POSITIVELY CURVED FINSLER METRICS ON VECTOR BUNDLES

We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski in...

Full description

Saved in:
Bibliographic Details
Published inNagoya mathematical journal Vol. 248; pp. 766 - 778
Main Author WU, KUANG-RU
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics.
AbstractList We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics.
We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$-metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics.
We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k . The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics.
Author WU, KUANG-RU
Author_xml – sequence: 1
  givenname: KUANG-RU
  orcidid: 0000-0002-5588-630X
  surname: WU
  fullname: WU, KUANG-RU
  email: krwu@gate.sinica.edu.tw
  organization: Institute of Mathematics Academia Sinica Taipei Taiwan krwu@gate.sinica.edu.tw
BookMark eNptkEFrgzAYhsPoYG23y36BsNuY3ZdEEz1u1m6Cq0NtYacQYzosrbbRHvbvZ2lhMHp6L8_7fS_PCA3qptYI3WOYYMD8ud6uJwQImZArNCTYJTbzHDJAQwDCbc4o3KBR264BwKM-HSL6mWRRHi3D-MsKFukynFqzaJ7FYWp9hHkaBZmVzK1lGORJar0u5tM4zG7R9UpuWn13zjFazMI8eLfj5C0KXmJbEZ91tmLggq9cXTKfEyU59qlfAnCHaVpIpygV1gTLwlPcIUwpoC6jlGKPSbckDh2jh9PdnWn2B912Yt0cTN2_FIRTl1POPdZTjydKmaZtjV6Jnam20vwIDOIoRfRSxFGKID0M_2BVdbKrmrozstpcrjydK3JbmKr81n8zLuC_j1Fu9g
CitedBy_id crossref_primary_10_2140_pjm_2023_326_161
Cites_doi 10.4310/jdg/1536285628
10.1515/9781400858682
10.1215/ijm/1256044938
10.4007/annals.2015.181.3.6
10.4007/annals.2009.169.531
10.1017/S0027763000016615
10.24033/asens.2084
10.2969/jmsj/06841461
10.2140/pjm.1984.110.355
10.1007/s00208-016-1472-4
10.1017/S0027763000015919
10.4310/jdg/1236604342
10.1007/BF01446914
10.1090/S0002-9939-2015-12472-0
10.1090/conm/196/02440
10.1007/BF01421592
10.1090/S1056-3911-2012-00588-8
10.1142/S0129167X16500300
10.1090/conm/712/14346
ContentType Journal Article
Copyright (2022) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license
Copyright_xml – notice: (2022) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1017/nmj.2022.2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2152-6842
EndPage 778
ExternalDocumentID 10_1017_nmj_2022_2
GroupedDBID --Z
-~X
09C
09E
123
29M
2WC
6OB
7.U
8FE
8FG
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
ABBZL
ABDNZ
ABJCF
ABJNI
ABLJU
ABMWE
ABMYL
ABQTM
ABROB
ABTAH
ABXAU
ABZCX
ACBMC
ACCHT
ACGFS
ACIPV
ACIWK
ACNCT
ACQFJ
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
ADYHW
AEBAK
AEBPU
AEHGV
AENCP
AENEX
AENGE
AEYYC
AFFOW
AFFUJ
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BJBOZ
BLZWO
BMAJL
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
E3Z
EBS
EGQIC
EJD
F20
HCIFZ
H~9
IH6
IOEEP
IOO
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L7B
LHUNA
LW7
M7S
NHB
NIKVX
NZEOI
OHT
OK1
P2P
PTHSS
PUASD
PYCCK
RAMDC
RBU
RBV
RCA
RDU
ROL
RPE
S6U
SAAAG
T9M
TKC
TN5
TR2
UT1
WFFJZ
WS9
XOL
XSB
YNT
YQT
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
0R~
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
AFZFC
AKMAY
AMVHM
CITATION
OVT
PHGZM
PHGZT
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c296t-c60509c5ed6972ca71939d00746e3ba4bdc1e21ab8c7426cc0356333186a5d243
IEDL.DBID BENPR
ISSN 0027-7630
IngestDate Fri Jul 25 11:52:19 EDT 2025
Tue Jul 01 03:36:40 EDT 2025
Thu Apr 24 23:20:48 EDT 2025
Wed Mar 13 06:03:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords 32J25
32L15
32F17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-c60509c5ed6972ca71939d00746e3ba4bdc1e21ab8c7426cc0356333186a5d243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5588-630X
PQID 2735737786
PQPubID 2046271
PageCount 13
ParticipantIDs proquest_journals_2735737786
crossref_primary_10_1017_nmj_2022_2
crossref_citationtrail_10_1017_nmj_2022_2
cambridge_journals_10_1017_nmj_2022_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Nagoya
PublicationTitle Nagoya mathematical journal
PublicationTitleAlternate Nagoya Math. J
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2018; 110
1984; 110
2015; 181
1973; 52
2009; 81
2013; 22
2021
2015; 143
1975; 57
2008; 41
1978; 235
2007; 606
2016; 27
1998; 42
1990; 287
2009; 169
2016; 68
2003; 43
2017; 369
2014; 98
1966
S0027763022000022_r9
S0027763022000022_r23
S0027763022000022_r1
S0027763022000022_r25
S0027763022000022_r6
S0027763022000022_r28
Lempert (S0027763022000022_r24) 2017; 693
S0027763022000022_r5
S0027763022000022_r29
S0027763022000022_r4
S0027763022000022_r3
Finski (S0027763022000022_r12) 2021
S0027763022000022_r20
S0027763022000022_r21
Liu (S0027763022000022_r26) 2014; 98
S0027763022000022_r22
Griffiths (S0027763022000022_r16) 1969
Hartshorne (S0027763022000022_r18) 1966
S0027763022000022_r34
Aikou (S0027763022000022_r2) 2004; 50
S0027763022000022_r13
Mourougane (S0027763022000022_r27) 2007; 606
S0027763022000022_r14
S0027763022000022_r15
S0027763022000022_r17
Demailly (S0027763022000022_r8) 1999; 37
S0027763022000022_r19
S0027763022000022_r30
S0027763022000022_r31
S0027763022000022_r10
Cao (S0027763022000022_r7) 2003; 43
S0027763022000022_r32
S0027763022000022_r11
S0027763022000022_r33
References_xml – volume: 68
  start-page: 1461
  year: 2016
  end-page: 1472
  article-title: A proof of the Ohsawa-Takegoshi theorem with sharp estimates,
  publication-title: J. Math. Soc. Japan
– volume: 22
  start-page: 303
  year: 2013
  end-page: 331
  article-title: Positivity and vanishing theorems for ample vector bundles,
  publication-title: J. Algebraic Geom.
– volume: 98
  start-page: 117
  year: 2014
  end-page: 145
  article-title: Curvatures of direct image sheaves of vector bundles and applications
  publication-title: J. Diff. Geom.
– volume: 287
  start-page: 571
  year: 1990
  end-page: 575
  article-title: A characterization of ample vector bundles on a curve
  publication-title: Math. Ann
– start-page: 63
  year: 1966
  end-page: 94
  article-title: Ample vector bundles
  publication-title: Inst. Hautes Études Sci. Publ. Math.
– volume: 110
  start-page: 355
  year: 1984
  end-page: 376
  article-title: Interpolation of Banach spaces and negatively curved vector bundles
  publication-title: Pacific J. Math.
– volume: 42
  start-page: 481
  year: 1998
  end-page: 492
  article-title: A partial connection on complex Finsler bundles and its applications
  publication-title: Illinois J. Math.
– volume: 181
  start-page: 1139
  year: 2015
  end-page: 1208
  article-title: A solution of an $\ {L}^2\ {}$ extension problem with an optimal estimate and applications
  publication-title: Ann. of Math. (2)
– start-page: 1
  year: 2021
  end-page: 24
  article-title: On Monge–Ampère volumes of direct images
  publication-title: Int. Math. Res. Notices
– volume: 110
  start-page: 135
  year: 2018
  end-page: 186
  article-title: An optimal $\ {L}^2\ {}$ extension theorem on weakly pseudoconvex Kähler manifolds
  publication-title: J. Differ. Geom.
– volume: 143
  start-page: 2193
  year: 2015
  end-page: 2200
  article-title: A maximum principle for Hermitian (and other) metrics
  publication-title: Proc. Amer. Math. Soc.
– volume: 169
  start-page: 531
  year: 2009
  end-page: 560
  article-title: Curvature of vector bundles associated to holomorphic fibrations
  publication-title: Ann. of Math. (2)
– volume: 606
  start-page: 167
  year: 2007
  end-page: 178
  article-title: Hodge metrics and positivity of direct images,
  publication-title: J. Reine Angew. Math.
– volume: 27
  start-page: 1650030
  year: 2016
  article-title: Chern forms of holomorphic Finsler vector bundles and some applications
  publication-title: Int. J. Math
– volume: 52
  start-page: 97
  year: 1973
  end-page: 128
  article-title: Some results in the theory of vector bundles
  publication-title: Nagoya Math. J.
– volume: 57
  start-page: 153
  year: 1975
  end-page: 166
  article-title: Negative vector bundles and complex Finsler structures
  publication-title: Nagoya Math. J.
– volume: 41
  start-page: 905
  year: 2008
  end-page: 924
  article-title: Hodge metrics and the curvature of higher direct images
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 369
  start-page: 997
  year: 2017
  end-page: 1019
  article-title: A Donaldson type functional on a holomorphic Finsler vector bundle
  publication-title: Math. Ann.
– volume: 43
  start-page: 369
  year: 2003
  end-page: 410
  article-title: Finsler geometry of projectivized vector bundles
  publication-title: J. Math. Kyoto Univ.
– volume: 235
  start-page: 37
  year: 1978
  end-page: 53
  article-title: Concavity theorems
  publication-title: Math. Ann.
– volume: 81
  start-page: 457
  year: 2009
  end-page: 482
  article-title: Positivity of direct image bundles and convexity on the space of Kähler metrics
  publication-title: J. Differ. Geom.
– volume: 43
  start-page: 369
  year: 2003
  ident: S0027763022000022_r7
  article-title: Finsler geometry of projectivized vector bundles
  publication-title: J. Math. Kyoto Univ.
– volume: 37
  start-page: 233
  volume-title: Several Complex Variables (Berkeley, CA, 1995–1996)
  year: 1999
  ident: S0027763022000022_r8
– ident: S0027763022000022_r34
  doi: 10.4310/jdg/1536285628
– ident: S0027763022000022_r11
– start-page: 185
  volume-title: Hermitian Differential Geometry, Chern Classes, and Positive Vector Bundles
  year: 1969
  ident: S0027763022000022_r16
– volume: 50
  start-page: 83
  volume-title: Finsler Geometry on Complex Vector Bundles. A Sampler of Riemann–Finsler Geometry
  year: 2004
  ident: S0027763022000022_r2
– ident: S0027763022000022_r15
– ident: S0027763022000022_r21
  doi: 10.1515/9781400858682
– ident: S0027763022000022_r1
  doi: 10.1215/ijm/1256044938
– ident: S0027763022000022_r9
– ident: S0027763022000022_r17
  doi: 10.4007/annals.2015.181.3.6
– ident: S0027763022000022_r3
  doi: 10.4007/annals.2009.169.531
– ident: S0027763022000022_r20
  doi: 10.1017/S0027763000016615
– start-page: 63
  year: 1966
  ident: S0027763022000022_r18
  article-title: Ample vector bundles
  publication-title: Inst. Hautes Études Sci. Publ. Math.
– ident: S0027763022000022_r30
– ident: S0027763022000022_r28
  doi: 10.24033/asens.2084
– ident: S0027763022000022_r29
– ident: S0027763022000022_r5
  doi: 10.2969/jmsj/06841461
– ident: S0027763022000022_r10
– ident: S0027763022000022_r31
  doi: 10.2140/pjm.1984.110.355
– ident: S0027763022000022_r14
  doi: 10.1007/s00208-016-1472-4
– ident: S0027763022000022_r33
  doi: 10.1017/S0027763000015919
– ident: S0027763022000022_r4
  doi: 10.4310/jdg/1236604342
– ident: S0027763022000022_r6
  doi: 10.1007/BF01446914
– volume: 98
  start-page: 117
  year: 2014
  ident: S0027763022000022_r26
  article-title: Curvatures of direct image sheaves of vector bundles and applications
  publication-title: J. Diff. Geom.
– volume: 693
  start-page: 271
  volume-title: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth
  year: 2017
  ident: S0027763022000022_r24
– ident: S0027763022000022_r23
  doi: 10.1090/S0002-9939-2015-12472-0
– start-page: 1
  year: 2021
  ident: S0027763022000022_r12
  article-title: On Monge–Ampère volumes of direct images
  publication-title: Int. Math. Res. Notices
– ident: S0027763022000022_r22
  doi: 10.1090/conm/196/02440
– ident: S0027763022000022_r32
  doi: 10.1007/BF01421592
– volume: 606
  start-page: 167
  year: 2007
  ident: S0027763022000022_r27
  article-title: Hodge metrics and positivity of direct images,
  publication-title: J. Reine Angew. Math.
– ident: S0027763022000022_r25
  doi: 10.1090/S1056-3911-2012-00588-8
– ident: S0027763022000022_r13
  doi: 10.1142/S0129167X16500300
– ident: S0027763022000022_r19
  doi: 10.1090/conm/712/14346
SSID ssj0008393
Score 2.2844715
Snippet We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the...
We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 766
SubjectTerms Mathematical functions
Norms
Title POSITIVELY CURVED FINSLER METRICS ON VECTOR BUNDLES
URI https://www.cambridge.org/core/product/identifier/S0027763022000022/type/journal_article
https://www.proquest.com/docview/2735737786
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ELnow_owokiXqwcOEtds6TkZgEwwMMjaCp6XruoPRgYL_v69sA0mMl132siXfa9-P9uX7ELoVsa4JpkcqpGJ4xIypkS6YShIO7UMUc2utPDd0zV6gv8yMWX7gtszHKouYuA7U8ZzLM_IGpFmDEsl29rj4VKVqlLxdzSU0SqgCIdiyyqjStt2xt4nFkP6zO2ZMVdhJzYKgVKON9OMN2kOMH_BvWoXd9LQbndcpxzlCh3mtqDxlzj1GeyI9QQfDDdHq8hSR8WjS9_tTe_CqdAJvancVB_rxge0pQ9v3-p2JMnKVqd3xR57SDtzuwJ6cocCx_U5PzXUQVI5b5krlpiRp4YaIzRbFnFEoulrxWilEkAiAjrkmsMYii0Oja3LeJIZJCOxWkxkx1sk5KqfzVFwgJUkkNbEhCEsYOEmPoEKgGhfc5AllNKqiuw0UYb6al2E2CUZDgCyUkIW4iu4LmEKek4lLTYv3P21vNraLjELjT6tagfb2x1unX_7_-grty89kcyY1VF59fYtrqBZWUR2VLOe5ni-MH2ICuqg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL3iMQAD4ineWAIGhgCxk7gdEII2pYG0RW1alSk4jjMgKIUWIX6Kb-Q6aQpIiI0lSywnOjm-j_j6XIB9FVumElZkoCvGSyyEEVlKGCyRmD5EsSyknedqdafatq66dncCPvKzMLqsMreJqaGOn6T-R36MbtbmTKudnfWfDd01Su-u5i00Mlpcq_c3TNkGp14Zv-8BpRU3KFWNUVcBQ9KiMzSkoyVPpK1ip8ipFBxDmGKc9t1QLMLXjqWpqCmigsS00ZHyhNkOY8h9R9gxtRjOOwnTFkNPrk-mVy7Hlh-DjWxHm3ID1-1JLodq8uPe4z0mo5Qe0e8iDj-d4U9fkDq4ygLMjyJTcp5RaREmVG8J5mpjWdfBMrCbRssLvI7r35JSu9lxy6SC2b_vNknNDZpeqUUaddJxS0GjSS7a9bLvtlag_S_4rMJU76mn1oAkiRZCthUTiUBKWBHGI9yUSjoy4YJH63AwhiIcrZ1BmNWd8RAhCzVkIV2HwxymUI6ky3UHjYdfx-6Nx_YzwY5fR23laH89-ItiG3_f3oWZalDzQ9-rX2_CrJ4yq3DZgqnhy6vaxjhlGO2k5CBw999s_ARA3PPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMiKd4FLAEDAyhxE5iOiAEbSoCbVqlD8EUHMcZEJRCixB_jV_HuUkKSIiNJUssR_n8ne8uvnwHsK9iy1TCigx0xXiJhTAiSwmDJRLThyiWJ-POcw3fuexaVzf2zRR85P_C6LLKfE8cb9Txk9TfyEvoZm3OtNpZKcnKIlrV2tng2dAdpPRJa95OI6XItXp_w_RteOpVca0PKK25ncqlkXUYMCQtOyNDOlr-RNoqdsqcSsExnCnH4x4cikX4CrE0FTVFdCIxhXSkPGa2wxjagSPsmFoM552GGa6zogLMXLh-K5j4AQw90vNtyg204uNcHNXkpf7jPaamlB7R75IOP13jT88wdne1RVjI4lRynhJrCaZUfxnmGxOR1-EKsFaz7XW8nlu_JZVu0HOrpOb57bobkIbbCbxKmzR90nMrnWZALrp-te62V6H7LwitQaH_1FfrQJJEyyLbiolEIEGsCKMTbkolHZlwwaMNOJhAEWaWNAzTKjQeImShhiykG3CYwxTKTMhc99N4-HXs3mTsIJXv-HVUMUf768FfhNv8-_YuzCITw7rnX2_BnJ4xLXcpQmH08qq2MWgZRTsZOwjc_TchPwHwwvli
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POSITIVELY+CURVED+FINSLER+METRICS+ON+VECTOR+BUNDLES&rft.jtitle=Nagoya+mathematical+journal&rft.au=KUANG-RU+WU&rft.date=2022-12-01&rft.pub=Cambridge+University+Press&rft.issn=0027-7630&rft.eissn=2152-6842&rft.volume=248&rft.spage=766&rft.epage=778&rft_id=info:doi/10.1017%2Fnmj.2022.2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-7630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-7630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-7630&client=summon