Effects of microstructural tailoring on Na storage performance of graphene
We probe the effects of microstructural tailoring on Na storage performance of graphene by using the density functional theory (DFT). The results indicate that four types of graphenes with microstructural tailoring, that is, B‐doped‐graphene (B‐graphene), O‐doped‐graphene (O‐graphene), vacancy graph...
Saved in:
Published in | International journal of quantum chemistry Vol. 121; no. 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We probe the effects of microstructural tailoring on Na storage performance of graphene by using the density functional theory (DFT). The results indicate that four types of graphenes with microstructural tailoring, that is, B‐doped‐graphene (B‐graphene), O‐doped‐graphene (O‐graphene), vacancy graphene (V‐graphene) and pyrrolic graphene (D‐graphene) exhibit improved Na storage performance involve adsorption energy, theoretical specific capacity, electronic structure and average potentials. These four types of graphenes exhibit reduced adsorption energies of −3.250, −4.347, −2.666, and −4.531 eV, and increased theoretical specific capacities of 634, 683, 720, and 720 mA h/g, respectively. Graphene with microstructural tailoring by N doping (N‐graphene) shows a poor Na storage performance (the adsorption energy is −1.161 eV and the theoretical specific capacity is 275 mA h/g). This is due to the strong interactions between B‐graphene, O‐graphene, V‐graphene, and D‐graphene and Na, which can be rationalized by the observed orbital hybridizations. The results suggest that the four types of microstructural tailoring (B‐graphene, O‐graphene, V‐graphene, and D‐graphene) are expected to improve the Na storage performance of graphene.
Energy storage is of great significance to the world socio‐economic development and environmental protection and has become growing global concerns over the world. Microstructural tailoring changes the electronic structure of material, thereby determining its properties. This provides an insight into future challenges and guidelines for finding next‐generation energy storage materials and promotes the scientific and technological revolution as well as industrial revolution in the new era. |
---|---|
AbstractList | We probe the effects of microstructural tailoring on Na storage performance of graphene by using the density functional theory (DFT). The results indicate that four types of graphenes with microstructural tailoring, that is, B‐doped‐graphene (B‐graphene), O‐doped‐graphene (O‐graphene), vacancy graphene (V‐graphene) and pyrrolic graphene (D‐graphene) exhibit improved Na storage performance involve adsorption energy, theoretical specific capacity, electronic structure and average potentials. These four types of graphenes exhibit reduced adsorption energies of −3.250, −4.347, −2.666, and −4.531 eV, and increased theoretical specific capacities of 634, 683, 720, and 720 mA h/g, respectively. Graphene with microstructural tailoring by N doping (N‐graphene) shows a poor Na storage performance (the adsorption energy is −1.161 eV and the theoretical specific capacity is 275 mA h/g). This is due to the strong interactions between B‐graphene, O‐graphene, V‐graphene, and D‐graphene and Na, which can be rationalized by the observed orbital hybridizations. The results suggest that the four types of microstructural tailoring (B‐graphene, O‐graphene, V‐graphene, and D‐graphene) are expected to improve the Na storage performance of graphene. We probe the effects of microstructural tailoring on Na storage performance of graphene by using the density functional theory (DFT). The results indicate that four types of graphenes with microstructural tailoring, that is, B‐doped‐graphene (B‐graphene), O‐doped‐graphene (O‐graphene), vacancy graphene (V‐graphene) and pyrrolic graphene (D‐graphene) exhibit improved Na storage performance involve adsorption energy, theoretical specific capacity, electronic structure and average potentials. These four types of graphenes exhibit reduced adsorption energies of −3.250, −4.347, −2.666, and −4.531 eV, and increased theoretical specific capacities of 634, 683, 720, and 720 mA h/g, respectively. Graphene with microstructural tailoring by N doping (N‐graphene) shows a poor Na storage performance (the adsorption energy is −1.161 eV and the theoretical specific capacity is 275 mA h/g). This is due to the strong interactions between B‐graphene, O‐graphene, V‐graphene, and D‐graphene and Na, which can be rationalized by the observed orbital hybridizations. The results suggest that the four types of microstructural tailoring (B‐graphene, O‐graphene, V‐graphene, and D‐graphene) are expected to improve the Na storage performance of graphene. Energy storage is of great significance to the world socio‐economic development and environmental protection and has become growing global concerns over the world. Microstructural tailoring changes the electronic structure of material, thereby determining its properties. This provides an insight into future challenges and guidelines for finding next‐generation energy storage materials and promotes the scientific and technological revolution as well as industrial revolution in the new era. |
Author | Yao, Li‐Hua Li, Jing‐Wei Zhao, Jian‐Guo |
Author_xml | – sequence: 1 givenname: Li‐Hua orcidid: 0000-0003-2730-0727 surname: Yao fullname: Yao, Li‐Hua email: yaolihua2007@126.com organization: Shanxi Datong University – sequence: 2 givenname: Jian‐Guo surname: Zhao fullname: Zhao, Jian‐Guo organization: Shanxi Datong University – sequence: 3 givenname: Jing‐Wei surname: Li fullname: Li, Jing‐Wei organization: Shanxi Datong University |
BookMark | eNp9kMtKAzEUhoNUsK0ufIMBVy6mTSYzyWRZSr1RFMGCu5BJk5oyTaZJBunbm1pXgq7O4nz_uXwjMLDOKgCuEZwgCIvpvheTghACz8AQQUbzkqD3ARimHswpgfUFGIWwhRASTOgQPC20VjKGzOlsZ6R3Ifpext6LNovCtM4bu8mczZ5FFqLzYqOyTnnt_E5YqY6xjRfdh7LqEpxr0QZ19VPHYHW3eJs_5MuX-8f5bJnLglGYDpJUNXTNGlyqotRNyRjBqkAYakI1kaxqqjVpCtXUqEJMFBVmDK8xlpXGssZjcHOa23m371WIfOt6b9NKnlBK6hIjlqjbE3X8KXileefNTvgDR5AfVfGkin-rSuz0FytNFNE4G31y8F_i07Tq8Pdo_rqanRJfUaR8XQ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165209 crossref_primary_10_1016_j_jmst_2022_04_010 crossref_primary_10_1002_smll_202300848 crossref_primary_10_1002_smll_202208101 crossref_primary_10_1016_j_cej_2022_134737 crossref_primary_10_1080_10739149_2021_1953522 crossref_primary_10_1016_j_mtphys_2024_101330 |
Cites_doi | 10.1016/j.jpowsour.2016.04.121 10.1103/PhysRevB.82.125416 10.1016/j.cap.2014.04.012 10.1016/j.physe.2020.114578 10.1039/c2jm00166g 10.5714/CL.2015.16.2.116 10.1038/ncomms4710 10.1021/nn2006249 10.1002/aenm.201703268 10.1016/j.carbon.2014.03.017 10.1002/celc.201600834 10.1016/j.ssi.2021.115562 10.1002/aenm.202000927 10.1002/adma.201702410 10.1038/s41586-018-0574-4 10.1103/PhysRevB.77.235430 10.1002/adma.201802722 10.1002/aenm.201602684 10.1002/adma.201606349 10.1016/S0378-7753(96)02638-9 10.1149/2.018305jes 10.1002/aenm.201803900 10.1002/aenm.201600137 10.1016/j.physleta.2019.126106 10.1038/nmat1849 10.1103/PhysRevB.58.15583 10.1002/aenm.201600025 10.1002/anie.201410376 10.1038/s41467-018-04190-z 10.1038/ncomms5033 10.1016/j.apsusc.2015.05.119 10.1016/j.carbon.2017.09.099 10.1063/1.3382344 10.1002/adma.201702457 10.1016/j.jpowsour.2016.02.036 10.1002/aenm.201800927 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/qua.26660 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-461X |
EndPage | n/a |
ExternalDocumentID | 10_1002_qua_26660 QUA26660 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11604237, 52071192, 51804191 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWK RX1 SUPJJ TN5 TUS UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2970-46c7eb7d9b34e24fb49963e2130f67f6c95b5d6b2eb81519a253993d33c5f3c83 |
IEDL.DBID | DR2 |
ISSN | 0020-7608 |
IngestDate | Fri Jul 25 12:05:51 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 02:38:14 EDT 2025 Wed Jan 22 16:30:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2970-46c7eb7d9b34e24fb49963e2130f67f6c95b5d6b2eb81519a253993d33c5f3c83 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 11604237, 52071192, 51804191 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2730-0727 |
PQID | 2537684319 |
PQPubID | 1026346 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2537684319 crossref_primary_10_1002_qua_26660 crossref_citationtrail_10_1002_qua_26660 wiley_primary_10_1002_qua_26660_QUA26660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 15, 2021 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: July 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | International journal of quantum chemistry |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 562 2017; 7 2019; 9 2015; 16 2017; 4 2019; 31 2020; 384 2021; 128 2018; 126 1997; 68 2015; 54 2016; 321 2005 2017; 29 2021; 361 2008; 77 2020; 10 2013; 160 2011; 5 2010; 82 2016; 6 2018; 9 2018; 8 2014; 5 2015; 351 2016; 311 2010; 132 2014; 14 2007; 6 2014; 74 2012; 22 1998; 58 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 Xiang J. Z. (e_1_2_9_32_1) 2005 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 562 start-page: 254 year: 2018 publication-title: Nature – volume: 5 start-page: 5463 year: 2011 publication-title: ACS Nano – volume: 68 start-page: 664 year: 1997 publication-title: J. Power Sources – volume: 384 year: 2020 publication-title: Phys. Lett. A – volume: 5 start-page: 3710 year: 2014 publication-title: Nat. Commun. – year: 2005 – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – volume: 14 start-page: 1010 year: 2014 publication-title: Curr. Appl. Phys. – volume: 4 start-page: 1059 year: 2017 publication-title: ChemElectroChem – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 54 start-page: 3431 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 321 start-page: 120 year: 2016 publication-title: J. Power Sources – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 311 start-page: 42 year: 2016 publication-title: J. Power Sources – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 74 start-page: 153 year: 2014 publication-title: Carbon – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 58 year: 1998 publication-title: Phys. Rev. B – volume: 5 start-page: 4033 year: 2014 publication-title: Nat. Commum. – volume: 22 start-page: 8911 year: 2012 publication-title: J. Mater. Chem. – volume: 128 year: 2021 publication-title: Phys. E – volume: 126 start-page: 9 year: 2018 publication-title: Carbon – volume: 351 start-page: 193 year: 2015 publication-title: Appl. Surf. Sci. – volume: 16 start-page: 116 year: 2015 publication-title: Carbon Lett. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 361 year: 2021 publication-title: Solid State Ionics – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_9_11_1 doi: 10.1016/j.jpowsour.2016.04.121 – ident: e_1_2_9_37_1 doi: 10.1103/PhysRevB.82.125416 – ident: e_1_2_9_13_1 doi: 10.1016/j.cap.2014.04.012 – ident: e_1_2_9_34_1 doi: 10.1016/j.physe.2020.114578 – ident: e_1_2_9_26_1 doi: 10.1039/c2jm00166g – ident: e_1_2_9_30_1 doi: 10.5714/CL.2015.16.2.116 – ident: e_1_2_9_7_1 doi: 10.1038/ncomms4710 – ident: e_1_2_9_27_1 doi: 10.1021/nn2006249 – ident: e_1_2_9_17_1 doi: 10.1002/aenm.201703268 – ident: e_1_2_9_6_1 doi: 10.1016/j.carbon.2014.03.017 – ident: e_1_2_9_14_1 doi: 10.1002/celc.201600834 – ident: e_1_2_9_4_1 doi: 10.1016/j.ssi.2021.115562 – ident: e_1_2_9_18_1 doi: 10.1002/aenm.202000927 – ident: e_1_2_9_19_1 doi: 10.1002/adma.201702410 – ident: e_1_2_9_22_1 doi: 10.1038/s41586-018-0574-4 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevB.77.235430 – ident: e_1_2_9_20_1 doi: 10.1002/adma.201802722 – ident: e_1_2_9_24_1 doi: 10.1002/aenm.201602684 – ident: e_1_2_9_2_1 doi: 10.1002/adma.201606349 – ident: e_1_2_9_38_1 doi: 10.1016/S0378-7753(96)02638-9 – ident: e_1_2_9_8_1 doi: 10.1149/2.018305jes – ident: e_1_2_9_15_1 doi: 10.1002/aenm.201803900 – ident: e_1_2_9_3_1 doi: 10.1002/aenm.201600137 – ident: e_1_2_9_33_1 doi: 10.1016/j.physleta.2019.126106 – ident: e_1_2_9_35_1 doi: 10.1038/nmat1849 – ident: e_1_2_9_36_1 doi: 10.1103/PhysRevB.58.15583 – ident: e_1_2_9_23_1 doi: 10.1002/aenm.201600025 – ident: e_1_2_9_5_1 doi: 10.1002/anie.201410376 – ident: e_1_2_9_9_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_9_16_1 doi: 10.1038/ncomms5033 – ident: e_1_2_9_29_1 doi: 10.1016/j.apsusc.2015.05.119 – ident: e_1_2_9_12_1 doi: 10.1016/j.carbon.2017.09.099 – ident: e_1_2_9_28_1 doi: 10.1063/1.3382344 – volume-title: Introduction to Solid State Physics year: 2005 ident: e_1_2_9_32_1 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201702457 – ident: e_1_2_9_10_1 doi: 10.1016/j.jpowsour.2016.02.036 – ident: e_1_2_9_25_1 doi: 10.1002/aenm.201800927 |
SSID | ssj0006367 |
Score | 2.368018 |
Snippet | We probe the effects of microstructural tailoring on Na storage performance of graphene by using the density functional theory (DFT). The results indicate that... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adsorption Chemistry Density functional theory Electronic structure Graphene microstructural tailoring Na storage Physical chemistry Quantum physics |
Title | Effects of microstructural tailoring on Na storage performance of graphene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.26660 https://www.proquest.com/docview/2537684319 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMetCgZYeCMKpbIQA0va1E78EFNVqKqKdgAqdUCK_MoCpEVtFz49tpM0gEBCbBnsPGzf3d_R-XcAXOpYEGUED7gJRRAZa1IiVSIwTFCtFOVGu8PJozEZTKLhNJ7WwHV5FibnQ6x_uDnL8P7aGbiQi3YFDX1biZaNLsTt112ulhNE9xU6imBSlGsNA0pCVlKFQtRe9_waiyqB-Vmm-jjT3wVP5Rvm6SXPrdVSttT7N3jjPz9hD-wU-hN28wWzD2omOwBbvbLs2yEY5jzjBZyl8NVl6-WEWUfngC7b1CfswVkGxwK6zErrj-C8On3gunkItvWhR2DSv33sDYKi4EKgEKdhEBFFjaSaSxwZFKXSbocINsjGuZTQlCgey1gTiYxkVilwgRzXFmuMVZxixfAx2MhmmTkBsMPSkAqDDdMsilLMWKejJDWaU2F9mqiDq3LoE1XQyF1RjJck5yijxA5O4genDi7WTec5guOnRo1y_pLCChcJcqwaZiUSt4_zE_H7DRK7g_AXp39vega2kUtxcZzNuAE27HyYc6tRlrIJNrs3o7uHpl-UH1tf5VI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT8IwGMAboge8-DaiqI3x4GUw2q2PxIshEkTgYCDhYpq26y7qwAAX_3rbbgM1mhhvO7Td1vZ7NV9_HwBXSSyJNpIH3IQyiIwVKZlqGRgmaaI15SZxl5MHQ9IdR71JPKmAm_IuTM6HWB24Ocnw-toJuDuQbq6poW9L2bDmhdiAfdNV9PYB1eMaHkUwKQq2hgElISu5QiFqrrp-tUZrF_Ozo-otTWcHPJXfmCeYPDeWC9XQ79_wjf_9iV2wXbig8DbfM3ugYrJ9UG2Xld8OQC9HGs_hNIWvLmEvh8w6QAd0Cac-Zw9OMziU0CVXWpUEZ-sLCK6b52BbNXoIxp27UbsbFDUXAo04DYOIaGoUTbjCkUFRqmxERLBB1tSlhKZE81jFCVHIKGadBS6RQ9viBGMdp1gzfAQ2smlmjgFssTSk0mDDEhZFKWas1dKKmoRTadWarIHrcu6FLoDkri7Gi8hRykjYyRF-cmrgctV0llM4fmpULxdQFII4F8jhapj1krh9nV-J3wcQNojwDyd_b3oBqt3RoC_698OHU7CFXMaLw27GdbBh18acWZdloc79zvwAc47n2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFICDVFAv7mK1ahAPXqadJjNZ8CStpVYtIhZ6EIasF7WttL34601m6agoiLeBSWZJ8paE974HwJmOBVFG8ICbUASRcSIlrBKBYYJqpSg32icn3_VJdxD1hvFwCVwUuTAZH2Jx4OYlI9XXXsAn2jZKaOjbXNSddSFuv74ckZD5Jd1-KNlRBJO8XmsYUHe_wAqFqLHo-tUYlR7mZz81NTSdDfBUfGIWX_Jcn89kXb1_ozf-8x82wXrugMLLbMVsgSUz2garraLu2w7oZUDjKRxb-OrD9TLErMdzQB9umkbswfEI9gX0oZVOIcFJmX7gu6UUbKdEd8Ggc_XY6gZ5xYVAIU7DICKKGkk1lzgyKLLS7YcINsgZOkuoJYrHMtZEIiOZcxW4QB5sizXGKrZYMbwHKqPxyOwD2GQ2pMJgwzSLIosZazaVpEZzKpxSE1VwXgx9onIcua-K8ZJkIGWUuMFJ0sGpgtNF00nG4PipUa2YvyQXw2mCPKyGOR-Ju9elE_H7AxK3hUgvDv7e9ASs3Lc7ye11_-YQrCEf7uKZm3ENVNzUmCPnr8zkcbouPwDuFOaR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+microstructural+tailoring+on+Na+storage+performance+of+graphene&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Yao%2C+Li%E2%80%90Hua&rft.au=Zhao%2C+Jian%E2%80%90Guo&rft.au=Li%2C+Jing%E2%80%90Wei&rft.date=2021-07-15&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=121&rft.issue=14&rft_id=info:doi/10.1002%2Fqua.26660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qua_26660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon |