Design of HDPE‐based nanocomposite with excellent thermal‐oxidative aging resistance, mechanical properties and electrical insulation properties: Dispersing nano‐ZnO assisted by natural rubber latex
Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion o...
Saved in:
Published in | Journal of applied polymer science Vol. 140; no. 38 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.10.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.54420 |
Cover
Loading…
Abstract | Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables.
Under the auxiliary dispersion of natural rubber latex, nano‐ZnO is uniformly dispersed in HDPE, which not only synergistically toughens HDPE with natural rubber, but also improves the thermo‐oxidative aging resistance and electrical insulation properties of HDPE. |
---|---|
AbstractList | Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables.
Under the auxiliary dispersion of natural rubber latex, nano‐ZnO is uniformly dispersed in HDPE, which not only synergistically toughens HDPE with natural rubber, but also improves the thermo‐oxidative aging resistance and electrical insulation properties of HDPE. Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables. |
Author | Mou, Wenjie Zhu, Jinxin Hu, Chaoqiang Li, Jinglin |
Author_xml | – sequence: 1 givenname: Jinglin orcidid: 0000-0003-3430-9789 surname: Li fullname: Li, Jinglin organization: South China University of Technology – sequence: 2 givenname: Wenjie orcidid: 0000-0001-5508-9549 surname: Mou fullname: Mou, Wenjie email: wjmou@scut.edu.cn organization: South China University of Technology – sequence: 3 givenname: Jinxin surname: Zhu fullname: Zhu, Jinxin organization: South China University of Technology – sequence: 4 givenname: Chaoqiang surname: Hu fullname: Hu, Chaoqiang email: chaoqiang.hu@panyucable.com organization: Guangzhou Panyu Cable Group Co., Ltd |
BookMark | eNp1kcFO3DAURa2KSh0oC_7AUldIDdjJJHHYIQZKJSRmUTZsomfnZcbIY6e2AzM7PqEf1q_ol9Qzw6Kq2pUtv3vPu9Y9JAfWWSTkhLMzzlh-DsNwVk6nOXtHJpw1dTatcnFAJmnGM9E05QdyGMITY5yXrJqQnzMMemGp6-ntbH796_WHhIAdtWCdcqvBBR2Rvui4pLhWaAzaSOMS_QpMEru17iDqZ6Sw0HZBfaKFCFbhZ7pCtQSrFRg6eDegjxoDBdtRNKii3020DaNJBGf_EF3QmQ7pHrbIbZK06dHeUwhbekonN-k5jj4B_CglepoYuP5I3vdgAh6_nUfk4eb629Vtdnf_5evV5V2m8qZmGULVCKGKKpdVV_asEL2qUQkOWAspVTEFIUVVdB2vGPR9CSWveVeDKjroZVMckU97bor8fcQQ2yc3eptWtrkom1LkRV4n1flepbwLwWPfKh13X40etGk5a7eVtamydldZcpz-5Ri8XoHf_FP7Rn_RBjf_F7aX8_ne8Rt-tLHR |
CitedBy_id | crossref_primary_10_1002_pat_6377 crossref_primary_10_1002_mawe_202300383 crossref_primary_10_7498_aps_73_20240201 |
Cites_doi | 10.1002/app.52705 10.1088/1757-899X/284/1/012017 10.1021/acs.iecr.0c00196 10.1002/app.51787 10.1063/1.4979107 10.1109/TDEI.2016.7736837 10.1016/S0167-577X(02)01344-7 10.1002/vnl.20156 10.1016/j.compositesa.2004.10.012 10.1016/j.engfailanal.2020.104714 10.1007/s13233-018-6052-9 10.1007/s42341-021-00331-2 10.3390/polym11010024 10.1155/2012/263915 10.1080/03602559.2011.639331 10.1002/pc.25509 10.1039/C3RA45332D 10.1002/app.39601 10.1021/acssuschemeng.8b05025 10.1109/TDEI.2005.1511092 10.1007/s10973-015-4880-x 10.1155/2016/1707018 10.1080/03602559.2012.679722 10.3144/expresspolymlett.2021.87 10.1021/acsenergylett.8b00583 10.1109/94.326653 10.1109/TDEI.2010.5595554 10.1007/s11665-021-06222-0 10.1021/acssuschemeng.8b00267 10.1002/pen.24822 10.1016/j.compositesb.2013.05.011 10.1016/j.compscitech.2018.07.005 10.1002/adma.201703624 10.1063/1.3646909 10.1002/pol.20210100 10.1021/acs.iecr.2c00369 10.3938/jkps.65.248 10.1007/s00289-010-0272-3 10.1002/pen.26088 10.1163/156856102320256828 10.1002/app.34297 10.1002/pi.2899 10.1016/j.jmgm.2019.107438 10.3390/en14051235 10.1016/j.carbpol.2007.12.002 10.1002/vnl.21671 10.1021/acs.iecr.9b02172 10.1016/j.matchemphys.2010.01.020 10.1002/adem.202100008 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.54420 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_54420 APP54420 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Guangzhou Science and Technology Project funderid: 201902010004 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2970-ea6988c362b6d5f038fc7ec81ae78bbc34a8b863dd160aff5a5171d7ac3dafb93 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 11:58:11 EDT 2025 Tue Jul 01 02:00:03 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Wed Jan 22 16:18:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-ea6988c362b6d5f038fc7ec81ae78bbc34a8b863dd160aff5a5171d7ac3dafb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3430-9789 0000-0001-5508-9549 |
PQID | 2859582327 |
PQPubID | 1006379 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2859582327 crossref_citationtrail_10_1002_app_54420 crossref_primary_10_1002_app_54420 wiley_primary_10_1002_app_54420_APP54420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 10, 2023 |
PublicationDateYYYYMMDD | 2023-10-10 |
PublicationDate_xml | – month: 10 year: 2023 text: October 10, 2023 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2002; 16 2018; 284 2018; 165 2019; 93 2010; 59 2012; 2012 2021; 23 2019; 11 2010; 17 2019; 58 2003; 57 2022; 23 2020; 59 2011; 99 2016; 2016 2017; 110 2008; 73 2022; 139 2014; 131 2014; 65 2012; 51 2018; 6 2010; 65 2018; 3 2014; 4 2013; 2013 2013; 54 2019; 25 2018; 30 2022; 31 2011; 122 2005; 36 2019; 7 2020; 41 2010; 121 2008; 14 2016; 123 2018; 26 2021; 14 2021; 59 2021; 15 2022 2022; 61 2022; 62 2020; 116 1994; 5 2005; 12 2018; 58 2016; 23 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Wang J. (e_1_2_9_11_1) 2013; 2013 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 5 start-page: 812 year: 1994 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 2013 start-page: 1 year: 2013 publication-title: J. Nanomater. – volume: 62 start-page: 3110 year: 2022 publication-title: Polym. Eng. Sci. – volume: 93 year: 2019 publication-title: J. Mol. Graph. Model. – volume: 58 start-page: E36 year: 2018 publication-title: Polym. Eng. Sci. – volume: 57 start-page: 2647 year: 2003 publication-title: Mater. Lett. – volume: 41 start-page: 1936 year: 2020 publication-title: Polym. Compos. – volume: 25 start-page: E147 year: 2019 publication-title: J. Vinyl Addit. Techn. – volume: 61 start-page: 3973 year: 2022 publication-title: Ind. Eng. Chem. Res. – volume: 139 start-page: 139 year: 2022 publication-title: J. Appl. Polym. Sci. – volume: 65 start-page: 59 year: 2010 publication-title: Polym. Bull. – volume: 51 start-page: 1127 year: 2012 publication-title: Polym. Plast. Technol. – volume: 4 start-page: 3966 year: 2014 publication-title: RSC Adv. – volume: 59 start-page: 9959 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 121 start-page: 198 year: 2010 publication-title: Mater. Chem. Phys. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 426 year: 2018 publication-title: Macromol. Res. – year: 2022 – volume: 36 start-page: 423 year: 2005 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 16 start-page: 1155 year: 2002 publication-title: J. Adhes. Sci. Technol. – volume: 12 start-page: 669 year: 2005 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 17 start-page: 1523 year: 2010 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 116 year: 2020 publication-title: Eng. Fail. Anal. – volume: 139 year: 2022 publication-title: J. Appl. Polym. Sci. – volume: 2012 start-page: 1 year: 2012 publication-title: J. Nanomater. – volume: 123 start-page: 301 year: 2016 publication-title: J. Therm. Anal. Calorim. – volume: 6 start-page: 6488 year: 2018 publication-title: ACS Sustain. Chem. Eng. – volume: 51 start-page: 298 year: 2012 publication-title: Polym. Plast. Technol. – volume: 11 start-page: 24 year: 2019 publication-title: Polymers (Basel) – volume: 14 start-page: 142 year: 2008 publication-title: J. Vinyl Addit. Techn. – volume: 73 start-page: 378 year: 2008 publication-title: Carbohydr. Polym. – volume: 59 start-page: 912 year: 2021 publication-title: J. Polym. Sci. – volume: 131 year: 2014 publication-title: J. Appl. Polym. Sci. – volume: 58 year: 2019 publication-title: Ind. Eng. Chem. Res. – volume: 165 start-page: 231 year: 2018 publication-title: Compos. Sci. Technol. – volume: 31 start-page: 1493 year: 2022 publication-title: J. Mater. Eng. Perform. – volume: 122 start-page: 1921 year: 2011 publication-title: J. Appl. Polym. Sci. – volume: 3 start-page: 1578 year: 2018 publication-title: ACS Energy Lett. – volume: 59 start-page: 1660 year: 2010 publication-title: Polym. Int. – volume: 14 start-page: 1235 year: 2021 publication-title: Energies – volume: 65 start-page: 248 year: 2014 publication-title: J. Korean Phys. Soc. – volume: 54 start-page: 180 year: 2013 publication-title: Compos. B: Eng. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 23 year: 2021 publication-title: Adv. Eng. Mater. – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 2016 start-page: 1 year: 2016 publication-title: Int. J. Polym. Sci. – volume: 284 year: 2018 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 7 start-page: 2304 year: 2019 publication-title: ACS Sustain. Chem. Eng. – volume: 15 start-page: 1081 year: 2021 publication-title: Express Polym. Lett. – volume: 23 start-page: 136 year: 2022 publication-title: Trans. Electr. Electro. – volume: 23 start-page: 2777 year: 2016 publication-title: IEEE Trans. Dielectr. Electr. Insul. – ident: e_1_2_9_8_1 doi: 10.1002/app.52705 – ident: e_1_2_9_16_1 doi: 10.1088/1757-899X/284/1/012017 – ident: e_1_2_9_17_1 doi: 10.1021/acs.iecr.0c00196 – volume: 2013 start-page: 1 year: 2013 ident: e_1_2_9_11_1 publication-title: J. Nanomater. – ident: e_1_2_9_6_1 doi: 10.1002/app.51787 – ident: e_1_2_9_28_1 doi: 10.1063/1.4979107 – ident: e_1_2_9_48_1 doi: 10.1109/TDEI.2016.7736837 – ident: e_1_2_9_3_1 doi: 10.1016/S0167-577X(02)01344-7 – ident: e_1_2_9_37_1 doi: 10.1002/vnl.20156 – ident: e_1_2_9_43_1 doi: 10.1016/j.compositesa.2004.10.012 – ident: e_1_2_9_5_1 doi: 10.1016/j.engfailanal.2020.104714 – ident: e_1_2_9_7_1 doi: 10.1007/s13233-018-6052-9 – ident: e_1_2_9_15_1 doi: 10.1007/s42341-021-00331-2 – ident: e_1_2_9_9_1 doi: 10.3390/polym11010024 – ident: e_1_2_9_25_1 doi: 10.1155/2012/263915 – ident: e_1_2_9_40_1 doi: 10.1080/03602559.2011.639331 – ident: e_1_2_9_36_1 doi: 10.1002/pc.25509 – ident: e_1_2_9_14_1 doi: 10.1039/C3RA45332D – ident: e_1_2_9_27_1 doi: 10.1002/app.39601 – ident: e_1_2_9_42_1 doi: 10.1021/acssuschemeng.8b05025 – ident: e_1_2_9_46_1 doi: 10.1109/TDEI.2005.1511092 – ident: e_1_2_9_44_1 doi: 10.1007/s10973-015-4880-x – ident: e_1_2_9_30_1 – ident: e_1_2_9_13_1 doi: 10.1155/2016/1707018 – ident: e_1_2_9_35_1 doi: 10.1080/03602559.2012.679722 – ident: e_1_2_9_26_1 doi: 10.3144/expresspolymlett.2021.87 – ident: e_1_2_9_18_1 doi: 10.1021/acsenergylett.8b00583 – ident: e_1_2_9_45_1 doi: 10.1109/94.326653 – ident: e_1_2_9_47_1 doi: 10.1109/TDEI.2010.5595554 – ident: e_1_2_9_2_1 doi: 10.1007/s11665-021-06222-0 – ident: e_1_2_9_39_1 doi: 10.1021/acssuschemeng.8b00267 – ident: e_1_2_9_22_1 doi: 10.1002/pen.24822 – ident: e_1_2_9_33_1 doi: 10.1016/j.compositesb.2013.05.011 – ident: e_1_2_9_41_1 doi: 10.1016/j.compscitech.2018.07.005 – ident: e_1_2_9_49_1 doi: 10.1002/adma.201703624 – ident: e_1_2_9_24_1 doi: 10.1063/1.3646909 – ident: e_1_2_9_20_1 doi: 10.1002/pol.20210100 – ident: e_1_2_9_31_1 doi: 10.1021/acs.iecr.2c00369 – ident: e_1_2_9_51_1 doi: 10.3938/jkps.65.248 – ident: e_1_2_9_52_1 doi: 10.1007/s00289-010-0272-3 – ident: e_1_2_9_29_1 doi: 10.1002/pen.26088 – ident: e_1_2_9_34_1 doi: 10.1163/156856102320256828 – ident: e_1_2_9_12_1 doi: 10.1002/app.34297 – ident: e_1_2_9_4_1 doi: 10.1002/pi.2899 – ident: e_1_2_9_19_1 doi: 10.1016/j.jmgm.2019.107438 – ident: e_1_2_9_32_1 doi: 10.3390/en14051235 – ident: e_1_2_9_38_1 doi: 10.1016/j.carbpol.2007.12.002 – ident: e_1_2_9_23_1 doi: 10.1002/vnl.21671 – ident: e_1_2_9_10_1 doi: 10.1021/acs.iecr.9b02172 – ident: e_1_2_9_21_1 doi: 10.1016/j.matchemphys.2010.01.020 – ident: e_1_2_9_50_1 doi: 10.1002/adem.202100008 |
SSID | ssj0011506 |
Score | 2.4543881 |
Snippet | Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aging Aging (natural) Alternating current Cables Carbonyls Crystal defects Dispersion dispersion method Electrical insulation electrical insulation properties Electrical resistance HDPE High density polyethylenes Latex Materials science Mechanical properties Nanocomposites Nanoparticles nano‐ZnO Natural rubber Oxidation resistance Polymers Rubber Sheaths Tensile strength Thermal resistance thermo‐oxidative aging resistance Zinc oxide Zinc oxides |
Title | Design of HDPE‐based nanocomposite with excellent thermal‐oxidative aging resistance, mechanical properties and electrical insulation properties: Dispersing nano‐ZnO assisted by natural rubber latex |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.54420 https://www.proquest.com/docview/2859582327 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7Ekx6S-AjxSRE85JDRefV0TzyJqywezBIiSAgM_QRRZ2XdhY0nf0J-mL_CX2JVz866hgght4Gp6e6hq7u-qq7-irEdL9Fsp4mPUsl5lBvDI61EFmkhfJ44g3guZPmeFt2z_OScn8-x_fYuTMMPMQ240coI-zUtcKVv955JQ6kMFs_zlPx1ytUiQPRtSh1FQKdo0juSCH0K3rIKxene9MuXtugZYM7C1GBnjt-yn-0Im_SSy93RUO-auz_IG__zF96xNxP8CQeNwiyxOVcvs8UZVsIV9tAJWR3Q99Dt9I4e73-TqbNQq7pPGeiU5uWAArjgxiHwXw-BcOS1ukLh_vjCBjZxCAWQAP15wqioXJ_h2tFFY9ILuKFTgAHRuYKqLTTleMKbkB4fFGZG6At0LojUnEIbYSTY04_6KyD2J0W1oH9BICnFBgYjrd0AsA03XmVnx0ffD7vRpOhDZNJSxJFTRSmlQbuqC8t9nElvhDMyUU5IrU2WK6llkVmbFLHyniueiMQKZTKrvC6z92y-7tfuA4MMXdeSDnqL1OWlMqX0sTcISLjJTCn0GvvUTn9lJozoVJjjqmq4nNMKJ6gKE7TGPk5FbxoakL8JbbY6VE12gtuKCAK5RNwqsLugDK83UB30euFh_d9FN9hCiriLzGkSb7L54WDkthAnDfV2WBBP1v4XeA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEO4QPKAHBX8iglAxHjw4MH893WO8EBayKOLGQEJMzKR_EyLMkmU3WTj5CD6YT8GTUNWzsyxGE-Ntkqnp7klXdX1dXf0VY6-9RLedJj5KJedRbgyPtBJZpIXweeIM4rmQ5XtQdI_yD8f8eI69b-_CNPwQ04AbWUZYr8nAKSC9ecsaSnWweJ6nuGG_RxW9ySw7X6bkUQR1iibBI4lwV8FbXqE43Zx-etcb3ULMWaAaPM3uI_atHWOTYPJ9YzTUG-bqN_rG__2JRfZwAkFhq9GZJTbn6sfswQwx4RP2qxMSO6Dvodvp7Vz_-EnezkKt6j4loVOmlwOK4YIbh9h_PQSCkmfqFIX74xMbCMUh1EAC3NITTEX9egtnju4ak2rAOR0EDIjRFVRtoanIE96EDPmgMzNC76BzQrzmFN0II8GevtafAeE_6aoFfQmBpxQbGIy0dgPANtz4KTva3Tnc7kaTug-RSUsRR04VpZQGXasuLPdxJr0RzshEOSG1NlmupJZFZm1SxMp7rngiEiuUyazyusyesfm6X7vnDDLcvZZ01lukLi-VKaWPvUFMwk1mSqGX2Zt2_iszIUWn2hynVUPnnFY4QVWYoGX2aip63jCB_ElotVWiarIYXFTEEcglQleB3QVt-HsD1VavFx5e_LvoOlvoHn7ar_b3Dj6usPspwjDyrkm8yuaHg5F7ibBpqNeCddwAEuEbkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahRBEG5ChKAHf6KSaIxF8ODBSeavp3v0FDJZ1kTiIgaCCEP_QjCZXdZdWD35CD6YT-GTWNWzs9mIgngbmJruHrq666vq6q8Ye-Ylmu008VEqOY9yY3iklcgiLYTPE2cQz4Us35Oif5ofnfGzFfaquwvT8kMsAm60MsJ-TQt8ZP3eFWkolcHieZ6iv34jL2JJnlf1bsEdRUinaPM7kgidCt7RCsXp3uLT68boCmEu49RgaHp32MduiG1-yafd6UTvmq-_sTf-5z_cZbfnABT2W425x1Zcs85uLdES3mc_qpDWAUMP_Wpw-PPbd7J1FhrVDCkFnfK8HFAEF9wsRP6bCRCQvFQXKDycndtAJw6hAhKgQ08gFbXrBVw6umlMigEjOgYYE58rqMZCW48nvAn58UFjloReQnVOrOYU2wgjwZ4-NG8BwT9pqgX9BQJLKTYwnmrtxoBtuNkDdto7fH_Qj-ZVHyKTliKOnCpKKQ0aVl1Y7uNMeiOckYlyQmptslxJLYvM2qSIlfdc8UQkViiTWeV1mT1kq82wcRsMMvRdSzrpLVKXl8qU0sfeICLhJjOl0JvseTf9tZlTolNljou6JXNOa5ygOkzQJttZiI5aHpA_CW11OlTPt4LPNTEEconAVWB3QRn-3kC9PxiEh0f_LvqUrQ2qXv3m9cnxY3YzRQxGpjWJt9jqZDx1TxAzTfR2WBu_AOPCGkk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+HDPE%E2%80%90based+nanocomposite+with+excellent+thermal%E2%80%90oxidative+aging+resistance%2C+mechanical+properties+and+electrical+insulation+properties%3A+Dispersing+nano%E2%80%90ZnO+assisted+by+natural+rubber+latex&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Li%2C+Jinglin&rft.au=Mou%2C+Wenjie&rft.au=Zhu%2C+Jinxin&rft.au=Hu%2C+Chaoqiang&rft.date=2023-10-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.54420&rft.externalDBID=10.1002%252Fapp.54420&rft.externalDocID=APP54420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |