Recent progress in electrochemical recycling of waste NdFeB magnets

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have signi...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 61; no. 11; pp. 2257 - 2268
Main Authors Xu, Xuan, Jia, Xiaozheng, Zhao, Kunyuan, Xu, Peng, Jing, Peng, Liu, Baocang, Zhang, Jun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 30.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed. Electrochemical recycling of waste NdFeB magnets through molten salt electrolysis and room-temperature electrolysis.
AbstractList Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed.
Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed. Electrochemical recycling of waste NdFeB magnets through molten salt electrolysis and room-temperature electrolysis.
Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed.Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed.
Author Xu, Peng
Liu, Baocang
Jing, Peng
Zhao, Kunyuan
Xu, Xuan
Jia, Xiaozheng
Zhang, Jun
AuthorAffiliation School of Chemistry and Environmental Science
Economic and Technological Development Zone
Inner Mongolia University
Inner Mongolia Normal University
SANY Heavy Industry Co., Ltd
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: SANY Heavy Industry Co., Ltd
– name: Inner Mongolia University
– name: Economic and Technological Development Zone
– name: School of Chemistry and Chemical Engineering
– name: Inner Mongolia Normal University
– name: School of Chemistry and Environmental Science
Author_xml – sequence: 1
  givenname: Xuan
  surname: Xu
  fullname: Xu, Xuan
– sequence: 2
  givenname: Xiaozheng
  surname: Jia
  fullname: Jia, Xiaozheng
– sequence: 3
  givenname: Kunyuan
  surname: Zhao
  fullname: Zhao, Kunyuan
– sequence: 4
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
– sequence: 5
  givenname: Peng
  surname: Jing
  fullname: Jing, Peng
– sequence: 6
  givenname: Baocang
  surname: Liu
  fullname: Liu, Baocang
– sequence: 7
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39780693$$D View this record in MEDLINE/PubMed
BookMark eNpd0UtLAzEQB_AgFfvQi3cl4EWE1bx2uzna1apQFETB25JNJnXLPjTZIv32prZWcC4zhx_D8J8h6jVtAwgdU3JJCZdXRmhNBItZsYcGlCciikX61lvPsYzGXMR9NPR-QULROD1AfS7HKUkkH6DsGTQ0Hf5w7dyB97hsMFSgO9fqd6hLrSrsQK90VTZz3Fr8pXwH-NFMYYJrNW-g84do36rKw9G2j9Dr9PYlu49mT3cP2fUs0kwmXWSM1cSCEiCZVJQZTpQpDCTcsNBTZq2BQpvUEkWtGoMooLAxaGpswmPNR-h8szcc-7kE3-V16TVUlWqgXfqc05hLyojkgZ79o4t26ZpwXVAJFVSKJAnqdKuWRQ0m_3Blrdwq_40ngIsN0K713oHdEUrydfb5jciyn-wnAZ9ssPN65_5-w78BisyAyw
Cites_doi 10.1016/j.jallcom.2008.11.153
10.1021/sc5004456
10.1007/s40831-017-0120-x
10.1016/j.jclepro.2021.127393
10.1016/j.jmatprotec.2014.11.036
10.1016/j.hydromet.2017.10.015
10.1007/s10163-016-0563-3
10.1016/j.ijrmhm.2020.105251
10.1149/05011.0453ecst
10.2320/matertrans.MK201617
10.1016/j.jallcom.2015.05.238
10.1016/B978-0-08-096988-6.00019-5
10.1016/j.seppur.2017.09.053
10.1016/j.corsci.2011.02.006
10.1007/BF00544210
10.1039/C7GC03296J
10.1016/j.seppur.2020.117362
10.1007/s10163-017-0682-5
10.1179/1743285514Y.0000000084
10.2320/matertrans.M-M2013836
10.1126/science.adp2846
10.1002/adem.201901206
10.1021/acssuschemeng.8b00358
10.1038/s41563-019-0439-8
10.1007/s40831-015-0009-5
10.1016/S1003-6326(24)66496-4
10.1016/j.jallcom.2023.171775
10.1016/j.jclepro.2019.01.051
10.1016/j.hydromet.2023.106209
10.1016/j.seppur.2019.116030
10.1016/j.seppur.2023.125501
10.1016/j.jece.2022.108946
10.1016/j.apsusc.2011.01.049
10.1039/D3GC04679F
10.1016/j.jre.2024.02.001
10.1016/S0010-938X(01)00123-8
10.1016/j.jclepro.2020.124058
10.1021/acssuschemeng.8b01707
10.1016/j.jre.2024.01.012
10.1016/j.jclepro.2012.12.037
10.1007/s40831-015-0021-9
10.1007/s12666-020-01888-x
10.1039/C9GC03325D
10.1016/j.mineng.2019.106097
10.1002/cssc.201902342
10.1039/D0GC02028A
10.1016/j.seppur.2021.119795
10.1179/1743285514Y.0000000062
10.1039/D3GC03031H
10.1149/06404.0593ecst
10.1016/j.hydromet.2019.105213
10.1016/j.jallcom.2020.158424
10.3390/met8110867
10.1039/C5GC00230C
10.1007/s11663-018-1176-0
10.1016/j.hydromet.2017.06.021
10.1149/1.1838615
10.1016/j.seppur.2023.123654
10.1149/2.0451708jes
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4cc04252b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 2268
ExternalDocumentID 39780693
10_1039_D4CC04252B
d4cc04252b
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
4.4
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R56
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X7L
AAYXX
CITATION
H13
-JG
AGSTE
NPM
VQA
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c296t-ddfc0fea4e929a12d30adbde63d2dbd82ffdebcd8f0a1fa7e4bebf5ec1df635c3
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 01:15:09 EDT 2025
Mon Jun 30 13:15:38 EDT 2025
Fri Jan 31 01:44:21 EST 2025
Tue Jul 01 04:23:29 EDT 2025
Tue May 27 12:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-ddfc0fea4e929a12d30adbde63d2dbd82ffdebcd8f0a1fa7e4bebf5ec1df635c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7804-0369
PMID 39780693
PQID 3161419466
PQPubID 2047502
PageCount 12
ParticipantIDs crossref_primary_10_1039_D4CC04252B
pubmed_primary_39780693
proquest_journals_3161419466
rsc_primary_d4cc04252b
proquest_miscellaneous_3153912093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Padhan (D4CC04252B/cit58/1) 2017; 174
Xu (D4CC04252B/cit59/1) 2024; 26
El-Moneim (D4CC04252B/cit49/1) 2002; 44
Zhihan (D4CC04252B/cit9/1) 2023; 315
Liu (D4CC04252B/cit64/1) 2020; 145
Makarova (D4CC04252B/cit55/1) 2020; 251
Katiyar (D4CC04252B/cit28/1) 2020; 90
Kamimoto (D4CC04252B/cit31/1) 2017; 19
Zhihan (D4CC04252B/cit22/1) 2022; 10
Moore (D4CC04252B/cit17/1) 2015; 647
Bas (D4CC04252B/cit27/1) 2017; 172
Xue (D4CC04252B/cit61/1) 2020; 22
Lorenz (D4CC04252B/cit16/1) 2019; 215
Xu (D4CC04252B/cit41/1) 2024; 34
Venkatesan (D4CC04252B/cit52/1) 2018; 191
Takeda (D4CC04252B/cit19/1) 2014; 55
Abrahami (D4CC04252B/cit21/1) 2015; 124
D4CC04252B/cit4/1
Stefanoni (D4CC04252B/cit26/1) 2019; 18
Shirayama (D4CC04252B/cit15/1) 2018; 49
Abbasalizadeh (D4CC04252B/cit45/1) 2017; 3
Schreiber (D4CC04252B/cit29/1) 2020; 22
Önal (D4CC04252B/cit66/1) 2020; 191
Xu (D4CC04252B/cit12/1) 2024
D4CC04252B/cit2/1
Kamimoto (D4CC04252B/cit33/1) 2018; 20
Harris (D4CC04252B/cit30/1) 2010
Konishi (D4CC04252B/cit35/1) 2014; 64
Venkatesan (D4CC04252B/cit51/1) 2018; 6
Mao (D4CC04252B/cit48/1) 2011; 257
Yue (D4CC04252B/cit57/1) 2018; 6
Xu (D4CC04252B/cit11/1) 2019; 12
Jiang (D4CC04252B/cit23/1) 2020; 73
Kumari (D4CC04252B/cit56/1) 2021; 309
Lalana (D4CC04252B/cit13/1) 2016
Takeda (D4CC04252B/cit42/1) 2014
Liu (D4CC04252B/cit63/1) 2022; 282
Sun (D4CC04252B/cit18/1) 2015; 218
Abbasalizadeh (D4CC04252B/cit38/1) 2017; 58
Yu (D4CC04252B/cit10/1) 2024; 223
Zhang (D4CC04252B/cit53/1) 2023; 25
Xu (D4CC04252B/cit54/1) 2020; 22
Frankel (D4CC04252B/cit25/1) 1998; 145
Riaño (D4CC04252B/cit62/1) 2015; 17
Xu (D4CC04252B/cit6/1) 2024; 330
Holc (D4CC04252B/cit46/1) 1990; 25
Heo (D4CC04252B/cit37/1) 2024
Reimer (D4CC04252B/cit8/1) 2018; 8
Venkatesan (D4CC04252B/cit60/1) 2018; 20
Yan (D4CC04252B/cit50/1) 2009; 478
Yang (D4CC04252B/cit34/1) 2020; 233
Bian (D4CC04252B/cit20/1) 2015; 1
D4CC04252B/cit5/1
Yin (D4CC04252B/cit7/1) 2024; 384
Önal (D4CC04252B/cit65/1) 2015; 1
Binnemans (D4CC04252B/cit24/1) 2013; 51
Shen (D4CC04252B/cit39/1) 2017; 164
Jonsson (D4CC04252B/cit14/1) 2020; 277
Martinez (D4CC04252B/cit32/1) 2013; 50
D4CC04252B/cit3/1
Hua (D4CC04252B/cit43/1) 2014; 2
D4CC04252B/cit1/1
Mao (D4CC04252B/cit47/1) 2011; 53
Park (D4CC04252B/cit40/1) 2023; 967
Jeon (D4CC04252B/cit44/1) 2021; 860
Abbasalizadeh (D4CC04252B/cit36/1) 2015; 124
References_xml – issn: 2010
  publication-title: Quantitative chemical analysis
  doi: Harris
– issn: 2016
  end-page: p 1-6
  publication-title: The European Powder Metallurgy Association
  doi: Lalana Degri Bradshaw Walton
– issn: 2014
  end-page: p 995-1044
  publication-title: Treatise on Process Metallurgy
  doi: Takeda Uda Okabe
– volume: 478
  start-page: 188
  year: 2009
  ident: D4CC04252B/cit50/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.11.153
– volume: 2
  start-page: 2536
  year: 2014
  ident: D4CC04252B/cit43/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc5004456
– ident: D4CC04252B/cit1/1
– volume: 3
  start-page: 627
  year: 2017
  ident: D4CC04252B/cit45/1
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-017-0120-x
– volume: 309
  start-page: 127393
  year: 2021
  ident: D4CC04252B/cit56/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.127393
– volume: 218
  start-page: 57
  year: 2015
  ident: D4CC04252B/cit18/1
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.11.036
– volume: 174
  start-page: 210
  year: 2017
  ident: D4CC04252B/cit58/1
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.10.015
– volume: 19
  start-page: 1017
  year: 2017
  ident: D4CC04252B/cit31/1
  publication-title: J. Mater. Cycles Waste Manage.
  doi: 10.1007/s10163-016-0563-3
– volume: 90
  start-page: 105251
  year: 2020
  ident: D4CC04252B/cit28/1
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2020.105251
– volume: 50
  start-page: 453
  year: 2013
  ident: D4CC04252B/cit32/1
  publication-title: ECS Trans.
  doi: 10.1149/05011.0453ecst
– volume: 58
  start-page: 400
  year: 2017
  ident: D4CC04252B/cit38/1
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MK201617
– volume: 647
  start-page: 997
  year: 2015
  ident: D4CC04252B/cit17/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.238
– start-page: 995
  volume-title: Treatise on Process Metallurgy
  year: 2014
  ident: D4CC04252B/cit42/1
  doi: 10.1016/B978-0-08-096988-6.00019-5
– volume: 191
  start-page: 384
  year: 2018
  ident: D4CC04252B/cit52/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.09.053
– volume: 53
  start-page: 1887
  year: 2011
  ident: D4CC04252B/cit47/1
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2011.02.006
– volume: 25
  start-page: 215
  year: 1990
  ident: D4CC04252B/cit46/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00544210
– ident: D4CC04252B/cit2/1
– volume: 20
  start-page: 1065
  year: 2018
  ident: D4CC04252B/cit60/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC03296J
– ident: D4CC04252B/cit5/1
– volume-title: Quantitative chemical analysis
  year: 2010
  ident: D4CC04252B/cit30/1
– volume: 251
  start-page: 117362
  year: 2020
  ident: D4CC04252B/cit55/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117362
– volume: 20
  start-page: 1918
  year: 2018
  ident: D4CC04252B/cit33/1
  publication-title: J. Mater. Cycles Waste Manage.
  doi: 10.1007/s10163-017-0682-5
– volume: 124
  start-page: 106
  year: 2015
  ident: D4CC04252B/cit21/1
  publication-title: Miner. Process. Extr. Metall.
  doi: 10.1179/1743285514Y.0000000084
– volume: 55
  start-page: 334
  year: 2014
  ident: D4CC04252B/cit19/1
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M-M2013836
– volume: 384
  start-page: 1182
  year: 2024
  ident: D4CC04252B/cit7/1
  publication-title: Science
  doi: 10.1126/science.adp2846
– volume: 22
  start-page: 1901206
  year: 2020
  ident: D4CC04252B/cit29/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201901206
– volume: 6
  start-page: 6547
  year: 2018
  ident: D4CC04252B/cit57/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00358
– volume: 18
  start-page: 942
  year: 2019
  ident: D4CC04252B/cit26/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0439-8
– volume: 1
  start-page: 151
  year: 2015
  ident: D4CC04252B/cit20/1
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-015-0009-5
– volume: 34
  start-page: 1634
  year: 2024
  ident: D4CC04252B/cit41/1
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(24)66496-4
– volume: 967
  start-page: 171775
  year: 2023
  ident: D4CC04252B/cit40/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171775
– volume: 215
  start-page: 131
  year: 2019
  ident: D4CC04252B/cit16/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.01.051
– volume: 223
  start-page: 106209
  year: 2024
  ident: D4CC04252B/cit10/1
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2023.106209
– volume: 233
  start-page: 116030
  year: 2020
  ident: D4CC04252B/cit34/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116030
– volume: 330
  start-page: 125501
  year: 2024
  ident: D4CC04252B/cit6/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125501
– volume: 10
  start-page: 108946
  year: 2022
  ident: D4CC04252B/cit22/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108946
– volume: 257
  start-page: 5581
  year: 2011
  ident: D4CC04252B/cit48/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.01.049
– volume: 26
  start-page: 2552
  year: 2024
  ident: D4CC04252B/cit59/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC04679F
– year: 2024
  ident: D4CC04252B/cit12/1
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2024.02.001
– volume: 44
  start-page: 1097
  year: 2002
  ident: D4CC04252B/cit49/1
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(01)00123-8
– volume: 277
  start-page: 124058
  year: 2020
  ident: D4CC04252B/cit14/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.124058
– volume: 6
  start-page: 9375
  year: 2018
  ident: D4CC04252B/cit51/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01707
– ident: D4CC04252B/cit4/1
– year: 2024
  ident: D4CC04252B/cit37/1
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2024.01.012
– volume: 51
  start-page: 1
  year: 2013
  ident: D4CC04252B/cit24/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2012.12.037
– volume: 1
  start-page: 199
  year: 2015
  ident: D4CC04252B/cit65/1
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-015-0021-9
– volume: 73
  start-page: 703
  year: 2020
  ident: D4CC04252B/cit23/1
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-020-01888-x
– volume: 22
  start-page: 1105
  year: 2020
  ident: D4CC04252B/cit54/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03325D
– volume: 145
  start-page: 106097
  year: 2020
  ident: D4CC04252B/cit64/1
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106097
– volume: 12
  start-page: 4754
  year: 2019
  ident: D4CC04252B/cit11/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902342
– volume: 22
  start-page: 6288
  year: 2020
  ident: D4CC04252B/cit61/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC02028A
– volume: 282
  start-page: 119795
  year: 2022
  ident: D4CC04252B/cit63/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119795
– volume: 124
  start-page: 191
  year: 2015
  ident: D4CC04252B/cit36/1
  publication-title: Miner. Process. Extr. Metall.
  doi: 10.1179/1743285514Y.0000000062
– volume: 25
  start-page: 10653
  year: 2023
  ident: D4CC04252B/cit53/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC03031H
– volume: 64
  start-page: 593
  year: 2014
  ident: D4CC04252B/cit35/1
  publication-title: ECS Trans.
  doi: 10.1149/06404.0593ecst
– volume: 191
  start-page: 105213
  year: 2020
  ident: D4CC04252B/cit66/1
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.105213
– start-page: 1
  volume-title: The European Powder Metallurgy Association
  year: 2016
  ident: D4CC04252B/cit13/1
– volume: 860
  start-page: 158424
  year: 2021
  ident: D4CC04252B/cit44/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.158424
– volume: 8
  start-page: 867
  year: 2018
  ident: D4CC04252B/cit8/1
  publication-title: Metals
  doi: 10.3390/met8110867
– volume: 17
  start-page: 2931
  year: 2015
  ident: D4CC04252B/cit62/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC00230C
– volume: 49
  start-page: 1067
  year: 2018
  ident: D4CC04252B/cit15/1
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-018-1176-0
– volume: 172
  start-page: 30
  year: 2017
  ident: D4CC04252B/cit27/1
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.06.021
– volume: 145
  start-page: 2186
  year: 1998
  ident: D4CC04252B/cit25/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 315
  start-page: 123654
  year: 2023
  ident: D4CC04252B/cit9/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123654
– volume: 164
  start-page: H5292
  year: 2017
  ident: D4CC04252B/cit39/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0451708jes
– ident: D4CC04252B/cit3/1
SSID ssj0000158
Score 2.485118
SecondaryResourceType review_article
Snippet Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 2257
SubjectTerms Clean energy
Critical components
Electrolysis
End of life
Energy technology
Environmental impact
Molten salts
Neodymium
Permanent magnets
Rare earth elements
Raw materials
Reaction mechanisms
Reagents
Recycling
Room temperature
Title Recent progress in electrochemical recycling of waste NdFeB magnets
URI https://www.ncbi.nlm.nih.gov/pubmed/39780693
https://www.proquest.com/docview/3161419466
https://www.proquest.com/docview/3153912093
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxKsQKMgIbpWL7V2_jm1IVEoIHBzJN2u9O4ZK4KASC7W_ntmXbaBCwMWJ1pu1NTOZnZmd-YaQl7zOBM0z8AOexj4TYeznWQM-S7mANEATWqri5Hfr5HTDzsq4nEzGWUvdrj4SV9fWlfwPV3EM-aqqZP-Bs_2iOIDfkb94RQ7j9a94jDafOsrXOVZKYyn4D9PWRjgcAFRol-KzTW3-zpGnh2u5hJPDL_xjCwbGqUcqcD8S46oRHZbtS7u07jSNP0ZBhLJT42U3iNqZScItz_n26hPY7dEEqHVw9m3XXo6mmwU-uIk2DBGpjD93omLyl1Sww2Wa6kwS269upFxpnPspNfCRR2DHEuaj11SONbKBZ3eSF471a2TgrO1ejbZjdu0-EFAFoyqZEEopRfWw27kT_vX7arlZrapiURY3yF6EXkY0JXvHi-LNaoQ_phu89i_u8G1p_mpY-2eL5jc3BY2WC9dMRhstxR1y23ob3rERnbtkAu09crMn2n0yNyLkORHyzlvvFxHyehHyto2nRcjTIuRZEXpANstFMT_1bV8NX0R5svOlbETQAGeAtjEPI0kDLmsJCZURfmZR00iohcyagIcNT4HVUDcxiFA2aJ8Kuk-m7baFR8RjqMDRZuXo9QQMEp6hzRXQNAeRhiKDekZeONpUXw18SqXTHmhevWbzuabgyYwcOLJV9u_1raLoi-DyLElm5Hl_G8mjTrR4C9tOzYlprqq_6Yw8NOTuH0MVtlai7uwj_fvhgW-P__zUJ-TWIOcHZLq76OApGqC7-pkVkx-UA4l5
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+electrochemical+recycling+of+waste+NdFeB+magnets&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Xu%2C+Xuan&rft.au=Jia%2C+Xiaozheng&rft.au=Zhao%2C+Kunyuan&rft.au=Xu%2C+Peng&rft.date=2025-01-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=61&rft.issue=11&rft.spage=2257&rft.epage=2268&rft_id=info:doi/10.1039%2Fd4cc04252b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon