahmadi (941_CR10) 2021; 201 RR Appino (941_CR18) 2021; 8 941_CR7 941_CR12 D Ahmet (941_CR3) 2023; 30 P Rokhforoz (941_CR17) 2021; 210 A Flores-Quiroz (941_CR16) 2021; 291 V Kansal (941_CR13) 2022; 326 SW Su (941_CR14) 2022; 39 Z Fenghui (941_CR15) 2021; 8 M Shafiekhani (941_CR1) 2022; 239 J Naughton (941_CR8) 2021; 36 L Wu (941_CR21) 2024; 70 P Subhasis (941_CR4) 2022; 46 BA Taye (941_CR11) 2023; 4 M Sambeet (941_CR19) 2022; 46 G Sreenivasulu (941_CR20) 2022; 104 M Zhang (941_CR2) 2025; 16 TM Alabi (941_CR9) 2022; 314 A Arman (941_CR22) 2022; 203 T Zhang (941_CR6) 2025; 17 |
References_xml | – volume: 16 start-page: 194 issue: 1 year: 2025 ident: 941_CR2 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2024.3446873 – volume: 314 year: 2022 ident: 941_CR9 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118997 – ident: 941_CR12 doi: 10.1002/er.5759 – volume: 210 start-page: 107495.1 year: 2021 ident: 941_CR17 publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107495 – volume: 4 start-page: 576 issue: 5 year: 2023 ident: 941_CR11 publication-title: SN Comput. Sci. doi: 10.1007/s42979-023-02027-1 – volume: 70 start-page: 6630 issue: 4 year: 2024 ident: 941_CR21 publication-title: IEEE Trans. Consumer Electron. doi: 10.1109/TCE.2024.3470112 – volume: 17 start-page: 648 issue: 2 year: 2025 ident: 941_CR6 publication-title: Sustainability doi: 10.3390/su17020648 – volume: 30 start-page: 2081 issue: 3 year: 2023 ident: 941_CR3 publication-title: Arch. Comput. Methods Eng. State Art Rev. doi: 10.1007/s11831-022-09860-2 – volume: 291 start-page: 116736.1 year: 2021 ident: 941_CR16 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116736 – volume: 8 start-page: 1477 issue: 3 year: 2021 ident: 941_CR18 publication-title: IEEE Trans. Control. Netw. Syst. doi: 10.1109/TCNS.2021.3070664 – volume: 201 year: 2021 ident: 941_CR10 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107564 – volume: 8 start-page: 16522 issue: 22 year: 2021 ident: 941_CR15 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3075250 – volume: 46 start-page: 7021 issue: 6 year: 2022 ident: 941_CR4 publication-title: Int. J. Energy Res. doi: 10.1002/er.7671 – ident: 941_CR7 doi: 10.1016/j.epsr.2023.109285 – volume: 36 start-page: 3960 issue: 5 year: 2021 ident: 941_CR8 publication-title: IEEE Trans. Power Syst. Public. Power Eng. Soc. doi: 10.1109/TPWRS.2021.3062582 – volume: 46 start-page: 3272 issue: 3 year: 2022 ident: 941_CR19 publication-title: Int. J. Energy Res. doi: 10.1002/er.7381 – volume: 39 start-page: 56 issue: 2 year: 2022 ident: 941_CR14 publication-title: Computer Simul. – volume: 10 start-page: 1266 issue: 3 year: 2023 ident: 941_CR5 publication-title: IEEE Trans. Control Network Syst. doi: 10.1109/TCNS.2022.3181553 – volume: 326 start-page: 1129 year: 2022 ident: 941_CR13 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120031 – volume: 203 year: 2022 ident: 941_CR22 publication-title: Electr. Power Syst. Res. – volume: 239 year: 2022 ident: 941_CR1 publication-title: Energy doi: 10.1016/j.energy.2021.122379 – volume: 104 start-page: 2729 issue: 4 year: 2022 ident: 941_CR20 publication-title: Electr. Eng. doi: 10.1007/s00202-022-01514-7 |
SSID | ssj0002140044 ssib050732782 |
Score | 2.3579009 |
Snippet | A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power generation... Abstract A multi-resource balanced allocation method using a genetic-heuristic fusion algorithm is proposed to address the imbalance in distributed power... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Ant colony Ant colony optimization Artificial Intelligence Computational Intelligence Control Controllability Convergence Distributed generation Distributed generation resource allocation Engineering Genetic algorithms Genetic-heuristic algorithm Heuristic methods Local optimization Mathematical Logic and Foundations Mechatronics Optimization models Power plants Resource allocation Robotics Systems stability Virtual power plant Virtual power plants |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwtvRHnJAxtYxI4fyVhQUcWAGApis1I_oBK0qJQB8ee5c5JSkBALUoYocZLT3SXfxb77jpDjPAAqgfZZBHBj0vsMOSA1UxoLfIrMCJ-yfK91_1Ze3av7hVZfmBNW0wPXijuTZaECPCcMnZSu8kWUleRDo3QRjat5PgHzFn6m8BssOPqmbKpkUq0c4H7Kt1UMs-k449-QKBH2f4syfyyMJry5XCerTaBIu7WAG2QpjDfJWtuEgTbv5Bb56FLMBXynk0hTNS3zyIWLbayCp-3sPO2l6sm65pJ2nxDC0i7ErPRuNMUqEnqDHdMotjGavdJzgDdPYQQSU4MM7DG81azOcPnDZDqaPT5vk8Flb3DRZ01HBeZEaTjLK2-Uw2VbX-Yx56GMhVIiGO1lFrUbuqiFcBwnObiTsRIhC1XJfVZmoPJ8hyyPJ-OwS6gq4A6VM6WBmCaGAnCfm-CMVhG2KnbISatc-1LzZtg5Q3IyhQVT2GQKyzvkHPU_H4mc1-kAeIJtPMH-5QkdctBazzYv4qvNRa61EhBodshpa9Gv07-LtPcfIu2TFZE8rmCZPCDLs-lbOIQgZjY8Sv76CXIN7Z0 priority: 102 providerName: Directory of Open Access Journals |
Title | A Study of Multi-distributed Resource Equalization Allocation for Virtual Power Plants Based on Genetic-heuristic Algorithm |
URI | https://link.springer.com/article/10.1007/s44196-025-00941-1 https://www.proquest.com/docview/3236652083 https://doaj.org/article/4985eeccebc44cad8f4a41b7568f7c03 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iFz34FtcXOXjTQJPm1eO6KOJBPKh4C908VNBd2V0P4p93JtuuD_QglFKatITMJDNJ5vuGkMMyglWC3mcJjBuTIRTIAamZ0gjwsYURIUf5XurzG3lxp-4aUNi4jXZvjyTzTD0Du4HhzgGzimE4HGew5llQsHZHve41GAecfwVHvZQNQub3T79ZoUzW_83D_HEomm3N2SpZbpxE2p1KdY3MxcE6WWkTMNBmPK6TpS9sghvkvUsxKvCNDhPNuFoWkBUXE1rFQNt9enqacZRT9CXtPqExy4_gvdLbxxHiSegV5k6jmNBoMqYnYOgChRpIUQ0tYg_xdcrvDJ_fD0ePk4fnTXJ9dnrdO2dNbgXmRWU4K-tglMcD3FCVqeSxSlYpEY0Oskja933SQniO2x3cy1SLWMS64qGoij4scbbI_GA4iNuEKgt_qL2pDHg3KVrwALiJ3miV4KpThxy1Xe1epgwabsaVnAXjQDAuC8bxDjlBacxqIvt1fjEc3btmMDlZWRVB92LfS-nrYJOsJYdmaZuML8oO2Wtl6ZohOXalKLUGfbFQfNzK97P47ybt_K_6LlkUWdMsK-QemZ-MXuM-OC6T_kHWU7zr3kFe_H8AR__m2w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hOLQ9QEtbsZQWH3prrcaOP5LjsgJtgaIethU3K-sPQIJdtLscEH--M95kW1B7qJRDlNiR5TfWm9gzbwA-lhFZCWefJyQ3rkIoSAPScG0owacqrAw5yvfMDH-o43N93srkUC7Mk_P7L3Ok6xwmqzkFwQmOfzob-Kii8L2BGaz2U6Qga1RtXszfuz7inizR_8ivfHIUmhnm6CVstq4h6y-xfAVrcbINW13ZBdauwm148YeG4Gt46DOKBbxn08RyNi0PpIVLZaxiYN3uPDvM2ZPLnEvWvyYKy7fos7KfVzPKImHfqWIaozJGizk7QHoLDFuQMDWOiF_Gu6WqM3a_mM6uFpc3b2B0dDgaDHlbUYF7WVvByyZY7enYNtRlKkWsU6W1jNYEVSTjxz4ZKb2gTQ7hVWpkLGJTi1DUxRh_bN7C-mQ6iTvAdIVfaLytLfo0KVbI-8JGb41OeDWpB5-6qXa3S90Mt1JIzsA4BMZlYJzowQGhsWpJmtf5AZqCa5eQUwh6RIuLY6-Ub0KVVKMEDstUyfqi7MFeh6VrF-LclbI0Rkt0NHvwucP39-t_D2n3_5rvw7Ph6NupO_16dvIOnstsdRUv1B6sL2Z38T26Lovxh2yzvwBhEeQa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VVKrKAVoo6hba-tBbaxE7fiTHZcuKPoQ40IqblfUDkMouWsKh6p_vjJNsoaKHSjlEsR1ZnrFm7JnvG4B3ZUSrhKvPExo3rkIoiAPScG0I4FMVVoac5Xtsjr6pz2f67A6KP2e7DyHJDtNALE3zdv86pP0V8A2NeE6e1ZxS4wTH889jPKnkQO3ETFa3LFKQjqoeLfPw0HsWKRP33_M2_wqQZrszfQYbvcPIxp2En8OjON-CzaEYA-v35has32EW3IZfY0YZgj_ZIrGMseWBGHKpuFUMbLizZ4cZU9khMdn4Bxm2_IqeLPt-uSRsCTuhOmqMihu1N-wAjV5g2IPoqnFG_CLedlzPOPx8sbxsL65ewOn08HRyxPs6C9zL2gpeNsFqT8HcUJepFLFOldYyWhNUkYyf-WSk9IKuPoRXqZGxiE0tQlEXMzzu7MDafDGPL4HpCv_QeFtb9HRSrNAbEDZ6a3TCp0kjeD8stbvu2DTcijc5C8ahYFwWjBMjOCBprHoSE3b-sFieu35jOVVXOqIexplXyjehSqpRAqdlqmR9UY5gb5Cl67fnjStlaYyW6H6O4MMg3z_N_57Sq__r_haenHycuq-fjr_swlOZla7ihdqDtXZ5G1-jP9PO3mSV_Q0FWOxh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+Multi-distributed+Resource+Equalization+Allocation+for+Virtual+Power+Plants+Based+on+Genetic-heuristic+Algorithm&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Haifeng&rft.au=Jin%2C+Tao&rft.au=Xu%2C+Xian&rft.au=Shi%2C+Lin&rft.date=2025-08-04&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00941-1&rft.externalDocID=10_1007_s44196_025_00941_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |