Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals
Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identifi...
Saved in:
Published in | International journal of imaging systems and technology Vol. 32; no. 1; pp. 402 - 413 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0899-9457 1098-1098 |
DOI | 10.1002/ima.22670 |
Cover
Loading…
Abstract | Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identification of human emotions is important. Poor generalization capacity induced by individual variations in emotion perceptions is indeed a concern in the current methods of emotion recognition. This work proposes a new dynamic pattern learning system based on entropy to allow electroencephalogram (EEG) signals for subject‐independent emotion recognition with strong generalization and classification through Recurrent Neural Network and Ensemble learning. First, dynamic entropy measurements are used to derive consecutive entropy values over time from EEG signals in quantitative EEG calculations. Experiment findings indicate that in order to distinguish negative and positive emotions, the highest average accuracy of 94.67% is achieved. In addition, the findings have completely shown that this approach produces outstanding performance for emotion detection across individuals relative to recent studies. |
---|---|
AbstractList | Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure. In order to assure active collaboration and trigger appropriate emotional input, accurate identification of human emotions is important. Poor generalization capacity induced by individual variations in emotion perceptions is indeed a concern in the current methods of emotion recognition. This work proposes a new dynamic pattern learning system based on entropy to allow electroencephalogram (EEG) signals for subject‐independent emotion recognition with strong generalization and classification through Recurrent Neural Network and Ensemble learning. First, dynamic entropy measurements are used to derive consecutive entropy values over time from EEG signals in quantitative EEG calculations. Experiment findings indicate that in order to distinguish negative and positive emotions, the highest average accuracy of 94.67% is achieved. In addition, the findings have completely shown that this approach produces outstanding performance for emotion detection across individuals relative to recent studies. |
Author | Jeevanantham, V. Anupallavi, S. Premkumar, M. MohanBabu, G. Ashokkumar, S. R. |
Author_xml | – sequence: 1 givenname: S. R. orcidid: 0000-0001-7171-3313 surname: Ashokkumar fullname: Ashokkumar, S. R. email: srashokkumar1987@gmail.com organization: Sri Eshwar College of Engineering – sequence: 2 givenname: S. orcidid: 0000-0003-1007-5244 surname: Anupallavi fullname: Anupallavi, S. organization: VSB College of Engineering Technical Campus – sequence: 3 givenname: G. orcidid: 0000-0001-5208-2077 surname: MohanBabu fullname: MohanBabu, G. organization: SSM Institute of Engineering and Technology – sequence: 4 givenname: M. orcidid: 0000-0003-0517-1055 surname: Premkumar fullname: Premkumar, M. organization: SSM Institute of Engineering and Technology – sequence: 5 givenname: V. orcidid: 0000-0003-3787-4855 surname: Jeevanantham fullname: Jeevanantham, V. organization: SSM Institute of Engineering and Technology |
BookMark | eNp1kM1PwyAYxomZidv04H9A4slDN6ClLcdlmbpkxoueCaVvJ0sLE7qY_veyj5PRy_sBv-cJPBM0ss4CQveUzCghbG46NWMsL8gVGlMiyuRYRmhMSiESkfHiBk1C2BFCKSd8jNSqc71xFpsabG8ao9VprQZcD1Z1RuN47t1-wMrWcQ7QVS3gFpS3xm5x412HoQUdIbAa9p-qdVuvOhzM1qo23KLrJja4u_Qp-nhavS9fks3b83q52CSaiYIkJS_yMq0YU7zWjNKUNZCRVDccSgYgKso0ZIplqQJa8pywigDlVQqUNlVB0yl6OPvuvfs6QOjlzh388QWS5bQQLC9FHqn5mdLeheChkdr0py_3XplWUiKPOcqYozzlGBWPvxR7H2_98Cd7cf82LQz_g3L9ujgrfgC4d4VN |
CitedBy_id | crossref_primary_10_1007_s11277_023_10252_3 crossref_primary_10_1016_j_bspc_2024_106440 crossref_primary_10_2478_jsiot_2022_0003 crossref_primary_10_1016_j_ijin_2022_10_003 crossref_primary_10_48175_IJARSCT_17532 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_3390_biomimetics9120761 crossref_primary_10_1007_s11277_022_10154_w crossref_primary_10_1016_j_ibmed_2023_100123 crossref_primary_10_1002_ima_22910 |
Cites_doi | 10.1016/j.measurement.2018.05.017 10.1109/TAFFC.2017.2712143 10.1007/s11760-021-01942-1 10.1109/T-AFFC.2011.15 10.3389/fnins.2017.00310 10.1007/s11227-018-2570-8 10.1037/h0077714 10.1109/ACCESS.2017.2724555 10.1002/ima.22441 10.1007/s12652-020-02383-3 10.1016/j.neucom.2015.09.085 10.1109/TCDS.2016.2587290 10.1109/TIM.2013.2287803 10.1016/j.cmpb.2011.03.018 10.1016/j.bspc.2013.11.010 10.1007/978-3-319-73600-6_8 10.1007/s11042-019-7359-0 10.1023/A:1007977618277 10.1002/ima.22565 10.1007/s00521-015-2149-8 10.1007/978-3-319-70093-9_86 10.1109/TAMD.2015.2431497 10.3233/THC-174836 10.3115/v1/D14-1179 10.1109/ACCESS.2019.2904400 10.1007/978-3-319-46672-9_58 10.1109/ACCESS.2021.3091487 10.3233/JIFS-191015 10.1007/BF02344719 10.1145/1631111.1631118 10.1016/j.neulet.2016.09.037 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22670 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | 413 |
ExternalDocumentID | 10_1002_ima_22670 IMA22670 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2970-857683b22a5dc21132fe403cf5e82ee9b12ce4a243ae185602b0e15b3e11fb713 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Sun Jul 20 04:21:18 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Tue Jul 01 01:29:49 EDT 2025 Wed Jan 22 16:27:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-857683b22a5dc21132fe403cf5e82ee9b12ce4a243ae185602b0e15b3e11fb713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5208-2077 0000-0003-3787-4855 0000-0003-0517-1055 0000-0001-7171-3313 0000-0003-1007-5244 |
PQID | 2617926896 |
PQPubID | 1026352 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2617926896 crossref_citationtrail_10_1002_ima_22670 crossref_primary_10_1002_ima_22670 wiley_primary_10_1002_ima_22670_IMA22670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 5 2019; 7 2004; 42 2017; 8 2017; 28 1997; 25 2018; 125 2020; 39 2009 2014; 24 2020; 79 2020; 12 2014; 63 2015; 7 2017; 9 2018; 26 1980; 39 2015; 174 2011; 104 2021; 15 2021; 31 2012; 3 2020; 30 2017; 11 2018 2017 2016 2016; 633 2018; 10 2018; 76 2014; 10 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 Alhagry S (e_1_2_10_33_1) 2017; 8 e_1_2_10_22_1 e_1_2_10_20_1 Jie X (e_1_2_10_27_1) 2014; 24 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 12 start-page: 7139 issue: 7 year: 2020 end-page: 7151 article-title: An optimized deep learning network model for eeg based seizure classification using synchronization and functional connectivity measures publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 15 start-page: 1 year: 2021 end-page: 9 article-title: A new approach for emotions recognition through EOG and EMG signals publication-title: Signal Image Video Process – volume: 9 start-page: 281 year: 2017 end-page: 290 article-title: Multichannel EEG‐based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans Cogn Dev Syst – volume: 11 start-page: 1 year: 2017 end-page: 16 article-title: Pattern recognition of momentary mentalworkload based on multi‐channel electrophysiological data and ensembleconvolutional neural networks publication-title: Front Neurosci – volume: 125 start-page: 432 year: 2018 end-page: 437 article-title: Multiscale entropy‐based analysis and processing of EEG signal during watching 3DTV publication-title: Measurement – volume: 10 start-page: 1 year: 2014 end-page: 10 article-title: A framework onwavelet‐based nonlinear features and extreme learning machine for epilepticseizure detection publication-title: Biomed Signal Process Control – volume: 31 start-page: 895 issue: 2 year: 2021 end-page: 908 article-title: Implementation of deep neural networks for classifying electroencephalogram signal using fractional S‐transform for epileptic seizure detection publication-title: Int J Imag Syst Technol – volume: 24 start-page: 1185 year: 2014 end-page: 1192 article-title: Emotion recognition based on the sample entropy of EEG publication-title: Biomed Mater Eng – volume: 28 start-page: 1985 year: 2017 end-page: 1990 article-title: Wavelet‐based emotion recognition system using EEG signal publication-title: Neural Comput Appl – volume: 104 start-page: 443 issue: 3 year: 2011 end-page: 451 article-title: Classifier ensemble construction with rotation forest toimprove medical diagnosis performance of machine learning algorithms publication-title: Comput Methods Programs Biomed – start-page: 811 year: 2017 end-page: 819 – volume: 42 start-page: 419 issue: 3 year: 2004 end-page: 427 article-title: Emotion recognition system using short‐term monitoring of physiological signals publication-title: Med Biol Eng Comput – volume: 39 start-page: 1161 issue: 6 year: 1980 end-page: 1178 article-title: A circumplex model of affect publication-title: J Pers Soc Psychol – volume: 7 start-page: 162 year: 2015 end-page: 175 article-title: Investigating critical frequency bands and channels for EEGbased emotion recognition with deep neural networks publication-title: IEEE Trans Auton Ment Dev – volume: 8 start-page: 355 issue: 10 year: 2017 end-page: 358 article-title: Emotion recognition based on EEGusing LSTM recurrent neural network publication-title: Int J Adv Comput Sci Appl (IJACSA) – volume: 174 start-page: 875 year: 2015 end-page: 884 article-title: Relevance vector classifier decision fusionand EEG graph‐theoretic features for automatic affective statecharacterization publication-title: Neurocomputing – volume: 39 start-page: 233 issue: 1 year: 2020 end-page: 248 article-title: Extreme learning adaptive neuro‐fuzzy inference system model for classifying the epilepsy using Q‐tuned wavelet transform publication-title: J. Intell. Fuzzy Syst. – volume: 633 start-page: 152 year: 2016 end-page: 157 article-title: An approach to EEG‐based emotion recognition using combined feature extraction method publication-title: Neurosci Lett – volume: 3 start-page: 18 year: 2012 end-page: 31 article-title: DEAP: a database for emotion analysis; using physiological signals publication-title: IEEE Trans Affect Comput – volume: 10 start-page: 417 issue: 3 year: 2018 end-page: 429 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans Affect Comput – volume: 7 start-page: 40144 year: 2019 end-page: 40153 article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble publication-title: IEEE Access – volume: 9 start-page: 94601 year: 2021 end-page: 94624 article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques publication-title: IEEE Access – volume: 63 start-page: 1440 issue: 6 year: 2014 end-page: 1450 article-title: Entropy index in quantitative EEG measurement for diagnosis accuracy publication-title: IEEE Trans Instrum Meas – start-page: 521 year: 2016 end-page: 529 – volume: 26 start-page: 509 year: 2018 end-page: 519 article-title: Emotion recognition from multichannel EEG signals using K‐nearest neighbor classification publication-title: Technol Health Care – volume: 79 start-page: 10077 issue: 15 year: 2020 end-page: 10098 article-title: A KSOM based neural network model for classifying the epilepsy using adjustable analytic wavelet transform publication-title: Multimed. Tools. Appl – start-page: 33 year: 2009 end-page: 38 – start-page: 82 year: 2018 end-page: 93 – volume: 5 start-page: 14797 year: 2017 end-page: 14806 article-title: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors publication-title: IEEE Access – volume: 76 start-page: 1305 year: 2018 end-page: 1320 article-title: Nonlinear characterization and complexity analysis of cardiotocographic examinations using entropy measures publication-title: J Supercomput – volume: 30 start-page: 978 issue: 4 year: 2020 end-page: 993 article-title: A novel two‐band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals publication-title: Int J Imag Syst Technol – volume: 25 start-page: 23 issue: 1 year: 1997 end-page: 48 article-title: Recognizing facial expressions in image sequences using local parameterized models of image motion publication-title: Int J Comput Vis – ident: e_1_2_10_29_1 doi: 10.1016/j.measurement.2018.05.017 – ident: e_1_2_10_5_1 doi: 10.1109/TAFFC.2017.2712143 – ident: e_1_2_10_35_1 doi: 10.1007/s11760-021-01942-1 – ident: e_1_2_10_22_1 doi: 10.1109/T-AFFC.2011.15 – ident: e_1_2_10_32_1 doi: 10.3389/fnins.2017.00310 – ident: e_1_2_10_8_1 doi: 10.1007/s11227-018-2570-8 – ident: e_1_2_10_23_1 doi: 10.1037/h0077714 – ident: e_1_2_10_28_1 doi: 10.1109/ACCESS.2017.2724555 – ident: e_1_2_10_25_1 doi: 10.1002/ima.22441 – ident: e_1_2_10_18_1 doi: 10.1007/s12652-020-02383-3 – ident: e_1_2_10_12_1 doi: 10.1016/j.neucom.2015.09.085 – ident: e_1_2_10_21_1 doi: 10.1109/TCDS.2016.2587290 – ident: e_1_2_10_4_1 doi: 10.1109/TIM.2013.2287803 – volume: 24 start-page: 1185 year: 2014 ident: e_1_2_10_27_1 article-title: Emotion recognition based on the sample entropy of EEG publication-title: Biomed Mater Eng – ident: e_1_2_10_31_1 doi: 10.1016/j.cmpb.2011.03.018 – ident: e_1_2_10_20_1 doi: 10.1016/j.bspc.2013.11.010 – ident: e_1_2_10_14_1 doi: 10.1007/978-3-319-73600-6_8 – ident: e_1_2_10_26_1 – ident: e_1_2_10_16_1 doi: 10.1007/s11042-019-7359-0 – ident: e_1_2_10_3_1 doi: 10.1023/A:1007977618277 – ident: e_1_2_10_7_1 doi: 10.1002/ima.22565 – ident: e_1_2_10_10_1 doi: 10.1007/s00521-015-2149-8 – ident: e_1_2_10_19_1 doi: 10.1007/978-3-319-70093-9_86 – ident: e_1_2_10_6_1 doi: 10.1109/TAMD.2015.2431497 – ident: e_1_2_10_24_1 doi: 10.3233/THC-174836 – ident: e_1_2_10_30_1 doi: 10.3115/v1/D14-1179 – ident: e_1_2_10_34_1 doi: 10.1109/ACCESS.2019.2904400 – ident: e_1_2_10_13_1 doi: 10.1007/978-3-319-46672-9_58 – ident: e_1_2_10_17_1 doi: 10.1109/ACCESS.2021.3091487 – ident: e_1_2_10_9_1 doi: 10.3233/JIFS-191015 – ident: e_1_2_10_2_1 doi: 10.1007/BF02344719 – volume: 8 start-page: 355 issue: 10 year: 2017 ident: e_1_2_10_33_1 article-title: Emotion recognition based on EEGusing LSTM recurrent neural network publication-title: Int J Adv Comput Sci Appl (IJACSA) – ident: e_1_2_10_15_1 doi: 10.1145/1631111.1631118 – ident: e_1_2_10_11_1 doi: 10.1016/j.neulet.2016.09.037 |
SSID | ssj0011505 |
Score | 2.395898 |
Snippet | Emotions are biologically based psychological states brought on by neurophysiologic changes, variously associated with thoughts, feelings, behavioral... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 402 |
SubjectTerms | dynamic entropy EEG Electroencephalography emotion Emotion recognition Emotions Ensemble learning Entropy recurrent neural network Recurrent neural networks |
Title | Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22670 https://www.proquest.com/docview/2617926896 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IIujBXdwJ4sFLtX1dJsXT4IKK48EFPAglSV9V1JnBmTnorzcvbccFBfHWQ7rl5SVfwve-D2CLCikTaTON4kB6USiNx3QwLzcKcwsvyMRcO9w6T46vo9Ob-GYE9upamFIfYnjgxpnh5mtOcKV7ux-ioQ8sG4RJg_frzNViQHQxlI5ioOPoi5IVKKO4UasK-bg7vPPrWvQBMD_DVLfOHE3Dbf2FJb3kcWfQ1zvm7Zt44z9_YQamKvwpmuWAmYURas_B5CdVwjkYd6xQ05sHdVia_IiHvCIVuTgK_Sry0sle8OFwp_sqVDu31z161k8kKiuKO8HFK6Jy2uEppHuvnEb2s2DeiB35C3B9dHi1f-xVngyewbThe5L3J6FGVHFukG3qC4r80BQxSSRKdYCGIoVRqMhCgcRH7VMQ65CCoNB2R7wIo-1Om5ZABDohHRWMSFVkgUhqfEUyNknaKBAJl2G7jk5mKsFy9s14ykqpZcxs_2Wu_5Zhc9i0W6p0_NRorQ5xViVqL2NB-hQTmSb2dS5Wvz8gO2k13cXK35uuwgRywYQ7tFmD0f7LgNYtjOnrDRhrHrTOLjfcuH0HbR7wVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEfXgW3wbxIOXajt9bApeRJT1sR5EwYuUJJ3qoq6Lux7015tJ2_WBgnjrIX1lMsk3w8z3AWxRIWUiradRHEgvCqXxuBzMy43C3MILMjH3DrfOk-ZVdHIdXw_BXt0LU_JDDBJu7Bluv2YH54T07gdraJt5gzBp2IB9hBW9XUB1MSCPYqjjChglc1BGcaPmFfJxd3Dr19PoA2J-BqrupDmagpv6G8sCk_udl77eMW_f6Bv_-xPTMFlBULFfrpkZGKLOLEx8IiachVFXGGp6c6AOS50f0c6ruiJnSqFfRV6K2QvODz91X4Xq5Pa6R4_6gUSlRnEruH9FVGI7vIt075SjyX4UXDpiF_88XB0dXh40vUqWwTOYNnxPcogSakQV5wZZqb6gyA9NEZNEolQHaChSGIWKLBpIfNQ-BbEOKQgKbYPiBRjuPHVoEUSgE9JRwaBURRaLpMZXJGOTpI0CkXAJtmvzZKbiLGfpjIesZFvGzM5f5uZvCTYHQ7slUcdPg1ZrG2eVr_Yy5qRPMZFpYl_njPX7A7Lj1r67WP770A0Ya162zrKz4_PTFRhH7p9wOZxVGO4_v9CaRTV9ve4W7zvX-fLe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hEAgOtHxUfLW1Kg5cAsnE8TrihAoraAFVCCQOSJHtTAoClhW7HOivr8dJFopAQr354DiJZ8Z-tmbeA1inSmulfaRRluhIptpFnA4Wlc5g6eEFuYxrh4-O1f6Z_HGenY_BdlsLU_NDjC7cODLCes0B3i-rrSfS0CumDULV8ef1CalizS69ezLijmKkE_IXNVNQyqzT0grFuDV69N_N6AlhPsepYaPpfoCL9hPr_JLrzYeh3XR_XrA3_uc_fITZBoCKndpj5mCMevMw84yWcB4mQ1qoGyyA2atVfsRV2WQVBUMK-yjKWspe8O3wXf9RmF7p2wO6tTckGi2K34KrV0QjtcNrSP_SBJLsW8GJI971F-Gsu3f6fT9qRBkih3knjjQfUFKLaLLSIevUVyTj1FUZaSTKbYKOpEGZGvJYQMVoY0oym1KSVNYfiT_BeO-uR0sgEqvIyoohqZEeieQuNqQzp_JOhUi4DButdQrXMJazcMZNUXMtY-HnrwjztwzfRl37NU3Ha53WWhMXTaQOCmakz1HpXPnXBVu9PUBxcLQTGivv7_oVpn7tdovDg-OfqzCNXDwRLnDWYHx4_0CfPaQZ2i_Bdf8CKZfxlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+identification+by+dynamic+entropy+and+ensemble+learning+from+electroencephalogram+signals&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Ashokkumar%2C+S+R&rft.au=Anupallavi%2C+S&rft.au=MohanBabu%2C+G&rft.au=Premkumar%2C+M&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=32&rft.issue=1&rft.spage=402&rft.epage=413&rft_id=info:doi/10.1002%2Fima.22670&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |