Cooperative Target Search Algorithm for UAV Swarms With Limited Communication and Energy Capacity
Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performan...
Saved in:
Published in | IEEE communications letters Vol. 28; no. 5; pp. 1102 - 1106 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performance in target search, while communication, energy consumption, and cooperation efficiency have limitations. In this article, we propose a UAV swarms cooperative search model (USCSM) with the limitations of communication and energy capacity. The proposed model is modelled as an exact potential game to complete it efficiently, and we introduce a binary log-linear learning jointing dung beetle optimizer algorithm (BLLL-DBO) to optimize the proposed model. The simulation results indicate that the suggested method outperforms existing algorithms in terms of region coverage rate and target search efficiency. |
---|---|
AbstractList | Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target search in a wide region with limitations of sensing range, search time capacity, etc. Compared with a single UAV, UAV swarms have higher performance in target search, while communication, energy consumption, and cooperation efficiency have limitations. In this article, we propose a UAV swarms cooperative search model (USCSM) with the limitations of communication and energy capacity. The proposed model is modelled as an exact potential game to complete it efficiently, and we introduce a binary log-linear learning jointing dung beetle optimizer algorithm (BLLL-DBO) to optimize the proposed model. The simulation results indicate that the suggested method outperforms existing algorithms in terms of region coverage rate and target search efficiency. |
Author | Yan, Kang Xiang, Luping Yang, Kun |
Author_xml | – sequence: 1 givenname: Kang orcidid: 0009-0002-3637-8999 surname: Yan fullname: Yan, Kang email: kangyan@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Luping orcidid: 0000-0003-1465-6708 surname: Xiang fullname: Xiang, Luping email: luping.xiang@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Kun orcidid: 0000-0002-6782-6689 surname: Yang fullname: Yang, Kun email: kyang@ieee.org organization: School of Intelligent Software and Engineering, Nanjing University, Suzhou, China |
BookMark | eNp9kMlOwzAQhi1UJNrCCyAOljinOF5q-1hFZZGCemA7Rq4zaV01cXFSUN8edzkgDlxmRqP5Zv75B6jX-AYQuk7JKE2Jvsuz2fPziBLKR4xJLrU8Q_1UCJXQGHqxJkonUmp1gQZtuyKEKCrSPjKZ9xsIpnNfgF9NWECHX8AEu8ST9cIH1y1rXPmA3ybv-OXbhLrFH7GJc1e7Dkqc-breNs7GDb7BpinxtIGw2OHMbIx13e4SnVdm3cLVKQ_R2_30NXtM8tnDUzbJE0v1uEtKSG0l5sYwJmhpKK-EVVZVGlh8YV4ZOhfGai604DqFUoGQJaecazuWXJVsiG6PezfBf26h7YqV34YmniwYEYxqJQWLU-o4ZYNv2wBVETUetHfBuHWRkmJvaHEwtNgbWpwMjSj9g26Cq03Y_Q_dHCEHAL8APo6iJPsBjcuEYQ |
CODEN | ICLEF6 |
CitedBy_id | crossref_primary_10_3390_drones8080393 crossref_primary_10_1007_s10291_024_01790_9 crossref_primary_10_1016_j_dcan_2024_11_005 |
Cites_doi | 10.1109/TVT.2023.3238040 10.1016/j.ast.2017.05.031 10.1109/COMST.2023.3323344 10.1007/s11227-022-04959-6 10.1016/j.geb.2012.03.006 10.1016/j.ast.2020.105826 10.1109/twc.2023.3311035 10.1109/TVT.2023.3245120 10.1109/JIOT.2021.3085673 10.1109/JIOT.2022.3165278 10.1016/j.ast.2016.05.016 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/LCOMM.2024.3374797 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2558 |
EndPage | 1106 |
ExternalDocumentID | 10_1109_LCOMM_2024_3374797 10463057 |
Genre | orig-research |
GrantInformation_xml | – fundername: UESTC Yangtze Delta Region Research Institute-Quzhou grantid: 2022D031; 2023D005 – fundername: Natural Science Foundation of China grantid: 62132004; 62301122 funderid: 10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 2023NSFSC1375 funderid: 10.13039/100012542 – fundername: Sichuan Major R&D Project grantid: 2022YFQ0090 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c296t-de1cf5baa3352da24f5c8c8f9e3255bfa2b5ac94595491ed8e57d42449c6748d3 |
IEDL.DBID | RIE |
ISSN | 1089-7798 |
IngestDate | Mon Jun 30 10:19:33 EDT 2025 Tue Jul 01 02:38:35 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 02:05:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-de1cf5baa3352da24f5c8c8f9e3255bfa2b5ac94595491ed8e57d42449c6748d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6782-6689 0000-0003-1465-6708 0009-0002-3637-8999 |
PQID | 3053298753 |
PQPubID | 85419 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10463057 proquest_journals_3053298753 crossref_citationtrail_10_1109_LCOMM_2024_3374797 crossref_primary_10_1109_LCOMM_2024_3374797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE communications letters |
PublicationTitleAbbrev | LCOMM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 ref7 ref9 ref4 ref3 ref6 ref11 ref5 ref10 ref2 ref1 |
References_xml | – ident: ref7 doi: 10.1109/TVT.2023.3238040 – ident: ref6 doi: 10.1016/j.ast.2017.05.031 – ident: ref3 doi: 10.1109/COMST.2023.3323344 – ident: ref9 doi: 10.1007/s11227-022-04959-6 – ident: ref11 doi: 10.1016/j.geb.2012.03.006 – ident: ref5 doi: 10.1016/j.ast.2020.105826 – ident: ref1 doi: 10.1109/twc.2023.3311035 – ident: ref8 doi: 10.1109/TVT.2023.3245120 – ident: ref2 doi: 10.1109/JIOT.2021.3085673 – ident: ref4 doi: 10.1109/JIOT.2022.3165278 – ident: ref10 doi: 10.1016/j.ast.2016.05.016 |
SSID | ssj0008251 |
Score | 2.4617317 |
Snippet | Target search by unmanned aerial vehicles (UAV) has wide applications in rescue, round-up, and border patrol. However, a single UAV cannot satisfy target... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1102 |
SubjectTerms | Autonomous aerial vehicles Batteries binary log-linear learning Communication networks Costs Dung dung beetle optimizer Energy consumption Games Robustness Search algorithms Sensors UAV swarms cooperative search Unmanned aerial vehicles |
Title | Cooperative Target Search Algorithm for UAV Swarms With Limited Communication and Energy Capacity |
URI | https://ieeexplore.ieee.org/document/10463057 https://www.proquest.com/docview/3053298753 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbFaZQ_eJOkju0n2WEJLEVsPttpb2FdUbJPSpgj-eveRlKoo3kLYDQvf7M432flmALgWzPeTFkNOgHzPQSElDgkS4SCBQh38MGTaAQ1H_mCCbqd4WojVjRZGSmmSz6SrH81dvsj4Wv8qa-r7SGWfQQVUVORmxVqbY1drMG02PVGUkYSlQqZFmnfR_XCoYsEOcj1P8Wdd4WnLC5m2Kj_OYuNg-gdgVC7N5pW8ueucufzjW9XGf6_9EOwXVBN2rW0cgR2ZHoO9rQKEJ4BGWbaQtvg3HJukcGgTkGF39pwtX_OXOVS0Fk66j_DhnS7nK_ikXsJCFwW_6EsgTQXsGTEhjJQT5orh18Ck3xtHA6douuDwDvFzR8g2TzCjVIuxBO2gBPOQhwmRnoo-WEI7DFNOENb3g20pQokDodVyhOu-JcI7BdU0S-UZgCLBoZ8gGQRSICwVsWBEKMbHiWKhyMd10C5BiHlRkVw3xpjFJjJpkdgAF2vg4gK4OrjZzFnYehx_jq5pJLZGWhDqoFGCHRd7dhV7ukkG0fHb-S_TLsCu_rrNd2yAar5cy0vFSXJ2ZWzxE3TN2-g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHdkRZfeCG0i12Eh-rClSgLQda6C3yFkC0TdWmQuLr8ZKiAgJxiyJbsfTGnjfxvBmAc8mDIKlw7IU48D0cMerRMJEeljgywQ_Hth1QuxM0e_imT_q5WN1qYZRSNvlMlcyjvcuXqZiZX2Vlcx-p7TNchhXt-EnVybU-D16jwnT59FSTRhrNNTIVWm417tptHQ3WcMn3NYM2NZ4W_JBtrPLjNLYu5moTOvPFucyS19Is4yXx_q1u479XvwUbOdlEdWcd27CkRjuwvlCCcBdYI03HypX_Rl2bFo5cCjKqD57SyUv2PESa2KJe_QHdv7HJcIoe9UuUK6PQF4UJYiOJLq2cEDW0Gxaa4-9B7-qy22h6edsFT9RokHlSVUVCOGNGjiVZDSdERCJKqPJ1_METVuOECYqJuSGsKhkpEkqjl6PCdC6R_j4URulIHQCSCYmCBKswVBITpakFp1JzPkE1D8UBKUJ1DkIs8prkpjXGILaxSYXGFrjYABfnwBXh4nPO2FXk-HP0nkFiYaQDoQjHc7DjfNdOY9-0yaAmgjv8ZdoZrDa77Vbcuu7cHsGa-ZLLfjyGQjaZqRPNUDJ-au3yAxcF3zE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Target+Search+Algorithm+for+UAV+Swarms+With+Limited+Communication+and+Energy+Capacity&rft.jtitle=IEEE+communications+letters&rft.au=Kang%2C+Yan&rft.au=Xiang%2C+Luping&rft.au=Yang%2C+Kun&rft.date=2024-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=28&rft.issue=5&rft.spage=1102&rft_id=info:doi/10.1109%2FLCOMM.2024.3374797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |