Two-Stage Constant-Envelope Precoding for Low-Cost Massive MIMO Systems

Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with M ≫ 1 antennas requires M radio frequency (RF) chains with linear power amplifiers, which are very expensive. In this paper, we propose a two stage constant-envelop...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 64; no. 2; pp. 485 - 494
Main Authors An Liu, Lau, Vincent K. N.
Format Journal Article
LanguageEnglish
Published IEEE 15.01.2016
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2015.2486749

Cover

Loading…
Abstract Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with M ≫ 1 antennas requires M radio frequency (RF) chains with linear power amplifiers, which are very expensive. In this paper, we propose a two stage constant-envelope (CE) precoding scheme to enable low-cost implementation of massive MIMO BS with S ≪ M RF chains and nonlinear power amplifiers. Specifically, the MIMO precoder at the BS is partitioned into an RF precoder and a baseband precoder. The RF precoder is adaptive to the slow timescale channel statistics to achieve the array gain. The baseband precoder is adaptive to the fast timescale low dimensional effective channel to achieve the spatial multiplexing gain. Both the RF and baseband precoders are subject to CE constraints to reduce the implementation cost and the peak-to-average power ratio of the transmit signal. The two stage CE precoding is a challenging non-convex stochastic optimization problem and we propose an online alternating optimization algorithm which can autonomously converge to a stationary solution without explicit knowledge of channel statistics. Simulations show that the proposed solution has many advantages over various baselines.
AbstractList Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with $M\gg1$ antennas requires $M$ radio frequency (RF) chains with linear power amplifiers, which are very expensive. In this paper, we propose a two stage constant-envelope (CE) precoding scheme to enable low-cost implementation of massive MIMO BS with $S\llM$ RF chains and nonlinear power amplifiers. Specifically, the MIMO precoder at the BS is partitioned into an RF precoder and a baseband precoder. The RF precoder is adaptive to the slow timescale channel statistics to achieve the array gain. The baseband precoder is adaptive to the fast timescale low dimensional effective channel to achieve the spatial multiplexing gain. Both the RF and baseband precoders are subject to CE constraints to reduce the implementation cost and the peak-to-average power ratio of the transmit signal. The two stage CE precoding is a challenging non-convex stochastic optimization problem and we propose an online alternating optimization algorithm which can autonomously converge to a stationary solution without explicit knowledge of channel statistics. Simulations show that the proposed solution has many advantages over various baselines.
Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with M ≫ 1 antennas requires M radio frequency (RF) chains with linear power amplifiers, which are very expensive. In this paper, we propose a two stage constant-envelope (CE) precoding scheme to enable low-cost implementation of massive MIMO BS with S ≪ M RF chains and nonlinear power amplifiers. Specifically, the MIMO precoder at the BS is partitioned into an RF precoder and a baseband precoder. The RF precoder is adaptive to the slow timescale channel statistics to achieve the array gain. The baseband precoder is adaptive to the fast timescale low dimensional effective channel to achieve the spatial multiplexing gain. Both the RF and baseband precoders are subject to CE constraints to reduce the implementation cost and the peak-to-average power ratio of the transmit signal. The two stage CE precoding is a challenging non-convex stochastic optimization problem and we propose an online alternating optimization algorithm which can autonomously converge to a stationary solution without explicit knowledge of channel statistics. Simulations show that the proposed solution has many advantages over various baselines.
Author An Liu
Lau, Vincent K. N.
Author_xml – sequence: 1
  surname: An Liu
  fullname: An Liu
  email: eewendaol@ust.hk
  organization: Dept. of Electr. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
– sequence: 2
  givenname: Vincent K. N.
  surname: Lau
  fullname: Lau, Vincent K. N.
  email: eeknlau@ece.ust.hk
  organization: Dept. of Electr. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
BookMark eNp9kL9rwkAUx49ioWq7F7pk7BL7LrkfubEEawVFQQvdjkvyIikxZ3On4n_fiNKhQ6f3hs_nO3wGpNfYBgl5pDCiFNTLerUcRUD5KGKJkEzdkD5VjIbApOh1P_A45In8vCMD574AKGNK9MlkfbThypsNBqltnDeND8fNAWu7w2DZYm6LqtkEpW2DmT2GqXU-mBvnqgMG8-l8EaxOzuPW3ZPb0tQOH653SD7exuv0PZwtJtP0dRbmkRI-LFEqlBIhYXEGAIpmJhMRVUCRIkcu4tyIgktZCAZYlBwLkEWpWBYVKCAekufL7q6133t0Xm8rl2Ndmwbt3mmaRJwnXZCoQ8UFzVvrXIulzitvfGUb35qq1hT0uZzuyulzOX0t14nwR9y11da0p_-Up4tSIeIvLqNEsZjHPyRqeqQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2017_2675862
crossref_primary_10_1109_ACCESS_2017_2707396
crossref_primary_10_1002_dac_4436
crossref_primary_10_1109_TVT_2017_2774836
crossref_primary_10_1016_j_phycom_2020_101033
crossref_primary_10_1007_s11276_016_1341_9
crossref_primary_10_1109_TCOMM_2021_3135532
crossref_primary_10_1109_TVT_2021_3052113
crossref_primary_10_1109_TWC_2018_2825380
crossref_primary_10_1109_TWC_2018_2830343
crossref_primary_10_1109_TCOMM_2019_2912383
crossref_primary_10_1109_TVT_2022_3163392
crossref_primary_10_1109_TWC_2020_3022297
crossref_primary_10_1109_TSP_2021_3079807
crossref_primary_10_20535_S0021347020050015
crossref_primary_10_1109_TSP_2016_2612178
crossref_primary_10_1109_TSP_2018_2871389
crossref_primary_10_1109_TWC_2022_3144472
crossref_primary_10_1109_TVT_2021_3114363
crossref_primary_10_3103_S0735272720050015
crossref_primary_10_1109_JSTSP_2018_2819084
Cites_doi 10.1109/TCOMM.2013.012913.110827
10.1109/TSP.2014.2340814
10.1109/TSP.2005.857024
10.1109/WCL.2013.071713.130328
10.1109/TWC.2005.850327
10.1007/978-1-4614-0237-4
10.1109/JSAC.2013.130217
10.1109/MSP.2011.2178495
10.1109/TIT.2013.2269476
10.1109/TWC.2006.256973
10.1109/TSP.2014.2337840
10.1109/TSP.2003.820989
10.1109/TWC.2014.011714.130846
10.1109/JSAC.2005.862421
10.1016/S0167-6377(99)00074-7
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2015.2486749
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1941-0476
EndPage 494
ExternalDocumentID 10_1109_TSP_2015_2486749
7289435
Genre orig-research
GrantInformation_xml – fundername: RGC
  grantid: 614913
– fundername: Huawei
– fundername: NSFC
  grantid: 61571383
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-fe79e77e0843b00091bab621901e1e5e563ca6d577d640edf5ed07df94b2de603
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Jul 11 08:48:25 EDT 2025
Tue Jul 01 02:53:09 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Tue Aug 26 16:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-fe79e77e0843b00091bab621901e1e5e563ca6d577d640edf5ed07df94b2de603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825581092
PQPubID 23500
PageCount 10
ParticipantIDs ieee_primary_7289435
crossref_citationtrail_10_1109_TSP_2015_2486749
crossref_primary_10_1109_TSP_2015_2486749
proquest_miscellaneous_1825581092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
boyd (ref10) 2008
(ref14) 2010
ref11
ref2
ref1
ref17
ref16
cripps (ref18) 1999
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TCOMM.2013.012913.110827
– ident: ref12
  doi: 10.1109/TSP.2014.2340814
– ident: ref5
  doi: 10.1109/TSP.2005.857024
– ident: ref4
  doi: 10.1109/WCL.2013.071713.130328
– ident: ref17
  doi: 10.1109/TWC.2005.850327
– ident: ref9
  doi: 10.1007/978-1-4614-0237-4
– year: 2010
  ident: ref14
  publication-title: Technical Specification Group Radio Access Network Further Advancements for E-UTRA Physical Layer Aspects
– ident: ref2
  doi: 10.1109/JSAC.2013.130217
– ident: ref1
  doi: 10.1109/MSP.2011.2178495
– ident: ref16
  doi: 10.1109/TIT.2013.2269476
– ident: ref6
  doi: 10.1109/TWC.2006.256973
– ident: ref8
  doi: 10.1109/TSP.2014.2337840
– ident: ref11
  doi: 10.1109/TSP.2003.820989
– ident: ref7
  doi: 10.1109/TWC.2014.011714.130846
– ident: ref15
  doi: 10.1109/JSAC.2005.862421
– ident: ref13
  doi: 10.1016/S0167-6377(99)00074-7
– year: 2008
  ident: ref10
  publication-title: ?Stochastic subgradient methods ?
– year: 1999
  ident: ref18
  publication-title: RF Power Amplifiers for Wireless Communications
SSID ssj0014496
Score 2.3544772
Snippet Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with M ≫ 1 antennas requires...
Massive MIMO is a key technology to meet increasing capacity demands in 5G wireless systems. However, a base station (BS) equipped with $M\gg1$ antennas...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Antennas
Arrays
Baseband
Channels
Constant-envelope precoding
Gain
limited RF chains
massive MIMO
MIMO
online alternating optimization
Optimization
PAPR
Peak to average power ratio
Power amplifiers
Radio frequencies
Radio frequency
Statistics
Time
Title Two-Stage Constant-Envelope Precoding for Low-Cost Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/7289435
https://www.proquest.com/docview/1825581092
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnOBQKFB1ecmVekHCu07iR3JEK-i2alokFmlvURyPOYASBFkh8euxnewKAap688GOrRnH841n_A3A97S0ldQGqcJIUl5apKlAS5OsqhhiZESoWpL_kdNr_msu5gM4Xb2FQcSQfIYj3wyxfNNUC39VNlaxZwsXa7DmHLfurdYqYsB5qMXl4EJCRarmy5Aky8azq0ufwyVGsaeX86yZr0xQqKny7iAO1uViC_LlurqkktvRotWj6vkNZeP_LnwbPvUwk5x1--IzDLDegc1X5IO78GP21FCHNW-QTDqQ2NLzOqQQIbn0jrI3a8SBWvK7eaKT5rEluYPa7ngk-c_8L-nJzvfg-uJ8NpnSvqwCreJMttSiylApZClPAsaKdKll7JEBRihQyKQqpRFKGckZGivQMGVsxnVsULLkC6zXTY1fgTBt0calFdqW3JbGoQ3FeMKZFgIjZYcwXkq6qHrOcV_64q4IvgfLCqebwuum6HUzhJPViPuOb-MffXe9qFf9eikP4dtSmYX7V3wApKyxWTwWzpcSInWfivc_HnoAG26CcMUSiUNYbx8WeORAR6uPw257AcAk1Ac
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErF8jQSFyS86yQeOzmiVcsWNqUSW2lvURyPOYAS1GZVqb8e28muKkCIWw52Ys04nm88M98AvM1r1yhjiWtKFJe1I54jOZ4VTSOIEouxa0l5qhbn8tMa13vwflcLQ0Qx-Yym4THG8m3XbMJV2UyngS0cb8FtDMW4Q7XWLmYgZezG5QFDxjHX621QUhSz1dezkMWF0zQQzAXezBtGKHZV-eMojvbl-AGU25UNaSXfp5veTJvr30gb_3fpD-H-CDTZh2FnPII9ah_DvRv0gwfwcXXVcY82vxGbDzCx50dtTCIidhZc5WDYmIe1bNld8Xl32bPSg21_QLLypPzCRrrzJ3B-fLSaL_jYWIE3aaF67kgXpDWJXGYRZSWmNioN2IASQkKVNbWyqLVVUpB1SFZo6wppUktKZIew33YtPQUmjCOX1g6Nq6WrrccbWshMCoNIiXYTmG0lXTUj63hofvGjit6HKCqvmyrophp1M4F3uxk_B8aNf4w9CKLejRulPIE3W2VW_m8JIZC6pW5zWXlvCjH3r0qf_X3qa7izWJXLanly-vk53PUfixcuCb6A_f5iQy89BOnNq7jzfgH4stdP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Constant-Envelope+Precoding+for+Low-Cost+Massive+MIMO+Systems&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Liu%2C+An&rft.au=Lau%2C+Vincent+K.+N.&rft.date=2016-01-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=2&rft.spage=485&rft.epage=494&rft_id=info:doi/10.1109%2FTSP.2015.2486749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2486749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon