Short-Term Load Forecasting Reliability in Power Plant of Cyber-Physical Energy System Considering Adaptive Denoising

Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making th...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 17; no. 4; pp. 5183 - 5194
Main Authors Ding, Dong, Li, Junhuai, Wang, Huaijun, Wang, Kan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making the accuracy of STLF critical to optimizing their operation. However, due to the numerous communication devices installed within CPES, data collection is often subject to various factors that could negatively impact load forecasting accuracy. To improve the accuracy of STLF, this article proposes a reliable method that combines an adaptive denoising technique, a 2-D deep temporal convolutional network (TDeepTCN), and a multidimensional input structure bidirectional long short-term memory-attention (MBiLSTM-attention) network. First, an adaptive approach that combines Pearson correlation coefficient and complete ensemble empirical mode decomposition with adaptive noise is utilized to effectively identify raw load series contaminated by noise and reconstruct them. Then, a TDeepTCN model is constructed using TCN to simultaneously capture and fuse both local and long-term temporal features from multiple load series. Finally, MBiLSTM-attention is employed for accurate forecasting to achieve feature processing for multidimensional depth features. Eventually, compared to existing models, our proposed model achieves the most accurate forecasting results with a mean absolute percentage error rate of only 3.98% and 4.12%, respectively, in both regions.
AbstractList Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making the accuracy of STLF critical to optimizing their operation. However, due to the numerous communication devices installed within CPES, data collection is often subject to various factors that could negatively impact load forecasting accuracy. To improve the accuracy of STLF, this article proposes a reliable method that combines an adaptive denoising technique, a 2-D deep temporal convolutional network (TDeepTCN), and a multidimensional input structure bidirectional long short-term memory-attention (MBiLSTM-attention) network. First, an adaptive approach that combines Pearson correlation coefficient and complete ensemble empirical mode decomposition with adaptive noise is utilized to effectively identify raw load series contaminated by noise and reconstruct them. Then, a TDeepTCN model is constructed using TCN to simultaneously capture and fuse both local and long-term temporal features from multiple load series. Finally, MBiLSTM-attention is employed for accurate forecasting to achieve feature processing for multidimensional depth features. Eventually, compared to existing models, our proposed model achieves the most accurate forecasting results with a mean absolute percentage error rate of only 3.98% and 4.12%, respectively, in both regions.
Author Wang, Kan
Ding, Dong
Li, Junhuai
Wang, Huaijun
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0001-5176-2046
  surname: Ding
  fullname: Ding, Dong
  email: dingdongexcellent@163.com
  organization: School of Electrical Engineering, Xi'an University of Technology, Xi'an, China
– sequence: 2
  givenname: Junhuai
  orcidid: 0000-0001-5483-5175
  surname: Li
  fullname: Li, Junhuai
  email: lijunhuai@xaut.edu.cn
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
– sequence: 3
  givenname: Huaijun
  orcidid: 0000-0002-2933-6566
  surname: Wang
  fullname: Wang, Huaijun
  email: wanghuaijun@xaut.edu.cn
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Kan
  orcidid: 0000-0003-3500-1073
  surname: Wang
  fullname: Wang, Kan
  email: wangkan@xaut.edu.cn
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
BookMark eNp9kEtP4zAUhS3ESDyGP4BYWGKd4leceIkKnQFVopp2Fqwi27kBo9Qutsso_35SygKxYHWvrs53ju45QYc-eEDonJIJpURd3S8fl6sJI4xPOKekFPUBOqaKV4ViXBy-76yoaS2O0ElKL4SUdVmpY7RdPoeYixXENZ4H3eJZiGB1ys4_4T_QO21c7_KAnceL8A8iXvTaZxw6PB0MxGLxPCRndY9vPcSnAS-HlGGNp8En10Lc2Vy3epPdG-Ab8MGl8fQT_eh0n-DsY56iv7Pb1fR3MX_4dTe9nheWKZmLthN1bYyhML5kdUtbQrgxUlZcGm6pKNtScEVlB9LITiklQVvFTFVRQ7nlp-hy77uJ4XULKTcvYRv9GNkwRahgkkg-qtheZWNIKULXbKJb6zg0lDS7epv3eptdvc1HvSNUf4Gsyzq74HPUrv8evdijDgA-ZTHBiaD8PwlWi-g
CODEN ISJEB2
CitedBy_id crossref_primary_10_1109_TII_2024_3507946
crossref_primary_10_1016_j_epsr_2024_110495
crossref_primary_10_1109_TSMC_2024_3491841
Cites_doi 10.1016/j.energy.2020.117514
10.1109/ICCWorkshops50388.2021.9473748
10.1109/ISIE.2017.8001465
10.1109/JSYST.2019.2962971
10.35833/MPCE.2020.000004
10.1109/TPWRS.2003.811010
10.1109/TITS.2022.3190668
10.1016/j.ijforecast.2015.11.011
10.1016/j.neucom.2019.05.030
10.1016/j.ijepes.2014.07.043
10.1109/I2MTC.2013.6555474
10.1109/TII.2022.3177415
10.1016/j.apenergy.2017.03.034
10.1016/j.neucom.2020.01.031
10.1016/j.apenergy.2014.10.030
10.1109/ICIINFS.2014.7036502
10.1109/TPWRS.2021.3067551
10.1016/j.apenergy.2016.02.114
10.1049/rpg2.12085
10.1016/j.scs.2020.102052
10.1109/TSG.2013.2274373
10.1109/STI56238.2022.10103285
10.3390/app12189288
10.1109/iSPEC53008.2021.9736013
10.1109/TPWRS.2020.3042389
10.1057/palgrave.jors.2601589
10.1109/TSG.2022.3175451
10.1109/CASE48305.2020.9216802
10.1109/TPWRS.2020.3018623
10.1016/j.neucom.2019.02.063
10.1016/j.cie.2020.106435
10.1016/j.jpdc.2017.06.007
10.1109/TNNLS.2015.2480709
10.1016/j.apenergy.2020.116328
10.1016/j.enconman.2021.114919
10.1109/EI252483.2021.9713476
10.1109/TSG.2017.2753802
10.1016/j.apenergy.2019.01.055
10.1109/TSG.2022.3173964
10.1016/j.procs.2015.04.160
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2023.3310548
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 5194
ExternalDocumentID 10_1109_JSYST_2023_3310548
10243041
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61801379
  funderid: 10.13039/501100001809
– fundername: Shaanxi Water Conservancy Technology
  grantid: 2020slkj-17
– fundername: Key Research & Development Program of Shaanxi Province
  grantid: 2022SF-353
– fundername: National Key R&D Program of China
  grantid: 2018YFB1703000
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c296t-df488bbb1e105cad1d003bb66736b3c145d543916fe6b6f9996eac92b771b13c3
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Tue Aug 12 18:13:31 EDT 2025
Tue Jul 01 01:43:41 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 27 02:24:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-df488bbb1e105cad1d003bb66736b3c145d543916fe6b6f9996eac92b771b13c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5483-5175
0000-0003-3500-1073
0000-0001-5176-2046
0000-0002-2933-6566
PQID 2901426063
PQPubID 85494
PageCount 12
ParticipantIDs crossref_primary_10_1109_JSYST_2023_3310548
crossref_citationtrail_10_1109_JSYST_2023_3310548
ieee_primary_10243041
proquest_journals_2901426063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec.
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
(ref41) 2023
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
Ashish (ref40) 2017
ref43
ref28
ref27
Bai (ref32) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1016/j.energy.2020.117514
– ident: ref1
  doi: 10.1109/ICCWorkshops50388.2021.9473748
– ident: ref43
  doi: 10.1109/ISIE.2017.8001465
– ident: ref19
  doi: 10.1109/JSYST.2019.2962971
– ident: ref35
  doi: 10.35833/MPCE.2020.000004
– ident: ref16
  doi: 10.1109/TPWRS.2003.811010
– ident: ref5
  doi: 10.1109/TITS.2022.3190668
– ident: ref11
  doi: 10.1016/j.ijforecast.2015.11.011
– ident: ref6
  doi: 10.1016/j.neucom.2019.05.030
– ident: ref12
  doi: 10.1016/j.ijepes.2014.07.043
– ident: ref10
  doi: 10.1109/I2MTC.2013.6555474
– start-page: 2159
  volume-title: Proc. AAAI Conf. Artif. Intell.
  year: 2018
  ident: ref32
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– ident: ref7
  doi: 10.1109/TII.2022.3177415
– ident: ref25
  doi: 10.1016/j.apenergy.2017.03.034
– ident: ref38
  doi: 10.1016/j.neucom.2020.01.031
– ident: ref15
  doi: 10.1016/j.apenergy.2014.10.030
– ident: ref42
  doi: 10.1109/ICIINFS.2014.7036502
– ident: ref4
  doi: 10.1109/TPWRS.2021.3067551
– ident: ref21
  doi: 10.1016/j.apenergy.2016.02.114
– ident: ref36
  doi: 10.1049/rpg2.12085
– ident: ref2
  doi: 10.1016/j.scs.2020.102052
– ident: ref14
  doi: 10.1109/TSG.2013.2274373
– ident: ref29
  doi: 10.1109/STI56238.2022.10103285
– ident: ref9
  doi: 10.3390/app12189288
– ident: ref20
  doi: 10.1109/iSPEC53008.2021.9736013
– start-page: 6000
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref40
  article-title: Attention is all you need
– ident: ref24
  doi: 10.1109/TPWRS.2020.3042389
– ident: ref13
  doi: 10.1057/palgrave.jors.2601589
– ident: ref34
  doi: 10.1109/TSG.2022.3175451
– ident: ref30
  doi: 10.1109/CASE48305.2020.9216802
– ident: ref17
  doi: 10.1109/TPWRS.2020.3018623
– ident: ref22
  doi: 10.1016/j.neucom.2019.02.063
– ident: ref28
  doi: 10.1016/j.cie.2020.106435
– ident: ref37
  doi: 10.1016/j.jpdc.2017.06.007
– ident: ref27
  doi: 10.1109/TNNLS.2015.2480709
– ident: ref33
  doi: 10.1016/j.apenergy.2020.116328
– year: 2023
  ident: ref41
  article-title: Electrical engineering mathematical modeling competition
– ident: ref39
  doi: 10.1016/j.enconman.2021.114919
– ident: ref8
  doi: 10.1109/EI252483.2021.9713476
– ident: ref26
  doi: 10.1109/TSG.2017.2753802
– ident: ref18
  doi: 10.1016/j.apenergy.2019.01.055
– ident: ref31
  doi: 10.1109/TSG.2022.3173964
– ident: ref3
  doi: 10.1016/j.procs.2015.04.160
SSID ssj0058579
Score 2.3623898
Snippet Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5183
SubjectTerms 2-D deep temporal convolutional network
Accuracy
Adaptive denoising
Adaptive systems
Automatic control
Correlation coefficients
cyber-physical energy systems
Cyber-physical systems
Electric power demand
energy management
Feature extraction
Forecasting
Impact loads
Load forecasting
Load modeling
Mathematical models
Noise reduction
Plant reliability
Power plants
Predictive models
Reliability
short term load forecasting
Smart grid
Title Short-Term Load Forecasting Reliability in Power Plant of Cyber-Physical Energy System Considering Adaptive Denoising
URI https://ieeexplore.ieee.org/document/10243041
https://www.proquest.com/docview/2901426063
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz34rFhf7MGbbOwm6bZ7LFopolJoC_UUsi8UJRGbHuqvd2aTSFEUb4FkliXf7OzM7sx8hJxba2XbScfS0AkWO1BjKVPOjOCux3mU8h7WDt8_iOE0vp11ZlWxuq-FAWGffGYDfPR3-SbXCzwqgxUexhB-Q7CzDpFbWaxVm11we31jPXRIGOxCcV0h05aXt-PH8SRAovAgAnemg2Q_K7uQp1X5YYv9BnOzTR7qqZV5JS_BolCB_vjWtfHfc98hW5WrSfulbuySNZvtkc2VBoT7ZDF-AvebTcA807s8NRSZOnU6x1xoitnKZRfvJX3O6Aj51CiSHBU0d_Rqqew7G1Uw04GvIaRlA3Ra04DiMH2TvqFNpdc2y5_xaKJJpjeDydWQVUQMTIdSFMw4WOZKKW7h5-nUcAO2QClkDBUq0jzumI6v4HVWKOEwhgJ7LkPV7XLFIx0dkEaWZ_aQUA0AqFhYbq0Csa7qpTbuhVaZUMI73SK8BibRVZdyJMt4TXy00paJBzNBMJMKzBa5-JJ5K3t0_Pl1E9FZ-bIEpkVOagVIqnU8T_wtM4R8Ijr6ReyYbODoZYbLCWkU7wt7Cn5Koc68fn4CUCjk2g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB_XgW1yfOXiT1E0f2c1RfLDqugi7gp5K88JFaUW7B_31zqStLIrirdBMW_pNJjPJzHyEHFprZdtJx7LQCRY7UGMpM86M4K7LeZTxLtYO3wxE7y6-uk_u62J1XwsDwj75zAZ46c_yTaEnuFUGMzyMIfyGYGcOFv6EV-VajeEFx9e31kOXhME6FDc1Mm15fDV8GI4CpAoPInBoEqT7mVqHPLHKD2vsl5iLZTJoPq7KLHkKJqUK9Me3vo3__voVslQ7m_Sk0o5VMmPzNbI41YJwnUyGj-CAsxEYaNovMkORq1Nnb5gNTTFfuerj_U7HOb1FRjWKNEclLRw9fVf2ld3WQNNzX0VIqxbotCECxcecmOwFrSo9s3kxxs2JDXJ3cT467bGaioHpUIqSGQcTXSnFLfw8nRluwBoohZyhQkWax4lJfA2vs0IJh1EUWHQZqk6HKx7paJPM5kVutwjVAICKheXWKhDrqG5m425olQkl3NMtwhtgUl33KUe6jOfUxyttmXowUwQzrcFskaMvmZeqS8efozcQnamRFTAtstsoQFrP5LfUnzND0Cei7V_EDsh8b3TTT_uXg-sdsoBvqvJddsls-Tqxe-C1lGrf6-onZrToIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Load+Forecasting+Reliability+in+Power+Plant+of+Cyber-Physical+Energy+System+Considering+Adaptive+Denoising&rft.jtitle=IEEE+systems+journal&rft.au=Ding%2C+Dong&rft.au=Li%2C+Junhuai&rft.au=Wang%2C+Huaijun&rft.au=Wang%2C+Kan&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=17&rft.issue=4&rft.spage=5183&rft_id=info:doi/10.1109%2FJSYST.2023.3310548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon