Data-Driven Learning Extended State Observers for Nonlinear Systems: Design, Analysis and Hardware-in-Loop Simulations
This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 10; no. 1; pp. 290 - 293 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China |
Subjects | |
Online Access | Get full text |
ISSN | 2329-9266 2329-9274 |
DOI | 10.1109/JAS.2023.123051 |
Cover
Abstract | This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal input gain should be known as a priori, reducedand full-order data-driven learning ESOs are developed for estimating the lumped disturbance and control input gain. A salient feature of the proposed data-driven learning ESOs is that the unknown input gain and lumped disturbance can be estimated synchronously, in the meantime, the estimation convergence is guaranteed benefiting from the data-driven approach. Hardware-in-loop simulation is carried out to substantiate the performance of the proposed data-driven learning ESO for surge speed tracking of a robotic marine vehicle without knowing the model parameter in advance. |
---|---|
AbstractList | This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal input gain should be known as a priori, reducedand full-order data-driven learning ESOs are developed for estimating the lumped disturbance and control input gain. A salient feature of the proposed data-driven learning ESOs is that the unknown input gain and lumped disturbance can be estimated synchronously, in the meantime, the estimation convergence is guaranteed benefiting from the data-driven approach. Hardware-in-loop simulation is carried out to substantiate the performance of the proposed data-driven learning ESO for surge speed tracking of a robotic marine vehicle without knowing the model parameter in advance. |
Author | Peng, Zhouhua Lv, Mingao Wang, Dan Liu, Lu |
AuthorAffiliation | School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China |
AuthorAffiliation_xml | – name: School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China |
Author_xml | – sequence: 1 givenname: Zhouhua surname: Peng fullname: Peng, Zhouhua email: zhpeng@dlmu.edu.cn organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026 – sequence: 2 givenname: Mingao surname: Lv fullname: Lv, Mingao email: mingaolv@dlmu.edu.cn organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026 – sequence: 3 givenname: Lu surname: Liu fullname: Liu, Lu email: wendaoerji@163.com organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026 – sequence: 4 givenname: Dan surname: Wang fullname: Wang, Dan email: dwang@dlmu.edu.cn organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026 |
BookMark | eNp9kc1PGzEQxS0EUilw7oWDpd4qNvhj4417iwgUUASH0LM1uzsbjDZ2ajsJ4a_vhq2g4sBpLM3vvbHe-0r2nXdIyDfOBpwzfX47ng0EE3LAhWRDvkcOhRQ606LI99_eSn0hJzE-Mca4GBZK54dkPYEE2STYNTo6RQjOujm9fE7oaqzpLEFCel9GDGsMkTY-0DvvWus6lM62MeEi_qQTjHbuzujYQbuNNlJwNb2GUG8gYGZdNvV-SWd2sWohWe_iMTlooI148m8ekd9Xlw8X19n0_tfNxXiaVUKrlDUFK_QwB2C1klorLCXXoiwUb6pKlFwCMs67FeTNqOEoAAELKRWKYjTiuTwiP3rfDbgG3Nw8-VXoPhnNS_34XJrtptzFxjgTqoO_9_Ay-D8rjOmdFt1JWeRa7CzPe6oKPsaAjVkGu4CwNZyZXRmmK8PsXE1fRqcYflBUNr3mkALY9hPdaa-ziPjfFdaFwqT8CyOnl9Q |
CODEN | IJASJC |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3421434 crossref_primary_10_1016_j_jfranklin_2025_107654 crossref_primary_10_1016_j_engappai_2024_109523 crossref_primary_10_1109_TAC_2024_3389552 crossref_primary_10_1109_JAS_2023_123675 |
Cites_doi | 10.1016/j.oceaneng.2014.12.001 10.1109/TIE.2016.2523453 10.1109/TAC.2010.2049522 10.1109/TCYB.2021.3057545 10.1016/j.oceaneng.2020.107976 10.1002/acs.2862 10.1016/j.automatica.2013.10.012 10.1109/TIE.2008.2011621 10.1109/JAS.2019.1911651 10.1109/TSMC.2017.2697447 10.1109/TCYB.2017.2771560 10.1109/MCS.2011.941961 10.1109/TIE.2017.2694410 10.4310/CIS.2015.v15.n3.a3 10.1016/j.oceaneng.2018.11.008 10.1016/j.oceaneng.2019.05.078 10.1109/TNNLS.2021.3093330 10.1109/TIE.2015.2478397 10.1109/TAC.2021.3081256 10.1016/j.sysconle.2015.09.004 10.1016/j.oceaneng.2019.106501 10.1016/j.automatica.2018.12.035 10.1002/9781119994138 10.1109/JAS.2021.1004263 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/JAS.2023.123051 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 293 |
ExternalDocumentID | zdhxb_ywb202301026 10_1109_JAS_2023_123051 10007903 |
Genre | opinion |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION R-I RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX |
ID | FETCH-LOGICAL-c296t-f707954aa0d63996eb3192b761fcc2b13ae011639a4f8f1e2aeae7336e2788143 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Thu May 29 04:10:31 EDT 2025 Sun Jul 13 05:31:39 EDT 2025 Tue Jul 01 02:11:56 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Wed Aug 27 02:54:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-f707954aa0d63996eb3192b761fcc2b13ae011639a4f8f1e2aeae7336e2788143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://ieeexplore.ieee.org/ielx7/6570654/10007882/10007903.pdf |
PQID | 2761374924 |
PQPubID | 2040495 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1109_JAS_2023_123051 crossref_citationtrail_10_1109_JAS_2023_123051 wanfang_journals_zdhxb_ywb202301026 ieee_primary_10007903 proquest_journals_2761374924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-January 2023-1-00 20230101 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-January |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
PublicationYear | 2023 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China |
References | ref13 ref12 ref15 Krstic (ref9) 1995 ref14 ref11 ref2 ref1 ref17 ref16 ref19 ref18 Hovakimyan (ref10) 2011; 31 ref24 ref23 ref20 Lavretsky (ref25) 2011 Khalil (ref26) 2015 ref22 ref21 ref27 ref8 ref7 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref19 doi: 10.1016/j.oceaneng.2014.12.001 – ident: ref15 doi: 10.1109/TIE.2016.2523453 – ident: ref12 doi: 10.1109/TAC.2010.2049522 – ident: ref6 doi: 10.1109/TCYB.2021.3057545 – ident: ref22 doi: 10.1016/j.oceaneng.2020.107976 – volume-title: Nonlinear and Adaptive Control Design year: 1995 ident: ref9 – ident: ref11 doi: 10.1002/acs.2862 – ident: ref8 doi: 10.1016/j.automatica.2013.10.012 – volume-title: Nonlinear Control year: 2015 ident: ref26 – ident: ref4 doi: 10.1109/TIE.2008.2011621 – ident: ref5 doi: 10.1109/JAS.2019.1911651 – ident: ref16 doi: 10.1109/TSMC.2017.2697447 – ident: ref13 doi: 10.1109/TCYB.2017.2771560 – volume: 31 start-page: 54 issue: 5 year: 2011 ident: ref10 article-title: L1adaptive control for safety-critical systems publication-title: IEEE Control Systems Magazine doi: 10.1109/MCS.2011.941961 – ident: ref17 doi: 10.1109/TIE.2017.2694410 – ident: ref3 doi: 10.4310/CIS.2015.v15.n3.a3 – ident: ref14 doi: 10.1016/j.oceaneng.2018.11.008 – ident: ref18 doi: 10.1016/j.oceaneng.2019.05.078 – ident: ref23 doi: 10.1109/TNNLS.2021.3093330 – ident: ref2 doi: 10.1109/TIE.2015.2478397 – ident: ref7 doi: 10.1109/TAC.2021.3081256 – year: 2011 ident: ref25 article-title: Projection operator in adaptive systems publication-title: Physics, arXiv preprint – ident: ref24 doi: 10.1016/j.sysconle.2015.09.004 – ident: ref20 doi: 10.1016/j.oceaneng.2019.106501 – ident: ref21 doi: 10.1016/j.automatica.2018.12.035 – ident: ref27 doi: 10.1002/9781119994138 – ident: ref1 doi: 10.1109/JAS.2021.1004263 |
SSID | ssj0001257694 |
Score | 2.2528367 |
Snippet | This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance,... |
SourceID | wanfang proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 290 |
SubjectTerms | Estimation Hardware-in-the-loop simulation Learning Mathematical models Nonlinear systems Parameters State observers |
Title | Data-Driven Learning Extended State Observers for Nonlinear Systems: Design, Analysis and Hardware-in-Loop Simulations |
URI | https://ieeexplore.ieee.org/document/10007903 https://www.proquest.com/docview/2761374924 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202301026 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4qCHrwWbG-COjBg1n31d3Gm1iLiNZDFXpbkuxERd1K3Vr115vJploFwdvCZsOGb5J8M5l8Q8ieAs6By5AluU5YLMw6KISZeEpqraWfC2WVmC47ydlNfN5r9NxldXsXBgBs8hl4-GjP8vO-GmKo7BBj0SlHbc9pY2fVZa2JgIqhzrbwoSEJnHGz8zgpn8Dnh-fHXQ8rhXtmpfYbwY9dyJZV-cEwZ0ei0KK4ndhq2oukM_7JKsPkwRuW0lMfv_Qb_z2KJbLgSCc9rqxkmUxBsULmJ6QIV8lrS5SCtQa4-FEnunpLT12InFpOSq8kxnANYaSG6tJOpbIhBtTJnh_Rls0HOaBjqRMqipxicsBIDIDdF-yi33-m3fsnVzTspUZu2qfXJ2fM1WRgKuRJyTQq6jVig2eO3CYxvrjhiDJNAq1UKINIAB7tRFzEuqkDCAUIQMlFCFG4Po7WyEzRL2Cd0MQHXwepUoBeXhrhgWDYhKbKG1KrFOrEG2OUKSdYjnUzHjPruPg8M6BmCGpWgVon-18fPFdaHX83rSEwE80qTOpka2wFmZvML1loRhelsfFU62TXWcb324_87k1m7yOJ3aNCX7LxR-ebZA7bVAGcLTJTDoawbShNKXesKX8CnKbyUg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8QDFEfFBXjCWITffDBLvu9V9-IBznxOB-AhLem7U6RqHvk2POEv95OtycHCYlvm2y32Wamnd989DcA7w0KgUKnvKxtyXPlzkGl3MYz2lqr41oZz8R0OC6HJ_nBaXEaLqv7uzCI6IvPMKJHn8uvJ2ZGobIdikVXgrg9HzjDnxfdda2lkIoDz771oYMJggtnewKZTxKLnYPdo4h6hUfurI6L5JYd8o1VbmHMtblqrGrOlozN_lMYL36zqzH5Ec1aHZnrOwyO_72OdXgSYCfb7fTkGaxg8xweL5ERvoDfA9UqPpjS8ccC7eoZ2wtBcuZRKfumKYrrICNzYJeNO54NNWWB-PwTG_iKkI9sQXbCVFMzKg-Yqyny84aPJpMLdnT-K7QNu9yAk_29489DHroycJOKsuWWOPWK3Em0JnRTOm_coURdlYk1JtVJppCSO5lQue3bBFOFCol0EVOirs-zl7DaTBp8BayMMbZJZQySn1dllBJM-9g3daGtqbAH0UJG0gTKcuqc8VN61yUW0glVklBlJ9QefPj3wUXH1nH_0A0SzNKwTiY92FpogQzb-VKmbnVZlTtftQfvgmbcvL2uv__R8mquaXri6Ctf3zP5W3g4PD4cydGX8ddNeETju3DOFqy20xm-cQCn1dterf8CciX1nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Learning+Extended+State+Observers+for+Nonlinear+Systems%3A+Design%2C+Analysis+and+Hardware-in-Loop+Simulations&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zhouhua+Peng&rft.au=Mingao+Lv&rft.au=Lu+Liu&rft.au=Dan+Wang&rft.date=2023&rft.pub=School+of+Marine+Electrical+Engineering%2CDalian+Maritime+University%2CDalian+116026%2CChina&rft.issn=2329-9266&rft.volume=10&rft.issue=1&rft.spage=290&rft.epage=293&rft_id=info:doi/10.1109%2FJAS.2023.123051&rft.externalDocID=zdhxb_ywb202301026 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |