Data-Driven Learning Extended State Observers for Nonlinear Systems: Design, Analysis and Hardware-in-Loop Simulations

This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 10; no. 1; pp. 290 - 293
Main Authors Peng, Zhouhua, Lv, Mingao, Liu, Lu, Wang, Dan
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China
Subjects
Online AccessGet full text
ISSN2329-9266
2329-9274
DOI10.1109/JAS.2023.123051

Cover

Abstract This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal input gain should be known as a priori, reducedand full-order data-driven learning ESOs are developed for estimating the lumped disturbance and control input gain. A salient feature of the proposed data-driven learning ESOs is that the unknown input gain and lumped disturbance can be estimated synchronously, in the meantime, the estimation convergence is guaranteed benefiting from the data-driven approach. Hardware-in-loop simulation is carried out to substantiate the performance of the proposed data-driven learning ESO for surge speed tracking of a robotic marine vehicle without knowing the model parameter in advance.
AbstractList This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance, and unknown control input gain. Compared with existing extended state observer (ESO) where priori knowledge of model parameter such as nominal input gain should be known as a priori, reducedand full-order data-driven learning ESOs are developed for estimating the lumped disturbance and control input gain. A salient feature of the proposed data-driven learning ESOs is that the unknown input gain and lumped disturbance can be estimated synchronously, in the meantime, the estimation convergence is guaranteed benefiting from the data-driven approach. Hardware-in-loop simulation is carried out to substantiate the performance of the proposed data-driven learning ESO for surge speed tracking of a robotic marine vehicle without knowing the model parameter in advance.
Author Peng, Zhouhua
Lv, Mingao
Wang, Dan
Liu, Lu
AuthorAffiliation School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China
AuthorAffiliation_xml – name: School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China
Author_xml – sequence: 1
  givenname: Zhouhua
  surname: Peng
  fullname: Peng, Zhouhua
  email: zhpeng@dlmu.edu.cn
  organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026
– sequence: 2
  givenname: Mingao
  surname: Lv
  fullname: Lv, Mingao
  email: mingaolv@dlmu.edu.cn
  organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026
– sequence: 3
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  email: wendaoerji@163.com
  organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026
– sequence: 4
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  email: dwang@dlmu.edu.cn
  organization: School of Marine Electrical Engineering, Dalian Maritime University,Dalian,China,116026
BookMark eNp9kc1PGzEQxS0EUilw7oWDpd4qNvhj4417iwgUUASH0LM1uzsbjDZ2ajsJ4a_vhq2g4sBpLM3vvbHe-0r2nXdIyDfOBpwzfX47ng0EE3LAhWRDvkcOhRQ606LI99_eSn0hJzE-Mca4GBZK54dkPYEE2STYNTo6RQjOujm9fE7oaqzpLEFCel9GDGsMkTY-0DvvWus6lM62MeEi_qQTjHbuzujYQbuNNlJwNb2GUG8gYGZdNvV-SWd2sWohWe_iMTlooI148m8ekd9Xlw8X19n0_tfNxXiaVUKrlDUFK_QwB2C1klorLCXXoiwUb6pKlFwCMs67FeTNqOEoAAELKRWKYjTiuTwiP3rfDbgG3Nw8-VXoPhnNS_34XJrtptzFxjgTqoO_9_Ay-D8rjOmdFt1JWeRa7CzPe6oKPsaAjVkGu4CwNZyZXRmmK8PsXE1fRqcYflBUNr3mkALY9hPdaa-ziPjfFdaFwqT8CyOnl9Q
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_TIM_2024_3421434
crossref_primary_10_1016_j_jfranklin_2025_107654
crossref_primary_10_1016_j_engappai_2024_109523
crossref_primary_10_1109_TAC_2024_3389552
crossref_primary_10_1109_JAS_2023_123675
Cites_doi 10.1016/j.oceaneng.2014.12.001
10.1109/TIE.2016.2523453
10.1109/TAC.2010.2049522
10.1109/TCYB.2021.3057545
10.1016/j.oceaneng.2020.107976
10.1002/acs.2862
10.1016/j.automatica.2013.10.012
10.1109/TIE.2008.2011621
10.1109/JAS.2019.1911651
10.1109/TSMC.2017.2697447
10.1109/TCYB.2017.2771560
10.1109/MCS.2011.941961
10.1109/TIE.2017.2694410
10.4310/CIS.2015.v15.n3.a3
10.1016/j.oceaneng.2018.11.008
10.1016/j.oceaneng.2019.05.078
10.1109/TNNLS.2021.3093330
10.1109/TIE.2015.2478397
10.1109/TAC.2021.3081256
10.1016/j.sysconle.2015.09.004
10.1016/j.oceaneng.2019.106501
10.1016/j.automatica.2018.12.035
10.1002/9781119994138
10.1109/JAS.2021.1004263
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2023.123051
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 293
ExternalDocumentID zdhxb_ywb202301026
10_1109_JAS_2023_123051
10007903
Genre opinion
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
R-I
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c296t-f707954aa0d63996eb3192b761fcc2b13ae011639a4f8f1e2aeae7336e2788143
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Sun Jul 13 05:31:39 EDT 2025
Tue Jul 01 02:11:56 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Wed Aug 27 02:54:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-f707954aa0d63996eb3192b761fcc2b13ae011639a4f8f1e2aeae7336e2788143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://ieeexplore.ieee.org/ielx7/6570654/10007882/10007903.pdf
PQID 2761374924
PQPubID 2040495
PageCount 4
ParticipantIDs crossref_primary_10_1109_JAS_2023_123051
crossref_citationtrail_10_1109_JAS_2023_123051
wanfang_journals_zdhxb_ywb202301026
ieee_primary_10007903
proquest_journals_2761374924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-January
2023-1-00
20230101
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-January
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2023
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: School of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China
References ref13
ref12
ref15
Krstic (ref9) 1995
ref14
ref11
ref2
ref1
ref17
ref16
ref19
ref18
Hovakimyan (ref10) 2011; 31
ref24
ref23
ref20
Lavretsky (ref25) 2011
Khalil (ref26) 2015
ref22
ref21
ref27
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1016/j.oceaneng.2014.12.001
– ident: ref15
  doi: 10.1109/TIE.2016.2523453
– ident: ref12
  doi: 10.1109/TAC.2010.2049522
– ident: ref6
  doi: 10.1109/TCYB.2021.3057545
– ident: ref22
  doi: 10.1016/j.oceaneng.2020.107976
– volume-title: Nonlinear and Adaptive Control Design
  year: 1995
  ident: ref9
– ident: ref11
  doi: 10.1002/acs.2862
– ident: ref8
  doi: 10.1016/j.automatica.2013.10.012
– volume-title: Nonlinear Control
  year: 2015
  ident: ref26
– ident: ref4
  doi: 10.1109/TIE.2008.2011621
– ident: ref5
  doi: 10.1109/JAS.2019.1911651
– ident: ref16
  doi: 10.1109/TSMC.2017.2697447
– ident: ref13
  doi: 10.1109/TCYB.2017.2771560
– volume: 31
  start-page: 54
  issue: 5
  year: 2011
  ident: ref10
  article-title: L1adaptive control for safety-critical systems
  publication-title: IEEE Control Systems Magazine
  doi: 10.1109/MCS.2011.941961
– ident: ref17
  doi: 10.1109/TIE.2017.2694410
– ident: ref3
  doi: 10.4310/CIS.2015.v15.n3.a3
– ident: ref14
  doi: 10.1016/j.oceaneng.2018.11.008
– ident: ref18
  doi: 10.1016/j.oceaneng.2019.05.078
– ident: ref23
  doi: 10.1109/TNNLS.2021.3093330
– ident: ref2
  doi: 10.1109/TIE.2015.2478397
– ident: ref7
  doi: 10.1109/TAC.2021.3081256
– year: 2011
  ident: ref25
  article-title: Projection operator in adaptive systems
  publication-title: Physics, arXiv preprint
– ident: ref24
  doi: 10.1016/j.sysconle.2015.09.004
– ident: ref20
  doi: 10.1016/j.oceaneng.2019.106501
– ident: ref21
  doi: 10.1016/j.automatica.2018.12.035
– ident: ref27
  doi: 10.1002/9781119994138
– ident: ref1
  doi: 10.1109/JAS.2021.1004263
SSID ssj0001257694
Score 2.2528367
Snippet This paper considers the disturbance/uncertainty estimation of first-order nonlinear system subject to fully unknown internal dynamic, external disturbance,...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 290
SubjectTerms Estimation
Hardware-in-the-loop simulation
Learning
Mathematical models
Nonlinear systems
Parameters
State observers
Title Data-Driven Learning Extended State Observers for Nonlinear Systems: Design, Analysis and Hardware-in-Loop Simulations
URI https://ieeexplore.ieee.org/document/10007903
https://www.proquest.com/docview/2761374924
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202301026
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4qCHrwWbG-COjBg1n31d3Gm1iLiNZDFXpbkuxERd1K3Vr115vJploFwdvCZsOGb5J8M5l8Q8ieAs6By5AluU5YLMw6KISZeEpqraWfC2WVmC47ydlNfN5r9NxldXsXBgBs8hl4-GjP8vO-GmKo7BBj0SlHbc9pY2fVZa2JgIqhzrbwoSEJnHGz8zgpn8Dnh-fHXQ8rhXtmpfYbwY9dyJZV-cEwZ0ei0KK4ndhq2oukM_7JKsPkwRuW0lMfv_Qb_z2KJbLgSCc9rqxkmUxBsULmJ6QIV8lrS5SCtQa4-FEnunpLT12InFpOSq8kxnANYaSG6tJOpbIhBtTJnh_Rls0HOaBjqRMqipxicsBIDIDdF-yi33-m3fsnVzTspUZu2qfXJ2fM1WRgKuRJyTQq6jVig2eO3CYxvrjhiDJNAq1UKINIAB7tRFzEuqkDCAUIQMlFCFG4Po7WyEzRL2Cd0MQHXwepUoBeXhrhgWDYhKbKG1KrFOrEG2OUKSdYjnUzHjPruPg8M6BmCGpWgVon-18fPFdaHX83rSEwE80qTOpka2wFmZvML1loRhelsfFU62TXWcb324_87k1m7yOJ3aNCX7LxR-ebZA7bVAGcLTJTDoawbShNKXesKX8CnKbyUg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8QDFEfFBXjCWITffDBLvu9V9-IBznxOB-AhLem7U6RqHvk2POEv95OtycHCYlvm2y32Wamnd989DcA7w0KgUKnvKxtyXPlzkGl3MYz2lqr41oZz8R0OC6HJ_nBaXEaLqv7uzCI6IvPMKJHn8uvJ2ZGobIdikVXgrg9HzjDnxfdda2lkIoDz771oYMJggtnewKZTxKLnYPdo4h6hUfurI6L5JYd8o1VbmHMtblqrGrOlozN_lMYL36zqzH5Ec1aHZnrOwyO_72OdXgSYCfb7fTkGaxg8xweL5ERvoDfA9UqPpjS8ccC7eoZ2wtBcuZRKfumKYrrICNzYJeNO54NNWWB-PwTG_iKkI9sQXbCVFMzKg-Yqyny84aPJpMLdnT-K7QNu9yAk_29489DHroycJOKsuWWOPWK3Em0JnRTOm_coURdlYk1JtVJppCSO5lQue3bBFOFCol0EVOirs-zl7DaTBp8BayMMbZJZQySn1dllBJM-9g3daGtqbAH0UJG0gTKcuqc8VN61yUW0glVklBlJ9QefPj3wUXH1nH_0A0SzNKwTiY92FpogQzb-VKmbnVZlTtftQfvgmbcvL2uv__R8mquaXri6Ctf3zP5W3g4PD4cydGX8ddNeETju3DOFqy20xm-cQCn1dterf8CciX1nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Learning+Extended+State+Observers+for+Nonlinear+Systems%3A+Design%2C+Analysis+and+Hardware-in-Loop+Simulations&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Zhouhua+Peng&rft.au=Mingao+Lv&rft.au=Lu+Liu&rft.au=Dan+Wang&rft.date=2023&rft.pub=School+of+Marine+Electrical+Engineering%2CDalian+Maritime+University%2CDalian+116026%2CChina&rft.issn=2329-9266&rft.volume=10&rft.issue=1&rft.spage=290&rft.epage=293&rft_id=info:doi/10.1109%2FJAS.2023.123051&rft.externalDocID=zdhxb_ywb202301026
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg