Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals

Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identifi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 32; no. 1; pp. 402 - 413
Main Authors Ashokkumar, S. R., Anupallavi, S., MohanBabu, G., Premkumar, M., Jeevanantham, V.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22670

Cover

Loading…
Abstract Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identification of human emotions is important. Poor generalization capacity induced by individual variations in emotion perceptions is indeed a concern in the current methods of emotion recognition. This work proposes a new dynamic pattern learning system based on entropy to allow electroencephalogram (EEG) signals for subject‐independent emotion recognition with strong generalization and classification through Recurrent Neural Network and Ensemble learning. First, dynamic entropy measurements are used to derive consecutive entropy values over time from EEG signals in quantitative EEG calculations. Experiment findings indicate that in order to distinguish negative and positive emotions, the highest average accuracy of 94.67% is achieved. In addition, the findings have completely shown that this approach produces outstanding performance for emotion detection across individuals relative to recent studies.
AbstractList Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identification of human emotions is important. Poor generalization capacity induced by individual variations in emotion perceptions is indeed a concern in the current methods of emotion recognition. This work proposes a new dynamic pattern learning system based on entropy to allow electroencephalogram (EEG) signals for subject‐independent emotion recognition with strong generalization and classification through Recurrent Neural Network and Ensemble learning. First, dynamic entropy measurements are used to derive consecutive entropy values over time from EEG signals in quantitative EEG calculations. Experiment findings indicate that in order to distinguish negative and positive emotions, the highest average accuracy of 94.67% is achieved. In addition, the findings have completely shown that this approach produces outstanding performance for emotion detection across individuals relative to recent studies.
Author Jeevanantham, V.
Anupallavi, S.
Premkumar, M.
MohanBabu, G.
Ashokkumar, S. R.
Author_xml – sequence: 1
  givenname: S. R.
  orcidid: 0000-0001-7171-3313
  surname: Ashokkumar
  fullname: Ashokkumar, S. R.
  email: srashokkumar1987@gmail.com
  organization: Sri Eshwar College of Engineering
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-1007-5244
  surname: Anupallavi
  fullname: Anupallavi, S.
  organization: VSB College of Engineering Technical Campus
– sequence: 3
  givenname: G.
  orcidid: 0000-0001-5208-2077
  surname: MohanBabu
  fullname: MohanBabu, G.
  organization: SSM Institute of Engineering and Technology
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-0517-1055
  surname: Premkumar
  fullname: Premkumar, M.
  organization: SSM Institute of Engineering and Technology
– sequence: 5
  givenname: V.
  orcidid: 0000-0003-3787-4855
  surname: Jeevanantham
  fullname: Jeevanantham, V.
  organization: SSM Institute of Engineering and Technology
BookMark eNp1kM1PwyAYxomZidv04H9A4slDN6ClLcdlmbpkxoueCaVvJ0sLE7qY_veyj5PRy_sBv-cJPBM0ss4CQveUzCghbG46NWMsL8gVGlMiyuRYRmhMSiESkfHiBk1C2BFCKSd8jNSqc71xFpsabG8ao9VprQZcD1Z1RuN47t1-wMrWcQ7QVS3gFpS3xm5x412HoQUdIbAa9p-qdVuvOhzM1qo23KLrJja4u_Qp-nhavS9fks3b83q52CSaiYIkJS_yMq0YU7zWjNKUNZCRVDccSgYgKso0ZIplqQJa8pywigDlVQqUNlVB0yl6OPvuvfs6QOjlzh388QWS5bQQLC9FHqn5mdLeheChkdr0py_3XplWUiKPOcqYozzlGBWPvxR7H2_98Cd7cf82LQz_g3L9ujgrfgC4d4VN
CitedBy_id crossref_primary_10_1007_s11277_023_10252_3
crossref_primary_10_1016_j_bspc_2024_106440
crossref_primary_10_2478_jsiot_2022_0003
crossref_primary_10_1016_j_ijin_2022_10_003
crossref_primary_10_48175_IJARSCT_17532
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_3390_biomimetics9120761
crossref_primary_10_1007_s11277_022_10154_w
crossref_primary_10_1016_j_ibmed_2023_100123
crossref_primary_10_1002_ima_22910
Cites_doi 10.1016/j.measurement.2018.05.017
10.1109/TAFFC.2017.2712143
10.1007/s11760-021-01942-1
10.1109/T-AFFC.2011.15
10.3389/fnins.2017.00310
10.1007/s11227-018-2570-8
10.1037/h0077714
10.1109/ACCESS.2017.2724555
10.1002/ima.22441
10.1007/s12652-020-02383-3
10.1016/j.neucom.2015.09.085
10.1109/TCDS.2016.2587290
10.1109/TIM.2013.2287803
10.1016/j.cmpb.2011.03.018
10.1016/j.bspc.2013.11.010
10.1007/978-3-319-73600-6_8
10.1007/s11042-019-7359-0
10.1023/A:1007977618277
10.1002/ima.22565
10.1007/s00521-015-2149-8
10.1007/978-3-319-70093-9_86
10.1109/TAMD.2015.2431497
10.3233/THC-174836
10.3115/v1/D14-1179
10.1109/ACCESS.2019.2904400
10.1007/978-3-319-46672-9_58
10.1109/ACCESS.2021.3091487
10.3233/JIFS-191015
10.1007/BF02344719
10.1145/1631111.1631118
10.1016/j.neulet.2016.09.037
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22670
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 413
ExternalDocumentID 10_1002_ima_22670
IMA22670
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2970-857683b22a5dc21132fe403cf5e82ee9b12ce4a243ae185602b0e15b3e11fb713
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Sun Jul 20 04:21:18 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Tue Jul 01 01:29:49 EDT 2025
Wed Jan 22 16:27:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2970-857683b22a5dc21132fe403cf5e82ee9b12ce4a243ae185602b0e15b3e11fb713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5208-2077
0000-0003-3787-4855
0000-0003-0517-1055
0000-0001-7171-3313
0000-0003-1007-5244
PQID 2617926896
PQPubID 1026352
PageCount 12
ParticipantIDs proquest_journals_2617926896
crossref_citationtrail_10_1002_ima_22670
crossref_primary_10_1002_ima_22670
wiley_primary_10_1002_ima_22670_IMA22670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2017; 5
2019; 7
2004; 42
2017; 8
2017; 28
1997; 25
2018; 125
2020; 39
2009
2014; 24
2020; 79
2020; 12
2014; 63
2015; 7
2017; 9
2018; 26
1980; 39
2015; 174
2011; 104
2021; 15
2021; 31
2012; 3
2020; 30
2017; 11
2018
2017
2016
2016; 633
2018; 10
2018; 76
2014; 10
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
Alhagry S (e_1_2_10_33_1) 2017; 8
e_1_2_10_22_1
e_1_2_10_20_1
Jie X (e_1_2_10_27_1) 2014; 24
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 12
  start-page: 7139
  issue: 7
  year: 2020
  end-page: 7151
  article-title: An optimized deep learning network model for eeg based seizure classification using synchronization and functional connectivity measures
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 9
  article-title: A new approach for emotions recognition through EOG and EMG signals
  publication-title: Signal Image Video Process
– volume: 9
  start-page: 281
  year: 2017
  end-page: 290
  article-title: Multichannel EEG‐based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Trans Cogn Dev Syst
– volume: 11
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Pattern recognition of momentary mentalworkload based on multi‐channel electrophysiological data and ensembleconvolutional neural networks
  publication-title: Front Neurosci
– volume: 125
  start-page: 432
  year: 2018
  end-page: 437
  article-title: Multiscale entropy‐based analysis and processing of EEG signal during watching 3DTV
  publication-title: Measurement
– volume: 10
  start-page: 1
  year: 2014
  end-page: 10
  article-title: A framework onwavelet‐based nonlinear features and extreme learning machine for epilepticseizure detection
  publication-title: Biomed Signal Process Control
– volume: 31
  start-page: 895
  issue: 2
  year: 2021
  end-page: 908
  article-title: Implementation of deep neural networks for classifying electroencephalogram signal using fractional S‐transform for epileptic seizure detection
  publication-title: Int J Imag Syst Technol
– volume: 24
  start-page: 1185
  year: 2014
  end-page: 1192
  article-title: Emotion recognition based on the sample entropy of EEG
  publication-title: Biomed Mater Eng
– volume: 28
  start-page: 1985
  year: 2017
  end-page: 1990
  article-title: Wavelet‐based emotion recognition system using EEG signal
  publication-title: Neural Comput Appl
– volume: 104
  start-page: 443
  issue: 3
  year: 2011
  end-page: 451
  article-title: Classifier ensemble construction with rotation forest toimprove medical diagnosis performance of machine learning algorithms
  publication-title: Comput Methods Programs Biomed
– start-page: 811
  year: 2017
  end-page: 819
– volume: 42
  start-page: 419
  issue: 3
  year: 2004
  end-page: 427
  article-title: Emotion recognition system using short‐term monitoring of physiological signals
  publication-title: Med Biol Eng Comput
– volume: 39
  start-page: 1161
  issue: 6
  year: 1980
  end-page: 1178
  article-title: A circumplex model of affect
  publication-title: J Pers Soc Psychol
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  article-title: Investigating critical frequency bands and channels for EEGbased emotion recognition with deep neural networks
  publication-title: IEEE Trans Auton Ment Dev
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  end-page: 358
  article-title: Emotion recognition based on EEGusing LSTM recurrent neural network
  publication-title: Int J Adv Comput Sci Appl (IJACSA)
– volume: 174
  start-page: 875
  year: 2015
  end-page: 884
  article-title: Relevance vector classifier decision fusionand EEG graph‐theoretic features for automatic affective statecharacterization
  publication-title: Neurocomputing
– volume: 39
  start-page: 233
  issue: 1
  year: 2020
  end-page: 248
  article-title: Extreme learning adaptive neuro‐fuzzy inference system model for classifying the epilepsy using Q‐tuned wavelet transform
  publication-title: J. Intell. Fuzzy Syst.
– volume: 633
  start-page: 152
  year: 2016
  end-page: 157
  article-title: An approach to EEG‐based emotion recognition using combined feature extraction method
  publication-title: Neurosci Lett
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  article-title: DEAP: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans Affect Comput
– volume: 10
  start-page: 417
  issue: 3
  year: 2018
  end-page: 429
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans Affect Comput
– volume: 7
  start-page: 40144
  year: 2019
  end-page: 40153
  article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble
  publication-title: IEEE Access
– volume: 9
  start-page: 94601
  year: 2021
  end-page: 94624
  article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques
  publication-title: IEEE Access
– volume: 63
  start-page: 1440
  issue: 6
  year: 2014
  end-page: 1450
  article-title: Entropy index in quantitative EEG measurement for diagnosis accuracy
  publication-title: IEEE Trans Instrum Meas
– start-page: 521
  year: 2016
  end-page: 529
– volume: 26
  start-page: 509
  year: 2018
  end-page: 519
  article-title: Emotion recognition from multichannel EEG signals using K‐nearest neighbor classification
  publication-title: Technol Health Care
– volume: 79
  start-page: 10077
  issue: 15
  year: 2020
  end-page: 10098
  article-title: A KSOM based neural network model for classifying the epilepsy using adjustable analytic wavelet transform
  publication-title: Multimed. Tools. Appl
– start-page: 33
  year: 2009
  end-page: 38
– start-page: 82
  year: 2018
  end-page: 93
– volume: 5
  start-page: 14797
  year: 2017
  end-page: 14806
  article-title: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors
  publication-title: IEEE Access
– volume: 76
  start-page: 1305
  year: 2018
  end-page: 1320
  article-title: Nonlinear characterization and complexity analysis of cardiotocographic examinations using entropy measures
  publication-title: J Supercomput
– volume: 30
  start-page: 978
  issue: 4
  year: 2020
  end-page: 993
  article-title: A novel two‐band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals
  publication-title: Int J Imag Syst Technol
– volume: 25
  start-page: 23
  issue: 1
  year: 1997
  end-page: 48
  article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion
  publication-title: Int J Comput Vis
– ident: e_1_2_10_29_1
  doi: 10.1016/j.measurement.2018.05.017
– ident: e_1_2_10_5_1
  doi: 10.1109/TAFFC.2017.2712143
– ident: e_1_2_10_35_1
  doi: 10.1007/s11760-021-01942-1
– ident: e_1_2_10_22_1
  doi: 10.1109/T-AFFC.2011.15
– ident: e_1_2_10_32_1
  doi: 10.3389/fnins.2017.00310
– ident: e_1_2_10_8_1
  doi: 10.1007/s11227-018-2570-8
– ident: e_1_2_10_23_1
  doi: 10.1037/h0077714
– ident: e_1_2_10_28_1
  doi: 10.1109/ACCESS.2017.2724555
– ident: e_1_2_10_25_1
  doi: 10.1002/ima.22441
– ident: e_1_2_10_18_1
  doi: 10.1007/s12652-020-02383-3
– ident: e_1_2_10_12_1
  doi: 10.1016/j.neucom.2015.09.085
– ident: e_1_2_10_21_1
  doi: 10.1109/TCDS.2016.2587290
– ident: e_1_2_10_4_1
  doi: 10.1109/TIM.2013.2287803
– volume: 24
  start-page: 1185
  year: 2014
  ident: e_1_2_10_27_1
  article-title: Emotion recognition based on the sample entropy of EEG
  publication-title: Biomed Mater Eng
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cmpb.2011.03.018
– ident: e_1_2_10_20_1
  doi: 10.1016/j.bspc.2013.11.010
– ident: e_1_2_10_14_1
  doi: 10.1007/978-3-319-73600-6_8
– ident: e_1_2_10_26_1
– ident: e_1_2_10_16_1
  doi: 10.1007/s11042-019-7359-0
– ident: e_1_2_10_3_1
  doi: 10.1023/A:1007977618277
– ident: e_1_2_10_7_1
  doi: 10.1002/ima.22565
– ident: e_1_2_10_10_1
  doi: 10.1007/s00521-015-2149-8
– ident: e_1_2_10_19_1
  doi: 10.1007/978-3-319-70093-9_86
– ident: e_1_2_10_6_1
  doi: 10.1109/TAMD.2015.2431497
– ident: e_1_2_10_24_1
  doi: 10.3233/THC-174836
– ident: e_1_2_10_30_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_10_34_1
  doi: 10.1109/ACCESS.2019.2904400
– ident: e_1_2_10_13_1
  doi: 10.1007/978-3-319-46672-9_58
– ident: e_1_2_10_17_1
  doi: 10.1109/ACCESS.2021.3091487
– ident: e_1_2_10_9_1
  doi: 10.3233/JIFS-191015
– ident: e_1_2_10_2_1
  doi: 10.1007/BF02344719
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  ident: e_1_2_10_33_1
  article-title: Emotion recognition based on EEGusing LSTM recurrent neural network
  publication-title: Int J Adv Comput Sci Appl (IJACSA)
– ident: e_1_2_10_15_1
  doi: 10.1145/1631111.1631118
– ident: e_1_2_10_11_1
  doi: 10.1016/j.neulet.2016.09.037
SSID ssj0011505
Score 2.395898
Snippet Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 402
SubjectTerms dynamic entropy
EEG
Electroencephalography
emotion
Emotion recognition
Emotions
Ensemble learning
Entropy
recurrent neural network
Recurrent neural networks
Title Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22670
https://www.proquest.com/docview/2617926896
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IIujBXdwJ4sFLtX1dJsXT4IKK48EFPAglSV9V1JnBmTnorzcvbccFBfHWQ7rl5SVfwve-D2CLCikTaTON4kB6USiNx3QwLzcKcwsvyMRcO9w6T46vo9Ob-GYE9upamFIfYnjgxpnh5mtOcKV7ux-ioQ8sG4RJg_frzNViQHQxlI5ioOPoi5IVKKO4UasK-bg7vPPrWvQBMD_DVLfOHE3Dbf2FJb3kcWfQ1zvm7Zt44z9_YQamKvwpmuWAmYURas_B5CdVwjkYd6xQ05sHdVia_IiHvCIVuTgK_Sry0sle8OFwp_sqVDu31z161k8kKiuKO8HFK6Jy2uEppHuvnEb2s2DeiB35C3B9dHi1f-xVngyewbThe5L3J6FGVHFukG3qC4r80BQxSSRKdYCGIoVRqMhCgcRH7VMQ65CCoNB2R7wIo-1Om5ZABDohHRWMSFVkgUhqfEUyNknaKBAJl2G7jk5mKsFy9s14ykqpZcxs_2Wu_5Zhc9i0W6p0_NRorQ5xViVqL2NB-hQTmSb2dS5Wvz8gO2k13cXK35uuwgRywYQ7tFmD0f7LgNYtjOnrDRhrHrTOLjfcuH0HbR7wVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEfXgW3wbxIOXajt9bApeRJT1sR5EwYuUJJ3qoq6Lux7015tJ2_WBgnjrIX1lMsk3w8z3AWxRIWUiradRHEgvCqXxuBzMy43C3MILMjH3DrfOk-ZVdHIdXw_BXt0LU_JDDBJu7Bluv2YH54T07gdraJt5gzBp2IB9hBW9XUB1MSCPYqjjChglc1BGcaPmFfJxd3Dr19PoA2J-BqrupDmagpv6G8sCk_udl77eMW_f6Bv_-xPTMFlBULFfrpkZGKLOLEx8IiachVFXGGp6c6AOS50f0c6ruiJnSqFfRV6K2QvODz91X4Xq5Pa6R4_6gUSlRnEruH9FVGI7vIt075SjyX4UXDpiF_88XB0dXh40vUqWwTOYNnxPcogSakQV5wZZqb6gyA9NEZNEolQHaChSGIWKLBpIfNQ-BbEOKQgKbYPiBRjuPHVoEUSgE9JRwaBURRaLpMZXJGOTpI0CkXAJtmvzZKbiLGfpjIesZFvGzM5f5uZvCTYHQ7slUcdPg1ZrG2eVr_Yy5qRPMZFpYl_njPX7A7Lj1r67WP770A0Ya162zrKz4_PTFRhH7p9wOZxVGO4_v9CaRTV9ve4W7zvX-fLe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hEAgOtHxUfLW1Kg5cAsnE8TrihAoraAFVCCQOSJHtTAoClhW7HOivr8dJFopAQr354DiJZ8Z-tmbeA1inSmulfaRRluhIptpFnA4Wlc5g6eEFuYxrh4-O1f6Z_HGenY_BdlsLU_NDjC7cODLCes0B3i-rrSfS0CumDULV8ef1CalizS69ezLijmKkE_IXNVNQyqzT0grFuDV69N_N6AlhPsepYaPpfoCL9hPr_JLrzYeh3XR_XrA3_uc_fITZBoCKndpj5mCMevMw84yWcB4mQ1qoGyyA2atVfsRV2WQVBUMK-yjKWspe8O3wXf9RmF7p2wO6tTckGi2K34KrV0QjtcNrSP_SBJLsW8GJI971F-Gsu3f6fT9qRBkih3knjjQfUFKLaLLSIevUVyTj1FUZaSTKbYKOpEGZGvJYQMVoY0oym1KSVNYfiT_BeO-uR0sgEqvIyoohqZEeieQuNqQzp_JOhUi4DButdQrXMJazcMZNUXMtY-HnrwjztwzfRl37NU3Ha53WWhMXTaQOCmakz1HpXPnXBVu9PUBxcLQTGivv7_oVpn7tdovDg-OfqzCNXDwRLnDWYHx4_0CfPaQZ2i_Bdf8CKZfxlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+identification+by+dynamic+entropy+and+ensemble+learning+from+electroencephalogram+signals&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Ashokkumar%2C+S+R&rft.au=Anupallavi%2C+S&rft.au=MohanBabu%2C+G&rft.au=Premkumar%2C+M&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=32&rft.issue=1&rft.spage=402&rft.epage=413&rft_id=info:doi/10.1002%2Fima.22670&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon