Short-Term Load Forecasting Reliability in Power Plant of Cyber-Physical Energy System Considering Adaptive Denoising
Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making th...
Saved in:
Published in | IEEE systems journal Vol. 17; no. 4; pp. 5183 - 5194 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making the accuracy of STLF critical to optimizing their operation. However, due to the numerous communication devices installed within CPES, data collection is often subject to various factors that could negatively impact load forecasting accuracy. To improve the accuracy of STLF, this article proposes a reliable method that combines an adaptive denoising technique, a 2-D deep temporal convolutional network (TDeepTCN), and a multidimensional input structure bidirectional long short-term memory-attention (MBiLSTM-attention) network. First, an adaptive approach that combines Pearson correlation coefficient and complete ensemble empirical mode decomposition with adaptive noise is utilized to effectively identify raw load series contaminated by noise and reconstruct them. Then, a TDeepTCN model is constructed using TCN to simultaneously capture and fuse both local and long-term temporal features from multiple load series. Finally, MBiLSTM-attention is employed for accurate forecasting to achieve feature processing for multidimensional depth features. Eventually, compared to existing models, our proposed model achieves the most accurate forecasting results with a mean absolute percentage error rate of only 3.98% and 4.12%, respectively, in both regions. |
---|---|
AbstractList | Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems. CPES provides essential services for pricing decisions and automatic generation control through short-term load forecasting (STLF), making the accuracy of STLF critical to optimizing their operation. However, due to the numerous communication devices installed within CPES, data collection is often subject to various factors that could negatively impact load forecasting accuracy. To improve the accuracy of STLF, this article proposes a reliable method that combines an adaptive denoising technique, a 2-D deep temporal convolutional network (TDeepTCN), and a multidimensional input structure bidirectional long short-term memory-attention (MBiLSTM-attention) network. First, an adaptive approach that combines Pearson correlation coefficient and complete ensemble empirical mode decomposition with adaptive noise is utilized to effectively identify raw load series contaminated by noise and reconstruct them. Then, a TDeepTCN model is constructed using TCN to simultaneously capture and fuse both local and long-term temporal features from multiple load series. Finally, MBiLSTM-attention is employed for accurate forecasting to achieve feature processing for multidimensional depth features. Eventually, compared to existing models, our proposed model achieves the most accurate forecasting results with a mean absolute percentage error rate of only 3.98% and 4.12%, respectively, in both regions. |
Author | Wang, Kan Ding, Dong Li, Junhuai Wang, Huaijun |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0001-5176-2046 surname: Ding fullname: Ding, Dong email: dingdongexcellent@163.com organization: School of Electrical Engineering, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Junhuai orcidid: 0000-0001-5483-5175 surname: Li fullname: Li, Junhuai email: lijunhuai@xaut.edu.cn organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Huaijun orcidid: 0000-0002-2933-6566 surname: Wang fullname: Wang, Huaijun email: wanghuaijun@xaut.edu.cn organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Kan orcidid: 0000-0003-3500-1073 surname: Wang fullname: Wang, Kan email: wangkan@xaut.edu.cn organization: School of Computer Science and Engineering, Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China |
BookMark | eNp9kEtP4zAUhS3ESDyGP4BYWGKd4leceIkKnQFVopp2Fqwi27kBo9Qutsso_35SygKxYHWvrs53ju45QYc-eEDonJIJpURd3S8fl6sJI4xPOKekFPUBOqaKV4ViXBy-76yoaS2O0ElKL4SUdVmpY7RdPoeYixXENZ4H3eJZiGB1ys4_4T_QO21c7_KAnceL8A8iXvTaZxw6PB0MxGLxPCRndY9vPcSnAS-HlGGNp8En10Lc2Vy3epPdG-Ab8MGl8fQT_eh0n-DsY56iv7Pb1fR3MX_4dTe9nheWKZmLthN1bYyhML5kdUtbQrgxUlZcGm6pKNtScEVlB9LITiklQVvFTFVRQ7nlp-hy77uJ4XULKTcvYRv9GNkwRahgkkg-qtheZWNIKULXbKJb6zg0lDS7epv3eptdvc1HvSNUf4Gsyzq74HPUrv8evdijDgA-ZTHBiaD8PwlWi-g |
CODEN | ISJEB2 |
CitedBy_id | crossref_primary_10_1109_TII_2024_3507946 crossref_primary_10_1016_j_epsr_2024_110495 crossref_primary_10_1109_TSMC_2024_3491841 |
Cites_doi | 10.1016/j.energy.2020.117514 10.1109/ICCWorkshops50388.2021.9473748 10.1109/ISIE.2017.8001465 10.1109/JSYST.2019.2962971 10.35833/MPCE.2020.000004 10.1109/TPWRS.2003.811010 10.1109/TITS.2022.3190668 10.1016/j.ijforecast.2015.11.011 10.1016/j.neucom.2019.05.030 10.1016/j.ijepes.2014.07.043 10.1109/I2MTC.2013.6555474 10.1109/TII.2022.3177415 10.1016/j.apenergy.2017.03.034 10.1016/j.neucom.2020.01.031 10.1016/j.apenergy.2014.10.030 10.1109/ICIINFS.2014.7036502 10.1109/TPWRS.2021.3067551 10.1016/j.apenergy.2016.02.114 10.1049/rpg2.12085 10.1016/j.scs.2020.102052 10.1109/TSG.2013.2274373 10.1109/STI56238.2022.10103285 10.3390/app12189288 10.1109/iSPEC53008.2021.9736013 10.1109/TPWRS.2020.3042389 10.1057/palgrave.jors.2601589 10.1109/TSG.2022.3175451 10.1109/CASE48305.2020.9216802 10.1109/TPWRS.2020.3018623 10.1016/j.neucom.2019.02.063 10.1016/j.cie.2020.106435 10.1016/j.jpdc.2017.06.007 10.1109/TNNLS.2015.2480709 10.1016/j.apenergy.2020.116328 10.1016/j.enconman.2021.114919 10.1109/EI252483.2021.9713476 10.1109/TSG.2017.2753802 10.1016/j.apenergy.2019.01.055 10.1109/TSG.2022.3173964 10.1016/j.procs.2015.04.160 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSYST.2023.3310548 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-9234 |
EndPage | 5194 |
ExternalDocumentID | 10_1109_JSYST_2023_3310548 10243041 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61801379 funderid: 10.13039/501100001809 – fundername: Shaanxi Water Conservancy Technology grantid: 2020slkj-17 – fundername: Key Research & Development Program of Shaanxi Province grantid: 2022SF-353 – fundername: National Key R&D Program of China grantid: 2018YFB1703000 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c296t-df488bbb1e105cad1d003bb66736b3c145d543916fe6b6f9996eac92b771b13c3 |
IEDL.DBID | RIE |
ISSN | 1932-8184 |
IngestDate | Tue Aug 12 18:13:31 EDT 2025 Tue Jul 01 01:43:41 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 27 02:24:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-df488bbb1e105cad1d003bb66736b3c145d543916fe6b6f9996eac92b771b13c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5483-5175 0000-0003-3500-1073 0000-0001-5176-2046 0000-0002-2933-6566 |
PQID | 2901426063 |
PQPubID | 85494 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_JSYST_2023_3310548 crossref_citationtrail_10_1109_JSYST_2023_3310548 ieee_primary_10243041 proquest_journals_2901426063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec. 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE systems journal |
PublicationTitleAbbrev | JSYST |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 (ref41) 2023 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 Ashish (ref40) 2017 ref43 ref28 ref27 Bai (ref32) 2018 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1016/j.energy.2020.117514 – ident: ref1 doi: 10.1109/ICCWorkshops50388.2021.9473748 – ident: ref43 doi: 10.1109/ISIE.2017.8001465 – ident: ref19 doi: 10.1109/JSYST.2019.2962971 – ident: ref35 doi: 10.35833/MPCE.2020.000004 – ident: ref16 doi: 10.1109/TPWRS.2003.811010 – ident: ref5 doi: 10.1109/TITS.2022.3190668 – ident: ref11 doi: 10.1016/j.ijforecast.2015.11.011 – ident: ref6 doi: 10.1016/j.neucom.2019.05.030 – ident: ref12 doi: 10.1016/j.ijepes.2014.07.043 – ident: ref10 doi: 10.1109/I2MTC.2013.6555474 – start-page: 2159 volume-title: Proc. AAAI Conf. Artif. Intell. year: 2018 ident: ref32 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – ident: ref7 doi: 10.1109/TII.2022.3177415 – ident: ref25 doi: 10.1016/j.apenergy.2017.03.034 – ident: ref38 doi: 10.1016/j.neucom.2020.01.031 – ident: ref15 doi: 10.1016/j.apenergy.2014.10.030 – ident: ref42 doi: 10.1109/ICIINFS.2014.7036502 – ident: ref4 doi: 10.1109/TPWRS.2021.3067551 – ident: ref21 doi: 10.1016/j.apenergy.2016.02.114 – ident: ref36 doi: 10.1049/rpg2.12085 – ident: ref2 doi: 10.1016/j.scs.2020.102052 – ident: ref14 doi: 10.1109/TSG.2013.2274373 – ident: ref29 doi: 10.1109/STI56238.2022.10103285 – ident: ref9 doi: 10.3390/app12189288 – ident: ref20 doi: 10.1109/iSPEC53008.2021.9736013 – start-page: 6000 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref40 article-title: Attention is all you need – ident: ref24 doi: 10.1109/TPWRS.2020.3042389 – ident: ref13 doi: 10.1057/palgrave.jors.2601589 – ident: ref34 doi: 10.1109/TSG.2022.3175451 – ident: ref30 doi: 10.1109/CASE48305.2020.9216802 – ident: ref17 doi: 10.1109/TPWRS.2020.3018623 – ident: ref22 doi: 10.1016/j.neucom.2019.02.063 – ident: ref28 doi: 10.1016/j.cie.2020.106435 – ident: ref37 doi: 10.1016/j.jpdc.2017.06.007 – ident: ref27 doi: 10.1109/TNNLS.2015.2480709 – ident: ref33 doi: 10.1016/j.apenergy.2020.116328 – year: 2023 ident: ref41 article-title: Electrical engineering mathematical modeling competition – ident: ref39 doi: 10.1016/j.enconman.2021.114919 – ident: ref8 doi: 10.1109/EI252483.2021.9713476 – ident: ref26 doi: 10.1109/TSG.2017.2753802 – ident: ref18 doi: 10.1016/j.apenergy.2019.01.055 – ident: ref31 doi: 10.1109/TSG.2022.3173964 – ident: ref3 doi: 10.1016/j.procs.2015.04.160 |
SSID | ssj0058579 |
Score | 2.3623898 |
Snippet | Cyber-physical energy systems (CPES) are a crucial component of smart grids (SGs), and as such, they represent a specialized subset of cyber-physical systems.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5183 |
SubjectTerms | 2-D deep temporal convolutional network Accuracy Adaptive denoising Adaptive systems Automatic control Correlation coefficients cyber-physical energy systems Cyber-physical systems Electric power demand energy management Feature extraction Forecasting Impact loads Load forecasting Load modeling Mathematical models Noise reduction Plant reliability Power plants Predictive models Reliability short term load forecasting Smart grid |
Title | Short-Term Load Forecasting Reliability in Power Plant of Cyber-Physical Energy System Considering Adaptive Denoising |
URI | https://ieeexplore.ieee.org/document/10243041 https://www.proquest.com/docview/2901426063 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz34rFhf7MGbbOwm6bZ7LFopolJoC_UUsi8UJRGbHuqvd2aTSFEUb4FkliXf7OzM7sx8hJxba2XbScfS0AkWO1BjKVPOjOCux3mU8h7WDt8_iOE0vp11ZlWxuq-FAWGffGYDfPR3-SbXCzwqgxUexhB-Q7CzDpFbWaxVm11we31jPXRIGOxCcV0h05aXt-PH8SRAovAgAnemg2Q_K7uQp1X5YYv9BnOzTR7qqZV5JS_BolCB_vjWtfHfc98hW5WrSfulbuySNZvtkc2VBoT7ZDF-AvebTcA807s8NRSZOnU6x1xoitnKZRfvJX3O6Aj51CiSHBU0d_Rqqew7G1Uw04GvIaRlA3Ra04DiMH2TvqFNpdc2y5_xaKJJpjeDydWQVUQMTIdSFMw4WOZKKW7h5-nUcAO2QClkDBUq0jzumI6v4HVWKOEwhgJ7LkPV7XLFIx0dkEaWZ_aQUA0AqFhYbq0Csa7qpTbuhVaZUMI73SK8BibRVZdyJMt4TXy00paJBzNBMJMKzBa5-JJ5K3t0_Pl1E9FZ-bIEpkVOagVIqnU8T_wtM4R8Ijr6ReyYbODoZYbLCWkU7wt7Cn5Koc68fn4CUCjk2g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB_XgW1yfOXiT1E0f2c1RfLDqugi7gp5K88JFaUW7B_31zqStLIrirdBMW_pNJjPJzHyEHFprZdtJx7LQCRY7UGMpM86M4K7LeZTxLtYO3wxE7y6-uk_u62J1XwsDwj75zAZ46c_yTaEnuFUGMzyMIfyGYGcOFv6EV-VajeEFx9e31kOXhME6FDc1Mm15fDV8GI4CpAoPInBoEqT7mVqHPLHKD2vsl5iLZTJoPq7KLHkKJqUK9Me3vo3__voVslQ7m_Sk0o5VMmPzNbI41YJwnUyGj-CAsxEYaNovMkORq1Nnb5gNTTFfuerj_U7HOb1FRjWKNEclLRw9fVf2ld3WQNNzX0VIqxbotCECxcecmOwFrSo9s3kxxs2JDXJ3cT467bGaioHpUIqSGQcTXSnFLfw8nRluwBoohZyhQkWax4lJfA2vs0IJh1EUWHQZqk6HKx7paJPM5kVutwjVAICKheXWKhDrqG5m425olQkl3NMtwhtgUl33KUe6jOfUxyttmXowUwQzrcFskaMvmZeqS8efozcQnamRFTAtstsoQFrP5LfUnzND0Cei7V_EDsh8b3TTT_uXg-sdsoBvqvJddsls-Tqxe-C1lGrf6-onZrToIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Load+Forecasting+Reliability+in+Power+Plant+of+Cyber-Physical+Energy+System+Considering+Adaptive+Denoising&rft.jtitle=IEEE+systems+journal&rft.au=Ding%2C+Dong&rft.au=Li%2C+Junhuai&rft.au=Wang%2C+Huaijun&rft.au=Wang%2C+Kan&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=17&rft.issue=4&rft.spage=5183&rft_id=info:doi/10.1109%2FJSYST.2023.3310548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |