A statistical region selection and randomized volumetric features selection framework for early detection of Alzheimer's disease
Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue seg...
Saved in:
Published in | International journal of imaging systems and technology Vol. 28; no. 4; pp. 302 - 314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0899-9457 1098-1098 |
DOI | 10.1002/ima.22290 |
Cover
Abstract | Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue segmentation is performed to get gray matter (GM) images. These pre‐processed images are anatomized to get 116 regions of brain using a standard automated anatomical labeling atlas. The proposed region selection algorithm identifies the most relevant brain regions out of 116 regions to discriminate AD and healthy control (HC) subjects. Volumetric features (standard deviation, skewness, kurtosis, energy, and shannon entropy) are extracted and random feature selection is performed to get the most discriminating regions to classify AD from HC. Supervised classification algorithms are used to explore and validate the proposed methodology. Experimental results indicate that the performance of the proposed system competes well with the state‐of‐the‐art techniques. |
---|---|
AbstractList | Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue segmentation is performed to get gray matter (GM) images. These pre‐processed images are anatomized to get 116 regions of brain using a standard automated anatomical labeling atlas. The proposed region selection algorithm identifies the most relevant brain regions out of 116 regions to discriminate AD and healthy control (HC) subjects. Volumetric features (standard deviation, skewness, kurtosis, energy, and shannon entropy) are extracted and random feature selection is performed to get the most discriminating regions to classify AD from HC. Supervised classification algorithms are used to explore and validate the proposed methodology. Experimental results indicate that the performance of the proposed system competes well with the state‐of‐the‐art techniques. |
Author | Khanna, Pritee Mishra, Shiwangi Beheshti, Iman |
Author_xml | – sequence: 1 givenname: Shiwangi orcidid: 0000-0001-7945-0992 surname: Mishra fullname: Mishra, Shiwangi organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing – sequence: 2 givenname: Iman surname: Beheshti fullname: Beheshti, Iman organization: National Center of Neurology and Psychiatry – sequence: 3 givenname: Pritee surname: Khanna fullname: Khanna, Pritee email: pkhanna@iiitdmj.ac.in organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing |
BookMark | eNp9kD1PwzAQhi1UJNrCwD-wxIAYUs75aOIxqvioVMQCc3R1LuCSxMV2qdqJn05KOyAkWO5D99x7unfAeq1pibFzASMBEF7rBkdhGEo4Yn0BMgt2ocf6kEkZyDhJT9jAuQWAEAkkffaZc-fRa-e1wppbetGm5Y5qUn5XYVty2wXT6C2V_MPUq4a81YpXhH5lyf2AK4sNrY1945WxnNDWG16SP0xNxfN6-0q6IXvpeKkdoaNTdlxh7ejskIfs-fbmaXIfzB7vppN8FqhQphBkmM6jMJYyAZGW46SMIQYsqxLlXMSQdc-QkBWCSuJ4Ho2RUCWolIgA5JwwGrKLve7SmvcVOV8szMq23ckiFKFM4igdpx11taeUNc5Zqoql7Sy1m0JAsTO46Lri2-COvf7FKr2z0rTeoq7_21jrmjZ_SxfTh3y_8QVodpEJ |
CitedBy_id | crossref_primary_10_1109_TNNLS_2022_3212700 crossref_primary_10_3390_s20030941 crossref_primary_10_1155_2022_2484081 crossref_primary_10_1038_s41598_023_43063_4 crossref_primary_10_3390_brainsci11040447 crossref_primary_10_4103_jmss_JMSS_11_20 crossref_primary_10_1007_s11042_021_11871_3 crossref_primary_10_1016_j_bspc_2022_103571 crossref_primary_10_1002_ima_22458 crossref_primary_10_4015_S1016237221500204 |
Cites_doi | 10.1016/j.compmedimag.2015.04.007 10.1136/jnnp.73.6.657 10.1016/j.neuroimage.2007.07.007 10.1007/BF02252964 10.1504/IJAPR.2016.079050 10.1002/ima.22213 10.1016/j.neuroimage.2010.06.013 10.1016/S1053-8119(03)00169-1 10.1007/s12013-010-9093-0 10.1016/j.compbiomed.2017.02.011 10.1006/nimg.2001.0848 10.1016/j.asoc.2010.08.012 10.1007/SpringerReference_57934 10.1136/jnnp.71.4.441 10.1016/j.neuroimage.2005.09.046 10.1016/j.jalz.2009.07.053 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1109/TBME.2014.2310709 10.1002/ima.22217 10.1016/j.neuroimage.2015.10.065 10.1006/nimg.2000.0582 10.1016/S1053-8119(02)00026-5 10.1016/j.eswa.2012.07.071 10.3389/fncom.2015.00132 10.1016/j.jalz.2011.09.043 10.1016/j.neuroimage.2008.02.043 10.1023/A:1010933404324 10.4103/0972-2327.74256 10.1016/j.jns.2009.10.022 10.1016/j.compmedimag.2012.11.001 10.1006/nimg.2001.0978 10.1002/ima.22167 10.1002/ima.22135 10.2174/1567205013666160314145008 10.1016/j.tics.2013.06.009 10.1109/NNSP.1999.788121 10.21437/Interspeech.2013-69 10.1016/j.pscychresns.2012.11.005 10.1080/00031305.1990.10475751 10.1007/s12021-013-9204-3 10.1046/j.1525-1497.2002.10750.x 10.1016/j.artmed.2016.06.003 10.1016/j.neuroimage.2012.01.024 10.1097/00002093-198701000-00037 10.1016/j.pscychresns.2012.04.007 10.1016/j.neuroimage.2006.05.061 10.1016/j.neucom.2015.10.043 10.1038/nrn1433 10.1212/WNL.49.3.786 10.5772/50019 10.1016/j.neuroimage.2011.11.066 10.1016/j.neucom.2014.02.076 10.1016/j.jalz.2017.02.001 10.3174/ajnr.A2935 10.1080/01621459.1989.10478752 10.1016/j.compbiomed.2015.07.006 10.1016/j.neuroimage.2017.03.057 10.1016/j.jneumeth.2015.08.020 10.1016/j.csl.2013.11.004 10.1016/j.neucom.2014.09.072 10.1093/brain/awp105 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22290 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | 314 |
ExternalDocumentID | 10_1002_ima_22290 IMA22290 |
Genre | article |
GrantInformation_xml | – fundername: National Institute on Aging – fundername: National Institutes of Health funderid: U01 AG024904 – fundername: Alzheimer's Disease Neuroimaging Initiative funderid: U01 AG024904 – fundername: National Institute of Biomedical Imaging and Bioengineering |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2970-8a7b324995017d65d4040adfda9b1408505e19fa0c544b36aeac5acc13009bea3 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Fri Jul 25 05:02:37 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 01:29:47 EDT 2025 Wed Jan 22 16:36:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-8a7b324995017d65d4040adfda9b1408505e19fa0c544b36aeac5acc13009bea3 |
Notes | Funding information Alzheimer's Disease Neuroimaging Initiative, Grant/Award Number: U01 AG024904; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7945-0992 |
PQID | 2129543767 |
PQPubID | 1026352 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2129543767 crossref_primary_10_1002_ima_22290 crossref_citationtrail_10_1002_ima_22290 wiley_primary_10_1002_ima_22290_IMA22290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1989; 84 2017; 83 2012; 60 2002; 17 1987; 1 2002; 15 2006; 30 2012; 2012 2010; 58 2010; 13 2006; 33 2011; 11 1997; 49 2016; 71 2003; 18 2011; 56 2003; 19 2017; 155 1997; 5 2001; 45 2014; 61 2007; 34 2007; 38 1990; 44 2013; 17 2013; 2013 2015; 256 2013; 12 2000; 10 2000; 11 2015; 44 2001; 14 2012; 62 1995; 9 2001; 71 2002; 73 2017; 27 2013; 40 2009; 132 2003 2016; 125 2015; 9 2012; 33 2011; 7 2016; 13 2015; 151 2004; 10 2015; 150 2015; 25 2013; 37 2015; 29 2016; 3 2015; 64 2017; 13 2013; 212 2008; 41 2009; 5 2010; 290 2016; 26 2016; 175 1966 e_1_2_8_28_1 Anderson TW (e_1_2_8_49_1) 1966 e_1_2_8_47_1 e_1_2_8_26_1 Lancaster JL (e_1_2_8_45_1) 1997; 5 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Dagostino RB (e_1_2_8_50_1) 1990; 44 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Cunningham P (e_1_2_8_56_1) 2007; 34 e_1_2_8_30_1 e_1_2_8_29_1 Liu F (e_1_2_8_13_1) 2013; 2013 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Cheng B (e_1_2_8_24_1) 2012; 2012 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Guyon I (e_1_2_8_51_1) 2003 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 |
References_xml | – volume: 27 start-page: 89 issue: 1 year: 2017 end-page: 97 article-title: Neuroimage‐based clinical prediction using machine learning tools publication-title: Int J Imag Syst Tech – volume: 62 start-page: 911 issue: 2 year: 2012 end-page: 922 article-title: Brain templates and atlases publication-title: Neuroimage – volume: 61 start-page: 2245 issue: 8 year: 2014 end-page: 2253 article-title: An optimal decisional space for the classification of Alzheimers disease and mild cognitive impairment publication-title: IEEE Trans Biomed Eng – volume: 175 start-page: 132 year: 2016 end-page: 145 article-title: Multi‐scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis publication-title: Neurocomputing. – year: 1966 – volume: 33 start-page: 1109 issue: 6 year: 2012 end-page: 1114 article-title: Automatic voxel‐based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through Exponentiated lie algebra improves the diagnosis of probable Alzheimer disease publication-title: Am J Neuroradiol – volume: 290 start-page: 96 issue: 1–2 year: 2010 end-page: 101 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimers disease: a longitudinal SPECT study publication-title: J Neurol Sci – volume: 30 start-page: 436 issue: 2 year: 2006 end-page: 443 article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data publication-title: Neuroimage – volume: 64 start-page: 208 year: 2015 end-page: 216 article-title: Probability distribution function‐based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput Biol Med – volume: 15 start-page: 273 issue: 1 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical Parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – volume: 212 start-page: 230 issue: 3 year: 2013 end-page: 236 article-title: Meta‐analysis based SVM classification enables accurate detection of Alzheimers disease across different clinical centers using FDG‐PET and MRI publication-title: Psychiatry Res – volume: 29 start-page: 145 issue: 1 year: 2015 end-page: 171 article-title: Feature selection methods and their combinations in high‐dimensional classification of speaker likability, intelligibility and personality traits publication-title: Comput Speech Lang – volume: 83 start-page: 109 year: 2017 end-page: 119 article-title: Classification of Alzheimers disease and prediction of mild cognitive impairment‐to‐Alzheimers conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm publication-title: Comput Biol Med – volume: 2012 start-page: 82 year: 2012 end-page: 90 article-title: Domain transfer learning for MCI conversion prediction publication-title: Med Image Comput Comput Assist Interv – volume: 7 start-page: e16 issue: 4 year: 2011 article-title: Combining MRI and CSF measures for classification of Alzheimers disease and prediction of mild cognitive impairment conversion publication-title: Alzheimers Dement – volume: 34 start-page: 1 year: 2007 end-page: 17 article-title: K‐nearest neighbour classifiers publication-title: Mult Classif Syst – volume: 37 start-page: 40 issue: 1 year: 2013 end-page: 47 article-title: A semi‐quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimers disease versus vascular dementia publication-title: Comput Med Imaging Graph – volume: 60 start-page: 59 issue: 1 year: 2012 end-page: 70 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage – volume: 18 start-page: 525 issue: 2 year: 2003 end-page: 541 article-title: Early diagnosis of alzheimer's disease: contribution of structural neuroimaging publication-title: Neuroimage – volume: 1 start-page: 51 issue: 1 year: 1987 article-title: A new definition of Alzheimer's disease publication-title: Alzheimer Dis Ass Dis – volume: 9 year: 2015 article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimers disease diagnosis publication-title: Front Comput Neurosci – volume: 150 start-page: 37 year: 2015 end-page: 42 article-title: A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data publication-title: Neurocomputing – volume: 132 start-page: 2036 issue: 8 year: 2009 end-page: 2047 article-title: Early diagnosis of Alzheimers disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 13 start-page: 545 issue: 5 year: 2016 end-page: 556 article-title: Fuzzy computer‐aided Alzheimers disease diagnosis based on MRI data publication-title: Curr Alzheimer Res – volume: 2013 start-page: 308 year: 2013 end-page: 315 article-title: Inter‐modality relationship constrained multi‐task feature selection for AD/MCI classification publication-title: Med Image Comput Comput Assist Interv – volume: 17 start-page: 647 issue: 8 year: 2002 end-page: 650 article-title: Simplifying likelihood ratios publication-title: J Gen Intern Med – volume: 41 start-page: 277 issue: 2 year: 2008 end-page: 285 article-title: Structural and functional biomarkers of prodromal Alzheimers disease: a high‐dimensional pattern classification study publication-title: Neuroimage – volume: 71 start-page: 1 year: 2016 end-page: 29 article-title: On the early diagnosis of Alzheimers disease from multimodal signals: a survey publication-title: Artif Intell Med – volume: 256 start-page: 168 year: 2015 end-page: 183 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimers disease publication-title: J Neurosci Methods – volume: 73 start-page: 657 issue: 6 year: 2002 end-page: 664 article-title: Detection of grey matter loss in mild Alzheimers disease with voxel based morphometry publication-title: J Neurol Neurosurg Psychiatry – volume: 84 start-page: 165 issue: 405 year: 1989 end-page: 175 article-title: Regularized discriminant analysis publication-title: J Am Stat Assoc – volume: 11 start-page: 2313 issue: 2 year: 2011 end-page: 2325 article-title: GMM based SPECT image classification for the diagnosis of Alzheimer's disease publication-title: Appl Soft Comput – volume: 27 start-page: 133 issue: 2 year: 2017 end-page: 143 article-title: Alzheimer disease classification using KPCA, LDA, and multi‐kernel learning SVM publication-title: Int J Imag Syst Tech – volume: 155 start-page: 530 year: 2017 end-page: 548 article-title: A review on neuroimaging‐based classification studies and associated feature extraction methods for Alzheimers disease and its prodromal stages publication-title: Neuroimage – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 12 start-page: 229 issue: 2 year: 2013 end-page: 244 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – volume: 19 start-page: 1233 issue: 3 year: 2003 end-page: 1239 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets publication-title: Neuroimage – volume: 212 start-page: 89 issue: 2 year: 2013 end-page: 98 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatry Res – volume: 44 start-page: 316 issue: 4 year: 1990 end-page: 321 article-title: A suggestion for using powerful and informative tests of normality publication-title: Am Stat – volume: 5 start-page: e10 issue: 4 year: 2009 article-title: Neurostructural predictors of conversion to AlzheimerS disease: a meta‐analysis of Vbm studies publication-title: Alzheimers Dement – volume: 33 start-page: 115 issue: 1 year: 2006 end-page: 126 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: Neuroimage – volume: 26 start-page: 124 issue: 2 year: 2016 end-page: 135 article-title: Contribution of neuroimaging in the diagnosis of brain disorders: recent findings and future applications publication-title: Int J Imag Syst Tech – volume: 11 start-page: 805 issue: 6 year: 2000 end-page: 821 article-title: Voxel‐based morphometry—the methods publication-title: Neuroimage – volume: 13 start-page: 116 issue: 6 year: 2010 article-title: An overview of biomarkers in Alzheimer's disease publication-title: Ann Indian Acad Neurol – volume: 56 start-page: 766 issue: 2 year: 2011 end-page: 781 article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage – volume: 44 start-page: 13 year: 2015 end-page: 25 article-title: Alzheimers disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex publication-title: Comput Med Imaging Graph – volume: 25 start-page: 179 issue: 2 year: 2015 end-page: 190 article-title: 3d discrete wavelet transform for computer aided diagnosis of Alzheimers disease using t1‐weighted brain MRI publication-title: Int J Imag Syst Tech – volume: 58 start-page: 53 issue: 2 year: 2010 end-page: 67 article-title: Multivariate data analysis for neuroimaging data: overview and application to Alzheimer's disease publication-title: Cell Biochem Biophys – volume: 5 start-page: S633 year: 1997 article-title: The Talairach daemon, a database server for Talairach atlas labels publication-title: Neuroimage – volume: 125 start-page: 834 year: 2016 end-page: 847 article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease publication-title: Neuroimage – volume: 151 start-page: 139 year: 2015 end-page: 150 article-title: Early diagnosis of Alzheimer's disease based on partial least, squares principal component analysis and support vector machine using segmented MRI images publication-title: Neurocomputing – volume: 49 start-page: 786 issue: 3 year: 1997 end-page: 794 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimers disease publication-title: Neurology – volume: 17 start-page: 379 issue: 8 year: 2013 end-page: 390 article-title: The role of the parahippocampal cortex in cognition publication-title: Trends Cogn Sci – volume: 38 start-page: 95 issue: 1 year: 2007 end-page: 113 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 10 start-page: 120 issue: 3 year: 2000 end-page: 131 article-title: Automated Talairach atlas labels for functional brain mapping publication-title: Hum Brain Mapp – volume: 13 start-page: 325 issue: 4 year: 2017 end-page: 373 article-title: 2017 Alzheimer's disease facts and figures publication-title: Alzheimers Dement – start-page: 1157 year: 2003 end-page: 1182 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 3 start-page: 145 issue: 2 year: 2016 article-title: Linear vs. quadratic discriminant analysis classifier: a tutorial publication-title: Int J Appl Patt Recogn – volume: 40 start-page: 677 issue: 2 year: 2013 end-page: 683 article-title: Early diagnosis of Alzheimer's disease based on partial least squares and support vector machine publication-title: Expert Syst Appl – volume: 10 start-page: S34 issue: 7 year: 2004 article-title: Advances in the early detection of Alzheimer's disease publication-title: Nat Med – volume: 9 start-page: 73 issue: 1 year: 1995 end-page: 86 article-title: Volumes of hippocampus, amygdala and frontal lobes in the MRI‐based diagnosis of early Alzheimers disease: correlation with memory functions publication-title: J Neural Transm Park Dis Dement Sect – volume: 14 start-page: 298 issue: 2 year: 2001 end-page: 309 article-title: In vivo mapping of gray matter loss with voxel‐based morphometry in mild alzheimer's disease publication-title: Neuroimage – volume: 71 start-page: 441 issue: 4 year: 2001 end-page: 447 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimers disease publication-title: J Neurol Neurosurg Psychiatry – ident: e_1_2_8_33_1 doi: 10.1016/j.compmedimag.2015.04.007 – ident: e_1_2_8_8_1 doi: 10.1136/jnnp.73.6.657 – ident: e_1_2_8_41_1 doi: 10.1016/j.neuroimage.2007.07.007 – ident: e_1_2_8_67_1 doi: 10.1007/BF02252964 – ident: e_1_2_8_60_1 doi: 10.1504/IJAPR.2016.079050 – ident: e_1_2_8_17_1 doi: 10.1002/ima.22213 – ident: e_1_2_8_35_1 doi: 10.1016/j.neuroimage.2010.06.013 – ident: e_1_2_8_62_1 – ident: e_1_2_8_47_1 doi: 10.1016/S1053-8119(03)00169-1 – ident: e_1_2_8_26_1 doi: 10.1007/s12013-010-9093-0 – ident: e_1_2_8_38_1 doi: 10.1016/j.compbiomed.2017.02.011 – ident: e_1_2_8_29_1 doi: 10.1006/nimg.2001.0848 – ident: e_1_2_8_19_1 doi: 10.1016/j.asoc.2010.08.012 – ident: e_1_2_8_57_1 doi: 10.1007/SpringerReference_57934 – ident: e_1_2_8_65_1 doi: 10.1136/jnnp.71.4.441 – ident: e_1_2_8_42_1 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_8_28_1 doi: 10.1016/j.jalz.2009.07.053 – ident: e_1_2_8_46_1 doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – ident: e_1_2_8_36_1 doi: 10.1109/TBME.2014.2310709 – ident: e_1_2_8_39_1 doi: 10.1002/ima.22217 – ident: e_1_2_8_66_1 doi: 10.1016/j.neuroimage.2015.10.065 – ident: e_1_2_8_40_1 doi: 10.1006/nimg.2000.0582 – ident: e_1_2_8_9_1 doi: 10.1016/S1053-8119(02)00026-5 – volume-title: An Introduction to Multivariate Statistical Analysis year: 1966 ident: e_1_2_8_49_1 – ident: e_1_2_8_21_1 doi: 10.1016/j.eswa.2012.07.071 – ident: e_1_2_8_23_1 doi: 10.3389/fncom.2015.00132 – ident: e_1_2_8_12_1 doi: 10.1016/j.jalz.2011.09.043 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuroimage.2008.02.043 – ident: e_1_2_8_61_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_7_1 doi: 10.4103/0972-2327.74256 – volume: 5 start-page: S633 year: 1997 ident: e_1_2_8_45_1 article-title: The Talairach daemon, a database server for Talairach atlas labels publication-title: Neuroimage – ident: e_1_2_8_18_1 doi: 10.1016/j.jns.2009.10.022 – ident: e_1_2_8_20_1 doi: 10.1016/j.compmedimag.2012.11.001 – ident: e_1_2_8_48_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_8_5_1 doi: 10.1002/ima.22167 – ident: e_1_2_8_16_1 doi: 10.1002/ima.22135 – ident: e_1_2_8_37_1 doi: 10.2174/1567205013666160314145008 – ident: e_1_2_8_68_1 doi: 10.1016/j.tics.2013.06.009 – ident: e_1_2_8_58_1 doi: 10.1109/NNSP.1999.788121 – start-page: 1157 year: 2003 ident: e_1_2_8_51_1 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 2012 start-page: 82 year: 2012 ident: e_1_2_8_24_1 article-title: Domain transfer learning for MCI conversion prediction publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_55_1 doi: 10.21437/Interspeech.2013-69 – ident: e_1_2_8_14_1 doi: 10.1016/j.pscychresns.2012.11.005 – volume: 44 start-page: 316 issue: 4 year: 1990 ident: e_1_2_8_50_1 article-title: A suggestion for using powerful and informative tests of normality publication-title: Am Stat doi: 10.1080/00031305.1990.10475751 – ident: e_1_2_8_53_1 doi: 10.1007/s12021-013-9204-3 – ident: e_1_2_8_63_1 doi: 10.1046/j.1525-1497.2002.10750.x – ident: e_1_2_8_4_1 doi: 10.1016/j.artmed.2016.06.003 – volume: 2013 start-page: 308 year: 2013 ident: e_1_2_8_13_1 article-title: Inter‐modality relationship constrained multi‐task feature selection for AD/MCI classification publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_44_1 doi: 10.1016/j.neuroimage.2012.01.024 – ident: e_1_2_8_64_1 doi: 10.1097/00002093-198701000-00037 – ident: e_1_2_8_22_1 doi: 10.1016/j.pscychresns.2012.04.007 – ident: e_1_2_8_43_1 doi: 10.1016/j.neuroimage.2006.05.061 – ident: e_1_2_8_34_1 doi: 10.1016/j.neucom.2015.10.043 – ident: e_1_2_8_70_1 doi: 10.1038/nrn1433 – ident: e_1_2_8_2_1 – ident: e_1_2_8_69_1 doi: 10.1212/WNL.49.3.786 – ident: e_1_2_8_27_1 doi: 10.5772/50019 – ident: e_1_2_8_52_1 doi: 10.1016/j.neuroimage.2011.11.066 – ident: e_1_2_8_15_1 doi: 10.1016/j.neucom.2014.02.076 – ident: e_1_2_8_3_1 doi: 10.1016/j.jalz.2017.02.001 – ident: e_1_2_8_10_1 doi: 10.3174/ajnr.A2935 – ident: e_1_2_8_59_1 doi: 10.1080/01621459.1989.10478752 – ident: e_1_2_8_31_1 doi: 10.1016/j.compbiomed.2015.07.006 – ident: e_1_2_8_30_1 doi: 10.1016/j.neuroimage.2017.03.057 – volume: 34 start-page: 1 year: 2007 ident: e_1_2_8_56_1 article-title: K‐nearest neighbour classifiers publication-title: Mult Classif Syst – ident: e_1_2_8_25_1 doi: 10.1016/j.jneumeth.2015.08.020 – ident: e_1_2_8_54_1 doi: 10.1016/j.csl.2013.11.004 – ident: e_1_2_8_32_1 doi: 10.1016/j.neucom.2014.09.072 – ident: e_1_2_8_11_1 doi: 10.1093/brain/awp105 |
SSID | ssj0011505 |
Score | 2.2339618 |
Snippet | Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 302 |
SubjectTerms | Algorithms Alzheimer's disease Automation Biomarkers Brain Diagnostic systems Entropy (Information theory) Feature extraction feature selection Image segmentation imaging biomarkers Kurtosis magnetic resonance imaging Medical imaging region segmentation region selection voxel‐based morphometry |
Title | A statistical region selection and randomized volumetric features selection framework for early detection of Alzheimer's disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22290 https://www.proquest.com/docview/2129543767 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8MwGMCDCIIefEzF-SKIoJdq1ybpgqeiDhXmQRR2EEpexeHWybpddvJP90v6cIqCeCs06SP5Xm2-_D6EjiPOVMgE9ZghwiMmCD2ZCuYFRkfwTWQUcZCk7j27eSJ3PdpbQBfVXpiCD1H_cLOa4ey1VXAh8_NPaGjfYoMsrRzsbytklpt_9VCjo2yg49IX25ZASWhUUYX84Lzu-dUXfQaY82Gq8zOdNfRcPWGRXvJ6Np3IMzX7Bm_85yuso9Uy_sRxITAbaMFkDbQyRyVsoCWXFaryTfQeY7vhyLGcoZMt4jDKcO5K59gjkWkMvk6Phv2Z0biwdBb5j1PjgKH5XOO0SgPDECdjY8HKWJtJeXaU4ngwezH9oRmf5LhcN9pCT53rx8sbryzZ4KmAR77XFpGEEI1zCpquGdUEjITQqRZctixMzaemxVPhK0qIBCEBu0-FUnZRjUsjwm20mI0ys4Mw5aEGYxKJlEvCwKf6mgoS6JZiPOKRaKLTavISVfLMbVmNQVKQmIMEhjdxw9tER3XTtwLi8VOj_UoCklKP8wQcO6fEEm_gdm4qf79ActuN3cHu35vuoWWIwNpFfsw-WpyMp-YAopyJPHTi_AE1evne |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT-MwEIdHPISAA68F8VqwEBJcUtLUTmqJS7ULKo9yQCBxQZFjO6KCpqgpl572T98ZJykFLdKKW6TYefgx87M9_gxwGMlQN0IlvNBy5XEbNLwkVaEXWBPhmMhq7iBJnZuwfc8vH8TDFJxWe2EKPsR4wo16hrPX1MFpQvrknRraJW4Q4cqnYZaj0KCh1-_bMTyKpI4LYGwSg5KLqOIK-cHJOOtHb_QuMSeFqvM058vwWH1jEWDyXHsbJjU9-oRv_O5PrMBSKUFZq2gzqzBlszVYnAATrsGcCwzV-Q_402K058jhnDETnePQz1juTs-hK5UZhu7O9HvdkTWsMHZE_WepdczQfCJxWkWCMZTKzBJbmRk7LO_2U9Z6GT3Zbs8OjnJWLh2tw_352d2vtlee2uDpQEa-11RRgipNSoGd3YTCcLQTyqRGyaROPDVf2LpMla8F5wm2EzT9QmlN62oysaqxATNZP7ObwIRsGLQnkUplwkN0q74RigemrkMZyUhtwXFVe7EukeZ0ssZLXMCYgxiLN3bFuwUH46SvBcfjX4l2qyYQl105j9G3S8EJeoOvc3X59QPii07LXWz_f9J9mG_fda7j64ubqx1YQEHWLMJldmFmOHizP1H0DJM917b_AtKc_f0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXlD0wbt4N4igL51dl6QLPg11eEdEwQehpEmKQ9cNO1_25Ef3JG3nFAXxrdCkl-TknH-bk18AdkPBVY1L5nFDpUdNUPPiRHIvMDrEbyKjqIMkXV3z03t6_sAeRuCwXAuT8yEGP9zsyHD-2g7wrk4OPqGhLYsNsrTyURinHJWEVUS3A3aUVTouf7FuEZSUhSVWyA8OBlW_BqNPhTmsU12gac7CY_mIeX7Jc-WtF1dU_xu98Z_vMAczhQAljdxi5mHEpAswPYQlXIAJlxaqskV4bxC74sjBnLGS3cWhk5LM7Z1jj2SqCQY73Wm3-kaT3NVZ5j9JjCOGZkOFkzIPjKBQJsaSlYk2veJsJyGNl_6TabXN615GiomjJbhvntwdnXrFng2eCkToe3UZxqjRhGA41DVnmqKXkDrRUsRVS1PzmamKRPqKURqjlaDjZ1IpO6smYiNryzCWdlKzAoSJmkZvEspExJRjUPU1kzTQVcVFKEK5Cvtl50WqAJrbfTVeohzFHETYvJFr3lXYGRTt5hSPnwptlBYQFQM5izCyC0Yt8gZv57ry9wtEZ1cNd7D296LbMHlz3Iwuz64v1mEK1Vg9z5XZgLHe65vZRMXTi7ecZX8A4078rA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+region+selection+and+randomized+volumetric+features+selection+framework+for+early+detection+of+Alzheimer%27s+disease&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Mishra%2C+Shiwangi&rft.au=Beheshti%2C+Iman&rft.au=Khanna%2C+Pritee&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=28&rft.issue=4&rft.spage=302&rft.epage=314&rft_id=info:doi/10.1002%2Fima.22290&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |