A statistical region selection and randomized volumetric features selection framework for early detection of Alzheimer's disease

Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue seg...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 28; no. 4; pp. 302 - 314
Main Authors Mishra, Shiwangi, Beheshti, Iman, Khanna, Pritee
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22290

Cover

Abstract Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue segmentation is performed to get gray matter (GM) images. These pre‐processed images are anatomized to get 116 regions of brain using a standard automated anatomical labeling atlas. The proposed region selection algorithm identifies the most relevant brain regions out of 116 regions to discriminate AD and healthy control (HC) subjects. Volumetric features (standard deviation, skewness, kurtosis, energy, and shannon entropy) are extracted and random feature selection is performed to get the most discriminating regions to classify AD from HC. Supervised classification algorithms are used to explore and validate the proposed methodology. Experimental results indicate that the performance of the proposed system competes well with the state‐of‐the‐art techniques.
AbstractList Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work proposes a novel automatic computer aided diagnosis (CAD) system working on region selection framework. Voxel based morphometry and tissue segmentation is performed to get gray matter (GM) images. These pre‐processed images are anatomized to get 116 regions of brain using a standard automated anatomical labeling atlas. The proposed region selection algorithm identifies the most relevant brain regions out of 116 regions to discriminate AD and healthy control (HC) subjects. Volumetric features (standard deviation, skewness, kurtosis, energy, and shannon entropy) are extracted and random feature selection is performed to get the most discriminating regions to classify AD from HC. Supervised classification algorithms are used to explore and validate the proposed methodology. Experimental results indicate that the performance of the proposed system competes well with the state‐of‐the‐art techniques.
Author Khanna, Pritee
Mishra, Shiwangi
Beheshti, Iman
Author_xml – sequence: 1
  givenname: Shiwangi
  orcidid: 0000-0001-7945-0992
  surname: Mishra
  fullname: Mishra, Shiwangi
  organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing
– sequence: 2
  givenname: Iman
  surname: Beheshti
  fullname: Beheshti, Iman
  organization: National Center of Neurology and Psychiatry
– sequence: 3
  givenname: Pritee
  surname: Khanna
  fullname: Khanna, Pritee
  email: pkhanna@iiitdmj.ac.in
  organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing
BookMark eNp9kD1PwzAQhi1UJNrCwD-wxIAYUs75aOIxqvioVMQCc3R1LuCSxMV2qdqJn05KOyAkWO5D99x7unfAeq1pibFzASMBEF7rBkdhGEo4Yn0BMgt2ocf6kEkZyDhJT9jAuQWAEAkkffaZc-fRa-e1wppbetGm5Y5qUn5XYVty2wXT6C2V_MPUq4a81YpXhH5lyf2AK4sNrY1945WxnNDWG16SP0xNxfN6-0q6IXvpeKkdoaNTdlxh7ejskIfs-fbmaXIfzB7vppN8FqhQphBkmM6jMJYyAZGW46SMIQYsqxLlXMSQdc-QkBWCSuJ4Ho2RUCWolIgA5JwwGrKLve7SmvcVOV8szMq23ckiFKFM4igdpx11taeUNc5Zqoql7Sy1m0JAsTO46Lri2-COvf7FKr2z0rTeoq7_21jrmjZ_SxfTh3y_8QVodpEJ
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3212700
crossref_primary_10_3390_s20030941
crossref_primary_10_1155_2022_2484081
crossref_primary_10_1038_s41598_023_43063_4
crossref_primary_10_3390_brainsci11040447
crossref_primary_10_4103_jmss_JMSS_11_20
crossref_primary_10_1007_s11042_021_11871_3
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1002_ima_22458
crossref_primary_10_4015_S1016237221500204
Cites_doi 10.1016/j.compmedimag.2015.04.007
10.1136/jnnp.73.6.657
10.1016/j.neuroimage.2007.07.007
10.1007/BF02252964
10.1504/IJAPR.2016.079050
10.1002/ima.22213
10.1016/j.neuroimage.2010.06.013
10.1016/S1053-8119(03)00169-1
10.1007/s12013-010-9093-0
10.1016/j.compbiomed.2017.02.011
10.1006/nimg.2001.0848
10.1016/j.asoc.2010.08.012
10.1007/SpringerReference_57934
10.1136/jnnp.71.4.441
10.1016/j.neuroimage.2005.09.046
10.1016/j.jalz.2009.07.053
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1109/TBME.2014.2310709
10.1002/ima.22217
10.1016/j.neuroimage.2015.10.065
10.1006/nimg.2000.0582
10.1016/S1053-8119(02)00026-5
10.1016/j.eswa.2012.07.071
10.3389/fncom.2015.00132
10.1016/j.jalz.2011.09.043
10.1016/j.neuroimage.2008.02.043
10.1023/A:1010933404324
10.4103/0972-2327.74256
10.1016/j.jns.2009.10.022
10.1016/j.compmedimag.2012.11.001
10.1006/nimg.2001.0978
10.1002/ima.22167
10.1002/ima.22135
10.2174/1567205013666160314145008
10.1016/j.tics.2013.06.009
10.1109/NNSP.1999.788121
10.21437/Interspeech.2013-69
10.1016/j.pscychresns.2012.11.005
10.1080/00031305.1990.10475751
10.1007/s12021-013-9204-3
10.1046/j.1525-1497.2002.10750.x
10.1016/j.artmed.2016.06.003
10.1016/j.neuroimage.2012.01.024
10.1097/00002093-198701000-00037
10.1016/j.pscychresns.2012.04.007
10.1016/j.neuroimage.2006.05.061
10.1016/j.neucom.2015.10.043
10.1038/nrn1433
10.1212/WNL.49.3.786
10.5772/50019
10.1016/j.neuroimage.2011.11.066
10.1016/j.neucom.2014.02.076
10.1016/j.jalz.2017.02.001
10.3174/ajnr.A2935
10.1080/01621459.1989.10478752
10.1016/j.compbiomed.2015.07.006
10.1016/j.neuroimage.2017.03.057
10.1016/j.jneumeth.2015.08.020
10.1016/j.csl.2013.11.004
10.1016/j.neucom.2014.09.072
10.1093/brain/awp105
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
DOI 10.1002/ima.22290
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 314
ExternalDocumentID 10_1002_ima_22290
IMA22290
Genre article
GrantInformation_xml – fundername: National Institute on Aging
– fundername: National Institutes of Health
  funderid: U01 AG024904
– fundername: Alzheimer's Disease Neuroimaging Initiative
  funderid: U01 AG024904
– fundername: National Institute of Biomedical Imaging and Bioengineering
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2970-8a7b324995017d65d4040adfda9b1408505e19fa0c544b36aeac5acc13009bea3
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Fri Jul 25 05:02:37 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 01:29:47 EDT 2025
Wed Jan 22 16:36:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-8a7b324995017d65d4040adfda9b1408505e19fa0c544b36aeac5acc13009bea3
Notes Funding information
Alzheimer's Disease Neuroimaging Initiative, Grant/Award Number: U01 AG024904; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7945-0992
PQID 2129543767
PQPubID 1026352
PageCount 13
ParticipantIDs proquest_journals_2129543767
crossref_primary_10_1002_ima_22290
crossref_citationtrail_10_1002_ima_22290
wiley_primary_10_1002_ima_22290_IMA22290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1989; 84
2017; 83
2012; 60
2002; 17
1987; 1
2002; 15
2006; 30
2012; 2012
2010; 58
2010; 13
2006; 33
2011; 11
1997; 49
2016; 71
2003; 18
2011; 56
2003; 19
2017; 155
1997; 5
2001; 45
2014; 61
2007; 34
2007; 38
1990; 44
2013; 17
2013; 2013
2015; 256
2013; 12
2000; 10
2000; 11
2015; 44
2001; 14
2012; 62
1995; 9
2001; 71
2002; 73
2017; 27
2013; 40
2009; 132
2003
2016; 125
2015; 9
2012; 33
2011; 7
2016; 13
2015; 151
2004; 10
2015; 150
2015; 25
2013; 37
2015; 29
2016; 3
2015; 64
2017; 13
2013; 212
2008; 41
2009; 5
2010; 290
2016; 26
2016; 175
1966
e_1_2_8_28_1
Anderson TW (e_1_2_8_49_1) 1966
e_1_2_8_47_1
e_1_2_8_26_1
Lancaster JL (e_1_2_8_45_1) 1997; 5
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
Dagostino RB (e_1_2_8_50_1) 1990; 44
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Cunningham P (e_1_2_8_56_1) 2007; 34
e_1_2_8_30_1
e_1_2_8_29_1
Liu F (e_1_2_8_13_1) 2013; 2013
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Cheng B (e_1_2_8_24_1) 2012; 2012
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Guyon I (e_1_2_8_51_1) 2003
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 27
  start-page: 89
  issue: 1
  year: 2017
  end-page: 97
  article-title: Neuroimage‐based clinical prediction using machine learning tools
  publication-title: Int J Imag Syst Tech
– volume: 62
  start-page: 911
  issue: 2
  year: 2012
  end-page: 922
  article-title: Brain templates and atlases
  publication-title: Neuroimage
– volume: 61
  start-page: 2245
  issue: 8
  year: 2014
  end-page: 2253
  article-title: An optimal decisional space for the classification of Alzheimers disease and mild cognitive impairment
  publication-title: IEEE Trans Biomed Eng
– volume: 175
  start-page: 132
  year: 2016
  end-page: 145
  article-title: Multi‐scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis
  publication-title: Neurocomputing.
– year: 1966
– volume: 33
  start-page: 1109
  issue: 6
  year: 2012
  end-page: 1114
  article-title: Automatic voxel‐based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through Exponentiated lie algebra improves the diagnosis of probable Alzheimer disease
  publication-title: Am J Neuroradiol
– volume: 290
  start-page: 96
  issue: 1–2
  year: 2010
  end-page: 101
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimers disease: a longitudinal SPECT study
  publication-title: J Neurol Sci
– volume: 30
  start-page: 436
  issue: 2
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data
  publication-title: Neuroimage
– volume: 64
  start-page: 208
  year: 2015
  end-page: 216
  article-title: Probability distribution function‐based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput Biol Med
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical Parcellation of the MNI MRI single‐subject brain
  publication-title: Neuroimage
– volume: 212
  start-page: 230
  issue: 3
  year: 2013
  end-page: 236
  article-title: Meta‐analysis based SVM classification enables accurate detection of Alzheimers disease across different clinical centers using FDG‐PET and MRI
  publication-title: Psychiatry Res
– volume: 29
  start-page: 145
  issue: 1
  year: 2015
  end-page: 171
  article-title: Feature selection methods and their combinations in high‐dimensional classification of speaker likability, intelligibility and personality traits
  publication-title: Comput Speech Lang
– volume: 83
  start-page: 109
  year: 2017
  end-page: 119
  article-title: Classification of Alzheimers disease and prediction of mild cognitive impairment‐to‐Alzheimers conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm
  publication-title: Comput Biol Med
– volume: 2012
  start-page: 82
  year: 2012
  end-page: 90
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: Med Image Comput Comput Assist Interv
– volume: 7
  start-page: e16
  issue: 4
  year: 2011
  article-title: Combining MRI and CSF measures for classification of Alzheimers disease and prediction of mild cognitive impairment conversion
  publication-title: Alzheimers Dement
– volume: 34
  start-page: 1
  year: 2007
  end-page: 17
  article-title: K‐nearest neighbour classifiers
  publication-title: Mult Classif Syst
– volume: 37
  start-page: 40
  issue: 1
  year: 2013
  end-page: 47
  article-title: A semi‐quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimers disease versus vascular dementia
  publication-title: Comput Med Imaging Graph
– volume: 60
  start-page: 59
  issue: 1
  year: 2012
  end-page: 70
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
– volume: 18
  start-page: 525
  issue: 2
  year: 2003
  end-page: 541
  article-title: Early diagnosis of alzheimer's disease: contribution of structural neuroimaging
  publication-title: Neuroimage
– volume: 1
  start-page: 51
  issue: 1
  year: 1987
  article-title: A new definition of Alzheimer's disease
  publication-title: Alzheimer Dis Ass Dis
– volume: 9
  year: 2015
  article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimers disease diagnosis
  publication-title: Front Comput Neurosci
– volume: 150
  start-page: 37
  year: 2015
  end-page: 42
  article-title: A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data
  publication-title: Neurocomputing
– volume: 132
  start-page: 2036
  issue: 8
  year: 2009
  end-page: 2047
  article-title: Early diagnosis of Alzheimers disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 13
  start-page: 545
  issue: 5
  year: 2016
  end-page: 556
  article-title: Fuzzy computer‐aided Alzheimers disease diagnosis based on MRI data
  publication-title: Curr Alzheimer Res
– volume: 2013
  start-page: 308
  year: 2013
  end-page: 315
  article-title: Inter‐modality relationship constrained multi‐task feature selection for AD/MCI classification
  publication-title: Med Image Comput Comput Assist Interv
– volume: 17
  start-page: 647
  issue: 8
  year: 2002
  end-page: 650
  article-title: Simplifying likelihood ratios
  publication-title: J Gen Intern Med
– volume: 41
  start-page: 277
  issue: 2
  year: 2008
  end-page: 285
  article-title: Structural and functional biomarkers of prodromal Alzheimers disease: a high‐dimensional pattern classification study
  publication-title: Neuroimage
– volume: 71
  start-page: 1
  year: 2016
  end-page: 29
  article-title: On the early diagnosis of Alzheimers disease from multimodal signals: a survey
  publication-title: Artif Intell Med
– volume: 256
  start-page: 168
  year: 2015
  end-page: 183
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimers disease
  publication-title: J Neurosci Methods
– volume: 73
  start-page: 657
  issue: 6
  year: 2002
  end-page: 664
  article-title: Detection of grey matter loss in mild Alzheimers disease with voxel based morphometry
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 84
  start-page: 165
  issue: 405
  year: 1989
  end-page: 175
  article-title: Regularized discriminant analysis
  publication-title: J Am Stat Assoc
– volume: 11
  start-page: 2313
  issue: 2
  year: 2011
  end-page: 2325
  article-title: GMM based SPECT image classification for the diagnosis of Alzheimer's disease
  publication-title: Appl Soft Comput
– volume: 27
  start-page: 133
  issue: 2
  year: 2017
  end-page: 143
  article-title: Alzheimer disease classification using KPCA, LDA, and multi‐kernel learning SVM
  publication-title: Int J Imag Syst Tech
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  article-title: A review on neuroimaging‐based classification studies and associated feature extraction methods for Alzheimers disease and its prodromal stages
  publication-title: Neuroimage
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 12
  start-page: 229
  issue: 2
  year: 2013
  end-page: 244
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– volume: 19
  start-page: 1233
  issue: 3
  year: 2003
  end-page: 1239
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets
  publication-title: Neuroimage
– volume: 212
  start-page: 89
  issue: 2
  year: 2013
  end-page: 98
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatry Res
– volume: 44
  start-page: 316
  issue: 4
  year: 1990
  end-page: 321
  article-title: A suggestion for using powerful and informative tests of normality
  publication-title: Am Stat
– volume: 5
  start-page: e10
  issue: 4
  year: 2009
  article-title: Neurostructural predictors of conversion to AlzheimerS disease: a meta‐analysis of Vbm studies
  publication-title: Alzheimers Dement
– volume: 33
  start-page: 115
  issue: 1
  year: 2006
  end-page: 126
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: Neuroimage
– volume: 26
  start-page: 124
  issue: 2
  year: 2016
  end-page: 135
  article-title: Contribution of neuroimaging in the diagnosis of brain disorders: recent findings and future applications
  publication-title: Int J Imag Syst Tech
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  end-page: 821
  article-title: Voxel‐based morphometry—the methods
  publication-title: Neuroimage
– volume: 13
  start-page: 116
  issue: 6
  year: 2010
  article-title: An overview of biomarkers in Alzheimer's disease
  publication-title: Ann Indian Acad Neurol
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  end-page: 781
  article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
– volume: 44
  start-page: 13
  year: 2015
  end-page: 25
  article-title: Alzheimers disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex
  publication-title: Comput Med Imaging Graph
– volume: 25
  start-page: 179
  issue: 2
  year: 2015
  end-page: 190
  article-title: 3d discrete wavelet transform for computer aided diagnosis of Alzheimers disease using t1‐weighted brain MRI
  publication-title: Int J Imag Syst Tech
– volume: 58
  start-page: 53
  issue: 2
  year: 2010
  end-page: 67
  article-title: Multivariate data analysis for neuroimaging data: overview and application to Alzheimer's disease
  publication-title: Cell Biochem Biophys
– volume: 5
  start-page: S633
  year: 1997
  article-title: The Talairach daemon, a database server for Talairach atlas labels
  publication-title: Neuroimage
– volume: 125
  start-page: 834
  year: 2016
  end-page: 847
  article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease
  publication-title: Neuroimage
– volume: 151
  start-page: 139
  year: 2015
  end-page: 150
  article-title: Early diagnosis of Alzheimer's disease based on partial least, squares principal component analysis and support vector machine using segmented MRI images
  publication-title: Neurocomputing
– volume: 49
  start-page: 786
  issue: 3
  year: 1997
  end-page: 794
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimers disease
  publication-title: Neurology
– volume: 17
  start-page: 379
  issue: 8
  year: 2013
  end-page: 390
  article-title: The role of the parahippocampal cortex in cognition
  publication-title: Trends Cogn Sci
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  end-page: 113
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 10
  start-page: 120
  issue: 3
  year: 2000
  end-page: 131
  article-title: Automated Talairach atlas labels for functional brain mapping
  publication-title: Hum Brain Mapp
– volume: 13
  start-page: 325
  issue: 4
  year: 2017
  end-page: 373
  article-title: 2017 Alzheimer's disease facts and figures
  publication-title: Alzheimers Dement
– start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 3
  start-page: 145
  issue: 2
  year: 2016
  article-title: Linear vs. quadratic discriminant analysis classifier: a tutorial
  publication-title: Int J Appl Patt Recogn
– volume: 40
  start-page: 677
  issue: 2
  year: 2013
  end-page: 683
  article-title: Early diagnosis of Alzheimer's disease based on partial least squares and support vector machine
  publication-title: Expert Syst Appl
– volume: 10
  start-page: S34
  issue: 7
  year: 2004
  article-title: Advances in the early detection of Alzheimer's disease
  publication-title: Nat Med
– volume: 9
  start-page: 73
  issue: 1
  year: 1995
  end-page: 86
  article-title: Volumes of hippocampus, amygdala and frontal lobes in the MRI‐based diagnosis of early Alzheimers disease: correlation with memory functions
  publication-title: J Neural Transm Park Dis Dement Sect
– volume: 14
  start-page: 298
  issue: 2
  year: 2001
  end-page: 309
  article-title: In vivo mapping of gray matter loss with voxel‐based morphometry in mild alzheimer's disease
  publication-title: Neuroimage
– volume: 71
  start-page: 441
  issue: 4
  year: 2001
  end-page: 447
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimers disease
  publication-title: J Neurol Neurosurg Psychiatry
– ident: e_1_2_8_33_1
  doi: 10.1016/j.compmedimag.2015.04.007
– ident: e_1_2_8_8_1
  doi: 10.1136/jnnp.73.6.657
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: e_1_2_8_67_1
  doi: 10.1007/BF02252964
– ident: e_1_2_8_60_1
  doi: 10.1504/IJAPR.2016.079050
– ident: e_1_2_8_17_1
  doi: 10.1002/ima.22213
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuroimage.2010.06.013
– ident: e_1_2_8_62_1
– ident: e_1_2_8_47_1
  doi: 10.1016/S1053-8119(03)00169-1
– ident: e_1_2_8_26_1
  doi: 10.1007/s12013-010-9093-0
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compbiomed.2017.02.011
– ident: e_1_2_8_29_1
  doi: 10.1006/nimg.2001.0848
– ident: e_1_2_8_19_1
  doi: 10.1016/j.asoc.2010.08.012
– ident: e_1_2_8_57_1
  doi: 10.1007/SpringerReference_57934
– ident: e_1_2_8_65_1
  doi: 10.1136/jnnp.71.4.441
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jalz.2009.07.053
– ident: e_1_2_8_46_1
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– ident: e_1_2_8_36_1
  doi: 10.1109/TBME.2014.2310709
– ident: e_1_2_8_39_1
  doi: 10.1002/ima.22217
– ident: e_1_2_8_66_1
  doi: 10.1016/j.neuroimage.2015.10.065
– ident: e_1_2_8_40_1
  doi: 10.1006/nimg.2000.0582
– ident: e_1_2_8_9_1
  doi: 10.1016/S1053-8119(02)00026-5
– volume-title: An Introduction to Multivariate Statistical Analysis
  year: 1966
  ident: e_1_2_8_49_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.eswa.2012.07.071
– ident: e_1_2_8_23_1
  doi: 10.3389/fncom.2015.00132
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jalz.2011.09.043
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2008.02.043
– ident: e_1_2_8_61_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_7_1
  doi: 10.4103/0972-2327.74256
– volume: 5
  start-page: S633
  year: 1997
  ident: e_1_2_8_45_1
  article-title: The Talairach daemon, a database server for Talairach atlas labels
  publication-title: Neuroimage
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jns.2009.10.022
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compmedimag.2012.11.001
– ident: e_1_2_8_48_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_8_5_1
  doi: 10.1002/ima.22167
– ident: e_1_2_8_16_1
  doi: 10.1002/ima.22135
– ident: e_1_2_8_37_1
  doi: 10.2174/1567205013666160314145008
– ident: e_1_2_8_68_1
  doi: 10.1016/j.tics.2013.06.009
– ident: e_1_2_8_58_1
  doi: 10.1109/NNSP.1999.788121
– start-page: 1157
  year: 2003
  ident: e_1_2_8_51_1
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 2012
  start-page: 82
  year: 2012
  ident: e_1_2_8_24_1
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_55_1
  doi: 10.21437/Interspeech.2013-69
– ident: e_1_2_8_14_1
  doi: 10.1016/j.pscychresns.2012.11.005
– volume: 44
  start-page: 316
  issue: 4
  year: 1990
  ident: e_1_2_8_50_1
  article-title: A suggestion for using powerful and informative tests of normality
  publication-title: Am Stat
  doi: 10.1080/00031305.1990.10475751
– ident: e_1_2_8_53_1
  doi: 10.1007/s12021-013-9204-3
– ident: e_1_2_8_63_1
  doi: 10.1046/j.1525-1497.2002.10750.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.artmed.2016.06.003
– volume: 2013
  start-page: 308
  year: 2013
  ident: e_1_2_8_13_1
  article-title: Inter‐modality relationship constrained multi‐task feature selection for AD/MCI classification
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2012.01.024
– ident: e_1_2_8_64_1
  doi: 10.1097/00002093-198701000-00037
– ident: e_1_2_8_22_1
  doi: 10.1016/j.pscychresns.2012.04.007
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuroimage.2006.05.061
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neucom.2015.10.043
– ident: e_1_2_8_70_1
  doi: 10.1038/nrn1433
– ident: e_1_2_8_2_1
– ident: e_1_2_8_69_1
  doi: 10.1212/WNL.49.3.786
– ident: e_1_2_8_27_1
  doi: 10.5772/50019
– ident: e_1_2_8_52_1
  doi: 10.1016/j.neuroimage.2011.11.066
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neucom.2014.02.076
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jalz.2017.02.001
– ident: e_1_2_8_10_1
  doi: 10.3174/ajnr.A2935
– ident: e_1_2_8_59_1
  doi: 10.1080/01621459.1989.10478752
– ident: e_1_2_8_31_1
  doi: 10.1016/j.compbiomed.2015.07.006
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 34
  start-page: 1
  year: 2007
  ident: e_1_2_8_56_1
  article-title: K‐nearest neighbour classifiers
  publication-title: Mult Classif Syst
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jneumeth.2015.08.020
– ident: e_1_2_8_54_1
  doi: 10.1016/j.csl.2013.11.004
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neucom.2014.09.072
– ident: e_1_2_8_11_1
  doi: 10.1093/brain/awp105
SSID ssj0011505
Score 2.2339618
Snippet Identification of dominant imaging biomarkers is important for early detection of Alzheimer's disease (AD) and to improve diagnostic accuracy. This work...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms Algorithms
Alzheimer's disease
Automation
Biomarkers
Brain
Diagnostic systems
Entropy (Information theory)
Feature extraction
feature selection
Image segmentation
imaging biomarkers
Kurtosis
magnetic resonance imaging
Medical imaging
region segmentation
region selection
voxel‐based morphometry
Title A statistical region selection and randomized volumetric features selection framework for early detection of Alzheimer's disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22290
https://www.proquest.com/docview/2129543767
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8MwGMCDCIIefEzF-SKIoJdq1ybpgqeiDhXmQRR2EEpexeHWybpddvJP90v6cIqCeCs06SP5Xm2-_D6EjiPOVMgE9ZghwiMmCD2ZCuYFRkfwTWQUcZCk7j27eSJ3PdpbQBfVXpiCD1H_cLOa4ey1VXAh8_NPaGjfYoMsrRzsbytklpt_9VCjo2yg49IX25ZASWhUUYX84Lzu-dUXfQaY82Gq8zOdNfRcPWGRXvJ6Np3IMzX7Bm_85yuso9Uy_sRxITAbaMFkDbQyRyVsoCWXFaryTfQeY7vhyLGcoZMt4jDKcO5K59gjkWkMvk6Phv2Z0biwdBb5j1PjgKH5XOO0SgPDECdjY8HKWJtJeXaU4ngwezH9oRmf5LhcN9pCT53rx8sbryzZ4KmAR77XFpGEEI1zCpquGdUEjITQqRZctixMzaemxVPhK0qIBCEBu0-FUnZRjUsjwm20mI0ys4Mw5aEGYxKJlEvCwKf6mgoS6JZiPOKRaKLTavISVfLMbVmNQVKQmIMEhjdxw9tER3XTtwLi8VOj_UoCklKP8wQcO6fEEm_gdm4qf79ActuN3cHu35vuoWWIwNpFfsw-WpyMp-YAopyJPHTi_AE1evne
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT-MwEIdHPISAA68F8VqwEBJcUtLUTmqJS7ULKo9yQCBxQZFjO6KCpqgpl572T98ZJykFLdKKW6TYefgx87M9_gxwGMlQN0IlvNBy5XEbNLwkVaEXWBPhmMhq7iBJnZuwfc8vH8TDFJxWe2EKPsR4wo16hrPX1MFpQvrknRraJW4Q4cqnYZaj0KCh1-_bMTyKpI4LYGwSg5KLqOIK-cHJOOtHb_QuMSeFqvM058vwWH1jEWDyXHsbJjU9-oRv_O5PrMBSKUFZq2gzqzBlszVYnAATrsGcCwzV-Q_402K058jhnDETnePQz1juTs-hK5UZhu7O9HvdkTWsMHZE_WepdczQfCJxWkWCMZTKzBJbmRk7LO_2U9Z6GT3Zbs8OjnJWLh2tw_352d2vtlee2uDpQEa-11RRgipNSoGd3YTCcLQTyqRGyaROPDVf2LpMla8F5wm2EzT9QmlN62oysaqxATNZP7ObwIRsGLQnkUplwkN0q74RigemrkMZyUhtwXFVe7EukeZ0ssZLXMCYgxiLN3bFuwUH46SvBcfjX4l2qyYQl105j9G3S8EJeoOvc3X59QPii07LXWz_f9J9mG_fda7j64ubqx1YQEHWLMJldmFmOHizP1H0DJM917b_AtKc_f0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPXlD0wbt4N4igL51dl6QLPg11eEdEwQehpEmKQ9cNO1_25Ef3JG3nFAXxrdCkl-TknH-bk18AdkPBVY1L5nFDpUdNUPPiRHIvMDrEbyKjqIMkXV3z03t6_sAeRuCwXAuT8yEGP9zsyHD-2g7wrk4OPqGhLYsNsrTyURinHJWEVUS3A3aUVTouf7FuEZSUhSVWyA8OBlW_BqNPhTmsU12gac7CY_mIeX7Jc-WtF1dU_xu98Z_vMAczhQAljdxi5mHEpAswPYQlXIAJlxaqskV4bxC74sjBnLGS3cWhk5LM7Z1jj2SqCQY73Wm3-kaT3NVZ5j9JjCOGZkOFkzIPjKBQJsaSlYk2veJsJyGNl_6TabXN615GiomjJbhvntwdnXrFng2eCkToe3UZxqjRhGA41DVnmqKXkDrRUsRVS1PzmamKRPqKURqjlaDjZ1IpO6smYiNryzCWdlKzAoSJmkZvEspExJRjUPU1kzTQVcVFKEK5Cvtl50WqAJrbfTVeohzFHETYvJFr3lXYGRTt5hSPnwptlBYQFQM5izCyC0Yt8gZv57ry9wtEZ1cNd7D296LbMHlz3Iwuz64v1mEK1Vg9z5XZgLHe65vZRMXTi7ecZX8A4078rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+region+selection+and+randomized+volumetric+features+selection+framework+for+early+detection+of+Alzheimer%27s+disease&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Mishra%2C+Shiwangi&rft.au=Beheshti%2C+Iman&rft.au=Khanna%2C+Pritee&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=28&rft.issue=4&rft.spage=302&rft.epage=314&rft_id=info:doi/10.1002%2Fima.22290&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon