Recent progress in electrochemical recycling of waste NdFeB magnets
Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have signi...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 61; no. 11; pp. 2257 - 2268 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
30.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed.
Electrochemical recycling of waste NdFeB magnets through molten salt electrolysis and room-temperature electrolysis. |
---|---|
AbstractList | Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed. Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed. Electrochemical recycling of waste NdFeB magnets through molten salt electrolysis and room-temperature electrolysis. Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed.Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources. Recycling these materials can ensure a reliable and sustainable supply of REEs. Compared to conventional metallurgical processes, electrochemical strategies offer advantages such as high efficiency, selectivity, ease of operation, and environmental friendliness. This review presents an overview of the current status and future prospects of electrochemical technologies for recovering RE metals, alloys, or compounds from waste NdFeB magnets. Special emphasis is placed on molten salt electrolysis and room-temperature electrolysis, including detailed reaction mechanisms involved in the recycling processes. Additionally, challenges and future strategies for the electrochemical recycling of waste NdFeB magnets, focusing on environmental impact evaluation, efficient recovery, and reduced reagent consumption are proposed. |
Author | Xu, Peng Liu, Baocang Jing, Peng Zhao, Kunyuan Xu, Xuan Jia, Xiaozheng Zhang, Jun |
AuthorAffiliation | School of Chemistry and Environmental Science Economic and Technological Development Zone Inner Mongolia University Inner Mongolia Normal University SANY Heavy Industry Co., Ltd School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: SANY Heavy Industry Co., Ltd – name: Inner Mongolia University – name: Economic and Technological Development Zone – name: School of Chemistry and Chemical Engineering – name: Inner Mongolia Normal University – name: School of Chemistry and Environmental Science |
Author_xml | – sequence: 1 givenname: Xuan surname: Xu fullname: Xu, Xuan – sequence: 2 givenname: Xiaozheng surname: Jia fullname: Jia, Xiaozheng – sequence: 3 givenname: Kunyuan surname: Zhao fullname: Zhao, Kunyuan – sequence: 4 givenname: Peng surname: Xu fullname: Xu, Peng – sequence: 5 givenname: Peng surname: Jing fullname: Jing, Peng – sequence: 6 givenname: Baocang surname: Liu fullname: Liu, Baocang – sequence: 7 givenname: Jun surname: Zhang fullname: Zhang, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39780693$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLAzEQB_AgFfvQi3cl4EWE1bx2uzna1apQFETB25JNJnXLPjTZIv32prZWcC4zhx_D8J8h6jVtAwgdU3JJCZdXRmhNBItZsYcGlCciikX61lvPsYzGXMR9NPR-QULROD1AfS7HKUkkH6DsGTQ0Hf5w7dyB97hsMFSgO9fqd6hLrSrsQK90VTZz3Fr8pXwH-NFMYYJrNW-g84do36rKw9G2j9Dr9PYlu49mT3cP2fUs0kwmXWSM1cSCEiCZVJQZTpQpDCTcsNBTZq2BQpvUEkWtGoMooLAxaGpswmPNR-h8szcc-7kE3-V16TVUlWqgXfqc05hLyojkgZ79o4t26ZpwXVAJFVSKJAnqdKuWRQ0m_3Blrdwq_40ngIsN0K713oHdEUrydfb5jciyn-wnAZ9ssPN65_5-w78BisyAyw |
Cites_doi | 10.1016/j.jallcom.2008.11.153 10.1021/sc5004456 10.1007/s40831-017-0120-x 10.1016/j.jclepro.2021.127393 10.1016/j.jmatprotec.2014.11.036 10.1016/j.hydromet.2017.10.015 10.1007/s10163-016-0563-3 10.1016/j.ijrmhm.2020.105251 10.1149/05011.0453ecst 10.2320/matertrans.MK201617 10.1016/j.jallcom.2015.05.238 10.1016/B978-0-08-096988-6.00019-5 10.1016/j.seppur.2017.09.053 10.1016/j.corsci.2011.02.006 10.1007/BF00544210 10.1039/C7GC03296J 10.1016/j.seppur.2020.117362 10.1007/s10163-017-0682-5 10.1179/1743285514Y.0000000084 10.2320/matertrans.M-M2013836 10.1126/science.adp2846 10.1002/adem.201901206 10.1021/acssuschemeng.8b00358 10.1038/s41563-019-0439-8 10.1007/s40831-015-0009-5 10.1016/S1003-6326(24)66496-4 10.1016/j.jallcom.2023.171775 10.1016/j.jclepro.2019.01.051 10.1016/j.hydromet.2023.106209 10.1016/j.seppur.2019.116030 10.1016/j.seppur.2023.125501 10.1016/j.jece.2022.108946 10.1016/j.apsusc.2011.01.049 10.1039/D3GC04679F 10.1016/j.jre.2024.02.001 10.1016/S0010-938X(01)00123-8 10.1016/j.jclepro.2020.124058 10.1021/acssuschemeng.8b01707 10.1016/j.jre.2024.01.012 10.1016/j.jclepro.2012.12.037 10.1007/s40831-015-0021-9 10.1007/s12666-020-01888-x 10.1039/C9GC03325D 10.1016/j.mineng.2019.106097 10.1002/cssc.201902342 10.1039/D0GC02028A 10.1016/j.seppur.2021.119795 10.1179/1743285514Y.0000000062 10.1039/D3GC03031H 10.1149/06404.0593ecst 10.1016/j.hydromet.2019.105213 10.1016/j.jallcom.2020.158424 10.3390/met8110867 10.1039/C5GC00230C 10.1007/s11663-018-1176-0 10.1016/j.hydromet.2017.06.021 10.1149/1.1838615 10.1016/j.seppur.2023.123654 10.1149/2.0451708jes |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4cc04252b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 2268 |
ExternalDocumentID | 39780693 10_1039_D4CC04252B d4cc04252b |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -~X 0-7 0R~ 29B 4.4 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R56 R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 WH7 X7L AAYXX CITATION H13 -JG AGSTE NPM VQA 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c296t-ddfc0fea4e929a12d30adbde63d2dbd82ffdebcd8f0a1fa7e4bebf5ec1df635c3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 01:15:09 EDT 2025 Mon Jun 30 13:15:38 EDT 2025 Fri Jan 31 01:44:21 EST 2025 Tue Jul 01 04:23:29 EDT 2025 Tue May 27 12:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-ddfc0fea4e929a12d30adbde63d2dbd82ffdebcd8f0a1fa7e4bebf5ec1df635c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7804-0369 |
PMID | 39780693 |
PQID | 3161419466 |
PQPubID | 2047502 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1039_D4CC04252B pubmed_primary_39780693 proquest_journals_3161419466 rsc_primary_d4cc04252b proquest_miscellaneous_3153912093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Padhan (D4CC04252B/cit58/1) 2017; 174 Xu (D4CC04252B/cit59/1) 2024; 26 El-Moneim (D4CC04252B/cit49/1) 2002; 44 Zhihan (D4CC04252B/cit9/1) 2023; 315 Liu (D4CC04252B/cit64/1) 2020; 145 Makarova (D4CC04252B/cit55/1) 2020; 251 Katiyar (D4CC04252B/cit28/1) 2020; 90 Kamimoto (D4CC04252B/cit31/1) 2017; 19 Zhihan (D4CC04252B/cit22/1) 2022; 10 Moore (D4CC04252B/cit17/1) 2015; 647 Bas (D4CC04252B/cit27/1) 2017; 172 Xue (D4CC04252B/cit61/1) 2020; 22 Lorenz (D4CC04252B/cit16/1) 2019; 215 Xu (D4CC04252B/cit41/1) 2024; 34 Venkatesan (D4CC04252B/cit52/1) 2018; 191 Takeda (D4CC04252B/cit19/1) 2014; 55 Abrahami (D4CC04252B/cit21/1) 2015; 124 D4CC04252B/cit4/1 Stefanoni (D4CC04252B/cit26/1) 2019; 18 Shirayama (D4CC04252B/cit15/1) 2018; 49 Abbasalizadeh (D4CC04252B/cit45/1) 2017; 3 Schreiber (D4CC04252B/cit29/1) 2020; 22 Önal (D4CC04252B/cit66/1) 2020; 191 Xu (D4CC04252B/cit12/1) 2024 D4CC04252B/cit2/1 Kamimoto (D4CC04252B/cit33/1) 2018; 20 Harris (D4CC04252B/cit30/1) 2010 Konishi (D4CC04252B/cit35/1) 2014; 64 Venkatesan (D4CC04252B/cit51/1) 2018; 6 Mao (D4CC04252B/cit48/1) 2011; 257 Yue (D4CC04252B/cit57/1) 2018; 6 Xu (D4CC04252B/cit11/1) 2019; 12 Jiang (D4CC04252B/cit23/1) 2020; 73 Kumari (D4CC04252B/cit56/1) 2021; 309 Lalana (D4CC04252B/cit13/1) 2016 Takeda (D4CC04252B/cit42/1) 2014 Liu (D4CC04252B/cit63/1) 2022; 282 Sun (D4CC04252B/cit18/1) 2015; 218 Abbasalizadeh (D4CC04252B/cit38/1) 2017; 58 Yu (D4CC04252B/cit10/1) 2024; 223 Zhang (D4CC04252B/cit53/1) 2023; 25 Xu (D4CC04252B/cit54/1) 2020; 22 Frankel (D4CC04252B/cit25/1) 1998; 145 Riaño (D4CC04252B/cit62/1) 2015; 17 Xu (D4CC04252B/cit6/1) 2024; 330 Holc (D4CC04252B/cit46/1) 1990; 25 Heo (D4CC04252B/cit37/1) 2024 Reimer (D4CC04252B/cit8/1) 2018; 8 Venkatesan (D4CC04252B/cit60/1) 2018; 20 Yan (D4CC04252B/cit50/1) 2009; 478 Yang (D4CC04252B/cit34/1) 2020; 233 Bian (D4CC04252B/cit20/1) 2015; 1 D4CC04252B/cit5/1 Yin (D4CC04252B/cit7/1) 2024; 384 Önal (D4CC04252B/cit65/1) 2015; 1 Binnemans (D4CC04252B/cit24/1) 2013; 51 Shen (D4CC04252B/cit39/1) 2017; 164 Jonsson (D4CC04252B/cit14/1) 2020; 277 Martinez (D4CC04252B/cit32/1) 2013; 50 D4CC04252B/cit3/1 Hua (D4CC04252B/cit43/1) 2014; 2 D4CC04252B/cit1/1 Mao (D4CC04252B/cit47/1) 2011; 53 Park (D4CC04252B/cit40/1) 2023; 967 Jeon (D4CC04252B/cit44/1) 2021; 860 Abbasalizadeh (D4CC04252B/cit36/1) 2015; 124 |
References_xml | – issn: 2010 publication-title: Quantitative chemical analysis doi: Harris – issn: 2016 end-page: p 1-6 publication-title: The European Powder Metallurgy Association doi: Lalana Degri Bradshaw Walton – issn: 2014 end-page: p 995-1044 publication-title: Treatise on Process Metallurgy doi: Takeda Uda Okabe – volume: 478 start-page: 188 year: 2009 ident: D4CC04252B/cit50/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.11.153 – volume: 2 start-page: 2536 year: 2014 ident: D4CC04252B/cit43/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc5004456 – ident: D4CC04252B/cit1/1 – volume: 3 start-page: 627 year: 2017 ident: D4CC04252B/cit45/1 publication-title: J. Sustain. Metall. doi: 10.1007/s40831-017-0120-x – volume: 309 start-page: 127393 year: 2021 ident: D4CC04252B/cit56/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.127393 – volume: 218 start-page: 57 year: 2015 ident: D4CC04252B/cit18/1 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.11.036 – volume: 174 start-page: 210 year: 2017 ident: D4CC04252B/cit58/1 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.10.015 – volume: 19 start-page: 1017 year: 2017 ident: D4CC04252B/cit31/1 publication-title: J. Mater. Cycles Waste Manage. doi: 10.1007/s10163-016-0563-3 – volume: 90 start-page: 105251 year: 2020 ident: D4CC04252B/cit28/1 publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2020.105251 – volume: 50 start-page: 453 year: 2013 ident: D4CC04252B/cit32/1 publication-title: ECS Trans. doi: 10.1149/05011.0453ecst – volume: 58 start-page: 400 year: 2017 ident: D4CC04252B/cit38/1 publication-title: Mater. Trans. doi: 10.2320/matertrans.MK201617 – volume: 647 start-page: 997 year: 2015 ident: D4CC04252B/cit17/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.238 – start-page: 995 volume-title: Treatise on Process Metallurgy year: 2014 ident: D4CC04252B/cit42/1 doi: 10.1016/B978-0-08-096988-6.00019-5 – volume: 191 start-page: 384 year: 2018 ident: D4CC04252B/cit52/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.09.053 – volume: 53 start-page: 1887 year: 2011 ident: D4CC04252B/cit47/1 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.02.006 – volume: 25 start-page: 215 year: 1990 ident: D4CC04252B/cit46/1 publication-title: J. Mater. Sci. doi: 10.1007/BF00544210 – ident: D4CC04252B/cit2/1 – volume: 20 start-page: 1065 year: 2018 ident: D4CC04252B/cit60/1 publication-title: Green Chem. doi: 10.1039/C7GC03296J – ident: D4CC04252B/cit5/1 – volume-title: Quantitative chemical analysis year: 2010 ident: D4CC04252B/cit30/1 – volume: 251 start-page: 117362 year: 2020 ident: D4CC04252B/cit55/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117362 – volume: 20 start-page: 1918 year: 2018 ident: D4CC04252B/cit33/1 publication-title: J. Mater. Cycles Waste Manage. doi: 10.1007/s10163-017-0682-5 – volume: 124 start-page: 106 year: 2015 ident: D4CC04252B/cit21/1 publication-title: Miner. Process. Extr. Metall. doi: 10.1179/1743285514Y.0000000084 – volume: 55 start-page: 334 year: 2014 ident: D4CC04252B/cit19/1 publication-title: Mater. Trans. doi: 10.2320/matertrans.M-M2013836 – volume: 384 start-page: 1182 year: 2024 ident: D4CC04252B/cit7/1 publication-title: Science doi: 10.1126/science.adp2846 – volume: 22 start-page: 1901206 year: 2020 ident: D4CC04252B/cit29/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901206 – volume: 6 start-page: 6547 year: 2018 ident: D4CC04252B/cit57/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00358 – volume: 18 start-page: 942 year: 2019 ident: D4CC04252B/cit26/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0439-8 – volume: 1 start-page: 151 year: 2015 ident: D4CC04252B/cit20/1 publication-title: J. Sustain. Metall. doi: 10.1007/s40831-015-0009-5 – volume: 34 start-page: 1634 year: 2024 ident: D4CC04252B/cit41/1 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(24)66496-4 – volume: 967 start-page: 171775 year: 2023 ident: D4CC04252B/cit40/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.171775 – volume: 215 start-page: 131 year: 2019 ident: D4CC04252B/cit16/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.01.051 – volume: 223 start-page: 106209 year: 2024 ident: D4CC04252B/cit10/1 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2023.106209 – volume: 233 start-page: 116030 year: 2020 ident: D4CC04252B/cit34/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116030 – volume: 330 start-page: 125501 year: 2024 ident: D4CC04252B/cit6/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125501 – volume: 10 start-page: 108946 year: 2022 ident: D4CC04252B/cit22/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108946 – volume: 257 start-page: 5581 year: 2011 ident: D4CC04252B/cit48/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.01.049 – volume: 26 start-page: 2552 year: 2024 ident: D4CC04252B/cit59/1 publication-title: Green Chem. doi: 10.1039/D3GC04679F – year: 2024 ident: D4CC04252B/cit12/1 publication-title: J. Rare Earths doi: 10.1016/j.jre.2024.02.001 – volume: 44 start-page: 1097 year: 2002 ident: D4CC04252B/cit49/1 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(01)00123-8 – volume: 277 start-page: 124058 year: 2020 ident: D4CC04252B/cit14/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.124058 – volume: 6 start-page: 9375 year: 2018 ident: D4CC04252B/cit51/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01707 – ident: D4CC04252B/cit4/1 – year: 2024 ident: D4CC04252B/cit37/1 publication-title: J. Rare Earths doi: 10.1016/j.jre.2024.01.012 – volume: 51 start-page: 1 year: 2013 ident: D4CC04252B/cit24/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2012.12.037 – volume: 1 start-page: 199 year: 2015 ident: D4CC04252B/cit65/1 publication-title: J. Sustain. Metall. doi: 10.1007/s40831-015-0021-9 – volume: 73 start-page: 703 year: 2020 ident: D4CC04252B/cit23/1 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-020-01888-x – volume: 22 start-page: 1105 year: 2020 ident: D4CC04252B/cit54/1 publication-title: Green Chem. doi: 10.1039/C9GC03325D – volume: 145 start-page: 106097 year: 2020 ident: D4CC04252B/cit64/1 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106097 – volume: 12 start-page: 4754 year: 2019 ident: D4CC04252B/cit11/1 publication-title: ChemSusChem doi: 10.1002/cssc.201902342 – volume: 22 start-page: 6288 year: 2020 ident: D4CC04252B/cit61/1 publication-title: Green Chem. doi: 10.1039/D0GC02028A – volume: 282 start-page: 119795 year: 2022 ident: D4CC04252B/cit63/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119795 – volume: 124 start-page: 191 year: 2015 ident: D4CC04252B/cit36/1 publication-title: Miner. Process. Extr. Metall. doi: 10.1179/1743285514Y.0000000062 – volume: 25 start-page: 10653 year: 2023 ident: D4CC04252B/cit53/1 publication-title: Green Chem. doi: 10.1039/D3GC03031H – volume: 64 start-page: 593 year: 2014 ident: D4CC04252B/cit35/1 publication-title: ECS Trans. doi: 10.1149/06404.0593ecst – volume: 191 start-page: 105213 year: 2020 ident: D4CC04252B/cit66/1 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105213 – start-page: 1 volume-title: The European Powder Metallurgy Association year: 2016 ident: D4CC04252B/cit13/1 – volume: 860 start-page: 158424 year: 2021 ident: D4CC04252B/cit44/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.158424 – volume: 8 start-page: 867 year: 2018 ident: D4CC04252B/cit8/1 publication-title: Metals doi: 10.3390/met8110867 – volume: 17 start-page: 2931 year: 2015 ident: D4CC04252B/cit62/1 publication-title: Green Chem. doi: 10.1039/C5GC00230C – volume: 49 start-page: 1067 year: 2018 ident: D4CC04252B/cit15/1 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-018-1176-0 – volume: 172 start-page: 30 year: 2017 ident: D4CC04252B/cit27/1 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.06.021 – volume: 145 start-page: 2186 year: 1998 ident: D4CC04252B/cit25/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 315 start-page: 123654 year: 2023 ident: D4CC04252B/cit9/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123654 – volume: 164 start-page: H5292 year: 2017 ident: D4CC04252B/cit39/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0451708jes – ident: D4CC04252B/cit3/1 |
SSID | ssj0000158 |
Score | 2.485118 |
SecondaryResourceType | review_article |
Snippet | Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2257 |
SubjectTerms | Clean energy Critical components Electrolysis End of life Energy technology Environmental impact Molten salts Neodymium Permanent magnets Rare earth elements Raw materials Reaction mechanisms Reagents Recycling Room temperature |
Title | Recent progress in electrochemical recycling of waste NdFeB magnets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39780693 https://www.proquest.com/docview/3161419466 https://www.proquest.com/docview/3153912093 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxKsQKMgIbpWL7V2_jm1IVEoIHBzJN2u9O4ZK4KASC7W_ntmXbaBCwMWJ1pu1NTOZnZmd-YaQl7zOBM0z8AOexj4TYeznWQM-S7mANEATWqri5Hfr5HTDzsq4nEzGWUvdrj4SV9fWlfwPV3EM-aqqZP-Bs_2iOIDfkb94RQ7j9a94jDafOsrXOVZKYyn4D9PWRjgcAFRol-KzTW3-zpGnh2u5hJPDL_xjCwbGqUcqcD8S46oRHZbtS7u07jSNP0ZBhLJT42U3iNqZScItz_n26hPY7dEEqHVw9m3XXo6mmwU-uIk2DBGpjD93omLyl1Sww2Wa6kwS269upFxpnPspNfCRR2DHEuaj11SONbKBZ3eSF471a2TgrO1ejbZjdu0-EFAFoyqZEEopRfWw27kT_vX7arlZrapiURY3yF6EXkY0JXvHi-LNaoQ_phu89i_u8G1p_mpY-2eL5jc3BY2WC9dMRhstxR1y23ob3rERnbtkAu09crMn2n0yNyLkORHyzlvvFxHyehHyto2nRcjTIuRZEXpANstFMT_1bV8NX0R5svOlbETQAGeAtjEPI0kDLmsJCZURfmZR00iohcyagIcNT4HVUDcxiFA2aJ8Kuk-m7baFR8RjqMDRZuXo9QQMEp6hzRXQNAeRhiKDekZeONpUXw18SqXTHmhevWbzuabgyYwcOLJV9u_1raLoi-DyLElm5Hl_G8mjTrR4C9tOzYlprqq_6Yw8NOTuH0MVtlai7uwj_fvhgW-P__zUJ-TWIOcHZLq76OApGqC7-pkVkx-UA4l5 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+electrochemical+recycling+of+waste+NdFeB+magnets&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Xu%2C+Xuan&rft.au=Jia%2C+Xiaozheng&rft.au=Zhao%2C+Kunyuan&rft.au=Xu%2C+Peng&rft.date=2025-01-30&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=61&rft.issue=11&rft.spage=2257&rft.epage=2268&rft_id=info:doi/10.1039%2Fd4cc04252b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |