Design of HDPE‐based nanocomposite with excellent thermal‐oxidative aging resistance, mechanical properties and electrical insulation properties: Dispersing nano‐ZnO assisted by natural rubber latex

Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion o...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 140; no. 38
Main Authors Li, Jinglin, Mou, Wenjie, Zhu, Jinxin, Hu, Chaoqiang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.10.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0021-8995
1097-4628
DOI10.1002/app.54420

Cover

Loading…
Abstract Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables. Under the auxiliary dispersion of natural rubber latex, nano‐ZnO is uniformly dispersed in HDPE, which not only synergistically toughens HDPE with natural rubber, but also improves the thermo‐oxidative aging resistance and electrical insulation properties of HDPE.
AbstractList Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables. Under the auxiliary dispersion of natural rubber latex, nano‐ZnO is uniformly dispersed in HDPE, which not only synergistically toughens HDPE with natural rubber, but also improves the thermo‐oxidative aging resistance and electrical insulation properties of HDPE.
Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of nanoparticles in the polymer matrix is the key point of this method. Here, natural rubber latex (NRL) was used for the auxiliary dispersion of self‐made nano zinc oxide (nano‐ZnO) to realize the uniform dispersion of nano‐ZnO in HDPE. The HDPE‐based nanocomposite with excellent thermo‐oxidative aging resistance, mechanical properties and electrical insulation properties were successfully prepared. Three weight percent of nano‐ZnO was uniformly dispersed in HDPE (HLZ3), which not only synergistically toughened HDPE with natural rubber (coagulated natural rubber latex, NR), but also maintained the tensile strength of the matrix. Moreover, the interfacial interactions between nanoparticles and polymers improved the alternating current (AC) breakdown strength and volume resistivity of the HDPE matrix. After aging treatment, the crystallinity of HLZ3 decreased very little, and its carbonyl index was much smaller than that of pure HDPE. Therefore, it has the best performance retention rate. This nanoparticle dispersion method has certain reference significance. And this HDPE‐based nanocomposite material is expected to be used in the outer sheath of cables.
Author Mou, Wenjie
Zhu, Jinxin
Hu, Chaoqiang
Li, Jinglin
Author_xml – sequence: 1
  givenname: Jinglin
  orcidid: 0000-0003-3430-9789
  surname: Li
  fullname: Li, Jinglin
  organization: South China University of Technology
– sequence: 2
  givenname: Wenjie
  orcidid: 0000-0001-5508-9549
  surname: Mou
  fullname: Mou, Wenjie
  email: wjmou@scut.edu.cn
  organization: South China University of Technology
– sequence: 3
  givenname: Jinxin
  surname: Zhu
  fullname: Zhu, Jinxin
  organization: South China University of Technology
– sequence: 4
  givenname: Chaoqiang
  surname: Hu
  fullname: Hu, Chaoqiang
  email: chaoqiang.hu@panyucable.com
  organization: Guangzhou Panyu Cable Group Co., Ltd
BookMark eNp1kcFO3DAURa2KSh0oC_7AUldIDdjJJHHYIQZKJSRmUTZsomfnZcbIY6e2AzM7PqEf1q_ol9Qzw6Kq2pUtv3vPu9Y9JAfWWSTkhLMzzlh-DsNwVk6nOXtHJpw1dTatcnFAJmnGM9E05QdyGMITY5yXrJqQnzMMemGp6-ntbH796_WHhIAdtWCdcqvBBR2Rvui4pLhWaAzaSOMS_QpMEru17iDqZ6Sw0HZBfaKFCFbhZ7pCtQSrFRg6eDegjxoDBdtRNKii3020DaNJBGf_EF3QmQ7pHrbIbZK06dHeUwhbekonN-k5jj4B_CglepoYuP5I3vdgAh6_nUfk4eb629Vtdnf_5evV5V2m8qZmGULVCKGKKpdVV_asEL2qUQkOWAspVTEFIUVVdB2vGPR9CSWveVeDKjroZVMckU97bor8fcQQ2yc3eptWtrkom1LkRV4n1flepbwLwWPfKh13X40etGk5a7eVtamydldZcpz-5Ri8XoHf_FP7Rn_RBjf_F7aX8_ne8Rt-tLHR
CitedBy_id crossref_primary_10_1002_pat_6377
crossref_primary_10_1002_mawe_202300383
crossref_primary_10_7498_aps_73_20240201
Cites_doi 10.1002/app.52705
10.1088/1757-899X/284/1/012017
10.1021/acs.iecr.0c00196
10.1002/app.51787
10.1063/1.4979107
10.1109/TDEI.2016.7736837
10.1016/S0167-577X(02)01344-7
10.1002/vnl.20156
10.1016/j.compositesa.2004.10.012
10.1016/j.engfailanal.2020.104714
10.1007/s13233-018-6052-9
10.1007/s42341-021-00331-2
10.3390/polym11010024
10.1155/2012/263915
10.1080/03602559.2011.639331
10.1002/pc.25509
10.1039/C3RA45332D
10.1002/app.39601
10.1021/acssuschemeng.8b05025
10.1109/TDEI.2005.1511092
10.1007/s10973-015-4880-x
10.1155/2016/1707018
10.1080/03602559.2012.679722
10.3144/expresspolymlett.2021.87
10.1021/acsenergylett.8b00583
10.1109/94.326653
10.1109/TDEI.2010.5595554
10.1007/s11665-021-06222-0
10.1021/acssuschemeng.8b00267
10.1002/pen.24822
10.1016/j.compositesb.2013.05.011
10.1016/j.compscitech.2018.07.005
10.1002/adma.201703624
10.1063/1.3646909
10.1002/pol.20210100
10.1021/acs.iecr.2c00369
10.3938/jkps.65.248
10.1007/s00289-010-0272-3
10.1002/pen.26088
10.1163/156856102320256828
10.1002/app.34297
10.1002/pi.2899
10.1016/j.jmgm.2019.107438
10.3390/en14051235
10.1016/j.carbpol.2007.12.002
10.1002/vnl.21671
10.1021/acs.iecr.9b02172
10.1016/j.matchemphys.2010.01.020
10.1002/adem.202100008
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.54420
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_54420
APP54420
Genre researchArticle
GrantInformation_xml – fundername: Guangzhou Science and Technology Project
  funderid: 201902010004
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2970-ea6988c362b6d5f038fc7ec81ae78bbc34a8b863dd160aff5a5171d7ac3dafb93
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 25 11:58:11 EDT 2025
Tue Jul 01 02:00:03 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Wed Jan 22 16:18:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-ea6988c362b6d5f038fc7ec81ae78bbc34a8b863dd160aff5a5171d7ac3dafb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3430-9789
0000-0001-5508-9549
PQID 2859582327
PQPubID 1006379
PageCount 13
ParticipantIDs proquest_journals_2859582327
crossref_citationtrail_10_1002_app_54420
crossref_primary_10_1002_app_54420
wiley_primary_10_1002_app_54420_APP54420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 10, 2023
PublicationDateYYYYMMDD 2023-10-10
PublicationDate_xml – month: 10
  year: 2023
  text: October 10, 2023
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 16
2018; 284
2018; 165
2019; 93
2010; 59
2012; 2012
2021; 23
2019; 11
2010; 17
2019; 58
2003; 57
2022; 23
2020; 59
2011; 99
2016; 2016
2017; 110
2008; 73
2022; 139
2014; 131
2014; 65
2012; 51
2018; 6
2010; 65
2018; 3
2014; 4
2013; 2013
2013; 54
2019; 25
2018; 30
2022; 31
2011; 122
2005; 36
2019; 7
2020; 41
2010; 121
2008; 14
2016; 123
2018; 26
2021; 14
2021; 59
2021; 15
2022
2022; 61
2022; 62
2020; 116
1994; 5
2005; 12
2018; 58
2016; 23
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Wang J. (e_1_2_9_11_1) 2013; 2013
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 5
  start-page: 812
  year: 1994
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: J. Nanomater.
– volume: 62
  start-page: 3110
  year: 2022
  publication-title: Polym. Eng. Sci.
– volume: 93
  year: 2019
  publication-title: J. Mol. Graph. Model.
– volume: 58
  start-page: E36
  year: 2018
  publication-title: Polym. Eng. Sci.
– volume: 57
  start-page: 2647
  year: 2003
  publication-title: Mater. Lett.
– volume: 41
  start-page: 1936
  year: 2020
  publication-title: Polym. Compos.
– volume: 25
  start-page: E147
  year: 2019
  publication-title: J. Vinyl Addit. Techn.
– volume: 61
  start-page: 3973
  year: 2022
  publication-title: Ind. Eng. Chem. Res.
– volume: 139
  start-page: 139
  year: 2022
  publication-title: J. Appl. Polym. Sci.
– volume: 65
  start-page: 59
  year: 2010
  publication-title: Polym. Bull.
– volume: 51
  start-page: 1127
  year: 2012
  publication-title: Polym. Plast. Technol.
– volume: 4
  start-page: 3966
  year: 2014
  publication-title: RSC Adv.
– volume: 59
  start-page: 9959
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 121
  start-page: 198
  year: 2010
  publication-title: Mater. Chem. Phys.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 426
  year: 2018
  publication-title: Macromol. Res.
– year: 2022
– volume: 36
  start-page: 423
  year: 2005
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 16
  start-page: 1155
  year: 2002
  publication-title: J. Adhes. Sci. Technol.
– volume: 12
  start-page: 669
  year: 2005
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 17
  start-page: 1523
  year: 2010
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 116
  year: 2020
  publication-title: Eng. Fail. Anal.
– volume: 139
  year: 2022
  publication-title: J. Appl. Polym. Sci.
– volume: 2012
  start-page: 1
  year: 2012
  publication-title: J. Nanomater.
– volume: 123
  start-page: 301
  year: 2016
  publication-title: J. Therm. Anal. Calorim.
– volume: 6
  start-page: 6488
  year: 2018
  publication-title: ACS Sustain. Chem. Eng.
– volume: 51
  start-page: 298
  year: 2012
  publication-title: Polym. Plast. Technol.
– volume: 11
  start-page: 24
  year: 2019
  publication-title: Polymers (Basel)
– volume: 14
  start-page: 142
  year: 2008
  publication-title: J. Vinyl Addit. Techn.
– volume: 73
  start-page: 378
  year: 2008
  publication-title: Carbohydr. Polym.
– volume: 59
  start-page: 912
  year: 2021
  publication-title: J. Polym. Sci.
– volume: 131
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 58
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– volume: 165
  start-page: 231
  year: 2018
  publication-title: Compos. Sci. Technol.
– volume: 31
  start-page: 1493
  year: 2022
  publication-title: J. Mater. Eng. Perform.
– volume: 122
  start-page: 1921
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 3
  start-page: 1578
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 1660
  year: 2010
  publication-title: Polym. Int.
– volume: 14
  start-page: 1235
  year: 2021
  publication-title: Energies
– volume: 65
  start-page: 248
  year: 2014
  publication-title: J. Korean Phys. Soc.
– volume: 54
  start-page: 180
  year: 2013
  publication-title: Compos. B: Eng.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 23
  year: 2021
  publication-title: Adv. Eng. Mater.
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 2016
  start-page: 1
  year: 2016
  publication-title: Int. J. Polym. Sci.
– volume: 284
  year: 2018
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 7
  start-page: 2304
  year: 2019
  publication-title: ACS Sustain. Chem. Eng.
– volume: 15
  start-page: 1081
  year: 2021
  publication-title: Express Polym. Lett.
– volume: 23
  start-page: 136
  year: 2022
  publication-title: Trans. Electr. Electro.
– volume: 23
  start-page: 2777
  year: 2016
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– ident: e_1_2_9_8_1
  doi: 10.1002/app.52705
– ident: e_1_2_9_16_1
  doi: 10.1088/1757-899X/284/1/012017
– ident: e_1_2_9_17_1
  doi: 10.1021/acs.iecr.0c00196
– volume: 2013
  start-page: 1
  year: 2013
  ident: e_1_2_9_11_1
  publication-title: J. Nanomater.
– ident: e_1_2_9_6_1
  doi: 10.1002/app.51787
– ident: e_1_2_9_28_1
  doi: 10.1063/1.4979107
– ident: e_1_2_9_48_1
  doi: 10.1109/TDEI.2016.7736837
– ident: e_1_2_9_3_1
  doi: 10.1016/S0167-577X(02)01344-7
– ident: e_1_2_9_37_1
  doi: 10.1002/vnl.20156
– ident: e_1_2_9_43_1
  doi: 10.1016/j.compositesa.2004.10.012
– ident: e_1_2_9_5_1
  doi: 10.1016/j.engfailanal.2020.104714
– ident: e_1_2_9_7_1
  doi: 10.1007/s13233-018-6052-9
– ident: e_1_2_9_15_1
  doi: 10.1007/s42341-021-00331-2
– ident: e_1_2_9_9_1
  doi: 10.3390/polym11010024
– ident: e_1_2_9_25_1
  doi: 10.1155/2012/263915
– ident: e_1_2_9_40_1
  doi: 10.1080/03602559.2011.639331
– ident: e_1_2_9_36_1
  doi: 10.1002/pc.25509
– ident: e_1_2_9_14_1
  doi: 10.1039/C3RA45332D
– ident: e_1_2_9_27_1
  doi: 10.1002/app.39601
– ident: e_1_2_9_42_1
  doi: 10.1021/acssuschemeng.8b05025
– ident: e_1_2_9_46_1
  doi: 10.1109/TDEI.2005.1511092
– ident: e_1_2_9_44_1
  doi: 10.1007/s10973-015-4880-x
– ident: e_1_2_9_30_1
– ident: e_1_2_9_13_1
  doi: 10.1155/2016/1707018
– ident: e_1_2_9_35_1
  doi: 10.1080/03602559.2012.679722
– ident: e_1_2_9_26_1
  doi: 10.3144/expresspolymlett.2021.87
– ident: e_1_2_9_18_1
  doi: 10.1021/acsenergylett.8b00583
– ident: e_1_2_9_45_1
  doi: 10.1109/94.326653
– ident: e_1_2_9_47_1
  doi: 10.1109/TDEI.2010.5595554
– ident: e_1_2_9_2_1
  doi: 10.1007/s11665-021-06222-0
– ident: e_1_2_9_39_1
  doi: 10.1021/acssuschemeng.8b00267
– ident: e_1_2_9_22_1
  doi: 10.1002/pen.24822
– ident: e_1_2_9_33_1
  doi: 10.1016/j.compositesb.2013.05.011
– ident: e_1_2_9_41_1
  doi: 10.1016/j.compscitech.2018.07.005
– ident: e_1_2_9_49_1
  doi: 10.1002/adma.201703624
– ident: e_1_2_9_24_1
  doi: 10.1063/1.3646909
– ident: e_1_2_9_20_1
  doi: 10.1002/pol.20210100
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.iecr.2c00369
– ident: e_1_2_9_51_1
  doi: 10.3938/jkps.65.248
– ident: e_1_2_9_52_1
  doi: 10.1007/s00289-010-0272-3
– ident: e_1_2_9_29_1
  doi: 10.1002/pen.26088
– ident: e_1_2_9_34_1
  doi: 10.1163/156856102320256828
– ident: e_1_2_9_12_1
  doi: 10.1002/app.34297
– ident: e_1_2_9_4_1
  doi: 10.1002/pi.2899
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jmgm.2019.107438
– ident: e_1_2_9_32_1
  doi: 10.3390/en14051235
– ident: e_1_2_9_38_1
  doi: 10.1016/j.carbpol.2007.12.002
– ident: e_1_2_9_23_1
  doi: 10.1002/vnl.21671
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.iecr.9b02172
– ident: e_1_2_9_21_1
  doi: 10.1016/j.matchemphys.2010.01.020
– ident: e_1_2_9_50_1
  doi: 10.1002/adem.202100008
SSID ssj0011506
Score 2.4543881
Snippet Modification with nanoparticles is an effective way of overcoming the inherent defects of high‐density polyethylene (HDPE). However, the uniform dispersion of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aging
Aging (natural)
Alternating current
Cables
Carbonyls
Crystal defects
Dispersion
dispersion method
Electrical insulation
electrical insulation properties
Electrical resistance
HDPE
High density polyethylenes
Latex
Materials science
Mechanical properties
Nanocomposites
Nanoparticles
nano‐ZnO
Natural rubber
Oxidation resistance
Polymers
Rubber
Sheaths
Tensile strength
Thermal resistance
thermo‐oxidative aging resistance
Zinc oxide
Zinc oxides
Title Design of HDPE‐based nanocomposite with excellent thermal‐oxidative aging resistance, mechanical properties and electrical insulation properties: Dispersing nano‐ZnO assisted by natural rubber latex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.54420
https://www.proquest.com/docview/2859582327
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7Ekx6S-AjxSRE85JDRefV0TzyJqywezBIiSAgM_QRRZ2XdhY0nf0J-mL_CX2JVz866hgght4Gp6e6hq7u-qq7-irEdL9Fsp4mPUsl5lBvDI61EFmkhfJ44g3guZPmeFt2z_OScn8-x_fYuTMMPMQ240coI-zUtcKVv955JQ6kMFs_zlPx1ytUiQPRtSh1FQKdo0juSCH0K3rIKxene9MuXtugZYM7C1GBnjt-yn-0Im_SSy93RUO-auz_IG__zF96xNxP8CQeNwiyxOVcvs8UZVsIV9tAJWR3Q99Dt9I4e73-TqbNQq7pPGeiU5uWAArjgxiHwXw-BcOS1ukLh_vjCBjZxCAWQAP15wqioXJ_h2tFFY9ILuKFTgAHRuYKqLTTleMKbkB4fFGZG6At0LojUnEIbYSTY04_6KyD2J0W1oH9BICnFBgYjrd0AsA03XmVnx0ffD7vRpOhDZNJSxJFTRSmlQbuqC8t9nElvhDMyUU5IrU2WK6llkVmbFLHyniueiMQKZTKrvC6z92y-7tfuA4MMXdeSDnqL1OWlMqX0sTcISLjJTCn0GvvUTn9lJozoVJjjqmq4nNMKJ6gKE7TGPk5FbxoakL8JbbY6VE12gtuKCAK5RNwqsLugDK83UB30euFh_d9FN9hCiriLzGkSb7L54WDkthAnDfV2WBBP1v4XeA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEO4QPKAHBX8iglAxHjw4MH893WO8EBayKOLGQEJMzKR_EyLMkmU3WTj5CD6YT8GTUNWzsyxGE-Ntkqnp7klXdX1dXf0VY6-9RLedJj5KJedRbgyPtBJZpIXweeIM4rmQ5XtQdI_yD8f8eI69b-_CNPwQ04AbWUZYr8nAKSC9ecsaSnWweJ6nuGG_RxW9ySw7X6bkUQR1iibBI4lwV8FbXqE43Zx-etcb3ULMWaAaPM3uI_atHWOTYPJ9YzTUG-bqN_rG__2JRfZwAkFhq9GZJTbn6sfswQwx4RP2qxMSO6Dvodvp7Vz_-EnezkKt6j4loVOmlwOK4YIbh9h_PQSCkmfqFIX74xMbCMUh1EAC3NITTEX9egtnju4ak2rAOR0EDIjRFVRtoanIE96EDPmgMzNC76BzQrzmFN0II8GevtafAeE_6aoFfQmBpxQbGIy0dgPANtz4KTva3Tnc7kaTug-RSUsRR04VpZQGXasuLPdxJr0RzshEOSG1NlmupJZFZm1SxMp7rngiEiuUyazyusyesfm6X7vnDDLcvZZ01lukLi-VKaWPvUFMwk1mSqGX2Zt2_iszIUWn2hynVUPnnFY4QVWYoGX2aip63jCB_ElotVWiarIYXFTEEcglQleB3QVt-HsD1VavFx5e_LvoOlvoHn7ar_b3Dj6usPspwjDyrkm8yuaHg5F7ibBpqNeCddwAEuEbkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahRBEG5ChKAHf6KSaIxF8ODBSeavp3v0FDJZ1kTiIgaCCEP_QjCZXdZdWD35CD6YT-GTWNWzs9mIgngbmJruHrq666vq6q8Ye-Ylmu008VEqOY9yY3iklcgiLYTPE2cQz4Us35Oif5ofnfGzFfaquwvT8kMsAm60MsJ-TQt8ZP3eFWkolcHieZ6iv34jL2JJnlf1bsEdRUinaPM7kgidCt7RCsXp3uLT68boCmEu49RgaHp32MduiG1-yafd6UTvmq-_sTf-5z_cZbfnABT2W425x1Zcs85uLdES3mc_qpDWAUMP_Wpw-PPbd7J1FhrVDCkFnfK8HFAEF9wsRP6bCRCQvFQXKDycndtAJw6hAhKgQ08gFbXrBVw6umlMigEjOgYYE58rqMZCW48nvAn58UFjloReQnVOrOYU2wgjwZ4-NG8BwT9pqgX9BQJLKTYwnmrtxoBtuNkDdto7fH_Qj-ZVHyKTliKOnCpKKQ0aVl1Y7uNMeiOckYlyQmptslxJLYvM2qSIlfdc8UQkViiTWeV1mT1kq82wcRsMMvRdSzrpLVKXl8qU0sfeICLhJjOl0JvseTf9tZlTolNljou6JXNOa5ygOkzQJttZiI5aHpA_CW11OlTPt4LPNTEEconAVWB3QRn-3kC9PxiEh0f_LvqUrQ2qXv3m9cnxY3YzRQxGpjWJt9jqZDx1TxAzTfR2WBu_AOPCGkk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+HDPE%E2%80%90based+nanocomposite+with+excellent+thermal%E2%80%90oxidative+aging+resistance%2C+mechanical+properties+and+electrical+insulation+properties%3A+Dispersing+nano%E2%80%90ZnO+assisted+by+natural+rubber+latex&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Li%2C+Jinglin&rft.au=Mou%2C+Wenjie&rft.au=Zhu%2C+Jinxin&rft.au=Hu%2C+Chaoqiang&rft.date=2023-10-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.54420&rft.externalDBID=10.1002%252Fapp.54420&rft.externalDocID=APP54420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon