A Rapid, End‐to‐end, Generative Model for Gaseous Phenomena from Limited Views
Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we expl...
Saved in:
Published in | Computer graphics forum Vol. 40; no. 6; pp. 242 - 257 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7055 1467-8659 |
DOI | 10.1111/cgf.14270 |
Cover
Abstract | Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques.
Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. |
---|---|
AbstractList | Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques. Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques. Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. |
Author | Li, Chen Qin, Hong Qiu, Sheng Wang, Changbo |
Author_xml | – sequence: 1 givenname: Sheng surname: Qiu fullname: Qiu, Sheng email: 1147899155@qq.com organization: East China Normal University, Shanghai – sequence: 2 givenname: Chen surname: Li fullname: Li, Chen email: lichen2014gyx@163.com organization: East China Normal University, Shanghai – sequence: 3 givenname: Changbo surname: Wang fullname: Wang, Changbo email: cbwang@sei.ecnu.edu.cn organization: East China Normal University, Shanghai – sequence: 4 givenname: Hong surname: Qin fullname: Qin, Hong email: qin@cs.stonybrook.edu organization: Stony Brook University |
BookMark | eNp1kM9OAjEQxhuDiYAefIMmnkwE2t3tdvdICKAJRkPU66a0Uy1ZWmwXCTcfwWf0SazCyegc5k_y-2YyXwe1rLOA0DklfRpjIJ91n2YJJ0eoTbOc94qclS3UJjT2nDB2gjohLAkhGc9ZG82HeC7WRl3hsVWf7x-NiwlsnKdgwYvGvAG-dQpqrJ3HUxHAbQK-fwHrVmAF1t6t8MysTAMKPxnYhlN0rEUd4OxQu-hxMn4YXfdmd9Ob0XDWk0nJSa_UhCwYUyrPCDDJEqYTWSwYJyVNRSk0I6pI8kwyVaZSkzxPOeSKaqn5glOWdtHFfu_au9cNhKZauo238WSVMM5TViQpidRgT0nvQvCgK2ma-JazjRemriipvo2ronHVj3FRcflLsfZmJfzuT_awfWtq2P0PVqPpZK_4Atjtftw |
CitedBy_id | crossref_primary_10_1109_TVCG_2024_3358636 crossref_primary_10_32604_cmes_2024_048549 crossref_primary_10_1111_cgf_14461 crossref_primary_10_1007_s41095_023_0338_4 crossref_primary_10_1111_cgf_14751 crossref_primary_10_1002_cav_2116 crossref_primary_10_1145_3528223_3530169 |
Cites_doi | 10.1145/2980179.2980229 10.1109/TGRS.2011.2132727 10.1109/CVPR.2016.90 10.1007/s11390-015-1543-0 10.1145/2699276.2699287 10.24963/ijcai.2017/310 10.1111/cgf.14010 10.1145/2897839.2927399 10.1111/cgf.14097 10.1109/TIP.2019.2946126 10.1145/2939672.2939738 10.1145/1360612.1360649 10.1111/cgf.13522 10.1145/3197517.3201304 10.1007/s10439-018-1984-z 10.1109/ICCV.2015.316 10.1145/3208159.3208162 10.1109/CVPR.2018.00936 10.1109/TPAMI.2007.1056 10.1109/CVPR.2017.141 10.1109/CVPR.2017.291 10.1145/311535.311548 10.1109/CVPR.2017.179 10.1145/3272127.3275020 10.1145/3355089.3356560 10.1007/978-3-319-24574-4_28 10.1145/2786784.2786798 10.1145/3084873.3084907 10.1145/1531326.1531396 10.1145/2766982 10.1109/CVPR.2016.537 10.1109/CVPR.2017.19 10.1002/cav.1896 10.3390/s19010012 10.1145/2461912.2461999 10.1111/cgf.13511 10.1109/ICCV.2017.629 10.1111/cgf.13619 10.1145/3340251 10.1145/2766958 10.1063/1.1761178 10.1007/s10915-007-9166-4 |
ContentType | Journal Article |
Copyright | 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/cgf.14270 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 257 |
ExternalDocumentID | 10_1111_cgf_14270 CGF14270 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of USA (IIS‐1715985 and IIS‐1812606) – fundername: National Natural Science Foundation of China funderid: 61532002; 61672237; 62002121; 62072183 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2970-9f00b55dd640e5c525f2c8b570913a9af50d8264c5d93cf06637e6d1fcf7b7153 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 25 06:18:01 EDT 2025 Tue Jul 01 02:23:13 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Wed Jan 22 16:27:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-9f00b55dd640e5c525f2c8b570913a9af50d8264c5d93cf06637e6d1fcf7b7153 |
Notes | S. Qiu and C. Li contribute equally to the article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2577358230 |
PQPubID | 30877 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2577358230 crossref_citationtrail_10_1111_cgf_14270 crossref_primary_10_1111_cgf_14270 wiley_primary_10_1111_cgf_14270_CGF14270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 34 2017; 7 2013; 3 1965; 12 2019; 6 2017; 4 2019; 30 2010 2019; 2 2019; 1 2015; 30 2020; 39 2019; 38 2019; 19 2008; 35 2008; 5 2016; 35 1999 2009; 28 2018; 46 2020; 6 2018; 8 2020; 4 2014; 4 2013; 32 2020 2008; 27 2019 2018 2020; 26 2017 2019; 29 2016 2015 2007; 5 2014 2011; 49 2012; 4 2018; 37 Luo R. (e_1_2_11_30_1) 2020; 26 e_1_2_11_55_1 Gregson J. (e_1_2_11_11_1) 2012; 4 e_1_2_11_57_1 e_1_2_11_36_1 Atcheson B. (e_1_2_11_2_1) 2008; 5 e_1_2_11_51_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_48_1 Meng C. (e_1_2_11_35_1) 2017 Goodfellow I. J. (e_1_2_11_15_1) 2014 Liang S. (e_1_2_11_28_1) 2018; 37 Yang L. (e_1_2_11_54_1) 2015 e_1_2_11_60_1 Kim B. (e_1_2_11_24_1) 2019; 38 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 Gu J. (e_1_2_11_13_1) 2013; 3 e_1_2_11_50_1 Eckert M. (e_1_2_11_7_1) 2019; 6 Chu M. (e_1_2_11_4_1) 2020; 4 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 Chu M. (e_1_2_11_3_1) 2017; 4 e_1_2_11_5_1 Ihmsen M. (e_1_2_11_22_1) 2014 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 Liu Z. (e_1_2_11_32_1) 2019 Li C. (e_1_2_11_29_1) 2020 e_1_2_11_37_1 Gissler C. (e_1_2_11_14_1) 2019; 1 e_1_2_11_39_1 Gregson J. (e_1_2_11_10_1) 2014; 4 Tompson J. (e_1_2_11_46_1) 2017 |
References_xml | – volume: 4 start-page: 52 year: 2012 article-title: Stochastic tomography and its applications in 3d imaging of mixing fluids publication-title: ACM Transactions on Graphics 31 – volume: 28 start-page: 90 issue: 3 year: 2009 article-title: Physically guided liquid surface modeling from videos publication-title: ACM Transactions on Graphics – start-page: 4966 year: 2016 end-page: 4975 – start-page: 770 year: 2016 end-page: 778 – volume: 37 start-page: 206 issue: 6 year: 2018 article-title: Video to fully automatic 3d hair model publication-title: ACM Transactions on Graphics – volume: 1 start-page: 5 year: 2019 article-title: Interlinked sph pressure solvers for strong fluid‐rigid coupling publication-title: ACM Transactions on Graphics 38 – start-page: 61 year: 2015 end-page: 68 – volume: 3 start-page: 555 year: 2013 end-page: 567 article-title: Compressive structured light for recovering inhomogeneous participating media publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 35 – volume: 6 start-page: 239:1 year: 2019 end-page: 239:16 article-title: Scalarflow: a large‐scale volumetric data set of real‐world scalar transport flows for computer animation and machine learning publication-title: ACM Transactions on Graphics 38 – volume: 34 start-page: 93:1 issue: 4 year: 2015 end-page: 93:10 article-title: Fluid volume modeling from sparse multi‐view images by appearance transfer publication-title: ACM Transactions on Graphics – start-page: 5908 year: 2017 end-page: 5916 – start-page: 965 year: 2019 end-page: 975 – volume: 46 start-page: 567 issue: 4 year: 2018 end-page: 578 article-title: Computational fluid dynamics modeling of the burr orbital motion in rotational atherectomy with particle image velocimetry validation publication-title: Annals of biomedical engineering – volume: 30 issue: 3‐4 year: 2019 article-title: Multitask learning on monocular water images: Surface reconstruction and image synthesis publication-title: Computer Animation and Virtual Worlds – start-page: 2462 year: 2017 end-page: 2470 – start-page: 105 year: 2017 end-page: 114 – start-page: 157 year: 2015 end-page: 163 – volume: 5 start-page: 132 year: 2008 article-title: Time‐resolved 3d capture of non‐stationary gas flows publication-title: ACM Transactions on Graphics 27 – start-page: 2758 year: 2015 end-page: 2766 – volume: 4 start-page: 139 year: 2014 article-title: From capture to simulation ‐ connecting forward and inverse problems in fluids publication-title: ACM Transactions on Graphics 33 – start-page: 481 year: 2016 end-page: 490 – start-page: 1415 year: 2017 end-page: 1424 – start-page: 3424 year: 2017 end-page: 3433 – start-page: 1 year: 2018 end-page: 5 – volume: 7 year: 2017 – volume: 26 start-page: 1745 issue: 4 year: 2020 end-page: 1759 article-title: Nnwarp: Neural network‐based nonlinear deformation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 4 start-page: 75 year: 2020 end-page: 1 article-title: Learning temporal coherence via self‐supervision for gan‐based video generation publication-title: ACM Transactions on Graphics 39 – volume: 38 start-page: 59 issue: 2 year: 2019 end-page: 70 article-title: Deep fluids: A generative network for parameterized fluid simulations publication-title: Computer Graphics Forum – volume: 49 start-page: 3932 issue: 10 year: 2011 end-page: 3946 article-title: Extraction and three‐dimensional reconstruction of isolated buildings in urban scenes from high‐resolution optical and sar spaceborne images publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 12 start-page: 2182 year: 1965 end-page: 2189 article-title: Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface publication-title: The Physics of Fluids 8 – volume: 35 start-page: 350 issue: 2‐3 year: 2008 end-page: 371 article-title: An unconditionally stable maccormack method publication-title: Journal of Scientific Computing – volume: 37 start-page: 171 issue: 8 year: 2018 end-page: 182 article-title: Liquid splash modeling with neural networks publication-title: Computer Graphics Forum – volume: 4 start-page: 69 year: 2017 article-title: Data‐driven synthesis of smoke flows with cnn‐based feature descriptors publication-title: ACM Transactions on Graphics 36 – start-page: 234 year: 2015 end-page: 241 – volume: 6 start-page: 180 year: 2020 end-page: 191 article-title: Accelerating liquid simulation with an improved data‐driven method publication-title: Computer Graphics Forum 39 – volume: 34 start-page: 52 issue: 4 year: 2015 article-title: Restoring the missing vorticity in advection‐projection fluid solvers publication-title: ACM Transactions on Graphics – volume: 2 start-page: 10:1 issue: 2 year: 2019 end-page: 10:21 article-title: A multi‐pass GAN for fluid flow super‐resolution publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques – volume: 32 start-page: 63 issue: 4 year: 2013 article-title: A new grid structure for domain extension publication-title: ACM Transactions on Graphics – start-page: 41 year: 2016 – start-page: 8981 year: 2018 end-page: 8989 – start-page: 2230 year: 2017 end-page: 2236 – start-page: 1 year: 2020 end-page: 1 article-title: Learning physical parameters and detail enhancement for gaseous scene design based on data guidance publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 121 year: 1999 end-page: 128 – start-page: 103 year: 2015 end-page: 112 – year: 2010 – volume: 5 start-page: 870 year: 2007 end-page: 885 article-title: Photo‐consistent reconstruction of semitransparent scenes by density‐sheet decomposition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 29 – start-page: 4161 year: 2017 end-page: 4170 – volume: 38 start-page: 1 issue: 6 year: 2019 end-page: 11 article-title: Transport‐based neural style transfer for smoke simulations publication-title: ACM Transactions on Graphics – start-page: 21 year: 2014 end-page: 42 – volume: 19 start-page: 12 issue: 1 year: 2019 article-title: Temperature measurement of fluid flows by using a focusing schlieren method publication-title: Sensors – volume: 27 start-page: 50 issue: 3 year: 2008 article-title: Wavelet turbulence for fluid simulation publication-title: ACM Transactions on Graphics – start-page: 139 year: 2018 end-page: 146 – volume: 8 start-page: 47 year: 2018 end-page: 58 article-title: Coupled fluid density and motion from single views publication-title: Computer Graphics Forum 37 – volume: 35 start-page: 200 issue: 6 year: 2016 article-title: Eulerian solid‐fluid coupling publication-title: ACM Transactions on Graphics – start-page: 2672 year: 2014 end-page: 2680 – volume: 30 start-page: 528 issue: 3 year: 2015 end-page: 539 article-title: Monocular video guided garment simulation publication-title: Journal of Computer Science and Technology – volume: 39 start-page: 15 issue: 8 year: 2020 end-page: 25 article-title: Latent space subdivision: stable and controllable time predictions for fluid flow publication-title: Computer Graphics Forum – start-page: 1 year: 2017 end-page: 79 – volume: 37 start-page: 95 issue: 4 year: 2018 article-title: Tempogan: A temporally coherent, volumetric gan for super‐resolution fluid flow publication-title: ACM Transactions on Graphics – volume: 29 start-page: 2301 year: 2019 end-page: 2313 article-title: A wave‐shaped deep neural network for smoke density estimation publication-title: IEEE Transactions on Image Processing – ident: e_1_2_11_45_1 doi: 10.1145/2980179.2980229 – volume-title: Proceedings of ML Systems Workshop in NIPS year: 2017 ident: e_1_2_11_35_1 – ident: e_1_2_11_44_1 doi: 10.1109/TGRS.2011.2132727 – start-page: 103 volume-title: Virtual Reality Software and Technology year: 2015 ident: e_1_2_11_54_1 – ident: e_1_2_11_20_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_11_27_1 doi: 10.1007/s11390-015-1543-0 – ident: e_1_2_11_60_1 doi: 10.1145/2699276.2699287 – volume: 4 start-page: 69 year: 2017 ident: e_1_2_11_3_1 article-title: Data‐driven synthesis of smoke flows with cnn‐based feature descriptors publication-title: ACM Transactions on Graphics 36 – ident: e_1_2_11_33_1 doi: 10.24963/ijcai.2017/310 – ident: e_1_2_11_16_1 doi: 10.1111/cgf.14010 – ident: e_1_2_11_36_1 doi: 10.1145/2897839.2927399 – ident: e_1_2_11_49_1 doi: 10.1111/cgf.14097 – ident: e_1_2_11_55_1 doi: 10.1109/TIP.2019.2946126 – ident: e_1_2_11_12_1 doi: 10.1145/2939672.2939738 – ident: e_1_2_11_26_1 doi: 10.1145/1360612.1360649 – ident: e_1_2_11_48_1 doi: 10.1111/cgf.13522 – ident: e_1_2_11_52_1 doi: 10.1145/3197517.3201304 – ident: e_1_2_11_58_1 doi: 10.1007/s10439-018-1984-z – volume: 5 start-page: 132 year: 2008 ident: e_1_2_11_2_1 article-title: Time‐resolved 3d capture of non‐stationary gas flows publication-title: ACM Transactions on Graphics 27 – ident: e_1_2_11_5_1 doi: 10.1109/ICCV.2015.316 – ident: e_1_2_11_38_1 doi: 10.1145/3208159.3208162 – ident: e_1_2_11_18_1 doi: 10.1109/CVPR.2018.00936 – start-page: 21 volume-title: Eurographics (State of the Art Reports) year: 2014 ident: e_1_2_11_22_1 – ident: e_1_2_11_9_1 – ident: e_1_2_11_17_1 doi: 10.1109/TPAMI.2007.1056 – ident: e_1_2_11_47_1 doi: 10.1109/CVPR.2017.141 – ident: e_1_2_11_39_1 doi: 10.1109/CVPR.2017.291 – ident: e_1_2_11_43_1 doi: 10.1145/311535.311548 – ident: e_1_2_11_21_1 doi: 10.1109/CVPR.2017.179 – volume: 37 start-page: 206 issue: 6 year: 2018 ident: e_1_2_11_28_1 article-title: Video to fully automatic 3d hair model publication-title: ACM Transactions on Graphics doi: 10.1145/3272127.3275020 – volume: 38 start-page: 1 issue: 6 year: 2019 ident: e_1_2_11_24_1 article-title: Transport‐based neural style transfer for smoke simulations publication-title: ACM Transactions on Graphics doi: 10.1145/3355089.3356560 – ident: e_1_2_11_40_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_11_41_1 doi: 10.1145/2786784.2786798 – ident: e_1_2_11_8_1 doi: 10.1145/3084873.3084907 – volume: 1 start-page: 5 year: 2019 ident: e_1_2_11_14_1 article-title: Interlinked sph pressure solvers for strong fluid‐rigid coupling publication-title: ACM Transactions on Graphics 38 – volume: 4 start-page: 52 year: 2012 ident: e_1_2_11_11_1 article-title: Stochastic tomography and its applications in 3d imaging of mixing fluids publication-title: ACM Transactions on Graphics 31 – ident: e_1_2_11_50_1 doi: 10.1145/1531326.1531396 – start-page: 965 volume-title: Advances in Neural Information Processing Systems year: 2019 ident: e_1_2_11_32_1 – ident: e_1_2_11_56_1 doi: 10.1145/2766982 – ident: e_1_2_11_61_1 doi: 10.1109/CVPR.2016.537 – ident: e_1_2_11_31_1 doi: 10.1109/CVPR.2017.19 – ident: e_1_2_11_53_1 doi: 10.1002/cav.1896 – start-page: 3424 volume-title: Proceedings of the 34th International Conference on Machine Learning year: 2017 ident: e_1_2_11_46_1 – volume: 3 start-page: 555 year: 2013 ident: e_1_2_11_13_1 article-title: Compressive structured light for recovering inhomogeneous participating media publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 35 – volume: 4 start-page: 75 year: 2020 ident: e_1_2_11_4_1 article-title: Learning temporal coherence via self‐supervision for gan‐based video generation publication-title: ACM Transactions on Graphics 39 – start-page: 1 year: 2020 ident: e_1_2_11_29_1 article-title: Learning physical parameters and detail enhancement for gaseous scene design based on data guidance publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: e_1_2_11_34_1 doi: 10.3390/s19010012 – volume: 26 start-page: 1745 issue: 4 year: 2020 ident: e_1_2_11_30_1 article-title: Nnwarp: Neural network‐based nonlinear deformation publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: e_1_2_11_57_1 doi: 10.1145/2461912.2461999 – volume: 6 start-page: 239:1 year: 2019 ident: e_1_2_11_7_1 article-title: Scalarflow: a large‐scale volumetric data set of real‐world scalar transport flows for computer animation and machine learning publication-title: ACM Transactions on Graphics 38 – ident: e_1_2_11_6_1 doi: 10.1111/cgf.13511 – ident: e_1_2_11_23_1 – ident: e_1_2_11_59_1 doi: 10.1109/ICCV.2017.629 – ident: e_1_2_11_25_1 doi: 10.1111/cgf.13619 – ident: e_1_2_11_51_1 doi: 10.1145/3340251 – ident: e_1_2_11_37_1 doi: 10.1145/2766958 – volume: 4 start-page: 139 year: 2014 ident: e_1_2_11_10_1 article-title: From capture to simulation ‐ connecting forward and inverse problems in fluids publication-title: ACM Transactions on Graphics 33 – ident: e_1_2_11_19_1 doi: 10.1063/1.1761178 – start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: e_1_2_11_15_1 – ident: e_1_2_11_42_1 doi: 10.1007/s10915-007-9166-4 |
SSID | ssj0004765 |
Score | 2.3858135 |
Snippet | Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | animation Artists Computer graphics Coupling Density fluid reconstruction Image reconstruction modelling physically based animation Projection surface reconstruction Velocity distribution |
Title | A Rapid, End‐to‐end, Generative Model for Gaseous Phenomena from Limited Views |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14270 https://www.proquest.com/docview/2577358230 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFICD7EkfvIvTKUF82IMdbdokLT6NuQuCIsPJHoSSJqmKoxuue_HJn-Bv9JeY08s2RUF8KS1Nb0nOJeWc7yB06keMcEI15DoFlhe7jiWEZJavOFTYdrTOQv6vrllv4F0O6XAFnZe5MDkfYv7DDSQj09cg4CKaLgm5fIiNmJtHGP3ruAy4-Rf9BTrK44yWXG8gxhRUIYjimV_51RYtHMxlNzWzM50NdF--YR5e8tyYpVFDvn6DN_7zEzbReuF_4mY-YbbQik620doSlXAH9Zu4LyZP6gy3E_Xx9p6OzUYn5jhnVIOCxFBDbYSNx4u7xg6OZ1N886gTwDkIDCkruMicwncAO91Fg077ttWzitILliQBt60gtu2IUqWYZ2sqKaExkX5EOWBERSBiaiuzMPEkVYErY_BbuGbKiWXMI2606B6qJONE7yPMlOZEuEwwDgqCCs9WTHDfJgHl3CFVVC8HIZQFlxzKY4zCcn1iuinMuqmKTuZNJzmM46dGtXIkw0Iep6FRTBxygl1zup4Nye83CFvdTrZz8Pemh2iVQLBLFnxWQ5X0ZaaPjLeSRsfZtPwEfl_jiA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VGICBN6I8LcTAQFDqxnYjsSBoKVAQqijqgiLHdgBRpQjahYmfwG_kl-DLoy0IJMQSJYoTJ7bv7jvr7juAnUrIqaDMYK6T73hRueRIqbhT0QIrbJeMSUL-Ly55veWdtVm7AAd5LkzKDzHYcEPJSPQ1CjhuSI9IubqLrJzbPsZgwrNAA12v4-aQPMoTnOXM3sgZk_EKYRzP4NGv1mgIMUeBamJparNwm39jGmDyuN_vhfvq9Rt9439_Yg5mMghKDtM1Mw8FEy_A9Agx4SI0D0lTPj3oPVKN9cfbe69rDya21ylNNepIgmXUOsSCXnJiTWG3_0Ku7k2MjA6SYNYKyZKnyA3ynS5Bq1a9Pqo7WfUFR1FfuI4fuW7ImNbccw1TjLKIqkrIBDKJSl9GzNXWN_EU035ZRQhdhOG6FKlIhMIq0mUYj7uxWQHCtRFUlrnkAnUEk56ruRQVl_pMiBItwm4-C4HKqMmxQkYnyF0UO0xBMkxF2B40fUr5OH5qtJ5PZZCJ5EtgdZPAtOCyvb2bzMnvLwiOTmrJyerfm27BZP36ohE0Ti_P12CKYuxLEou2DuO9577ZsOClF24ma_QTyhXnpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt_h2EQ8ejKTb7G6DJ1Hru5Si4kEIm32oKGnR9uLJn-Bv9Je4k0dbRUG8hIRMXjs7M9-GmW8ANqsxp4Iyg7VOoRfYStmTUnGvqgV22C4bk6b8X9T58VVwesNuSrBb1MJk_BC9H25oGam_RgNvaztg5OrOOjN3jxiCkYA7JIGIqNnnjgoEZwWxN1LG5LRCmMbTu_RrMOojzEGcmgaa2iTcFq-Y5Zc87nQ78Y56_cbe-M9vmIKJHICSvWzGTEPJJDMwPkBLOAvNPdKU7Qe9TQ4T_fH23mm5jUnccUZSjR6SYBO1J-IgLzlygbDVfSGNe5Mgn4MkWLNC8tIpco1sp3NwVTu83D_28t4LnqKh8L3Q-n7MmNY88A1TjDJLVTVmAnlEZSgt87VbmQSK6bCiLAIXYbguW2VFLJwbnYfhpJWYBSBcG0FlhUsu0EMwGfiaS1H1aciEKNNF2CqUEKmcmBz7YzxFxQLFDVOUDtMibPRE2xkbx09CK4Umo9wgXyLnmQQWBVfc6a1UJb_fINo_qqU7S38XXYfRxkEtOj-pny3DGMXElzQRbQWGO89ds-qQSydeS2foJyfw5lY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rapid%2C+End%E2%80%90to%E2%80%90end%2C+Generative+Model+for+Gaseous+Phenomena+from+Limited+Views&rft.jtitle=Computer+graphics+forum&rft.au=Qiu%2C+Sheng&rft.au=Chen%2C+Li&rft.au=Wang%2C+Changbo&rft.au=Qin%2C+Hong&rft.date=2021-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=40&rft.issue=6&rft.spage=242&rft.epage=257&rft_id=info:doi/10.1111%2Fcgf.14270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |