POSITIVELY CURVED FINSLER METRICS ON VECTOR BUNDLES
We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski in...
Saved in:
Published in | Nagoya mathematical journal Vol. 248; pp. 766 - 778 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual
$S^kE^*$
has a Griffiths negative
$L^2$
-metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics. |
---|---|
AbstractList | We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual
$S^kE^*$
has a Griffiths negative
$L^2$
-metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics. We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$-metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics. We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k . The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics. |
Author | WU, KUANG-RU |
Author_xml | – sequence: 1 givenname: KUANG-RU orcidid: 0000-0002-5588-630X surname: WU fullname: WU, KUANG-RU email: krwu@gate.sinica.edu.tw organization: Institute of Mathematics Academia Sinica Taipei Taiwan krwu@gate.sinica.edu.tw |
BookMark | eNptkEFrgzAYhsPoYG23y36BsNuY3ZdEEz1u1m6Cq0NtYacQYzosrbbRHvbvZ2lhMHp6L8_7fS_PCA3qptYI3WOYYMD8ud6uJwQImZArNCTYJTbzHDJAQwDCbc4o3KBR264BwKM-HSL6mWRRHi3D-MsKFukynFqzaJ7FYWp9hHkaBZmVzK1lGORJar0u5tM4zG7R9UpuWn13zjFazMI8eLfj5C0KXmJbEZ91tmLggq9cXTKfEyU59qlfAnCHaVpIpygV1gTLwlPcIUwpoC6jlGKPSbckDh2jh9PdnWn2B912Yt0cTN2_FIRTl1POPdZTjydKmaZtjV6Jnam20vwIDOIoRfRSxFGKID0M_2BVdbKrmrozstpcrjydK3JbmKr81n8zLuC_j1Fu9g |
CitedBy_id | crossref_primary_10_2140_pjm_2023_326_161 |
Cites_doi | 10.4310/jdg/1536285628 10.1515/9781400858682 10.1215/ijm/1256044938 10.4007/annals.2015.181.3.6 10.4007/annals.2009.169.531 10.1017/S0027763000016615 10.24033/asens.2084 10.2969/jmsj/06841461 10.2140/pjm.1984.110.355 10.1007/s00208-016-1472-4 10.1017/S0027763000015919 10.4310/jdg/1236604342 10.1007/BF01446914 10.1090/S0002-9939-2015-12472-0 10.1090/conm/196/02440 10.1007/BF01421592 10.1090/S1056-3911-2012-00588-8 10.1142/S0129167X16500300 10.1090/conm/712/14346 |
ContentType | Journal Article |
Copyright | (2022) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license |
Copyright_xml | – notice: (2022) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1017/nmj.2022.2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2152-6842 |
EndPage | 778 |
ExternalDocumentID | 10_1017_nmj_2022_2 |
GroupedDBID | --Z -~X 09C 09E 123 29M 2WC 6OB 7.U 8FE 8FG AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AANRG AARAB AASVR AAUKB ABBZL ABDNZ ABJCF ABJNI ABLJU ABMWE ABMYL ABQTM ABROB ABTAH ABXAU ABZCX ACBMC ACCHT ACGFS ACIPV ACIWK ACNCT ACQFJ ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH ADYHW AEBAK AEBPU AEHGV AENCP AENEX AENGE AEYYC AFFOW AFFUJ AFKQG AFKRA AFLVW AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BGLVJ BJBOZ BLZWO BMAJL CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC DOHLZ E3Z EBS EGQIC EJD F20 HCIFZ H~9 IH6 IOEEP IOO JHPGK JQKCU KAFGG KCGVB KFECR L6V L7B LHUNA LW7 M7S NHB NIKVX NZEOI OHT OK1 P2P PTHSS PUASD PYCCK RAMDC RBU RBV RCA RDU ROL RPE S6U SAAAG T9M TKC TN5 TR2 UT1 WFFJZ WS9 XOL XSB YNT YQT ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ 0R~ AAYXX ABGDZ ABVKB ABVZP ABXHF ACDLN AFZFC AKMAY AMVHM CITATION OVT PHGZM PHGZT DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c296t-c60509c5ed6972ca71939d00746e3ba4bdc1e21ab8c7426cc0356333186a5d243 |
IEDL.DBID | BENPR |
ISSN | 0027-7630 |
IngestDate | Fri Jul 25 11:52:19 EDT 2025 Tue Jul 01 03:36:40 EDT 2025 Thu Apr 24 23:20:48 EDT 2025 Wed Mar 13 06:03:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 32J25 32L15 32F17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-c60509c5ed6972ca71939d00746e3ba4bdc1e21ab8c7426cc0356333186a5d243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5588-630X |
PQID | 2735737786 |
PQPubID | 2046271 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2735737786 crossref_primary_10_1017_nmj_2022_2 crossref_citationtrail_10_1017_nmj_2022_2 cambridge_journals_10_1017_nmj_2022_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Nagoya |
PublicationTitle | Nagoya mathematical journal |
PublicationTitleAlternate | Nagoya Math. J |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2018; 110 1984; 110 2015; 181 1973; 52 2009; 81 2013; 22 2021 2015; 143 1975; 57 2008; 41 1978; 235 2007; 606 2016; 27 1998; 42 1990; 287 2009; 169 2016; 68 2003; 43 2017; 369 2014; 98 1966 S0027763022000022_r9 S0027763022000022_r23 S0027763022000022_r1 S0027763022000022_r25 S0027763022000022_r6 S0027763022000022_r28 Lempert (S0027763022000022_r24) 2017; 693 S0027763022000022_r5 S0027763022000022_r29 S0027763022000022_r4 S0027763022000022_r3 Finski (S0027763022000022_r12) 2021 S0027763022000022_r20 S0027763022000022_r21 Liu (S0027763022000022_r26) 2014; 98 S0027763022000022_r22 Griffiths (S0027763022000022_r16) 1969 Hartshorne (S0027763022000022_r18) 1966 S0027763022000022_r34 Aikou (S0027763022000022_r2) 2004; 50 S0027763022000022_r13 Mourougane (S0027763022000022_r27) 2007; 606 S0027763022000022_r14 S0027763022000022_r15 S0027763022000022_r17 Demailly (S0027763022000022_r8) 1999; 37 S0027763022000022_r19 S0027763022000022_r30 S0027763022000022_r31 S0027763022000022_r10 Cao (S0027763022000022_r7) 2003; 43 S0027763022000022_r32 S0027763022000022_r11 S0027763022000022_r33 |
References_xml | – volume: 68 start-page: 1461 year: 2016 end-page: 1472 article-title: A proof of the Ohsawa-Takegoshi theorem with sharp estimates, publication-title: J. Math. Soc. Japan – volume: 22 start-page: 303 year: 2013 end-page: 331 article-title: Positivity and vanishing theorems for ample vector bundles, publication-title: J. Algebraic Geom. – volume: 98 start-page: 117 year: 2014 end-page: 145 article-title: Curvatures of direct image sheaves of vector bundles and applications publication-title: J. Diff. Geom. – volume: 287 start-page: 571 year: 1990 end-page: 575 article-title: A characterization of ample vector bundles on a curve publication-title: Math. Ann – start-page: 63 year: 1966 end-page: 94 article-title: Ample vector bundles publication-title: Inst. Hautes Études Sci. Publ. Math. – volume: 110 start-page: 355 year: 1984 end-page: 376 article-title: Interpolation of Banach spaces and negatively curved vector bundles publication-title: Pacific J. Math. – volume: 42 start-page: 481 year: 1998 end-page: 492 article-title: A partial connection on complex Finsler bundles and its applications publication-title: Illinois J. Math. – volume: 181 start-page: 1139 year: 2015 end-page: 1208 article-title: A solution of an $\ {L}^2\ {}$ extension problem with an optimal estimate and applications publication-title: Ann. of Math. (2) – start-page: 1 year: 2021 end-page: 24 article-title: On Monge–Ampère volumes of direct images publication-title: Int. Math. Res. Notices – volume: 110 start-page: 135 year: 2018 end-page: 186 article-title: An optimal $\ {L}^2\ {}$ extension theorem on weakly pseudoconvex Kähler manifolds publication-title: J. Differ. Geom. – volume: 143 start-page: 2193 year: 2015 end-page: 2200 article-title: A maximum principle for Hermitian (and other) metrics publication-title: Proc. Amer. Math. Soc. – volume: 169 start-page: 531 year: 2009 end-page: 560 article-title: Curvature of vector bundles associated to holomorphic fibrations publication-title: Ann. of Math. (2) – volume: 606 start-page: 167 year: 2007 end-page: 178 article-title: Hodge metrics and positivity of direct images, publication-title: J. Reine Angew. Math. – volume: 27 start-page: 1650030 year: 2016 article-title: Chern forms of holomorphic Finsler vector bundles and some applications publication-title: Int. J. Math – volume: 52 start-page: 97 year: 1973 end-page: 128 article-title: Some results in the theory of vector bundles publication-title: Nagoya Math. J. – volume: 57 start-page: 153 year: 1975 end-page: 166 article-title: Negative vector bundles and complex Finsler structures publication-title: Nagoya Math. J. – volume: 41 start-page: 905 year: 2008 end-page: 924 article-title: Hodge metrics and the curvature of higher direct images publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 369 start-page: 997 year: 2017 end-page: 1019 article-title: A Donaldson type functional on a holomorphic Finsler vector bundle publication-title: Math. Ann. – volume: 43 start-page: 369 year: 2003 end-page: 410 article-title: Finsler geometry of projectivized vector bundles publication-title: J. Math. Kyoto Univ. – volume: 235 start-page: 37 year: 1978 end-page: 53 article-title: Concavity theorems publication-title: Math. Ann. – volume: 81 start-page: 457 year: 2009 end-page: 482 article-title: Positivity of direct image bundles and convexity on the space of Kähler metrics publication-title: J. Differ. Geom. – volume: 43 start-page: 369 year: 2003 ident: S0027763022000022_r7 article-title: Finsler geometry of projectivized vector bundles publication-title: J. Math. Kyoto Univ. – volume: 37 start-page: 233 volume-title: Several Complex Variables (Berkeley, CA, 1995–1996) year: 1999 ident: S0027763022000022_r8 – ident: S0027763022000022_r34 doi: 10.4310/jdg/1536285628 – ident: S0027763022000022_r11 – start-page: 185 volume-title: Hermitian Differential Geometry, Chern Classes, and Positive Vector Bundles year: 1969 ident: S0027763022000022_r16 – volume: 50 start-page: 83 volume-title: Finsler Geometry on Complex Vector Bundles. A Sampler of Riemann–Finsler Geometry year: 2004 ident: S0027763022000022_r2 – ident: S0027763022000022_r15 – ident: S0027763022000022_r21 doi: 10.1515/9781400858682 – ident: S0027763022000022_r1 doi: 10.1215/ijm/1256044938 – ident: S0027763022000022_r9 – ident: S0027763022000022_r17 doi: 10.4007/annals.2015.181.3.6 – ident: S0027763022000022_r3 doi: 10.4007/annals.2009.169.531 – ident: S0027763022000022_r20 doi: 10.1017/S0027763000016615 – start-page: 63 year: 1966 ident: S0027763022000022_r18 article-title: Ample vector bundles publication-title: Inst. Hautes Études Sci. Publ. Math. – ident: S0027763022000022_r30 – ident: S0027763022000022_r28 doi: 10.24033/asens.2084 – ident: S0027763022000022_r29 – ident: S0027763022000022_r5 doi: 10.2969/jmsj/06841461 – ident: S0027763022000022_r10 – ident: S0027763022000022_r31 doi: 10.2140/pjm.1984.110.355 – ident: S0027763022000022_r14 doi: 10.1007/s00208-016-1472-4 – ident: S0027763022000022_r33 doi: 10.1017/S0027763000015919 – ident: S0027763022000022_r4 doi: 10.4310/jdg/1236604342 – ident: S0027763022000022_r6 doi: 10.1007/BF01446914 – volume: 98 start-page: 117 year: 2014 ident: S0027763022000022_r26 article-title: Curvatures of direct image sheaves of vector bundles and applications publication-title: J. Diff. Geom. – volume: 693 start-page: 271 volume-title: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth year: 2017 ident: S0027763022000022_r24 – ident: S0027763022000022_r23 doi: 10.1090/S0002-9939-2015-12472-0 – start-page: 1 year: 2021 ident: S0027763022000022_r12 article-title: On Monge–Ampère volumes of direct images publication-title: Int. Math. Res. Notices – ident: S0027763022000022_r22 doi: 10.1090/conm/196/02440 – ident: S0027763022000022_r32 doi: 10.1007/BF01421592 – volume: 606 start-page: 167 year: 2007 ident: S0027763022000022_r27 article-title: Hodge metrics and positivity of direct images, publication-title: J. Reine Angew. Math. – ident: S0027763022000022_r25 doi: 10.1090/S1056-3911-2012-00588-8 – ident: S0027763022000022_r13 doi: 10.1142/S0129167X16500300 – ident: S0027763022000022_r19 doi: 10.1090/conm/712/14346 |
SSID | ssj0008393 |
Score | 2.2844715 |
Snippet | We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the... We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 766 |
SubjectTerms | Mathematical functions Norms |
Title | POSITIVELY CURVED FINSLER METRICS ON VECTOR BUNDLES |
URI | https://www.cambridge.org/core/product/identifier/S0027763022000022/type/journal_article https://www.proquest.com/docview/2735737786 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ELnow_owokiXqwcOEtds6TkZgEwwMMjaCp6XruoPRgYL_v69sA0mMl132siXfa9-P9uX7ELoVsa4JpkcqpGJ4xIypkS6YShIO7UMUc2utPDd0zV6gv8yMWX7gtszHKouYuA7U8ZzLM_IGpFmDEsl29rj4VKVqlLxdzSU0SqgCIdiyyqjStt2xt4nFkP6zO2ZMVdhJzYKgVKON9OMN2kOMH_BvWoXd9LQbndcpxzlCh3mtqDxlzj1GeyI9QQfDDdHq8hSR8WjS9_tTe_CqdAJvancVB_rxge0pQ9v3-p2JMnKVqd3xR57SDtzuwJ6cocCx_U5PzXUQVI5b5krlpiRp4YaIzRbFnFEoulrxWilEkAiAjrkmsMYii0Oja3LeJIZJCOxWkxkx1sk5KqfzVFwgJUkkNbEhCEsYOEmPoEKgGhfc5AllNKqiuw0UYb6al2E2CUZDgCyUkIW4iu4LmEKek4lLTYv3P21vNraLjELjT6tagfb2x1unX_7_-grty89kcyY1VF59fYtrqBZWUR2VLOe5ni-MH2ICuqg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL3iMQAD4ineWAIGhgCxk7gdEII2pYG0RW1alSk4jjMgKIUWIX6Kb-Q6aQpIiI0lSywnOjm-j_j6XIB9FVumElZkoCvGSyyEEVlKGCyRmD5EsSyknedqdafatq66dncCPvKzMLqsMreJqaGOn6T-R36MbtbmTKudnfWfDd01Su-u5i00Mlpcq_c3TNkGp14Zv-8BpRU3KFWNUVcBQ9KiMzSkoyVPpK1ip8ipFBxDmGKc9t1QLMLXjqWpqCmigsS00ZHyhNkOY8h9R9gxtRjOOwnTFkNPrk-mVy7Hlh-DjWxHm3ID1-1JLodq8uPe4z0mo5Qe0e8iDj-d4U9fkDq4ygLMjyJTcp5RaREmVG8J5mpjWdfBMrCbRssLvI7r35JSu9lxy6SC2b_vNknNDZpeqUUaddJxS0GjSS7a9bLvtlag_S_4rMJU76mn1oAkiRZCthUTiUBKWBHGI9yUSjoy4YJH63AwhiIcrZ1BmNWd8RAhCzVkIV2HwxymUI6ky3UHjYdfx-6Nx_YzwY5fR23laH89-ItiG3_f3oWZalDzQ9-rX2_CrJ4yq3DZgqnhy6vaxjhlGO2k5CBw999s_ARA3PPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BkRAMiKd4FLAEDAyhxE5iOiAEbSoCbVqlD8EUHMcZEJRCixB_jV_HuUkKSIiNJUssR_n8ne8uvnwHsK9iy1TCigx0xXiJhTAiSwmDJRLThyiWJ-POcw3fuexaVzf2zRR85P_C6LLKfE8cb9Txk9TfyEvoZm3OtNpZKcnKIlrV2tng2dAdpPRJa95OI6XItXp_w_RteOpVca0PKK25ncqlkXUYMCQtOyNDOlr-RNoqdsqcSsExnCnH4x4cikX4CrE0FTVFdCIxhXSkPGa2wxjagSPsmFoM552GGa6zogLMXLh-K5j4AQw90vNtyg204uNcHNXkpf7jPaamlB7R75IOP13jT88wdne1RVjI4lRynhJrCaZUfxnmGxOR1-EKsFaz7XW8nlu_JZVu0HOrpOb57bobkIbbCbxKmzR90nMrnWZALrp-te62V6H7LwitQaH_1FfrQJJEyyLbiolEIEGsCKMTbkolHZlwwaMNOJhAEWaWNAzTKjQeImShhiykG3CYwxTKTMhc99N4-HXs3mTsIJXv-HVUMUf768FfhNv8-_YuzCITw7rnX2_BnJ4xLXcpQmH08qq2MWgZRTsZOwjc_TchPwHwwvli |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POSITIVELY+CURVED+FINSLER+METRICS+ON+VECTOR+BUNDLES&rft.jtitle=Nagoya+mathematical+journal&rft.au=KUANG-RU+WU&rft.date=2022-12-01&rft.pub=Cambridge+University+Press&rft.issn=0027-7630&rft.eissn=2152-6842&rft.volume=248&rft.spage=766&rft.epage=778&rft_id=info:doi/10.1017%2Fnmj.2022.2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-7630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-7630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-7630&client=summon |