Cooperative Target Search Algorithm for UAV Swarms With Limited Communication and Energy Capacity

Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performan...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 28; no. 5; pp. 1102 - 1106
Main Authors Yan, Kang, Xiang, Luping, Yang, Kun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performance in target search, while communication, energy consumption, and cooperation efficiency have limitations. In this article, we propose a UAV swarms cooperative search model (USCSM) with the limitations of communication and energy capacity. The proposed model is modelled as an exact potential game to complete it efficiently, and we introduce a binary log-linear learning jointing dung beetle optimizer algorithm (BLLL-DBO) to optimize the proposed model. The simulation results indicate that the suggested method outperforms existing algorithms in terms of region coverage rate and target search efficiency.
AbstractList Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performance in target search, while communication, energy consumption, and cooperation efficiency have limitations. In this article, we propose a UAV swarms cooperative search model (USCSM) with the limitations of communication and energy capacity. The proposed model is modelled as an exact potential game to complete it efficiently, and we introduce a binary log-linear learning jointing dung beetle optimizer algorithm (BLLL-DBO) to optimize the proposed model. The simulation results indicate that the suggested method outperforms existing algorithms in terms of region coverage rate and target search efficiency.
Author Yan, Kang
Xiang, Luping
Yang, Kun
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0009-0002-3637-8999
  surname: Yan
  fullname: Yan, Kang
  email: kangyan@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Luping
  orcidid: 0000-0003-1465-6708
  surname: Xiang
  fullname: Xiang, Luping
  email: luping.xiang@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Kun
  orcidid: 0000-0002-6782-6689
  surname: Yang
  fullname: Yang, Kun
  email: kyang@ieee.org
  organization: School of Intelligent Software and Engineering, Nanjing University, Suzhou, China
BookMark eNp9kMlOwzAQhi1UJNrCCyAOljinOF5q-1hFZZGCemA7Rq4zaV01cXFSUN8edzkgDlxmRqP5Zv75B6jX-AYQuk7JKE2Jvsuz2fPziBLKR4xJLrU8Q_1UCJXQGHqxJkonUmp1gQZtuyKEKCrSPjKZ9xsIpnNfgF9NWECHX8AEu8ST9cIH1y1rXPmA3ybv-OXbhLrFH7GJc1e7Dkqc-breNs7GDb7BpinxtIGw2OHMbIx13e4SnVdm3cLVKQ_R2_30NXtM8tnDUzbJE0v1uEtKSG0l5sYwJmhpKK-EVVZVGlh8YV4ZOhfGai604DqFUoGQJaecazuWXJVsiG6PezfBf26h7YqV34YmniwYEYxqJQWLU-o4ZYNv2wBVETUetHfBuHWRkmJvaHEwtNgbWpwMjSj9g26Cq03Y_Q_dHCEHAL8APo6iJPsBjcuEYQ
CODEN ICLEF6
CitedBy_id crossref_primary_10_3390_drones8080393
crossref_primary_10_1007_s10291_024_01790_9
crossref_primary_10_1016_j_dcan_2024_11_005
Cites_doi 10.1109/TVT.2023.3238040
10.1016/j.ast.2017.05.031
10.1109/COMST.2023.3323344
10.1007/s11227-022-04959-6
10.1016/j.geb.2012.03.006
10.1016/j.ast.2020.105826
10.1109/twc.2023.3311035
10.1109/TVT.2023.3245120
10.1109/JIOT.2021.3085673
10.1109/JIOT.2022.3165278
10.1016/j.ast.2016.05.016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2024.3374797
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 1106
ExternalDocumentID 10_1109_LCOMM_2024_3374797
10463057
Genre orig-research
GrantInformation_xml – fundername: UESTC Yangtze Delta Region Research Institute-Quzhou
  grantid: 2022D031; 2023D005
– fundername: Natural Science Foundation of China
  grantid: 62132004; 62301122
  funderid: 10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2023NSFSC1375
  funderid: 10.13039/100012542
– fundername: Sichuan Major R&D Project
  grantid: 2022YFQ0090
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-de1cf5baa3352da24f5c8c8f9e3255bfa2b5ac94595491ed8e57d42449c6748d3
IEDL.DBID RIE
ISSN 1089-7798
IngestDate Mon Jun 30 10:19:33 EDT 2025
Tue Jul 01 02:38:35 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 02:05:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-de1cf5baa3352da24f5c8c8f9e3255bfa2b5ac94595491ed8e57d42449c6748d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6782-6689
0000-0003-1465-6708
0009-0002-3637-8999
PQID 3053298753
PQPubID 85419
PageCount 5
ParticipantIDs ieee_primary_10463057
proquest_journals_3053298753
crossref_citationtrail_10_1109_LCOMM_2024_3374797
crossref_primary_10_1109_LCOMM_2024_3374797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev LCOMM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref11
ref5
ref10
ref2
ref1
References_xml – ident: ref7
  doi: 10.1109/TVT.2023.3238040
– ident: ref6
  doi: 10.1016/j.ast.2017.05.031
– ident: ref3
  doi: 10.1109/COMST.2023.3323344
– ident: ref9
  doi: 10.1007/s11227-022-04959-6
– ident: ref11
  doi: 10.1016/j.geb.2012.03.006
– ident: ref5
  doi: 10.1016/j.ast.2020.105826
– ident: ref1
  doi: 10.1109/twc.2023.3311035
– ident: ref8
  doi: 10.1109/TVT.2023.3245120
– ident: ref2
  doi: 10.1109/JIOT.2021.3085673
– ident: ref4
  doi: 10.1109/JIOT.2022.3165278
– ident: ref10
  doi: 10.1016/j.ast.2016.05.016
SSID ssj0008251
Score 2.4617317
Snippet Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1102
SubjectTerms Autonomous aerial vehicles
Batteries
binary log-linear learning
Communication networks
Costs
Dung
dung beetle optimizer
Energy consumption
Games
Robustness
Search algorithms
Sensors
UAV swarms cooperative search
Unmanned aerial vehicles
Title Cooperative Target Search Algorithm for UAV Swarms With Limited Communication and Energy Capacity
URI https://ieeexplore.ieee.org/document/10463057
https://www.proquest.com/docview/3053298753
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbFaZQ_eJOkju0n2WEJLEVsPttpb2FdUbJPSpgj-eveRlKoo3kLYDQvf7M432flmALgWzPeTFkNOgHzPQSElDgkS4SCBQh38MGTaAQ1H_mCCbqd4WojVjRZGSmmSz6SrH81dvsj4Wv8qa-r7SGWfQQVUVORmxVqbY1drMG02PVGUkYSlQqZFmnfR_XCoYsEOcj1P8Wdd4WnLC5m2Kj_OYuNg-gdgVC7N5pW8ueucufzjW9XGf6_9EOwXVBN2rW0cgR2ZHoO9rQKEJ4BGWbaQtvg3HJukcGgTkGF39pwtX_OXOVS0Fk66j_DhnS7nK_ikXsJCFwW_6EsgTQXsGTEhjJQT5orh18Ck3xtHA6douuDwDvFzR8g2TzCjVIuxBO2gBPOQhwmRnoo-WEI7DFNOENb3g20pQokDodVyhOu-JcI7BdU0S-UZgCLBoZ8gGQRSICwVsWBEKMbHiWKhyMd10C5BiHlRkVw3xpjFJjJpkdgAF2vg4gK4OrjZzFnYehx_jq5pJLZGWhDqoFGCHRd7dhV7ukkG0fHb-S_TLsCu_rrNd2yAar5cy0vFSXJ2ZWzxE3TN2-g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHdkRZfeCG0i12Eh-rClSgLQda6C3yFkC0TdWmQuLr8ZKiAgJxiyJbsfTGnjfxvBmAc8mDIKlw7IU48D0cMerRMJEeljgywQ_Hth1QuxM0e_imT_q5WN1qYZRSNvlMlcyjvcuXqZiZX2Vlcx-p7TNchhXt-EnVybU-D16jwnT59FSTRhrNNTIVWm417tptHQ3WcMn3NYM2NZ4W_JBtrPLjNLYu5moTOvPFucyS19Is4yXx_q1u479XvwUbOdlEdWcd27CkRjuwvlCCcBdYI03HypX_Rl2bFo5cCjKqD57SyUv2PESa2KJe_QHdv7HJcIoe9UuUK6PQF4UJYiOJLq2cEDW0Gxaa4-9B7-qy22h6edsFT9RokHlSVUVCOGNGjiVZDSdERCJKqPJ1_METVuOECYqJuSGsKhkpEkqjl6PCdC6R_j4URulIHQCSCYmCBKswVBITpakFp1JzPkE1D8UBKUJ1DkIs8prkpjXGILaxSYXGFrjYABfnwBXh4nPO2FXk-HP0nkFiYaQDoQjHc7DjfNdOY9-0yaAmgjv8ZdoZrDa77Vbcuu7cHsGa-ZLLfjyGQjaZqRPNUDJ-au3yAxcF3zE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Target+Search+Algorithm+for+UAV+Swarms+With+Limited+Communication+and+Energy+Capacity&rft.jtitle=IEEE+communications+letters&rft.au=Kang%2C+Yan&rft.au=Xiang%2C+Luping&rft.au=Yang%2C+Kun&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=28&rft.issue=5&rft.spage=1102&rft_id=info:doi/10.1109%2FLCOMM.2024.3374797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon