A Rapid, End‐to‐end, Generative Model for Gaseous Phenomena from Limited Views

Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we expl...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 40; no. 6; pp. 242 - 257
Main Authors Qiu, Sheng, Li, Chen, Wang, Changbo, Qin, Hong
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.09.2021
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.14270

Cover

Abstract Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques. Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays.
AbstractList Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques.
Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays. In this paper, we explore a hybrid approach to simultaneously taking advantage of both the model‐centric method and the data‐driven method. Specifically, this paper develops a novel conditional generative model to rapidly reconstruct the temporal density and velocity fields of gaseous phenomena based on the sequence of two projection views. With the data‐driven method, we can achieve the strong coupling of density update and the estimation of flow motion, as a result, we can greatly improve the reconstruction performance for smoke scenes. First, we employ a conditional generative network to generate the initial density field from input projection views and estimate the flow motion based on the adjacent frames. Second, we utilize the differentiable advection layer and design a velocity estimation network with the long‐term mechanism to help achieve the end‐to‐end training and more stable graphics effects. Third, we can re‐simulate the input scene with flexible coupling effects based on the estimated velocity field subject to artists' guidance or user interaction. Moreover, our generative model could accommodate single projection view as input. In practice, more input projection views are enabling and facilitating the high‐fidelity reconstruction with more realistic and finer details. We have conducted extensive experiments to confirm the effectiveness, efficiency, and robustness of our new method compared with the previous state‐of‐the‐art techniques. Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D acquisition of gaseous scenes (e.g., smokes) in real time remains technically challenging in graphics research nowadays.
Author Li, Chen
Qin, Hong
Qiu, Sheng
Wang, Changbo
Author_xml – sequence: 1
  givenname: Sheng
  surname: Qiu
  fullname: Qiu, Sheng
  email: 1147899155@qq.com
  organization: East China Normal University, Shanghai
– sequence: 2
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  email: lichen2014gyx@163.com
  organization: East China Normal University, Shanghai
– sequence: 3
  givenname: Changbo
  surname: Wang
  fullname: Wang, Changbo
  email: cbwang@sei.ecnu.edu.cn
  organization: East China Normal University, Shanghai
– sequence: 4
  givenname: Hong
  surname: Qin
  fullname: Qin, Hong
  email: qin@cs.stonybrook.edu
  organization: Stony Brook University
BookMark eNp1kM9OAjEQxhuDiYAefIMmnkwE2t3tdvdICKAJRkPU66a0Uy1ZWmwXCTcfwWf0SazCyegc5k_y-2YyXwe1rLOA0DklfRpjIJ91n2YJJ0eoTbOc94qclS3UJjT2nDB2gjohLAkhGc9ZG82HeC7WRl3hsVWf7x-NiwlsnKdgwYvGvAG-dQpqrJ3HUxHAbQK-fwHrVmAF1t6t8MysTAMKPxnYhlN0rEUd4OxQu-hxMn4YXfdmd9Ob0XDWk0nJSa_UhCwYUyrPCDDJEqYTWSwYJyVNRSk0I6pI8kwyVaZSkzxPOeSKaqn5glOWdtHFfu_au9cNhKZauo238WSVMM5TViQpidRgT0nvQvCgK2ma-JazjRemriipvo2ronHVj3FRcflLsfZmJfzuT_awfWtq2P0PVqPpZK_4Atjtftw
CitedBy_id crossref_primary_10_1109_TVCG_2024_3358636
crossref_primary_10_32604_cmes_2024_048549
crossref_primary_10_1111_cgf_14461
crossref_primary_10_1007_s41095_023_0338_4
crossref_primary_10_1111_cgf_14751
crossref_primary_10_1002_cav_2116
crossref_primary_10_1145_3528223_3530169
Cites_doi 10.1145/2980179.2980229
10.1109/TGRS.2011.2132727
10.1109/CVPR.2016.90
10.1007/s11390-015-1543-0
10.1145/2699276.2699287
10.24963/ijcai.2017/310
10.1111/cgf.14010
10.1145/2897839.2927399
10.1111/cgf.14097
10.1109/TIP.2019.2946126
10.1145/2939672.2939738
10.1145/1360612.1360649
10.1111/cgf.13522
10.1145/3197517.3201304
10.1007/s10439-018-1984-z
10.1109/ICCV.2015.316
10.1145/3208159.3208162
10.1109/CVPR.2018.00936
10.1109/TPAMI.2007.1056
10.1109/CVPR.2017.141
10.1109/CVPR.2017.291
10.1145/311535.311548
10.1109/CVPR.2017.179
10.1145/3272127.3275020
10.1145/3355089.3356560
10.1007/978-3-319-24574-4_28
10.1145/2786784.2786798
10.1145/3084873.3084907
10.1145/1531326.1531396
10.1145/2766982
10.1109/CVPR.2016.537
10.1109/CVPR.2017.19
10.1002/cav.1896
10.3390/s19010012
10.1145/2461912.2461999
10.1111/cgf.13511
10.1109/ICCV.2017.629
10.1111/cgf.13619
10.1145/3340251
10.1145/2766958
10.1063/1.1761178
10.1007/s10915-007-9166-4
ContentType Journal Article
Copyright 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
Copyright_xml – notice: 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.14270
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 257
ExternalDocumentID 10_1111_cgf_14270
CGF14270
Genre article
GrantInformation_xml – fundername: National Science Foundation of USA (IIS‐1715985 and IIS‐1812606)
– fundername: National Natural Science Foundation of China
  funderid: 61532002; 61672237; 62002121; 62072183
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2970-9f00b55dd640e5c525f2c8b570913a9af50d8264c5d93cf06637e6d1fcf7b7153
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 25 06:18:01 EDT 2025
Tue Jul 01 02:23:13 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Wed Jan 22 16:27:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-9f00b55dd640e5c525f2c8b570913a9af50d8264c5d93cf06637e6d1fcf7b7153
Notes S. Qiu and C. Li contribute equally to the article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2577358230
PQPubID 30877
PageCount 16
ParticipantIDs proquest_journals_2577358230
crossref_citationtrail_10_1111_cgf_14270
crossref_primary_10_1111_cgf_14270
wiley_primary_10_1111_cgf_14270_CGF14270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 34
2017; 7
2013; 3
1965; 12
2019; 6
2017; 4
2019; 30
2010
2019; 2
2019; 1
2015; 30
2020; 39
2019; 38
2019; 19
2008; 35
2008; 5
2016; 35
1999
2009; 28
2018; 46
2020; 6
2018; 8
2020; 4
2014; 4
2013; 32
2020
2008; 27
2019
2018
2020; 26
2017
2019; 29
2016
2015
2007; 5
2014
2011; 49
2012; 4
2018; 37
Luo R. (e_1_2_11_30_1) 2020; 26
e_1_2_11_55_1
Gregson J. (e_1_2_11_11_1) 2012; 4
e_1_2_11_57_1
e_1_2_11_36_1
Atcheson B. (e_1_2_11_2_1) 2008; 5
e_1_2_11_51_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_48_1
Meng C. (e_1_2_11_35_1) 2017
Goodfellow I. J. (e_1_2_11_15_1) 2014
Liang S. (e_1_2_11_28_1) 2018; 37
Yang L. (e_1_2_11_54_1) 2015
e_1_2_11_60_1
Kim B. (e_1_2_11_24_1) 2019; 38
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Gu J. (e_1_2_11_13_1) 2013; 3
e_1_2_11_50_1
Eckert M. (e_1_2_11_7_1) 2019; 6
Chu M. (e_1_2_11_4_1) 2020; 4
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
Chu M. (e_1_2_11_3_1) 2017; 4
e_1_2_11_5_1
Ihmsen M. (e_1_2_11_22_1) 2014
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
Liu Z. (e_1_2_11_32_1) 2019
Li C. (e_1_2_11_29_1) 2020
e_1_2_11_37_1
Gissler C. (e_1_2_11_14_1) 2019; 1
e_1_2_11_39_1
Gregson J. (e_1_2_11_10_1) 2014; 4
Tompson J. (e_1_2_11_46_1) 2017
References_xml – volume: 4
  start-page: 52
  year: 2012
  article-title: Stochastic tomography and its applications in 3d imaging of mixing fluids
  publication-title: ACM Transactions on Graphics 31
– volume: 28
  start-page: 90
  issue: 3
  year: 2009
  article-title: Physically guided liquid surface modeling from videos
  publication-title: ACM Transactions on Graphics
– start-page: 4966
  year: 2016
  end-page: 4975
– start-page: 770
  year: 2016
  end-page: 778
– volume: 37
  start-page: 206
  issue: 6
  year: 2018
  article-title: Video to fully automatic 3d hair model
  publication-title: ACM Transactions on Graphics
– volume: 1
  start-page: 5
  year: 2019
  article-title: Interlinked sph pressure solvers for strong fluid‐rigid coupling
  publication-title: ACM Transactions on Graphics 38
– start-page: 61
  year: 2015
  end-page: 68
– volume: 3
  start-page: 555
  year: 2013
  end-page: 567
  article-title: Compressive structured light for recovering inhomogeneous participating media
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 35
– volume: 6
  start-page: 239:1
  year: 2019
  end-page: 239:16
  article-title: Scalarflow: a large‐scale volumetric data set of real‐world scalar transport flows for computer animation and machine learning
  publication-title: ACM Transactions on Graphics 38
– volume: 34
  start-page: 93:1
  issue: 4
  year: 2015
  end-page: 93:10
  article-title: Fluid volume modeling from sparse multi‐view images by appearance transfer
  publication-title: ACM Transactions on Graphics
– start-page: 5908
  year: 2017
  end-page: 5916
– start-page: 965
  year: 2019
  end-page: 975
– volume: 46
  start-page: 567
  issue: 4
  year: 2018
  end-page: 578
  article-title: Computational fluid dynamics modeling of the burr orbital motion in rotational atherectomy with particle image velocimetry validation
  publication-title: Annals of biomedical engineering
– volume: 30
  issue: 3‐4
  year: 2019
  article-title: Multitask learning on monocular water images: Surface reconstruction and image synthesis
  publication-title: Computer Animation and Virtual Worlds
– start-page: 2462
  year: 2017
  end-page: 2470
– start-page: 105
  year: 2017
  end-page: 114
– start-page: 157
  year: 2015
  end-page: 163
– volume: 5
  start-page: 132
  year: 2008
  article-title: Time‐resolved 3d capture of non‐stationary gas flows
  publication-title: ACM Transactions on Graphics 27
– start-page: 2758
  year: 2015
  end-page: 2766
– volume: 4
  start-page: 139
  year: 2014
  article-title: From capture to simulation ‐ connecting forward and inverse problems in fluids
  publication-title: ACM Transactions on Graphics 33
– start-page: 481
  year: 2016
  end-page: 490
– start-page: 1415
  year: 2017
  end-page: 1424
– start-page: 3424
  year: 2017
  end-page: 3433
– start-page: 1
  year: 2018
  end-page: 5
– volume: 7
  year: 2017
– volume: 26
  start-page: 1745
  issue: 4
  year: 2020
  end-page: 1759
  article-title: Nnwarp: Neural network‐based nonlinear deformation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 4
  start-page: 75
  year: 2020
  end-page: 1
  article-title: Learning temporal coherence via self‐supervision for gan‐based video generation
  publication-title: ACM Transactions on Graphics 39
– volume: 38
  start-page: 59
  issue: 2
  year: 2019
  end-page: 70
  article-title: Deep fluids: A generative network for parameterized fluid simulations
  publication-title: Computer Graphics Forum
– volume: 49
  start-page: 3932
  issue: 10
  year: 2011
  end-page: 3946
  article-title: Extraction and three‐dimensional reconstruction of isolated buildings in urban scenes from high‐resolution optical and sar spaceborne images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 12
  start-page: 2182
  year: 1965
  end-page: 2189
  article-title: Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface
  publication-title: The Physics of Fluids 8
– volume: 35
  start-page: 350
  issue: 2‐3
  year: 2008
  end-page: 371
  article-title: An unconditionally stable maccormack method
  publication-title: Journal of Scientific Computing
– volume: 37
  start-page: 171
  issue: 8
  year: 2018
  end-page: 182
  article-title: Liquid splash modeling with neural networks
  publication-title: Computer Graphics Forum
– volume: 4
  start-page: 69
  year: 2017
  article-title: Data‐driven synthesis of smoke flows with cnn‐based feature descriptors
  publication-title: ACM Transactions on Graphics 36
– start-page: 234
  year: 2015
  end-page: 241
– volume: 6
  start-page: 180
  year: 2020
  end-page: 191
  article-title: Accelerating liquid simulation with an improved data‐driven method
  publication-title: Computer Graphics Forum 39
– volume: 34
  start-page: 52
  issue: 4
  year: 2015
  article-title: Restoring the missing vorticity in advection‐projection fluid solvers
  publication-title: ACM Transactions on Graphics
– volume: 2
  start-page: 10:1
  issue: 2
  year: 2019
  end-page: 10:21
  article-title: A multi‐pass GAN for fluid flow super‐resolution
  publication-title: Proceedings of the ACM on Computer Graphics and Interactive Techniques
– volume: 32
  start-page: 63
  issue: 4
  year: 2013
  article-title: A new grid structure for domain extension
  publication-title: ACM Transactions on Graphics
– start-page: 41
  year: 2016
– start-page: 8981
  year: 2018
  end-page: 8989
– start-page: 2230
  year: 2017
  end-page: 2236
– start-page: 1
  year: 2020
  end-page: 1
  article-title: Learning physical parameters and detail enhancement for gaseous scene design based on data guidance
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 121
  year: 1999
  end-page: 128
– start-page: 103
  year: 2015
  end-page: 112
– year: 2010
– volume: 5
  start-page: 870
  year: 2007
  end-page: 885
  article-title: Photo‐consistent reconstruction of semitransparent scenes by density‐sheet decomposition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 29
– start-page: 4161
  year: 2017
  end-page: 4170
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  end-page: 11
  article-title: Transport‐based neural style transfer for smoke simulations
  publication-title: ACM Transactions on Graphics
– start-page: 21
  year: 2014
  end-page: 42
– volume: 19
  start-page: 12
  issue: 1
  year: 2019
  article-title: Temperature measurement of fluid flows by using a focusing schlieren method
  publication-title: Sensors
– volume: 27
  start-page: 50
  issue: 3
  year: 2008
  article-title: Wavelet turbulence for fluid simulation
  publication-title: ACM Transactions on Graphics
– start-page: 139
  year: 2018
  end-page: 146
– volume: 8
  start-page: 47
  year: 2018
  end-page: 58
  article-title: Coupled fluid density and motion from single views
  publication-title: Computer Graphics Forum 37
– volume: 35
  start-page: 200
  issue: 6
  year: 2016
  article-title: Eulerian solid‐fluid coupling
  publication-title: ACM Transactions on Graphics
– start-page: 2672
  year: 2014
  end-page: 2680
– volume: 30
  start-page: 528
  issue: 3
  year: 2015
  end-page: 539
  article-title: Monocular video guided garment simulation
  publication-title: Journal of Computer Science and Technology
– volume: 39
  start-page: 15
  issue: 8
  year: 2020
  end-page: 25
  article-title: Latent space subdivision: stable and controllable time predictions for fluid flow
  publication-title: Computer Graphics Forum
– start-page: 1
  year: 2017
  end-page: 79
– volume: 37
  start-page: 95
  issue: 4
  year: 2018
  article-title: Tempogan: A temporally coherent, volumetric gan for super‐resolution fluid flow
  publication-title: ACM Transactions on Graphics
– volume: 29
  start-page: 2301
  year: 2019
  end-page: 2313
  article-title: A wave‐shaped deep neural network for smoke density estimation
  publication-title: IEEE Transactions on Image Processing
– ident: e_1_2_11_45_1
  doi: 10.1145/2980179.2980229
– volume-title: Proceedings of ML Systems Workshop in NIPS
  year: 2017
  ident: e_1_2_11_35_1
– ident: e_1_2_11_44_1
  doi: 10.1109/TGRS.2011.2132727
– start-page: 103
  volume-title: Virtual Reality Software and Technology
  year: 2015
  ident: e_1_2_11_54_1
– ident: e_1_2_11_20_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_11_27_1
  doi: 10.1007/s11390-015-1543-0
– ident: e_1_2_11_60_1
  doi: 10.1145/2699276.2699287
– volume: 4
  start-page: 69
  year: 2017
  ident: e_1_2_11_3_1
  article-title: Data‐driven synthesis of smoke flows with cnn‐based feature descriptors
  publication-title: ACM Transactions on Graphics 36
– ident: e_1_2_11_33_1
  doi: 10.24963/ijcai.2017/310
– ident: e_1_2_11_16_1
  doi: 10.1111/cgf.14010
– ident: e_1_2_11_36_1
  doi: 10.1145/2897839.2927399
– ident: e_1_2_11_49_1
  doi: 10.1111/cgf.14097
– ident: e_1_2_11_55_1
  doi: 10.1109/TIP.2019.2946126
– ident: e_1_2_11_12_1
  doi: 10.1145/2939672.2939738
– ident: e_1_2_11_26_1
  doi: 10.1145/1360612.1360649
– ident: e_1_2_11_48_1
  doi: 10.1111/cgf.13522
– ident: e_1_2_11_52_1
  doi: 10.1145/3197517.3201304
– ident: e_1_2_11_58_1
  doi: 10.1007/s10439-018-1984-z
– volume: 5
  start-page: 132
  year: 2008
  ident: e_1_2_11_2_1
  article-title: Time‐resolved 3d capture of non‐stationary gas flows
  publication-title: ACM Transactions on Graphics 27
– ident: e_1_2_11_5_1
  doi: 10.1109/ICCV.2015.316
– ident: e_1_2_11_38_1
  doi: 10.1145/3208159.3208162
– ident: e_1_2_11_18_1
  doi: 10.1109/CVPR.2018.00936
– start-page: 21
  volume-title: Eurographics (State of the Art Reports)
  year: 2014
  ident: e_1_2_11_22_1
– ident: e_1_2_11_9_1
– ident: e_1_2_11_17_1
  doi: 10.1109/TPAMI.2007.1056
– ident: e_1_2_11_47_1
  doi: 10.1109/CVPR.2017.141
– ident: e_1_2_11_39_1
  doi: 10.1109/CVPR.2017.291
– ident: e_1_2_11_43_1
  doi: 10.1145/311535.311548
– ident: e_1_2_11_21_1
  doi: 10.1109/CVPR.2017.179
– volume: 37
  start-page: 206
  issue: 6
  year: 2018
  ident: e_1_2_11_28_1
  article-title: Video to fully automatic 3d hair model
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3272127.3275020
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  ident: e_1_2_11_24_1
  article-title: Transport‐based neural style transfer for smoke simulations
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3355089.3356560
– ident: e_1_2_11_40_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_11_41_1
  doi: 10.1145/2786784.2786798
– ident: e_1_2_11_8_1
  doi: 10.1145/3084873.3084907
– volume: 1
  start-page: 5
  year: 2019
  ident: e_1_2_11_14_1
  article-title: Interlinked sph pressure solvers for strong fluid‐rigid coupling
  publication-title: ACM Transactions on Graphics 38
– volume: 4
  start-page: 52
  year: 2012
  ident: e_1_2_11_11_1
  article-title: Stochastic tomography and its applications in 3d imaging of mixing fluids
  publication-title: ACM Transactions on Graphics 31
– ident: e_1_2_11_50_1
  doi: 10.1145/1531326.1531396
– start-page: 965
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: e_1_2_11_32_1
– ident: e_1_2_11_56_1
  doi: 10.1145/2766982
– ident: e_1_2_11_61_1
  doi: 10.1109/CVPR.2016.537
– ident: e_1_2_11_31_1
  doi: 10.1109/CVPR.2017.19
– ident: e_1_2_11_53_1
  doi: 10.1002/cav.1896
– start-page: 3424
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: e_1_2_11_46_1
– volume: 3
  start-page: 555
  year: 2013
  ident: e_1_2_11_13_1
  article-title: Compressive structured light for recovering inhomogeneous participating media
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence 35
– volume: 4
  start-page: 75
  year: 2020
  ident: e_1_2_11_4_1
  article-title: Learning temporal coherence via self‐supervision for gan‐based video generation
  publication-title: ACM Transactions on Graphics 39
– start-page: 1
  year: 2020
  ident: e_1_2_11_29_1
  article-title: Learning physical parameters and detail enhancement for gaseous scene design based on data guidance
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_11_34_1
  doi: 10.3390/s19010012
– volume: 26
  start-page: 1745
  issue: 4
  year: 2020
  ident: e_1_2_11_30_1
  article-title: Nnwarp: Neural network‐based nonlinear deformation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_11_57_1
  doi: 10.1145/2461912.2461999
– volume: 6
  start-page: 239:1
  year: 2019
  ident: e_1_2_11_7_1
  article-title: Scalarflow: a large‐scale volumetric data set of real‐world scalar transport flows for computer animation and machine learning
  publication-title: ACM Transactions on Graphics 38
– ident: e_1_2_11_6_1
  doi: 10.1111/cgf.13511
– ident: e_1_2_11_23_1
– ident: e_1_2_11_59_1
  doi: 10.1109/ICCV.2017.629
– ident: e_1_2_11_25_1
  doi: 10.1111/cgf.13619
– ident: e_1_2_11_51_1
  doi: 10.1145/3340251
– ident: e_1_2_11_37_1
  doi: 10.1145/2766958
– volume: 4
  start-page: 139
  year: 2014
  ident: e_1_2_11_10_1
  article-title: From capture to simulation ‐ connecting forward and inverse problems in fluids
  publication-title: ACM Transactions on Graphics 33
– ident: e_1_2_11_19_1
  doi: 10.1063/1.1761178
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_11_15_1
– ident: e_1_2_11_42_1
  doi: 10.1007/s10915-007-9166-4
SSID ssj0004765
Score 2.3858135
Snippet Despite the rapid development and proliferation of computer graphics hardware devices for scene capture in the most recent decade, the high‐resolution 3D/4D...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms animation
Artists
Computer graphics
Coupling
Density
fluid reconstruction
Image reconstruction
modelling
physically based animation
Projection
surface reconstruction
Velocity distribution
Title A Rapid, End‐to‐end, Generative Model for Gaseous Phenomena from Limited Views
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14270
https://www.proquest.com/docview/2577358230
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFICD7EkfvIvTKUF82IMdbdokLT6NuQuCIsPJHoSSJqmKoxuue_HJn-Bv9JeY08s2RUF8KS1Nb0nOJeWc7yB06keMcEI15DoFlhe7jiWEZJavOFTYdrTOQv6vrllv4F0O6XAFnZe5MDkfYv7DDSQj09cg4CKaLgm5fIiNmJtHGP3ruAy4-Rf9BTrK44yWXG8gxhRUIYjimV_51RYtHMxlNzWzM50NdF--YR5e8tyYpVFDvn6DN_7zEzbReuF_4mY-YbbQik620doSlXAH9Zu4LyZP6gy3E_Xx9p6OzUYn5jhnVIOCxFBDbYSNx4u7xg6OZ1N886gTwDkIDCkruMicwncAO91Fg077ttWzitILliQBt60gtu2IUqWYZ2sqKaExkX5EOWBERSBiaiuzMPEkVYErY_BbuGbKiWXMI2606B6qJONE7yPMlOZEuEwwDgqCCs9WTHDfJgHl3CFVVC8HIZQFlxzKY4zCcn1iuinMuqmKTuZNJzmM46dGtXIkw0Iep6FRTBxygl1zup4Nye83CFvdTrZz8Pemh2iVQLBLFnxWQ5X0ZaaPjLeSRsfZtPwEfl_jiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VGICBN6I8LcTAQFDqxnYjsSBoKVAQqijqgiLHdgBRpQjahYmfwG_kl-DLoy0IJMQSJYoTJ7bv7jvr7juAnUrIqaDMYK6T73hRueRIqbhT0QIrbJeMSUL-Ly55veWdtVm7AAd5LkzKDzHYcEPJSPQ1CjhuSI9IubqLrJzbPsZgwrNAA12v4-aQPMoTnOXM3sgZk_EKYRzP4NGv1mgIMUeBamJparNwm39jGmDyuN_vhfvq9Rt9439_Yg5mMghKDtM1Mw8FEy_A9Agx4SI0D0lTPj3oPVKN9cfbe69rDya21ylNNepIgmXUOsSCXnJiTWG3_0Ku7k2MjA6SYNYKyZKnyA3ynS5Bq1a9Pqo7WfUFR1FfuI4fuW7ImNbccw1TjLKIqkrIBDKJSl9GzNXWN_EU035ZRQhdhOG6FKlIhMIq0mUYj7uxWQHCtRFUlrnkAnUEk56ruRQVl_pMiBItwm4-C4HKqMmxQkYnyF0UO0xBMkxF2B40fUr5OH5qtJ5PZZCJ5EtgdZPAtOCyvb2bzMnvLwiOTmrJyerfm27BZP36ohE0Ti_P12CKYuxLEou2DuO9577ZsOClF24ma_QTyhXnpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt_h2EQ8ejKTb7G6DJ1Hru5Si4kEIm32oKGnR9uLJn-Bv9Je4k0dbRUG8hIRMXjs7M9-GmW8ANqsxp4Iyg7VOoRfYStmTUnGvqgV22C4bk6b8X9T58VVwesNuSrBb1MJk_BC9H25oGam_RgNvaztg5OrOOjN3jxiCkYA7JIGIqNnnjgoEZwWxN1LG5LRCmMbTu_RrMOojzEGcmgaa2iTcFq-Y5Zc87nQ78Y56_cbe-M9vmIKJHICSvWzGTEPJJDMwPkBLOAvNPdKU7Qe9TQ4T_fH23mm5jUnccUZSjR6SYBO1J-IgLzlygbDVfSGNe5Mgn4MkWLNC8tIpco1sp3NwVTu83D_28t4LnqKh8L3Q-n7MmNY88A1TjDJLVTVmAnlEZSgt87VbmQSK6bCiLAIXYbguW2VFLJwbnYfhpJWYBSBcG0FlhUsu0EMwGfiaS1H1aciEKNNF2CqUEKmcmBz7YzxFxQLFDVOUDtMibPRE2xkbx09CK4Umo9wgXyLnmQQWBVfc6a1UJb_fINo_qqU7S38XXYfRxkEtOj-pny3DGMXElzQRbQWGO89ds-qQSydeS2foJyfw5lY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rapid%2C+End%E2%80%90to%E2%80%90end%2C+Generative+Model+for+Gaseous+Phenomena+from+Limited+Views&rft.jtitle=Computer+graphics+forum&rft.au=Qiu%2C+Sheng&rft.au=Chen%2C+Li&rft.au=Wang%2C+Changbo&rft.au=Qin%2C+Hong&rft.date=2021-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=40&rft.issue=6&rft.spage=242&rft.epage=257&rft_id=info:doi/10.1111%2Fcgf.14270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon